1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE		max(HZ/5, 1)
43 
44 /*
45  * Try to keep balance_dirty_pages() call intervals higher than this many pages
46  * by raising pause time to max_pause when falls below it.
47  */
48 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
49 
50 /*
51  * Estimate write bandwidth at 200ms intervals.
52  */
53 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
54 
55 #define RATELIMIT_CALC_SHIFT	10
56 
57 /*
58  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59  * will look to see if it needs to force writeback or throttling.
60  */
61 static long ratelimit_pages = 32;
62 
63 /* The following parameters are exported via /proc/sys/vm */
64 
65 /*
66  * Start background writeback (via writeback threads) at this percentage
67  */
68 int dirty_background_ratio = 10;
69 
70 /*
71  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72  * dirty_background_ratio * the amount of dirtyable memory
73  */
74 unsigned long dirty_background_bytes;
75 
76 /*
77  * free highmem will not be subtracted from the total free memory
78  * for calculating free ratios if vm_highmem_is_dirtyable is true
79  */
80 int vm_highmem_is_dirtyable;
81 
82 /*
83  * The generator of dirty data starts writeback at this percentage
84  */
85 int vm_dirty_ratio = 20;
86 
87 /*
88  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89  * vm_dirty_ratio * the amount of dirtyable memory
90  */
91 unsigned long vm_dirty_bytes;
92 
93 /*
94  * The interval between `kupdate'-style writebacks
95  */
96 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
97 
98 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
99 
100 /*
101  * The longest time for which data is allowed to remain dirty
102  */
103 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
104 
105 /*
106  * Flag that makes the machine dump writes/reads and block dirtyings.
107  */
108 int block_dump;
109 
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115 
116 EXPORT_SYMBOL(laptop_mode);
117 
118 /* End of sysctl-exported parameters */
119 
120 unsigned long global_dirty_limit;
121 
122 /*
123  * Scale the writeback cache size proportional to the relative writeout speeds.
124  *
125  * We do this by keeping a floating proportion between BDIs, based on page
126  * writeback completions [end_page_writeback()]. Those devices that write out
127  * pages fastest will get the larger share, while the slower will get a smaller
128  * share.
129  *
130  * We use page writeout completions because we are interested in getting rid of
131  * dirty pages. Having them written out is the primary goal.
132  *
133  * We introduce a concept of time, a period over which we measure these events,
134  * because demand can/will vary over time. The length of this period itself is
135  * measured in page writeback completions.
136  *
137  */
138 static struct prop_descriptor vm_completions;
139 
140 /*
141  * Work out the current dirty-memory clamping and background writeout
142  * thresholds.
143  *
144  * The main aim here is to lower them aggressively if there is a lot of mapped
145  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
146  * pages.  It is better to clamp down on writers than to start swapping, and
147  * performing lots of scanning.
148  *
149  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
150  *
151  * We don't permit the clamping level to fall below 5% - that is getting rather
152  * excessive.
153  *
154  * We make sure that the background writeout level is below the adjusted
155  * clamping level.
156  */
157 
158 /*
159  * In a memory zone, there is a certain amount of pages we consider
160  * available for the page cache, which is essentially the number of
161  * free and reclaimable pages, minus some zone reserves to protect
162  * lowmem and the ability to uphold the zone's watermarks without
163  * requiring writeback.
164  *
165  * This number of dirtyable pages is the base value of which the
166  * user-configurable dirty ratio is the effictive number of pages that
167  * are allowed to be actually dirtied.  Per individual zone, or
168  * globally by using the sum of dirtyable pages over all zones.
169  *
170  * Because the user is allowed to specify the dirty limit globally as
171  * absolute number of bytes, calculating the per-zone dirty limit can
172  * require translating the configured limit into a percentage of
173  * global dirtyable memory first.
174  */
175 
highmem_dirtyable_memory(unsigned long total)176 static unsigned long highmem_dirtyable_memory(unsigned long total)
177 {
178 #ifdef CONFIG_HIGHMEM
179 	int node;
180 	unsigned long x = 0;
181 
182 	for_each_node_state(node, N_HIGH_MEMORY) {
183 		struct zone *z =
184 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
185 
186 		x += zone_page_state(z, NR_FREE_PAGES) +
187 		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
188 	}
189 	/*
190 	 * Unreclaimable memory (kernel memory or anonymous memory
191 	 * without swap) can bring down the dirtyable pages below
192 	 * the zone's dirty balance reserve and the above calculation
193 	 * will underflow.  However we still want to add in nodes
194 	 * which are below threshold (negative values) to get a more
195 	 * accurate calculation but make sure that the total never
196 	 * underflows.
197 	 */
198 	if ((long)x < 0)
199 		x = 0;
200 
201 	/*
202 	 * Make sure that the number of highmem pages is never larger
203 	 * than the number of the total dirtyable memory. This can only
204 	 * occur in very strange VM situations but we want to make sure
205 	 * that this does not occur.
206 	 */
207 	return min(x, total);
208 #else
209 	return 0;
210 #endif
211 }
212 
213 /**
214  * global_dirtyable_memory - number of globally dirtyable pages
215  *
216  * Returns the global number of pages potentially available for dirty
217  * page cache.  This is the base value for the global dirty limits.
218  */
global_dirtyable_memory(void)219 unsigned long global_dirtyable_memory(void)
220 {
221 	unsigned long x;
222 
223 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
224 	x -= min(x, dirty_balance_reserve);
225 
226 	if (!vm_highmem_is_dirtyable)
227 		x -= highmem_dirtyable_memory(x);
228 
229 	return x + 1;	/* Ensure that we never return 0 */
230 }
231 
232 /*
233  * global_dirty_limits - background-writeback and dirty-throttling thresholds
234  *
235  * Calculate the dirty thresholds based on sysctl parameters
236  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
237  * - vm.dirty_ratio             or  vm.dirty_bytes
238  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
239  * real-time tasks.
240  */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)241 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
242 {
243 	unsigned long background;
244 	unsigned long dirty;
245 	unsigned long uninitialized_var(available_memory);
246 	struct task_struct *tsk;
247 
248 	if (!vm_dirty_bytes || !dirty_background_bytes)
249 		available_memory = global_dirtyable_memory();
250 
251 	if (vm_dirty_bytes)
252 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
253 	else
254 		dirty = (vm_dirty_ratio * available_memory) / 100;
255 
256 	if (dirty_background_bytes)
257 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
258 	else
259 		background = (dirty_background_ratio * available_memory) / 100;
260 
261 	if (background >= dirty)
262 		background = dirty / 2;
263 	tsk = current;
264 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
265 		background += background / 4;
266 		dirty += dirty / 4;
267 	}
268 	*pbackground = background;
269 	*pdirty = dirty;
270 	trace_global_dirty_state(background, dirty);
271 }
272 
273 /**
274  * zone_dirtyable_memory - number of dirtyable pages in a zone
275  * @zone: the zone
276  *
277  * Returns the zone's number of pages potentially available for dirty
278  * page cache.  This is the base value for the per-zone dirty limits.
279  */
zone_dirtyable_memory(struct zone * zone)280 static unsigned long zone_dirtyable_memory(struct zone *zone)
281 {
282 	/*
283 	 * The effective global number of dirtyable pages may exclude
284 	 * highmem as a big-picture measure to keep the ratio between
285 	 * dirty memory and lowmem reasonable.
286 	 *
287 	 * But this function is purely about the individual zone and a
288 	 * highmem zone can hold its share of dirty pages, so we don't
289 	 * care about vm_highmem_is_dirtyable here.
290 	 */
291 	unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
292 		zone_reclaimable_pages(zone);
293 
294 	/* don't allow this to underflow */
295 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
296 	return nr_pages;
297 }
298 
299 /**
300  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
301  * @zone: the zone
302  *
303  * Returns the maximum number of dirty pages allowed in a zone, based
304  * on the zone's dirtyable memory.
305  */
zone_dirty_limit(struct zone * zone)306 static unsigned long zone_dirty_limit(struct zone *zone)
307 {
308 	unsigned long zone_memory = zone_dirtyable_memory(zone);
309 	struct task_struct *tsk = current;
310 	unsigned long dirty;
311 
312 	if (vm_dirty_bytes)
313 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
314 			zone_memory / global_dirtyable_memory();
315 	else
316 		dirty = vm_dirty_ratio * zone_memory / 100;
317 
318 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
319 		dirty += dirty / 4;
320 
321 	return dirty;
322 }
323 
324 /**
325  * zone_dirty_ok - tells whether a zone is within its dirty limits
326  * @zone: the zone to check
327  *
328  * Returns %true when the dirty pages in @zone are within the zone's
329  * dirty limit, %false if the limit is exceeded.
330  */
zone_dirty_ok(struct zone * zone)331 bool zone_dirty_ok(struct zone *zone)
332 {
333 	unsigned long limit = zone_dirty_limit(zone);
334 
335 	return zone_page_state(zone, NR_FILE_DIRTY) +
336 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
337 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
338 }
339 
340 /*
341  * couple the period to the dirty_ratio:
342  *
343  *   period/2 ~ roundup_pow_of_two(dirty limit)
344  */
calc_period_shift(void)345 static int calc_period_shift(void)
346 {
347 	unsigned long dirty_total;
348 
349 	if (vm_dirty_bytes)
350 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
351 	else
352 		dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
353 				100;
354 	return 2 + ilog2(dirty_total - 1);
355 }
356 
357 /*
358  * update the period when the dirty threshold changes.
359  */
update_completion_period(void)360 static void update_completion_period(void)
361 {
362 	int shift = calc_period_shift();
363 	prop_change_shift(&vm_completions, shift);
364 
365 	writeback_set_ratelimit();
366 }
367 
dirty_background_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)368 int dirty_background_ratio_handler(struct ctl_table *table, int write,
369 		void __user *buffer, size_t *lenp,
370 		loff_t *ppos)
371 {
372 	int ret;
373 
374 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
375 	if (ret == 0 && write)
376 		dirty_background_bytes = 0;
377 	return ret;
378 }
379 
dirty_background_bytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)380 int dirty_background_bytes_handler(struct ctl_table *table, int write,
381 		void __user *buffer, size_t *lenp,
382 		loff_t *ppos)
383 {
384 	int ret;
385 
386 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
387 	if (ret == 0 && write)
388 		dirty_background_ratio = 0;
389 	return ret;
390 }
391 
dirty_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)392 int dirty_ratio_handler(struct ctl_table *table, int write,
393 		void __user *buffer, size_t *lenp,
394 		loff_t *ppos)
395 {
396 	int old_ratio = vm_dirty_ratio;
397 	int ret;
398 
399 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
400 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
401 		update_completion_period();
402 		vm_dirty_bytes = 0;
403 	}
404 	return ret;
405 }
406 
dirty_bytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)407 int dirty_bytes_handler(struct ctl_table *table, int write,
408 		void __user *buffer, size_t *lenp,
409 		loff_t *ppos)
410 {
411 	unsigned long old_bytes = vm_dirty_bytes;
412 	int ret;
413 
414 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
415 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
416 		update_completion_period();
417 		vm_dirty_ratio = 0;
418 	}
419 	return ret;
420 }
421 
422 /*
423  * Increment the BDI's writeout completion count and the global writeout
424  * completion count. Called from test_clear_page_writeback().
425  */
__bdi_writeout_inc(struct backing_dev_info * bdi)426 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
427 {
428 	__inc_bdi_stat(bdi, BDI_WRITTEN);
429 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
430 			      bdi->max_prop_frac);
431 }
432 
bdi_writeout_inc(struct backing_dev_info * bdi)433 void bdi_writeout_inc(struct backing_dev_info *bdi)
434 {
435 	unsigned long flags;
436 
437 	local_irq_save(flags);
438 	__bdi_writeout_inc(bdi);
439 	local_irq_restore(flags);
440 }
441 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
442 
443 /*
444  * Obtain an accurate fraction of the BDI's portion.
445  */
bdi_writeout_fraction(struct backing_dev_info * bdi,long * numerator,long * denominator)446 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
447 		long *numerator, long *denominator)
448 {
449 	prop_fraction_percpu(&vm_completions, &bdi->completions,
450 				numerator, denominator);
451 }
452 
453 /*
454  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
455  * registered backing devices, which, for obvious reasons, can not
456  * exceed 100%.
457  */
458 static unsigned int bdi_min_ratio;
459 
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)460 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
461 {
462 	int ret = 0;
463 
464 	spin_lock_bh(&bdi_lock);
465 	if (min_ratio > bdi->max_ratio) {
466 		ret = -EINVAL;
467 	} else {
468 		min_ratio -= bdi->min_ratio;
469 		if (bdi_min_ratio + min_ratio < 100) {
470 			bdi_min_ratio += min_ratio;
471 			bdi->min_ratio += min_ratio;
472 		} else {
473 			ret = -EINVAL;
474 		}
475 	}
476 	spin_unlock_bh(&bdi_lock);
477 
478 	return ret;
479 }
480 
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned max_ratio)481 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
482 {
483 	int ret = 0;
484 
485 	if (max_ratio > 100)
486 		return -EINVAL;
487 
488 	spin_lock_bh(&bdi_lock);
489 	if (bdi->min_ratio > max_ratio) {
490 		ret = -EINVAL;
491 	} else {
492 		bdi->max_ratio = max_ratio;
493 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
494 	}
495 	spin_unlock_bh(&bdi_lock);
496 
497 	return ret;
498 }
499 EXPORT_SYMBOL(bdi_set_max_ratio);
500 
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)501 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
502 					   unsigned long bg_thresh)
503 {
504 	return (thresh + bg_thresh) / 2;
505 }
506 
hard_dirty_limit(unsigned long thresh)507 static unsigned long hard_dirty_limit(unsigned long thresh)
508 {
509 	return max(thresh, global_dirty_limit);
510 }
511 
512 /**
513  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
514  * @bdi: the backing_dev_info to query
515  * @dirty: global dirty limit in pages
516  *
517  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
518  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
519  *
520  * Note that balance_dirty_pages() will only seriously take it as a hard limit
521  * when sleeping max_pause per page is not enough to keep the dirty pages under
522  * control. For example, when the device is completely stalled due to some error
523  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
524  * In the other normal situations, it acts more gently by throttling the tasks
525  * more (rather than completely block them) when the bdi dirty pages go high.
526  *
527  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
528  * - starving fast devices
529  * - piling up dirty pages (that will take long time to sync) on slow devices
530  *
531  * The bdi's share of dirty limit will be adapting to its throughput and
532  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
533  */
bdi_dirty_limit(struct backing_dev_info * bdi,unsigned long dirty)534 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
535 {
536 	u64 bdi_dirty;
537 	long numerator, denominator;
538 
539 	/*
540 	 * Calculate this BDI's share of the dirty ratio.
541 	 */
542 	bdi_writeout_fraction(bdi, &numerator, &denominator);
543 
544 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
545 	bdi_dirty *= numerator;
546 	do_div(bdi_dirty, denominator);
547 
548 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
549 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
550 		bdi_dirty = dirty * bdi->max_ratio / 100;
551 
552 	return bdi_dirty;
553 }
554 
555 /*
556  * Dirty position control.
557  *
558  * (o) global/bdi setpoints
559  *
560  * We want the dirty pages be balanced around the global/bdi setpoints.
561  * When the number of dirty pages is higher/lower than the setpoint, the
562  * dirty position control ratio (and hence task dirty ratelimit) will be
563  * decreased/increased to bring the dirty pages back to the setpoint.
564  *
565  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
566  *
567  *     if (dirty < setpoint) scale up   pos_ratio
568  *     if (dirty > setpoint) scale down pos_ratio
569  *
570  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
571  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
572  *
573  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
574  *
575  * (o) global control line
576  *
577  *     ^ pos_ratio
578  *     |
579  *     |            |<===== global dirty control scope ======>|
580  * 2.0 .............*
581  *     |            .*
582  *     |            . *
583  *     |            .   *
584  *     |            .     *
585  *     |            .        *
586  *     |            .            *
587  * 1.0 ................................*
588  *     |            .                  .     *
589  *     |            .                  .          *
590  *     |            .                  .              *
591  *     |            .                  .                 *
592  *     |            .                  .                    *
593  *   0 +------------.------------------.----------------------*------------->
594  *           freerun^          setpoint^                 limit^   dirty pages
595  *
596  * (o) bdi control line
597  *
598  *     ^ pos_ratio
599  *     |
600  *     |            *
601  *     |              *
602  *     |                *
603  *     |                  *
604  *     |                    * |<=========== span ============>|
605  * 1.0 .......................*
606  *     |                      . *
607  *     |                      .   *
608  *     |                      .     *
609  *     |                      .       *
610  *     |                      .         *
611  *     |                      .           *
612  *     |                      .             *
613  *     |                      .               *
614  *     |                      .                 *
615  *     |                      .                   *
616  *     |                      .                     *
617  * 1/4 ...............................................* * * * * * * * * * * *
618  *     |                      .                         .
619  *     |                      .                           .
620  *     |                      .                             .
621  *   0 +----------------------.-------------------------------.------------->
622  *                bdi_setpoint^                    x_intercept^
623  *
624  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
625  * be smoothly throttled down to normal if it starts high in situations like
626  * - start writing to a slow SD card and a fast disk at the same time. The SD
627  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
628  * - the bdi dirty thresh drops quickly due to change of JBOD workload
629  */
bdi_position_ratio(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty)630 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
631 					unsigned long thresh,
632 					unsigned long bg_thresh,
633 					unsigned long dirty,
634 					unsigned long bdi_thresh,
635 					unsigned long bdi_dirty)
636 {
637 	unsigned long write_bw = bdi->avg_write_bandwidth;
638 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
639 	unsigned long limit = hard_dirty_limit(thresh);
640 	unsigned long x_intercept;
641 	unsigned long setpoint;		/* dirty pages' target balance point */
642 	unsigned long bdi_setpoint;
643 	unsigned long span;
644 	long long pos_ratio;		/* for scaling up/down the rate limit */
645 	long x;
646 
647 	if (unlikely(dirty >= limit))
648 		return 0;
649 
650 	/*
651 	 * global setpoint
652 	 *
653 	 *                           setpoint - dirty 3
654 	 *        f(dirty) := 1.0 + (----------------)
655 	 *                           limit - setpoint
656 	 *
657 	 * it's a 3rd order polynomial that subjects to
658 	 *
659 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
660 	 * (2) f(setpoint) = 1.0 => the balance point
661 	 * (3) f(limit)    = 0   => the hard limit
662 	 * (4) df/dx      <= 0	 => negative feedback control
663 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
664 	 *     => fast response on large errors; small oscillation near setpoint
665 	 */
666 	setpoint = (freerun + limit) / 2;
667 	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
668 		    limit - setpoint + 1);
669 	pos_ratio = x;
670 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
671 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
672 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
673 
674 	/*
675 	 * We have computed basic pos_ratio above based on global situation. If
676 	 * the bdi is over/under its share of dirty pages, we want to scale
677 	 * pos_ratio further down/up. That is done by the following mechanism.
678 	 */
679 
680 	/*
681 	 * bdi setpoint
682 	 *
683 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
684 	 *
685 	 *                        x_intercept - bdi_dirty
686 	 *                     := --------------------------
687 	 *                        x_intercept - bdi_setpoint
688 	 *
689 	 * The main bdi control line is a linear function that subjects to
690 	 *
691 	 * (1) f(bdi_setpoint) = 1.0
692 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
693 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
694 	 *
695 	 * For single bdi case, the dirty pages are observed to fluctuate
696 	 * regularly within range
697 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
698 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
699 	 * fluctuation range for pos_ratio.
700 	 *
701 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
702 	 * own size, so move the slope over accordingly and choose a slope that
703 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
704 	 */
705 	if (unlikely(bdi_thresh > thresh))
706 		bdi_thresh = thresh;
707 	/*
708 	 * It's very possible that bdi_thresh is close to 0 not because the
709 	 * device is slow, but that it has remained inactive for long time.
710 	 * Honour such devices a reasonable good (hopefully IO efficient)
711 	 * threshold, so that the occasional writes won't be blocked and active
712 	 * writes can rampup the threshold quickly.
713 	 */
714 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
715 	/*
716 	 * scale global setpoint to bdi's:
717 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
718 	 */
719 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
720 	bdi_setpoint = setpoint * (u64)x >> 16;
721 	/*
722 	 * Use span=(8*write_bw) in single bdi case as indicated by
723 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
724 	 *
725 	 *        bdi_thresh                    thresh - bdi_thresh
726 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
727 	 *          thresh                            thresh
728 	 */
729 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
730 	x_intercept = bdi_setpoint + span;
731 
732 	if (bdi_dirty < x_intercept - span / 4) {
733 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
734 				    x_intercept - bdi_setpoint + 1);
735 	} else
736 		pos_ratio /= 4;
737 
738 	/*
739 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
740 	 * It may push the desired control point of global dirty pages higher
741 	 * than setpoint.
742 	 */
743 	x_intercept = bdi_thresh / 2;
744 	if (bdi_dirty < x_intercept) {
745 		if (bdi_dirty > x_intercept / 8)
746 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
747 		else
748 			pos_ratio *= 8;
749 	}
750 
751 	return pos_ratio;
752 }
753 
bdi_update_write_bandwidth(struct backing_dev_info * bdi,unsigned long elapsed,unsigned long written)754 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
755 				       unsigned long elapsed,
756 				       unsigned long written)
757 {
758 	const unsigned long period = roundup_pow_of_two(3 * HZ);
759 	unsigned long avg = bdi->avg_write_bandwidth;
760 	unsigned long old = bdi->write_bandwidth;
761 	u64 bw;
762 
763 	/*
764 	 * bw = written * HZ / elapsed
765 	 *
766 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
767 	 * write_bandwidth = ---------------------------------------------------
768 	 *                                          period
769 	 */
770 	bw = written - bdi->written_stamp;
771 	bw *= HZ;
772 	if (unlikely(elapsed > period)) {
773 		do_div(bw, elapsed);
774 		avg = bw;
775 		goto out;
776 	}
777 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
778 	bw >>= ilog2(period);
779 
780 	/*
781 	 * one more level of smoothing, for filtering out sudden spikes
782 	 */
783 	if (avg > old && old >= (unsigned long)bw)
784 		avg -= (avg - old) >> 3;
785 
786 	if (avg < old && old <= (unsigned long)bw)
787 		avg += (old - avg) >> 3;
788 
789 out:
790 	bdi->write_bandwidth = bw;
791 	bdi->avg_write_bandwidth = avg;
792 }
793 
794 /*
795  * The global dirtyable memory and dirty threshold could be suddenly knocked
796  * down by a large amount (eg. on the startup of KVM in a swapless system).
797  * This may throw the system into deep dirty exceeded state and throttle
798  * heavy/light dirtiers alike. To retain good responsiveness, maintain
799  * global_dirty_limit for tracking slowly down to the knocked down dirty
800  * threshold.
801  */
update_dirty_limit(unsigned long thresh,unsigned long dirty)802 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
803 {
804 	unsigned long limit = global_dirty_limit;
805 
806 	/*
807 	 * Follow up in one step.
808 	 */
809 	if (limit < thresh) {
810 		limit = thresh;
811 		goto update;
812 	}
813 
814 	/*
815 	 * Follow down slowly. Use the higher one as the target, because thresh
816 	 * may drop below dirty. This is exactly the reason to introduce
817 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
818 	 */
819 	thresh = max(thresh, dirty);
820 	if (limit > thresh) {
821 		limit -= (limit - thresh) >> 5;
822 		goto update;
823 	}
824 	return;
825 update:
826 	global_dirty_limit = limit;
827 }
828 
global_update_bandwidth(unsigned long thresh,unsigned long dirty,unsigned long now)829 static void global_update_bandwidth(unsigned long thresh,
830 				    unsigned long dirty,
831 				    unsigned long now)
832 {
833 	static DEFINE_SPINLOCK(dirty_lock);
834 	static unsigned long update_time;
835 
836 	/*
837 	 * check locklessly first to optimize away locking for the most time
838 	 */
839 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
840 		return;
841 
842 	spin_lock(&dirty_lock);
843 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
844 		update_dirty_limit(thresh, dirty);
845 		update_time = now;
846 	}
847 	spin_unlock(&dirty_lock);
848 }
849 
850 /*
851  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
852  *
853  * Normal bdi tasks will be curbed at or below it in long term.
854  * Obviously it should be around (write_bw / N) when there are N dd tasks.
855  */
bdi_update_dirty_ratelimit(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty,unsigned long dirtied,unsigned long elapsed)856 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
857 				       unsigned long thresh,
858 				       unsigned long bg_thresh,
859 				       unsigned long dirty,
860 				       unsigned long bdi_thresh,
861 				       unsigned long bdi_dirty,
862 				       unsigned long dirtied,
863 				       unsigned long elapsed)
864 {
865 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
866 	unsigned long limit = hard_dirty_limit(thresh);
867 	unsigned long setpoint = (freerun + limit) / 2;
868 	unsigned long write_bw = bdi->avg_write_bandwidth;
869 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
870 	unsigned long dirty_rate;
871 	unsigned long task_ratelimit;
872 	unsigned long balanced_dirty_ratelimit;
873 	unsigned long pos_ratio;
874 	unsigned long step;
875 	unsigned long x;
876 
877 	/*
878 	 * The dirty rate will match the writeout rate in long term, except
879 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
880 	 */
881 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
882 
883 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
884 				       bdi_thresh, bdi_dirty);
885 	/*
886 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
887 	 */
888 	task_ratelimit = (u64)dirty_ratelimit *
889 					pos_ratio >> RATELIMIT_CALC_SHIFT;
890 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
891 
892 	/*
893 	 * A linear estimation of the "balanced" throttle rate. The theory is,
894 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
895 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
896 	 * formula will yield the balanced rate limit (write_bw / N).
897 	 *
898 	 * Note that the expanded form is not a pure rate feedback:
899 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
900 	 * but also takes pos_ratio into account:
901 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
902 	 *
903 	 * (1) is not realistic because pos_ratio also takes part in balancing
904 	 * the dirty rate.  Consider the state
905 	 *	pos_ratio = 0.5						     (3)
906 	 *	rate = 2 * (write_bw / N)				     (4)
907 	 * If (1) is used, it will stuck in that state! Because each dd will
908 	 * be throttled at
909 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
910 	 * yielding
911 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
912 	 * put (6) into (1) we get
913 	 *	rate_(i+1) = rate_(i)					     (7)
914 	 *
915 	 * So we end up using (2) to always keep
916 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
917 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
918 	 * pos_ratio is able to drive itself to 1.0, which is not only where
919 	 * the dirty count meet the setpoint, but also where the slope of
920 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
921 	 */
922 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
923 					   dirty_rate | 1);
924 	/*
925 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
926 	 */
927 	if (unlikely(balanced_dirty_ratelimit > write_bw))
928 		balanced_dirty_ratelimit = write_bw;
929 
930 	/*
931 	 * We could safely do this and return immediately:
932 	 *
933 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
934 	 *
935 	 * However to get a more stable dirty_ratelimit, the below elaborated
936 	 * code makes use of task_ratelimit to filter out sigular points and
937 	 * limit the step size.
938 	 *
939 	 * The below code essentially only uses the relative value of
940 	 *
941 	 *	task_ratelimit - dirty_ratelimit
942 	 *	= (pos_ratio - 1) * dirty_ratelimit
943 	 *
944 	 * which reflects the direction and size of dirty position error.
945 	 */
946 
947 	/*
948 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
949 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
950 	 * For example, when
951 	 * - dirty_ratelimit > balanced_dirty_ratelimit
952 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
953 	 * lowering dirty_ratelimit will help meet both the position and rate
954 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
955 	 * only help meet the rate target. After all, what the users ultimately
956 	 * feel and care are stable dirty rate and small position error.
957 	 *
958 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
959 	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
960 	 * keeps jumping around randomly and can even leap far away at times
961 	 * due to the small 200ms estimation period of dirty_rate (we want to
962 	 * keep that period small to reduce time lags).
963 	 */
964 	step = 0;
965 	if (dirty < setpoint) {
966 		x = min(bdi->balanced_dirty_ratelimit,
967 			 min(balanced_dirty_ratelimit, task_ratelimit));
968 		if (dirty_ratelimit < x)
969 			step = x - dirty_ratelimit;
970 	} else {
971 		x = max(bdi->balanced_dirty_ratelimit,
972 			 max(balanced_dirty_ratelimit, task_ratelimit));
973 		if (dirty_ratelimit > x)
974 			step = dirty_ratelimit - x;
975 	}
976 
977 	/*
978 	 * Don't pursue 100% rate matching. It's impossible since the balanced
979 	 * rate itself is constantly fluctuating. So decrease the track speed
980 	 * when it gets close to the target. Helps eliminate pointless tremors.
981 	 */
982 	step >>= dirty_ratelimit / (2 * step + 1);
983 	/*
984 	 * Limit the tracking speed to avoid overshooting.
985 	 */
986 	step = (step + 7) / 8;
987 
988 	if (dirty_ratelimit < balanced_dirty_ratelimit)
989 		dirty_ratelimit += step;
990 	else
991 		dirty_ratelimit -= step;
992 
993 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
994 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
995 
996 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
997 }
998 
__bdi_update_bandwidth(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty,unsigned long start_time)999 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1000 			    unsigned long thresh,
1001 			    unsigned long bg_thresh,
1002 			    unsigned long dirty,
1003 			    unsigned long bdi_thresh,
1004 			    unsigned long bdi_dirty,
1005 			    unsigned long start_time)
1006 {
1007 	unsigned long now = jiffies;
1008 	unsigned long elapsed = now - bdi->bw_time_stamp;
1009 	unsigned long dirtied;
1010 	unsigned long written;
1011 
1012 	/*
1013 	 * rate-limit, only update once every 200ms.
1014 	 */
1015 	if (elapsed < BANDWIDTH_INTERVAL)
1016 		return;
1017 
1018 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1019 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1020 
1021 	/*
1022 	 * Skip quiet periods when disk bandwidth is under-utilized.
1023 	 * (at least 1s idle time between two flusher runs)
1024 	 */
1025 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1026 		goto snapshot;
1027 
1028 	if (thresh) {
1029 		global_update_bandwidth(thresh, dirty, now);
1030 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1031 					   bdi_thresh, bdi_dirty,
1032 					   dirtied, elapsed);
1033 	}
1034 	bdi_update_write_bandwidth(bdi, elapsed, written);
1035 
1036 snapshot:
1037 	bdi->dirtied_stamp = dirtied;
1038 	bdi->written_stamp = written;
1039 	bdi->bw_time_stamp = now;
1040 }
1041 
bdi_update_bandwidth(struct backing_dev_info * bdi,unsigned long thresh,unsigned long bg_thresh,unsigned long dirty,unsigned long bdi_thresh,unsigned long bdi_dirty,unsigned long start_time)1042 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1043 				 unsigned long thresh,
1044 				 unsigned long bg_thresh,
1045 				 unsigned long dirty,
1046 				 unsigned long bdi_thresh,
1047 				 unsigned long bdi_dirty,
1048 				 unsigned long start_time)
1049 {
1050 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1051 		return;
1052 	spin_lock(&bdi->wb.list_lock);
1053 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1054 			       bdi_thresh, bdi_dirty, start_time);
1055 	spin_unlock(&bdi->wb.list_lock);
1056 }
1057 
1058 /*
1059  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1060  * will look to see if it needs to start dirty throttling.
1061  *
1062  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1063  * global_page_state() too often. So scale it near-sqrt to the safety margin
1064  * (the number of pages we may dirty without exceeding the dirty limits).
1065  */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1066 static unsigned long dirty_poll_interval(unsigned long dirty,
1067 					 unsigned long thresh)
1068 {
1069 	if (thresh > dirty)
1070 		return 1UL << (ilog2(thresh - dirty) >> 1);
1071 
1072 	return 1;
1073 }
1074 
bdi_max_pause(struct backing_dev_info * bdi,unsigned long bdi_dirty)1075 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1076 				   unsigned long bdi_dirty)
1077 {
1078 	unsigned long bw = bdi->avg_write_bandwidth;
1079 	unsigned long t;
1080 
1081 	/*
1082 	 * Limit pause time for small memory systems. If sleeping for too long
1083 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1084 	 * idle.
1085 	 *
1086 	 * 8 serves as the safety ratio.
1087 	 */
1088 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1089 	t++;
1090 
1091 	return min_t(unsigned long, t, MAX_PAUSE);
1092 }
1093 
bdi_min_pause(struct backing_dev_info * bdi,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1094 static long bdi_min_pause(struct backing_dev_info *bdi,
1095 			  long max_pause,
1096 			  unsigned long task_ratelimit,
1097 			  unsigned long dirty_ratelimit,
1098 			  int *nr_dirtied_pause)
1099 {
1100 	long hi = ilog2(bdi->avg_write_bandwidth);
1101 	long lo = ilog2(bdi->dirty_ratelimit);
1102 	long t;		/* target pause */
1103 	long pause;	/* estimated next pause */
1104 	int pages;	/* target nr_dirtied_pause */
1105 
1106 	/* target for 10ms pause on 1-dd case */
1107 	t = max(1, HZ / 100);
1108 
1109 	/*
1110 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1111 	 * overheads.
1112 	 *
1113 	 * (N * 10ms) on 2^N concurrent tasks.
1114 	 */
1115 	if (hi > lo)
1116 		t += (hi - lo) * (10 * HZ) / 1024;
1117 
1118 	/*
1119 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1120 	 * on the much more stable dirty_ratelimit. However the next pause time
1121 	 * will be computed based on task_ratelimit and the two rate limits may
1122 	 * depart considerably at some time. Especially if task_ratelimit goes
1123 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1124 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1125 	 * result task_ratelimit won't be executed faithfully, which could
1126 	 * eventually bring down dirty_ratelimit.
1127 	 *
1128 	 * We apply two rules to fix it up:
1129 	 * 1) try to estimate the next pause time and if necessary, use a lower
1130 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1131 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1132 	 * 2) limit the target pause time to max_pause/2, so that the normal
1133 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1134 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1135 	 */
1136 	t = min(t, 1 + max_pause / 2);
1137 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1138 
1139 	/*
1140 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1141 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1142 	 * When the 16 consecutive reads are often interrupted by some dirty
1143 	 * throttling pause during the async writes, cfq will go into idles
1144 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1145 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1146 	 */
1147 	if (pages < DIRTY_POLL_THRESH) {
1148 		t = max_pause;
1149 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1150 		if (pages > DIRTY_POLL_THRESH) {
1151 			pages = DIRTY_POLL_THRESH;
1152 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1153 		}
1154 	}
1155 
1156 	pause = HZ * pages / (task_ratelimit + 1);
1157 	if (pause > max_pause) {
1158 		t = max_pause;
1159 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1160 	}
1161 
1162 	*nr_dirtied_pause = pages;
1163 	/*
1164 	 * The minimal pause time will normally be half the target pause time.
1165 	 */
1166 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1167 }
1168 
1169 /*
1170  * balance_dirty_pages() must be called by processes which are generating dirty
1171  * data.  It looks at the number of dirty pages in the machine and will force
1172  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1173  * If we're over `background_thresh' then the writeback threads are woken to
1174  * perform some writeout.
1175  */
balance_dirty_pages(struct address_space * mapping,unsigned long pages_dirtied)1176 static void balance_dirty_pages(struct address_space *mapping,
1177 				unsigned long pages_dirtied)
1178 {
1179 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1180 	unsigned long bdi_reclaimable;
1181 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1182 	unsigned long bdi_dirty;
1183 	unsigned long freerun;
1184 	unsigned long background_thresh;
1185 	unsigned long dirty_thresh;
1186 	unsigned long bdi_thresh;
1187 	long period;
1188 	long pause;
1189 	long max_pause;
1190 	long min_pause;
1191 	int nr_dirtied_pause;
1192 	bool dirty_exceeded = false;
1193 	unsigned long task_ratelimit;
1194 	unsigned long dirty_ratelimit;
1195 	unsigned long pos_ratio;
1196 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1197 	unsigned long start_time = jiffies;
1198 
1199 	for (;;) {
1200 		unsigned long now = jiffies;
1201 
1202 		/*
1203 		 * Unstable writes are a feature of certain networked
1204 		 * filesystems (i.e. NFS) in which data may have been
1205 		 * written to the server's write cache, but has not yet
1206 		 * been flushed to permanent storage.
1207 		 */
1208 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1209 					global_page_state(NR_UNSTABLE_NFS);
1210 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1211 
1212 		global_dirty_limits(&background_thresh, &dirty_thresh);
1213 
1214 		/*
1215 		 * Throttle it only when the background writeback cannot
1216 		 * catch-up. This avoids (excessively) small writeouts
1217 		 * when the bdi limits are ramping up.
1218 		 */
1219 		freerun = dirty_freerun_ceiling(dirty_thresh,
1220 						background_thresh);
1221 		if (nr_dirty <= freerun) {
1222 			current->dirty_paused_when = now;
1223 			current->nr_dirtied = 0;
1224 			current->nr_dirtied_pause =
1225 				dirty_poll_interval(nr_dirty, dirty_thresh);
1226 			break;
1227 		}
1228 
1229 		if (unlikely(!writeback_in_progress(bdi)))
1230 			bdi_start_background_writeback(bdi);
1231 
1232 		/*
1233 		 * bdi_thresh is not treated as some limiting factor as
1234 		 * dirty_thresh, due to reasons
1235 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1236 		 * - in a system with HDD and USB key, the USB key may somehow
1237 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1238 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1239 		 *   In this case we don't want to hard throttle the USB key
1240 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1241 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1242 		 *   bdi_position_ratio() will let the dirtier task progress
1243 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1244 		 */
1245 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1246 
1247 		/*
1248 		 * In order to avoid the stacked BDI deadlock we need
1249 		 * to ensure we accurately count the 'dirty' pages when
1250 		 * the threshold is low.
1251 		 *
1252 		 * Otherwise it would be possible to get thresh+n pages
1253 		 * reported dirty, even though there are thresh-m pages
1254 		 * actually dirty; with m+n sitting in the percpu
1255 		 * deltas.
1256 		 */
1257 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1258 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1259 			bdi_dirty = bdi_reclaimable +
1260 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1261 		} else {
1262 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1263 			bdi_dirty = bdi_reclaimable +
1264 				    bdi_stat(bdi, BDI_WRITEBACK);
1265 		}
1266 
1267 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1268 				  (nr_dirty > dirty_thresh);
1269 		if (dirty_exceeded && !bdi->dirty_exceeded)
1270 			bdi->dirty_exceeded = 1;
1271 
1272 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1273 				     nr_dirty, bdi_thresh, bdi_dirty,
1274 				     start_time);
1275 
1276 		dirty_ratelimit = bdi->dirty_ratelimit;
1277 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1278 					       background_thresh, nr_dirty,
1279 					       bdi_thresh, bdi_dirty);
1280 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1281 							RATELIMIT_CALC_SHIFT;
1282 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1283 		min_pause = bdi_min_pause(bdi, max_pause,
1284 					  task_ratelimit, dirty_ratelimit,
1285 					  &nr_dirtied_pause);
1286 
1287 		if (unlikely(task_ratelimit == 0)) {
1288 			period = max_pause;
1289 			pause = max_pause;
1290 			goto pause;
1291 		}
1292 		period = HZ * pages_dirtied / task_ratelimit;
1293 		pause = period;
1294 		if (current->dirty_paused_when)
1295 			pause -= now - current->dirty_paused_when;
1296 		/*
1297 		 * For less than 1s think time (ext3/4 may block the dirtier
1298 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1299 		 * however at much less frequency), try to compensate it in
1300 		 * future periods by updating the virtual time; otherwise just
1301 		 * do a reset, as it may be a light dirtier.
1302 		 */
1303 		if (pause < min_pause) {
1304 			trace_balance_dirty_pages(bdi,
1305 						  dirty_thresh,
1306 						  background_thresh,
1307 						  nr_dirty,
1308 						  bdi_thresh,
1309 						  bdi_dirty,
1310 						  dirty_ratelimit,
1311 						  task_ratelimit,
1312 						  pages_dirtied,
1313 						  period,
1314 						  min(pause, 0L),
1315 						  start_time);
1316 			if (pause < -HZ) {
1317 				current->dirty_paused_when = now;
1318 				current->nr_dirtied = 0;
1319 			} else if (period) {
1320 				current->dirty_paused_when += period;
1321 				current->nr_dirtied = 0;
1322 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1323 				current->nr_dirtied_pause += pages_dirtied;
1324 			break;
1325 		}
1326 		if (unlikely(pause > max_pause)) {
1327 			/* for occasional dropped task_ratelimit */
1328 			now += min(pause - max_pause, max_pause);
1329 			pause = max_pause;
1330 		}
1331 
1332 pause:
1333 		trace_balance_dirty_pages(bdi,
1334 					  dirty_thresh,
1335 					  background_thresh,
1336 					  nr_dirty,
1337 					  bdi_thresh,
1338 					  bdi_dirty,
1339 					  dirty_ratelimit,
1340 					  task_ratelimit,
1341 					  pages_dirtied,
1342 					  period,
1343 					  pause,
1344 					  start_time);
1345 		__set_current_state(TASK_KILLABLE);
1346 		io_schedule_timeout(pause);
1347 
1348 		current->dirty_paused_when = now + pause;
1349 		current->nr_dirtied = 0;
1350 		current->nr_dirtied_pause = nr_dirtied_pause;
1351 
1352 		/*
1353 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1354 		 * also keep "1000+ dd on a slow USB stick" under control.
1355 		 */
1356 		if (task_ratelimit)
1357 			break;
1358 
1359 		/*
1360 		 * In the case of an unresponding NFS server and the NFS dirty
1361 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1362 		 * to go through, so that tasks on them still remain responsive.
1363 		 *
1364 		 * In theory 1 page is enough to keep the comsumer-producer
1365 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1366 		 * more page. However bdi_dirty has accounting errors.  So use
1367 		 * the larger and more IO friendly bdi_stat_error.
1368 		 */
1369 		if (bdi_dirty <= bdi_stat_error(bdi))
1370 			break;
1371 
1372 		if (fatal_signal_pending(current))
1373 			break;
1374 	}
1375 
1376 	if (!dirty_exceeded && bdi->dirty_exceeded)
1377 		bdi->dirty_exceeded = 0;
1378 
1379 	if (writeback_in_progress(bdi))
1380 		return;
1381 
1382 	/*
1383 	 * In laptop mode, we wait until hitting the higher threshold before
1384 	 * starting background writeout, and then write out all the way down
1385 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1386 	 *
1387 	 * In normal mode, we start background writeout at the lower
1388 	 * background_thresh, to keep the amount of dirty memory low.
1389 	 */
1390 	if (laptop_mode)
1391 		return;
1392 
1393 	if (nr_reclaimable > background_thresh)
1394 		bdi_start_background_writeback(bdi);
1395 }
1396 
set_page_dirty_balance(struct page * page,int page_mkwrite)1397 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1398 {
1399 	if (set_page_dirty(page) || page_mkwrite) {
1400 		struct address_space *mapping = page_mapping(page);
1401 
1402 		if (mapping)
1403 			balance_dirty_pages_ratelimited(mapping);
1404 	}
1405 }
1406 
1407 static DEFINE_PER_CPU(int, bdp_ratelimits);
1408 
1409 /*
1410  * Normal tasks are throttled by
1411  *	loop {
1412  *		dirty tsk->nr_dirtied_pause pages;
1413  *		take a snap in balance_dirty_pages();
1414  *	}
1415  * However there is a worst case. If every task exit immediately when dirtied
1416  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1417  * called to throttle the page dirties. The solution is to save the not yet
1418  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1419  * randomly into the running tasks. This works well for the above worst case,
1420  * as the new task will pick up and accumulate the old task's leaked dirty
1421  * count and eventually get throttled.
1422  */
1423 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1424 
1425 /**
1426  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1427  * @mapping: address_space which was dirtied
1428  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1429  *
1430  * Processes which are dirtying memory should call in here once for each page
1431  * which was newly dirtied.  The function will periodically check the system's
1432  * dirty state and will initiate writeback if needed.
1433  *
1434  * On really big machines, get_writeback_state is expensive, so try to avoid
1435  * calling it too often (ratelimiting).  But once we're over the dirty memory
1436  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1437  * from overshooting the limit by (ratelimit_pages) each.
1438  */
balance_dirty_pages_ratelimited_nr(struct address_space * mapping,unsigned long nr_pages_dirtied)1439 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1440 					unsigned long nr_pages_dirtied)
1441 {
1442 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1443 	int ratelimit;
1444 	int *p;
1445 
1446 	if (!bdi_cap_account_dirty(bdi))
1447 		return;
1448 
1449 	ratelimit = current->nr_dirtied_pause;
1450 	if (bdi->dirty_exceeded)
1451 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1452 
1453 	preempt_disable();
1454 	/*
1455 	 * This prevents one CPU to accumulate too many dirtied pages without
1456 	 * calling into balance_dirty_pages(), which can happen when there are
1457 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1458 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1459 	 */
1460 	p =  &__get_cpu_var(bdp_ratelimits);
1461 	if (unlikely(current->nr_dirtied >= ratelimit))
1462 		*p = 0;
1463 	else if (unlikely(*p >= ratelimit_pages)) {
1464 		*p = 0;
1465 		ratelimit = 0;
1466 	}
1467 	/*
1468 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1469 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1470 	 * the dirty throttling and livelock other long-run dirtiers.
1471 	 */
1472 	p = &__get_cpu_var(dirty_throttle_leaks);
1473 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1474 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1475 		*p -= nr_pages_dirtied;
1476 		current->nr_dirtied += nr_pages_dirtied;
1477 	}
1478 	preempt_enable();
1479 
1480 	if (unlikely(current->nr_dirtied >= ratelimit))
1481 		balance_dirty_pages(mapping, current->nr_dirtied);
1482 }
1483 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1484 
throttle_vm_writeout(gfp_t gfp_mask)1485 void throttle_vm_writeout(gfp_t gfp_mask)
1486 {
1487 	unsigned long background_thresh;
1488 	unsigned long dirty_thresh;
1489 
1490         for ( ; ; ) {
1491 		global_dirty_limits(&background_thresh, &dirty_thresh);
1492 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1493 
1494                 /*
1495                  * Boost the allowable dirty threshold a bit for page
1496                  * allocators so they don't get DoS'ed by heavy writers
1497                  */
1498                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1499 
1500                 if (global_page_state(NR_UNSTABLE_NFS) +
1501 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1502                         	break;
1503                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1504 
1505 		/*
1506 		 * The caller might hold locks which can prevent IO completion
1507 		 * or progress in the filesystem.  So we cannot just sit here
1508 		 * waiting for IO to complete.
1509 		 */
1510 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1511 			break;
1512         }
1513 }
1514 
1515 /*
1516  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1517  */
dirty_writeback_centisecs_handler(ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1518 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1519 	void __user *buffer, size_t *length, loff_t *ppos)
1520 {
1521 	proc_dointvec(table, write, buffer, length, ppos);
1522 	bdi_arm_supers_timer();
1523 	return 0;
1524 }
1525 
1526 #ifdef CONFIG_BLOCK
laptop_mode_timer_fn(unsigned long data)1527 void laptop_mode_timer_fn(unsigned long data)
1528 {
1529 	struct request_queue *q = (struct request_queue *)data;
1530 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1531 		global_page_state(NR_UNSTABLE_NFS);
1532 
1533 	/*
1534 	 * We want to write everything out, not just down to the dirty
1535 	 * threshold
1536 	 */
1537 	if (bdi_has_dirty_io(&q->backing_dev_info))
1538 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1539 					WB_REASON_LAPTOP_TIMER);
1540 }
1541 
1542 /*
1543  * We've spun up the disk and we're in laptop mode: schedule writeback
1544  * of all dirty data a few seconds from now.  If the flush is already scheduled
1545  * then push it back - the user is still using the disk.
1546  */
laptop_io_completion(struct backing_dev_info * info)1547 void laptop_io_completion(struct backing_dev_info *info)
1548 {
1549 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1550 }
1551 
1552 /*
1553  * We're in laptop mode and we've just synced. The sync's writes will have
1554  * caused another writeback to be scheduled by laptop_io_completion.
1555  * Nothing needs to be written back anymore, so we unschedule the writeback.
1556  */
laptop_sync_completion(void)1557 void laptop_sync_completion(void)
1558 {
1559 	struct backing_dev_info *bdi;
1560 
1561 	rcu_read_lock();
1562 
1563 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1564 		del_timer(&bdi->laptop_mode_wb_timer);
1565 
1566 	rcu_read_unlock();
1567 }
1568 #endif
1569 
1570 /*
1571  * If ratelimit_pages is too high then we can get into dirty-data overload
1572  * if a large number of processes all perform writes at the same time.
1573  * If it is too low then SMP machines will call the (expensive)
1574  * get_writeback_state too often.
1575  *
1576  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1577  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1578  * thresholds.
1579  */
1580 
writeback_set_ratelimit(void)1581 void writeback_set_ratelimit(void)
1582 {
1583 	unsigned long background_thresh;
1584 	unsigned long dirty_thresh;
1585 	global_dirty_limits(&background_thresh, &dirty_thresh);
1586 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1587 	if (ratelimit_pages < 16)
1588 		ratelimit_pages = 16;
1589 }
1590 
1591 static int __cpuinit
ratelimit_handler(struct notifier_block * self,unsigned long u,void * v)1592 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1593 {
1594 	writeback_set_ratelimit();
1595 	return NOTIFY_DONE;
1596 }
1597 
1598 static struct notifier_block __cpuinitdata ratelimit_nb = {
1599 	.notifier_call	= ratelimit_handler,
1600 	.next		= NULL,
1601 };
1602 
1603 /*
1604  * Called early on to tune the page writeback dirty limits.
1605  *
1606  * We used to scale dirty pages according to how total memory
1607  * related to pages that could be allocated for buffers (by
1608  * comparing nr_free_buffer_pages() to vm_total_pages.
1609  *
1610  * However, that was when we used "dirty_ratio" to scale with
1611  * all memory, and we don't do that any more. "dirty_ratio"
1612  * is now applied to total non-HIGHPAGE memory (by subtracting
1613  * totalhigh_pages from vm_total_pages), and as such we can't
1614  * get into the old insane situation any more where we had
1615  * large amounts of dirty pages compared to a small amount of
1616  * non-HIGHMEM memory.
1617  *
1618  * But we might still want to scale the dirty_ratio by how
1619  * much memory the box has..
1620  */
page_writeback_init(void)1621 void __init page_writeback_init(void)
1622 {
1623 	int shift;
1624 
1625 	writeback_set_ratelimit();
1626 	register_cpu_notifier(&ratelimit_nb);
1627 
1628 	shift = calc_period_shift();
1629 	prop_descriptor_init(&vm_completions, shift);
1630 }
1631 
1632 /**
1633  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1634  * @mapping: address space structure to write
1635  * @start: starting page index
1636  * @end: ending page index (inclusive)
1637  *
1638  * This function scans the page range from @start to @end (inclusive) and tags
1639  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1640  * that write_cache_pages (or whoever calls this function) will then use
1641  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1642  * used to avoid livelocking of writeback by a process steadily creating new
1643  * dirty pages in the file (thus it is important for this function to be quick
1644  * so that it can tag pages faster than a dirtying process can create them).
1645  */
1646 /*
1647  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1648  */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)1649 void tag_pages_for_writeback(struct address_space *mapping,
1650 			     pgoff_t start, pgoff_t end)
1651 {
1652 #define WRITEBACK_TAG_BATCH 4096
1653 	unsigned long tagged;
1654 
1655 	do {
1656 		spin_lock_irq(&mapping->tree_lock);
1657 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1658 				&start, end, WRITEBACK_TAG_BATCH,
1659 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1660 		spin_unlock_irq(&mapping->tree_lock);
1661 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1662 		cond_resched();
1663 		/* We check 'start' to handle wrapping when end == ~0UL */
1664 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1665 }
1666 EXPORT_SYMBOL(tag_pages_for_writeback);
1667 
1668 /**
1669  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1670  * @mapping: address space structure to write
1671  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1672  * @writepage: function called for each page
1673  * @data: data passed to writepage function
1674  *
1675  * If a page is already under I/O, write_cache_pages() skips it, even
1676  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1677  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1678  * and msync() need to guarantee that all the data which was dirty at the time
1679  * the call was made get new I/O started against them.  If wbc->sync_mode is
1680  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1681  * existing IO to complete.
1682  *
1683  * To avoid livelocks (when other process dirties new pages), we first tag
1684  * pages which should be written back with TOWRITE tag and only then start
1685  * writing them. For data-integrity sync we have to be careful so that we do
1686  * not miss some pages (e.g., because some other process has cleared TOWRITE
1687  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1688  * by the process clearing the DIRTY tag (and submitting the page for IO).
1689  */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)1690 int write_cache_pages(struct address_space *mapping,
1691 		      struct writeback_control *wbc, writepage_t writepage,
1692 		      void *data)
1693 {
1694 	int ret = 0;
1695 	int done = 0;
1696 	struct pagevec pvec;
1697 	int nr_pages;
1698 	pgoff_t uninitialized_var(writeback_index);
1699 	pgoff_t index;
1700 	pgoff_t end;		/* Inclusive */
1701 	pgoff_t done_index;
1702 	int cycled;
1703 	int range_whole = 0;
1704 	int tag;
1705 
1706 	pagevec_init(&pvec, 0);
1707 	if (wbc->range_cyclic) {
1708 		writeback_index = mapping->writeback_index; /* prev offset */
1709 		index = writeback_index;
1710 		if (index == 0)
1711 			cycled = 1;
1712 		else
1713 			cycled = 0;
1714 		end = -1;
1715 	} else {
1716 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1717 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1718 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1719 			range_whole = 1;
1720 		cycled = 1; /* ignore range_cyclic tests */
1721 	}
1722 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1723 		tag = PAGECACHE_TAG_TOWRITE;
1724 	else
1725 		tag = PAGECACHE_TAG_DIRTY;
1726 retry:
1727 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1728 		tag_pages_for_writeback(mapping, index, end);
1729 	done_index = index;
1730 	while (!done && (index <= end)) {
1731 		int i;
1732 
1733 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1734 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1735 		if (nr_pages == 0)
1736 			break;
1737 
1738 		for (i = 0; i < nr_pages; i++) {
1739 			struct page *page = pvec.pages[i];
1740 
1741 			/*
1742 			 * At this point, the page may be truncated or
1743 			 * invalidated (changing page->mapping to NULL), or
1744 			 * even swizzled back from swapper_space to tmpfs file
1745 			 * mapping. However, page->index will not change
1746 			 * because we have a reference on the page.
1747 			 */
1748 			if (page->index > end) {
1749 				/*
1750 				 * can't be range_cyclic (1st pass) because
1751 				 * end == -1 in that case.
1752 				 */
1753 				done = 1;
1754 				break;
1755 			}
1756 
1757 			done_index = page->index;
1758 
1759 			lock_page(page);
1760 
1761 			/*
1762 			 * Page truncated or invalidated. We can freely skip it
1763 			 * then, even for data integrity operations: the page
1764 			 * has disappeared concurrently, so there could be no
1765 			 * real expectation of this data interity operation
1766 			 * even if there is now a new, dirty page at the same
1767 			 * pagecache address.
1768 			 */
1769 			if (unlikely(page->mapping != mapping)) {
1770 continue_unlock:
1771 				unlock_page(page);
1772 				continue;
1773 			}
1774 
1775 			if (!PageDirty(page)) {
1776 				/* someone wrote it for us */
1777 				goto continue_unlock;
1778 			}
1779 
1780 			if (PageWriteback(page)) {
1781 				if (wbc->sync_mode != WB_SYNC_NONE)
1782 					wait_on_page_writeback(page);
1783 				else
1784 					goto continue_unlock;
1785 			}
1786 
1787 			BUG_ON(PageWriteback(page));
1788 			if (!clear_page_dirty_for_io(page))
1789 				goto continue_unlock;
1790 
1791 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1792 			ret = (*writepage)(page, wbc, data);
1793 			if (unlikely(ret)) {
1794 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1795 					unlock_page(page);
1796 					ret = 0;
1797 				} else {
1798 					/*
1799 					 * done_index is set past this page,
1800 					 * so media errors will not choke
1801 					 * background writeout for the entire
1802 					 * file. This has consequences for
1803 					 * range_cyclic semantics (ie. it may
1804 					 * not be suitable for data integrity
1805 					 * writeout).
1806 					 */
1807 					done_index = page->index + 1;
1808 					done = 1;
1809 					break;
1810 				}
1811 			}
1812 
1813 			/*
1814 			 * We stop writing back only if we are not doing
1815 			 * integrity sync. In case of integrity sync we have to
1816 			 * keep going until we have written all the pages
1817 			 * we tagged for writeback prior to entering this loop.
1818 			 */
1819 			if (--wbc->nr_to_write <= 0 &&
1820 			    wbc->sync_mode == WB_SYNC_NONE) {
1821 				done = 1;
1822 				break;
1823 			}
1824 		}
1825 		pagevec_release(&pvec);
1826 		cond_resched();
1827 	}
1828 	if (!cycled && !done) {
1829 		/*
1830 		 * range_cyclic:
1831 		 * We hit the last page and there is more work to be done: wrap
1832 		 * back to the start of the file
1833 		 */
1834 		cycled = 1;
1835 		index = 0;
1836 		end = writeback_index - 1;
1837 		goto retry;
1838 	}
1839 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1840 		mapping->writeback_index = done_index;
1841 
1842 	return ret;
1843 }
1844 EXPORT_SYMBOL(write_cache_pages);
1845 
1846 /*
1847  * Function used by generic_writepages to call the real writepage
1848  * function and set the mapping flags on error
1849  */
__writepage(struct page * page,struct writeback_control * wbc,void * data)1850 static int __writepage(struct page *page, struct writeback_control *wbc,
1851 		       void *data)
1852 {
1853 	struct address_space *mapping = data;
1854 	int ret = mapping->a_ops->writepage(page, wbc);
1855 	mapping_set_error(mapping, ret);
1856 	return ret;
1857 }
1858 
1859 /**
1860  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1861  * @mapping: address space structure to write
1862  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1863  *
1864  * This is a library function, which implements the writepages()
1865  * address_space_operation.
1866  */
generic_writepages(struct address_space * mapping,struct writeback_control * wbc)1867 int generic_writepages(struct address_space *mapping,
1868 		       struct writeback_control *wbc)
1869 {
1870 	struct blk_plug plug;
1871 	int ret;
1872 
1873 	/* deal with chardevs and other special file */
1874 	if (!mapping->a_ops->writepage)
1875 		return 0;
1876 
1877 	blk_start_plug(&plug);
1878 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1879 	blk_finish_plug(&plug);
1880 	return ret;
1881 }
1882 
1883 EXPORT_SYMBOL(generic_writepages);
1884 
do_writepages(struct address_space * mapping,struct writeback_control * wbc)1885 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1886 {
1887 	int ret;
1888 
1889 	if (wbc->nr_to_write <= 0)
1890 		return 0;
1891 	if (mapping->a_ops->writepages)
1892 		ret = mapping->a_ops->writepages(mapping, wbc);
1893 	else
1894 		ret = generic_writepages(mapping, wbc);
1895 	return ret;
1896 }
1897 
1898 /**
1899  * write_one_page - write out a single page and optionally wait on I/O
1900  * @page: the page to write
1901  * @wait: if true, wait on writeout
1902  *
1903  * The page must be locked by the caller and will be unlocked upon return.
1904  *
1905  * write_one_page() returns a negative error code if I/O failed.
1906  */
write_one_page(struct page * page,int wait)1907 int write_one_page(struct page *page, int wait)
1908 {
1909 	struct address_space *mapping = page->mapping;
1910 	int ret = 0;
1911 	struct writeback_control wbc = {
1912 		.sync_mode = WB_SYNC_ALL,
1913 		.nr_to_write = 1,
1914 	};
1915 
1916 	BUG_ON(!PageLocked(page));
1917 
1918 	if (wait)
1919 		wait_on_page_writeback(page);
1920 
1921 	if (clear_page_dirty_for_io(page)) {
1922 		page_cache_get(page);
1923 		ret = mapping->a_ops->writepage(page, &wbc);
1924 		if (ret == 0 && wait) {
1925 			wait_on_page_writeback(page);
1926 			if (PageError(page))
1927 				ret = -EIO;
1928 		}
1929 		page_cache_release(page);
1930 	} else {
1931 		unlock_page(page);
1932 	}
1933 	return ret;
1934 }
1935 EXPORT_SYMBOL(write_one_page);
1936 
1937 /*
1938  * For address_spaces which do not use buffers nor write back.
1939  */
__set_page_dirty_no_writeback(struct page * page)1940 int __set_page_dirty_no_writeback(struct page *page)
1941 {
1942 	if (!PageDirty(page))
1943 		return !TestSetPageDirty(page);
1944 	return 0;
1945 }
1946 
1947 /*
1948  * Helper function for set_page_dirty family.
1949  * NOTE: This relies on being atomic wrt interrupts.
1950  */
account_page_dirtied(struct page * page,struct address_space * mapping)1951 void account_page_dirtied(struct page *page, struct address_space *mapping)
1952 {
1953 	if (mapping_cap_account_dirty(mapping)) {
1954 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1955 		__inc_zone_page_state(page, NR_DIRTIED);
1956 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1957 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1958 		task_io_account_write(PAGE_CACHE_SIZE);
1959 		current->nr_dirtied++;
1960 		this_cpu_inc(bdp_ratelimits);
1961 	}
1962 }
1963 EXPORT_SYMBOL(account_page_dirtied);
1964 
1965 /*
1966  * Helper function for set_page_writeback family.
1967  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1968  * wrt interrupts.
1969  */
account_page_writeback(struct page * page)1970 void account_page_writeback(struct page *page)
1971 {
1972 	inc_zone_page_state(page, NR_WRITEBACK);
1973 }
1974 EXPORT_SYMBOL(account_page_writeback);
1975 
1976 /*
1977  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1978  * its radix tree.
1979  *
1980  * This is also used when a single buffer is being dirtied: we want to set the
1981  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1982  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1983  *
1984  * Most callers have locked the page, which pins the address_space in memory.
1985  * But zap_pte_range() does not lock the page, however in that case the
1986  * mapping is pinned by the vma's ->vm_file reference.
1987  *
1988  * We take care to handle the case where the page was truncated from the
1989  * mapping by re-checking page_mapping() inside tree_lock.
1990  */
__set_page_dirty_nobuffers(struct page * page)1991 int __set_page_dirty_nobuffers(struct page *page)
1992 {
1993 	if (!TestSetPageDirty(page)) {
1994 		struct address_space *mapping = page_mapping(page);
1995 		struct address_space *mapping2;
1996 		unsigned long flags;
1997 
1998 		if (!mapping)
1999 			return 1;
2000 
2001 		spin_lock_irqsave(&mapping->tree_lock, flags);
2002 		mapping2 = page_mapping(page);
2003 		if (mapping2) { /* Race with truncate? */
2004 			BUG_ON(mapping2 != mapping);
2005 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2006 			account_page_dirtied(page, mapping);
2007 			radix_tree_tag_set(&mapping->page_tree,
2008 				page_index(page), PAGECACHE_TAG_DIRTY);
2009 		}
2010 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2011 		if (mapping->host) {
2012 			/* !PageAnon && !swapper_space */
2013 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2014 		}
2015 		return 1;
2016 	}
2017 	return 0;
2018 }
2019 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2020 
2021 /*
2022  * Call this whenever redirtying a page, to de-account the dirty counters
2023  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2024  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2025  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2026  * control.
2027  */
account_page_redirty(struct page * page)2028 void account_page_redirty(struct page *page)
2029 {
2030 	struct address_space *mapping = page->mapping;
2031 	if (mapping && mapping_cap_account_dirty(mapping)) {
2032 		current->nr_dirtied--;
2033 		dec_zone_page_state(page, NR_DIRTIED);
2034 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2035 	}
2036 }
2037 EXPORT_SYMBOL(account_page_redirty);
2038 
2039 /*
2040  * When a writepage implementation decides that it doesn't want to write this
2041  * page for some reason, it should redirty the locked page via
2042  * redirty_page_for_writepage() and it should then unlock the page and return 0
2043  */
redirty_page_for_writepage(struct writeback_control * wbc,struct page * page)2044 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2045 {
2046 	wbc->pages_skipped++;
2047 	account_page_redirty(page);
2048 	return __set_page_dirty_nobuffers(page);
2049 }
2050 EXPORT_SYMBOL(redirty_page_for_writepage);
2051 
2052 /*
2053  * Dirty a page.
2054  *
2055  * For pages with a mapping this should be done under the page lock
2056  * for the benefit of asynchronous memory errors who prefer a consistent
2057  * dirty state. This rule can be broken in some special cases,
2058  * but should be better not to.
2059  *
2060  * If the mapping doesn't provide a set_page_dirty a_op, then
2061  * just fall through and assume that it wants buffer_heads.
2062  */
set_page_dirty(struct page * page)2063 int set_page_dirty(struct page *page)
2064 {
2065 	struct address_space *mapping = page_mapping(page);
2066 
2067 	if (likely(mapping)) {
2068 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2069 		/*
2070 		 * readahead/lru_deactivate_page could remain
2071 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2072 		 * About readahead, if the page is written, the flags would be
2073 		 * reset. So no problem.
2074 		 * About lru_deactivate_page, if the page is redirty, the flag
2075 		 * will be reset. So no problem. but if the page is used by readahead
2076 		 * it will confuse readahead and make it restart the size rampup
2077 		 * process. But it's a trivial problem.
2078 		 */
2079 		ClearPageReclaim(page);
2080 #ifdef CONFIG_BLOCK
2081 		if (!spd)
2082 			spd = __set_page_dirty_buffers;
2083 #endif
2084 		return (*spd)(page);
2085 	}
2086 	if (!PageDirty(page)) {
2087 		if (!TestSetPageDirty(page))
2088 			return 1;
2089 	}
2090 	return 0;
2091 }
2092 EXPORT_SYMBOL(set_page_dirty);
2093 
2094 /*
2095  * set_page_dirty() is racy if the caller has no reference against
2096  * page->mapping->host, and if the page is unlocked.  This is because another
2097  * CPU could truncate the page off the mapping and then free the mapping.
2098  *
2099  * Usually, the page _is_ locked, or the caller is a user-space process which
2100  * holds a reference on the inode by having an open file.
2101  *
2102  * In other cases, the page should be locked before running set_page_dirty().
2103  */
set_page_dirty_lock(struct page * page)2104 int set_page_dirty_lock(struct page *page)
2105 {
2106 	int ret;
2107 
2108 	lock_page(page);
2109 	ret = set_page_dirty(page);
2110 	unlock_page(page);
2111 	return ret;
2112 }
2113 EXPORT_SYMBOL(set_page_dirty_lock);
2114 
2115 /*
2116  * Clear a page's dirty flag, while caring for dirty memory accounting.
2117  * Returns true if the page was previously dirty.
2118  *
2119  * This is for preparing to put the page under writeout.  We leave the page
2120  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2121  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2122  * implementation will run either set_page_writeback() or set_page_dirty(),
2123  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2124  * back into sync.
2125  *
2126  * This incoherency between the page's dirty flag and radix-tree tag is
2127  * unfortunate, but it only exists while the page is locked.
2128  */
clear_page_dirty_for_io(struct page * page)2129 int clear_page_dirty_for_io(struct page *page)
2130 {
2131 	struct address_space *mapping = page_mapping(page);
2132 
2133 	BUG_ON(!PageLocked(page));
2134 
2135 	if (mapping && mapping_cap_account_dirty(mapping)) {
2136 		/*
2137 		 * Yes, Virginia, this is indeed insane.
2138 		 *
2139 		 * We use this sequence to make sure that
2140 		 *  (a) we account for dirty stats properly
2141 		 *  (b) we tell the low-level filesystem to
2142 		 *      mark the whole page dirty if it was
2143 		 *      dirty in a pagetable. Only to then
2144 		 *  (c) clean the page again and return 1 to
2145 		 *      cause the writeback.
2146 		 *
2147 		 * This way we avoid all nasty races with the
2148 		 * dirty bit in multiple places and clearing
2149 		 * them concurrently from different threads.
2150 		 *
2151 		 * Note! Normally the "set_page_dirty(page)"
2152 		 * has no effect on the actual dirty bit - since
2153 		 * that will already usually be set. But we
2154 		 * need the side effects, and it can help us
2155 		 * avoid races.
2156 		 *
2157 		 * We basically use the page "master dirty bit"
2158 		 * as a serialization point for all the different
2159 		 * threads doing their things.
2160 		 */
2161 		if (page_mkclean(page))
2162 			set_page_dirty(page);
2163 		/*
2164 		 * We carefully synchronise fault handlers against
2165 		 * installing a dirty pte and marking the page dirty
2166 		 * at this point. We do this by having them hold the
2167 		 * page lock at some point after installing their
2168 		 * pte, but before marking the page dirty.
2169 		 * Pages are always locked coming in here, so we get
2170 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2171 		 * for more comments.
2172 		 */
2173 		if (TestClearPageDirty(page)) {
2174 			dec_zone_page_state(page, NR_FILE_DIRTY);
2175 			dec_bdi_stat(mapping->backing_dev_info,
2176 					BDI_RECLAIMABLE);
2177 			return 1;
2178 		}
2179 		return 0;
2180 	}
2181 	return TestClearPageDirty(page);
2182 }
2183 EXPORT_SYMBOL(clear_page_dirty_for_io);
2184 
test_clear_page_writeback(struct page * page)2185 int test_clear_page_writeback(struct page *page)
2186 {
2187 	struct address_space *mapping = page_mapping(page);
2188 	int ret;
2189 
2190 	if (mapping) {
2191 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2192 		unsigned long flags;
2193 
2194 		spin_lock_irqsave(&mapping->tree_lock, flags);
2195 		ret = TestClearPageWriteback(page);
2196 		if (ret) {
2197 			radix_tree_tag_clear(&mapping->page_tree,
2198 						page_index(page),
2199 						PAGECACHE_TAG_WRITEBACK);
2200 			if (bdi_cap_account_writeback(bdi)) {
2201 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2202 				__bdi_writeout_inc(bdi);
2203 			}
2204 		}
2205 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2206 	} else {
2207 		ret = TestClearPageWriteback(page);
2208 	}
2209 	if (ret) {
2210 		dec_zone_page_state(page, NR_WRITEBACK);
2211 		inc_zone_page_state(page, NR_WRITTEN);
2212 	}
2213 	return ret;
2214 }
2215 
test_set_page_writeback(struct page * page)2216 int test_set_page_writeback(struct page *page)
2217 {
2218 	struct address_space *mapping = page_mapping(page);
2219 	int ret;
2220 
2221 	if (mapping) {
2222 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2223 		unsigned long flags;
2224 
2225 		spin_lock_irqsave(&mapping->tree_lock, flags);
2226 		ret = TestSetPageWriteback(page);
2227 		if (!ret) {
2228 			radix_tree_tag_set(&mapping->page_tree,
2229 						page_index(page),
2230 						PAGECACHE_TAG_WRITEBACK);
2231 			if (bdi_cap_account_writeback(bdi))
2232 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2233 		}
2234 		if (!PageDirty(page))
2235 			radix_tree_tag_clear(&mapping->page_tree,
2236 						page_index(page),
2237 						PAGECACHE_TAG_DIRTY);
2238 		radix_tree_tag_clear(&mapping->page_tree,
2239 				     page_index(page),
2240 				     PAGECACHE_TAG_TOWRITE);
2241 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2242 	} else {
2243 		ret = TestSetPageWriteback(page);
2244 	}
2245 	if (!ret)
2246 		account_page_writeback(page);
2247 	return ret;
2248 
2249 }
2250 EXPORT_SYMBOL(test_set_page_writeback);
2251 
2252 /*
2253  * Return true if any of the pages in the mapping are marked with the
2254  * passed tag.
2255  */
mapping_tagged(struct address_space * mapping,int tag)2256 int mapping_tagged(struct address_space *mapping, int tag)
2257 {
2258 	return radix_tree_tagged(&mapping->page_tree, tag);
2259 }
2260 EXPORT_SYMBOL(mapping_tagged);
2261