1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_mutex		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_mutex
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  bdi->wb.list_lock
81  *    sb_lock			(fs/fs-writeback.c)
82  *    ->mapping->tree_lock	(__sync_single_inode)
83  *
84  *  ->i_mmap_mutex
85  *    ->anon_vma.lock		(vma_adjust)
86  *
87  *  ->anon_vma.lock
88  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
89  *
90  *  ->page_table_lock or pte_lock
91  *    ->swap_lock		(try_to_unmap_one)
92  *    ->private_lock		(try_to_unmap_one)
93  *    ->tree_lock		(try_to_unmap_one)
94  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
95  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
96  *    ->private_lock		(page_remove_rmap->set_page_dirty)
97  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
98  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
99  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
101  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
102  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
103  *
104  * ->i_mmap_mutex
105  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
106  */
107 
108 /*
109  * Delete a page from the page cache and free it. Caller has to make
110  * sure the page is locked and that nobody else uses it - or that usage
111  * is safe.  The caller must hold the mapping's tree_lock.
112  */
__delete_from_page_cache(struct page * page)113 void __delete_from_page_cache(struct page *page)
114 {
115 	struct address_space *mapping = page->mapping;
116 
117 	/*
118 	 * if we're uptodate, flush out into the cleancache, otherwise
119 	 * invalidate any existing cleancache entries.  We can't leave
120 	 * stale data around in the cleancache once our page is gone
121 	 */
122 	if (PageUptodate(page) && PageMappedToDisk(page))
123 		cleancache_put_page(page);
124 	else
125 		cleancache_invalidate_page(mapping, page);
126 
127 	radix_tree_delete(&mapping->page_tree, page->index);
128 	page->mapping = NULL;
129 	/* Leave page->index set: truncation lookup relies upon it */
130 	mapping->nrpages--;
131 	__dec_zone_page_state(page, NR_FILE_PAGES);
132 	if (PageSwapBacked(page))
133 		__dec_zone_page_state(page, NR_SHMEM);
134 	BUG_ON(page_mapped(page));
135 
136 	/*
137 	 * Some filesystems seem to re-dirty the page even after
138 	 * the VM has canceled the dirty bit (eg ext3 journaling).
139 	 *
140 	 * Fix it up by doing a final dirty accounting check after
141 	 * having removed the page entirely.
142 	 */
143 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
144 		dec_zone_page_state(page, NR_FILE_DIRTY);
145 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
146 	}
147 }
148 
149 /**
150  * delete_from_page_cache - delete page from page cache
151  * @page: the page which the kernel is trying to remove from page cache
152  *
153  * This must be called only on pages that have been verified to be in the page
154  * cache and locked.  It will never put the page into the free list, the caller
155  * has a reference on the page.
156  */
delete_from_page_cache(struct page * page)157 void delete_from_page_cache(struct page *page)
158 {
159 	struct address_space *mapping = page->mapping;
160 	void (*freepage)(struct page *);
161 
162 	BUG_ON(!PageLocked(page));
163 
164 	freepage = mapping->a_ops->freepage;
165 	spin_lock_irq(&mapping->tree_lock);
166 	__delete_from_page_cache(page);
167 	spin_unlock_irq(&mapping->tree_lock);
168 	mem_cgroup_uncharge_cache_page(page);
169 
170 	if (freepage)
171 		freepage(page);
172 	page_cache_release(page);
173 }
174 EXPORT_SYMBOL(delete_from_page_cache);
175 
sleep_on_page(void * word)176 static int sleep_on_page(void *word)
177 {
178 	io_schedule();
179 	return 0;
180 }
181 
sleep_on_page_killable(void * word)182 static int sleep_on_page_killable(void *word)
183 {
184 	sleep_on_page(word);
185 	return fatal_signal_pending(current) ? -EINTR : 0;
186 }
187 
188 /**
189  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
190  * @mapping:	address space structure to write
191  * @start:	offset in bytes where the range starts
192  * @end:	offset in bytes where the range ends (inclusive)
193  * @sync_mode:	enable synchronous operation
194  *
195  * Start writeback against all of a mapping's dirty pages that lie
196  * within the byte offsets <start, end> inclusive.
197  *
198  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
199  * opposed to a regular memory cleansing writeback.  The difference between
200  * these two operations is that if a dirty page/buffer is encountered, it must
201  * be waited upon, and not just skipped over.
202  */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)203 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
204 				loff_t end, int sync_mode)
205 {
206 	int ret;
207 	struct writeback_control wbc = {
208 		.sync_mode = sync_mode,
209 		.nr_to_write = LONG_MAX,
210 		.range_start = start,
211 		.range_end = end,
212 	};
213 
214 	if (!mapping_cap_writeback_dirty(mapping))
215 		return 0;
216 
217 	ret = do_writepages(mapping, &wbc);
218 	return ret;
219 }
220 
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)221 static inline int __filemap_fdatawrite(struct address_space *mapping,
222 	int sync_mode)
223 {
224 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
225 }
226 
filemap_fdatawrite(struct address_space * mapping)227 int filemap_fdatawrite(struct address_space *mapping)
228 {
229 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
230 }
231 EXPORT_SYMBOL(filemap_fdatawrite);
232 
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)233 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
234 				loff_t end)
235 {
236 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
237 }
238 EXPORT_SYMBOL(filemap_fdatawrite_range);
239 
240 /**
241  * filemap_flush - mostly a non-blocking flush
242  * @mapping:	target address_space
243  *
244  * This is a mostly non-blocking flush.  Not suitable for data-integrity
245  * purposes - I/O may not be started against all dirty pages.
246  */
filemap_flush(struct address_space * mapping)247 int filemap_flush(struct address_space *mapping)
248 {
249 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
250 }
251 EXPORT_SYMBOL(filemap_flush);
252 
253 /**
254  * filemap_fdatawait_range - wait for writeback to complete
255  * @mapping:		address space structure to wait for
256  * @start_byte:		offset in bytes where the range starts
257  * @end_byte:		offset in bytes where the range ends (inclusive)
258  *
259  * Walk the list of under-writeback pages of the given address space
260  * in the given range and wait for all of them.
261  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)262 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
263 			    loff_t end_byte)
264 {
265 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
266 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
267 	struct pagevec pvec;
268 	int nr_pages;
269 	int ret = 0;
270 
271 	if (end_byte < start_byte)
272 		return 0;
273 
274 	pagevec_init(&pvec, 0);
275 	while ((index <= end) &&
276 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
277 			PAGECACHE_TAG_WRITEBACK,
278 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
279 		unsigned i;
280 
281 		for (i = 0; i < nr_pages; i++) {
282 			struct page *page = pvec.pages[i];
283 
284 			/* until radix tree lookup accepts end_index */
285 			if (page->index > end)
286 				continue;
287 
288 			wait_on_page_writeback(page);
289 			if (TestClearPageError(page))
290 				ret = -EIO;
291 		}
292 		pagevec_release(&pvec);
293 		cond_resched();
294 	}
295 
296 	/* Check for outstanding write errors */
297 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
298 		ret = -ENOSPC;
299 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
300 		ret = -EIO;
301 
302 	return ret;
303 }
304 EXPORT_SYMBOL(filemap_fdatawait_range);
305 
306 /**
307  * filemap_fdatawait - wait for all under-writeback pages to complete
308  * @mapping: address space structure to wait for
309  *
310  * Walk the list of under-writeback pages of the given address space
311  * and wait for all of them.
312  */
filemap_fdatawait(struct address_space * mapping)313 int filemap_fdatawait(struct address_space *mapping)
314 {
315 	loff_t i_size = i_size_read(mapping->host);
316 
317 	if (i_size == 0)
318 		return 0;
319 
320 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
321 }
322 EXPORT_SYMBOL(filemap_fdatawait);
323 
filemap_write_and_wait(struct address_space * mapping)324 int filemap_write_and_wait(struct address_space *mapping)
325 {
326 	int err = 0;
327 
328 	if (mapping->nrpages) {
329 		err = filemap_fdatawrite(mapping);
330 		/*
331 		 * Even if the above returned error, the pages may be
332 		 * written partially (e.g. -ENOSPC), so we wait for it.
333 		 * But the -EIO is special case, it may indicate the worst
334 		 * thing (e.g. bug) happened, so we avoid waiting for it.
335 		 */
336 		if (err != -EIO) {
337 			int err2 = filemap_fdatawait(mapping);
338 			if (!err)
339 				err = err2;
340 		}
341 	}
342 	return err;
343 }
344 EXPORT_SYMBOL(filemap_write_and_wait);
345 
346 /**
347  * filemap_write_and_wait_range - write out & wait on a file range
348  * @mapping:	the address_space for the pages
349  * @lstart:	offset in bytes where the range starts
350  * @lend:	offset in bytes where the range ends (inclusive)
351  *
352  * Write out and wait upon file offsets lstart->lend, inclusive.
353  *
354  * Note that `lend' is inclusive (describes the last byte to be written) so
355  * that this function can be used to write to the very end-of-file (end = -1).
356  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)357 int filemap_write_and_wait_range(struct address_space *mapping,
358 				 loff_t lstart, loff_t lend)
359 {
360 	int err = 0;
361 
362 	if (mapping->nrpages) {
363 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
364 						 WB_SYNC_ALL);
365 		/* See comment of filemap_write_and_wait() */
366 		if (err != -EIO) {
367 			int err2 = filemap_fdatawait_range(mapping,
368 						lstart, lend);
369 			if (!err)
370 				err = err2;
371 		}
372 	}
373 	return err;
374 }
375 EXPORT_SYMBOL(filemap_write_and_wait_range);
376 
377 /**
378  * replace_page_cache_page - replace a pagecache page with a new one
379  * @old:	page to be replaced
380  * @new:	page to replace with
381  * @gfp_mask:	allocation mode
382  *
383  * This function replaces a page in the pagecache with a new one.  On
384  * success it acquires the pagecache reference for the new page and
385  * drops it for the old page.  Both the old and new pages must be
386  * locked.  This function does not add the new page to the LRU, the
387  * caller must do that.
388  *
389  * The remove + add is atomic.  The only way this function can fail is
390  * memory allocation failure.
391  */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)392 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
393 {
394 	int error;
395 
396 	VM_BUG_ON(!PageLocked(old));
397 	VM_BUG_ON(!PageLocked(new));
398 	VM_BUG_ON(new->mapping);
399 
400 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
401 	if (!error) {
402 		struct address_space *mapping = old->mapping;
403 		void (*freepage)(struct page *);
404 
405 		pgoff_t offset = old->index;
406 		freepage = mapping->a_ops->freepage;
407 
408 		page_cache_get(new);
409 		new->mapping = mapping;
410 		new->index = offset;
411 
412 		spin_lock_irq(&mapping->tree_lock);
413 		__delete_from_page_cache(old);
414 		error = radix_tree_insert(&mapping->page_tree, offset, new);
415 		BUG_ON(error);
416 		mapping->nrpages++;
417 		__inc_zone_page_state(new, NR_FILE_PAGES);
418 		if (PageSwapBacked(new))
419 			__inc_zone_page_state(new, NR_SHMEM);
420 		spin_unlock_irq(&mapping->tree_lock);
421 		/* mem_cgroup codes must not be called under tree_lock */
422 		mem_cgroup_replace_page_cache(old, new);
423 		radix_tree_preload_end();
424 		if (freepage)
425 			freepage(old);
426 		page_cache_release(old);
427 	}
428 
429 	return error;
430 }
431 EXPORT_SYMBOL_GPL(replace_page_cache_page);
432 
433 /**
434  * add_to_page_cache_locked - add a locked page to the pagecache
435  * @page:	page to add
436  * @mapping:	the page's address_space
437  * @offset:	page index
438  * @gfp_mask:	page allocation mode
439  *
440  * This function is used to add a page to the pagecache. It must be locked.
441  * This function does not add the page to the LRU.  The caller must do that.
442  */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)443 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
444 		pgoff_t offset, gfp_t gfp_mask)
445 {
446 	int error;
447 
448 	VM_BUG_ON(!PageLocked(page));
449 	VM_BUG_ON(PageSwapBacked(page));
450 
451 	error = mem_cgroup_cache_charge(page, current->mm,
452 					gfp_mask & GFP_RECLAIM_MASK);
453 	if (error)
454 		goto out;
455 
456 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
457 	if (error == 0) {
458 		page_cache_get(page);
459 		page->mapping = mapping;
460 		page->index = offset;
461 
462 		spin_lock_irq(&mapping->tree_lock);
463 		error = radix_tree_insert(&mapping->page_tree, offset, page);
464 		if (likely(!error)) {
465 			mapping->nrpages++;
466 			__inc_zone_page_state(page, NR_FILE_PAGES);
467 			spin_unlock_irq(&mapping->tree_lock);
468 		} else {
469 			page->mapping = NULL;
470 			/* Leave page->index set: truncation relies upon it */
471 			spin_unlock_irq(&mapping->tree_lock);
472 			mem_cgroup_uncharge_cache_page(page);
473 			page_cache_release(page);
474 		}
475 		radix_tree_preload_end();
476 	} else
477 		mem_cgroup_uncharge_cache_page(page);
478 out:
479 	return error;
480 }
481 EXPORT_SYMBOL(add_to_page_cache_locked);
482 
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)483 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
484 				pgoff_t offset, gfp_t gfp_mask)
485 {
486 	int ret;
487 
488 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
489 	if (ret == 0)
490 		lru_cache_add_file(page);
491 	return ret;
492 }
493 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
494 
495 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)496 struct page *__page_cache_alloc(gfp_t gfp)
497 {
498 	int n;
499 	struct page *page;
500 
501 	if (cpuset_do_page_mem_spread()) {
502 		unsigned int cpuset_mems_cookie;
503 		do {
504 			cpuset_mems_cookie = get_mems_allowed();
505 			n = cpuset_mem_spread_node();
506 			page = alloc_pages_exact_node(n, gfp, 0);
507 		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
508 
509 		return page;
510 	}
511 	return alloc_pages(gfp, 0);
512 }
513 EXPORT_SYMBOL(__page_cache_alloc);
514 #endif
515 
516 /*
517  * In order to wait for pages to become available there must be
518  * waitqueues associated with pages. By using a hash table of
519  * waitqueues where the bucket discipline is to maintain all
520  * waiters on the same queue and wake all when any of the pages
521  * become available, and for the woken contexts to check to be
522  * sure the appropriate page became available, this saves space
523  * at a cost of "thundering herd" phenomena during rare hash
524  * collisions.
525  */
page_waitqueue(struct page * page)526 static wait_queue_head_t *page_waitqueue(struct page *page)
527 {
528 	const struct zone *zone = page_zone(page);
529 
530 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
531 }
532 
wake_up_page(struct page * page,int bit)533 static inline void wake_up_page(struct page *page, int bit)
534 {
535 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
536 }
537 
wait_on_page_bit(struct page * page,int bit_nr)538 void wait_on_page_bit(struct page *page, int bit_nr)
539 {
540 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
541 
542 	if (test_bit(bit_nr, &page->flags))
543 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
544 							TASK_UNINTERRUPTIBLE);
545 }
546 EXPORT_SYMBOL(wait_on_page_bit);
547 
wait_on_page_bit_killable(struct page * page,int bit_nr)548 int wait_on_page_bit_killable(struct page *page, int bit_nr)
549 {
550 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
551 
552 	if (!test_bit(bit_nr, &page->flags))
553 		return 0;
554 
555 	return __wait_on_bit(page_waitqueue(page), &wait,
556 			     sleep_on_page_killable, TASK_KILLABLE);
557 }
558 
559 /**
560  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
561  * @page: Page defining the wait queue of interest
562  * @waiter: Waiter to add to the queue
563  *
564  * Add an arbitrary @waiter to the wait queue for the nominated @page.
565  */
add_page_wait_queue(struct page * page,wait_queue_t * waiter)566 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
567 {
568 	wait_queue_head_t *q = page_waitqueue(page);
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(&q->lock, flags);
572 	__add_wait_queue(q, waiter);
573 	spin_unlock_irqrestore(&q->lock, flags);
574 }
575 EXPORT_SYMBOL_GPL(add_page_wait_queue);
576 
577 /**
578  * unlock_page - unlock a locked page
579  * @page: the page
580  *
581  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
582  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
583  * mechananism between PageLocked pages and PageWriteback pages is shared.
584  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
585  *
586  * The mb is necessary to enforce ordering between the clear_bit and the read
587  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
588  */
unlock_page(struct page * page)589 void unlock_page(struct page *page)
590 {
591 	VM_BUG_ON(!PageLocked(page));
592 	clear_bit_unlock(PG_locked, &page->flags);
593 	smp_mb__after_clear_bit();
594 	wake_up_page(page, PG_locked);
595 }
596 EXPORT_SYMBOL(unlock_page);
597 
598 /**
599  * end_page_writeback - end writeback against a page
600  * @page: the page
601  */
end_page_writeback(struct page * page)602 void end_page_writeback(struct page *page)
603 {
604 	if (TestClearPageReclaim(page))
605 		rotate_reclaimable_page(page);
606 
607 	if (!test_clear_page_writeback(page))
608 		BUG();
609 
610 	smp_mb__after_clear_bit();
611 	wake_up_page(page, PG_writeback);
612 }
613 EXPORT_SYMBOL(end_page_writeback);
614 
615 /**
616  * __lock_page - get a lock on the page, assuming we need to sleep to get it
617  * @page: the page to lock
618  */
__lock_page(struct page * page)619 void __lock_page(struct page *page)
620 {
621 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
622 
623 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
624 							TASK_UNINTERRUPTIBLE);
625 }
626 EXPORT_SYMBOL(__lock_page);
627 
__lock_page_killable(struct page * page)628 int __lock_page_killable(struct page *page)
629 {
630 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
631 
632 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
633 					sleep_on_page_killable, TASK_KILLABLE);
634 }
635 EXPORT_SYMBOL_GPL(__lock_page_killable);
636 
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)637 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
638 			 unsigned int flags)
639 {
640 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
641 		/*
642 		 * CAUTION! In this case, mmap_sem is not released
643 		 * even though return 0.
644 		 */
645 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
646 			return 0;
647 
648 		up_read(&mm->mmap_sem);
649 		if (flags & FAULT_FLAG_KILLABLE)
650 			wait_on_page_locked_killable(page);
651 		else
652 			wait_on_page_locked(page);
653 		return 0;
654 	} else {
655 		if (flags & FAULT_FLAG_KILLABLE) {
656 			int ret;
657 
658 			ret = __lock_page_killable(page);
659 			if (ret) {
660 				up_read(&mm->mmap_sem);
661 				return 0;
662 			}
663 		} else
664 			__lock_page(page);
665 		return 1;
666 	}
667 }
668 
669 /**
670  * find_get_page - find and get a page reference
671  * @mapping: the address_space to search
672  * @offset: the page index
673  *
674  * Is there a pagecache struct page at the given (mapping, offset) tuple?
675  * If yes, increment its refcount and return it; if no, return NULL.
676  */
find_get_page(struct address_space * mapping,pgoff_t offset)677 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
678 {
679 	void **pagep;
680 	struct page *page;
681 
682 	rcu_read_lock();
683 repeat:
684 	page = NULL;
685 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
686 	if (pagep) {
687 		page = radix_tree_deref_slot(pagep);
688 		if (unlikely(!page))
689 			goto out;
690 		if (radix_tree_exception(page)) {
691 			if (radix_tree_deref_retry(page))
692 				goto repeat;
693 			/*
694 			 * Otherwise, shmem/tmpfs must be storing a swap entry
695 			 * here as an exceptional entry: so return it without
696 			 * attempting to raise page count.
697 			 */
698 			goto out;
699 		}
700 		if (!page_cache_get_speculative(page))
701 			goto repeat;
702 
703 		/*
704 		 * Has the page moved?
705 		 * This is part of the lockless pagecache protocol. See
706 		 * include/linux/pagemap.h for details.
707 		 */
708 		if (unlikely(page != *pagep)) {
709 			page_cache_release(page);
710 			goto repeat;
711 		}
712 	}
713 out:
714 	rcu_read_unlock();
715 
716 	return page;
717 }
718 EXPORT_SYMBOL(find_get_page);
719 
720 /**
721  * find_lock_page - locate, pin and lock a pagecache page
722  * @mapping: the address_space to search
723  * @offset: the page index
724  *
725  * Locates the desired pagecache page, locks it, increments its reference
726  * count and returns its address.
727  *
728  * Returns zero if the page was not present. find_lock_page() may sleep.
729  */
find_lock_page(struct address_space * mapping,pgoff_t offset)730 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
731 {
732 	struct page *page;
733 
734 repeat:
735 	page = find_get_page(mapping, offset);
736 	if (page && !radix_tree_exception(page)) {
737 		lock_page(page);
738 		/* Has the page been truncated? */
739 		if (unlikely(page->mapping != mapping)) {
740 			unlock_page(page);
741 			page_cache_release(page);
742 			goto repeat;
743 		}
744 		VM_BUG_ON(page->index != offset);
745 	}
746 	return page;
747 }
748 EXPORT_SYMBOL(find_lock_page);
749 
750 /**
751  * find_or_create_page - locate or add a pagecache page
752  * @mapping: the page's address_space
753  * @index: the page's index into the mapping
754  * @gfp_mask: page allocation mode
755  *
756  * Locates a page in the pagecache.  If the page is not present, a new page
757  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
758  * LRU list.  The returned page is locked and has its reference count
759  * incremented.
760  *
761  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
762  * allocation!
763  *
764  * find_or_create_page() returns the desired page's address, or zero on
765  * memory exhaustion.
766  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)767 struct page *find_or_create_page(struct address_space *mapping,
768 		pgoff_t index, gfp_t gfp_mask)
769 {
770 	struct page *page;
771 	int err;
772 repeat:
773 	page = find_lock_page(mapping, index);
774 	if (!page) {
775 		page = __page_cache_alloc(gfp_mask);
776 		if (!page)
777 			return NULL;
778 		/*
779 		 * We want a regular kernel memory (not highmem or DMA etc)
780 		 * allocation for the radix tree nodes, but we need to honour
781 		 * the context-specific requirements the caller has asked for.
782 		 * GFP_RECLAIM_MASK collects those requirements.
783 		 */
784 		err = add_to_page_cache_lru(page, mapping, index,
785 			(gfp_mask & GFP_RECLAIM_MASK));
786 		if (unlikely(err)) {
787 			page_cache_release(page);
788 			page = NULL;
789 			if (err == -EEXIST)
790 				goto repeat;
791 		}
792 	}
793 	return page;
794 }
795 EXPORT_SYMBOL(find_or_create_page);
796 
797 /**
798  * find_get_pages - gang pagecache lookup
799  * @mapping:	The address_space to search
800  * @start:	The starting page index
801  * @nr_pages:	The maximum number of pages
802  * @pages:	Where the resulting pages are placed
803  *
804  * find_get_pages() will search for and return a group of up to
805  * @nr_pages pages in the mapping.  The pages are placed at @pages.
806  * find_get_pages() takes a reference against the returned pages.
807  *
808  * The search returns a group of mapping-contiguous pages with ascending
809  * indexes.  There may be holes in the indices due to not-present pages.
810  *
811  * find_get_pages() returns the number of pages which were found.
812  */
find_get_pages(struct address_space * mapping,pgoff_t start,unsigned int nr_pages,struct page ** pages)813 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
814 			    unsigned int nr_pages, struct page **pages)
815 {
816 	struct radix_tree_iter iter;
817 	void **slot;
818 	unsigned ret = 0;
819 
820 	if (unlikely(!nr_pages))
821 		return 0;
822 
823 	rcu_read_lock();
824 restart:
825 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
826 		struct page *page;
827 repeat:
828 		page = radix_tree_deref_slot(slot);
829 		if (unlikely(!page))
830 			continue;
831 
832 		if (radix_tree_exception(page)) {
833 			if (radix_tree_deref_retry(page)) {
834 				/*
835 				 * Transient condition which can only trigger
836 				 * when entry at index 0 moves out of or back
837 				 * to root: none yet gotten, safe to restart.
838 				 */
839 				WARN_ON(iter.index);
840 				goto restart;
841 			}
842 			/*
843 			 * Otherwise, shmem/tmpfs must be storing a swap entry
844 			 * here as an exceptional entry: so skip over it -
845 			 * we only reach this from invalidate_mapping_pages().
846 			 */
847 			continue;
848 		}
849 
850 		if (!page_cache_get_speculative(page))
851 			goto repeat;
852 
853 		/* Has the page moved? */
854 		if (unlikely(page != *slot)) {
855 			page_cache_release(page);
856 			goto repeat;
857 		}
858 
859 		pages[ret] = page;
860 		if (++ret == nr_pages)
861 			break;
862 	}
863 
864 	rcu_read_unlock();
865 	return ret;
866 }
867 
868 /**
869  * find_get_pages_contig - gang contiguous pagecache lookup
870  * @mapping:	The address_space to search
871  * @index:	The starting page index
872  * @nr_pages:	The maximum number of pages
873  * @pages:	Where the resulting pages are placed
874  *
875  * find_get_pages_contig() works exactly like find_get_pages(), except
876  * that the returned number of pages are guaranteed to be contiguous.
877  *
878  * find_get_pages_contig() returns the number of pages which were found.
879  */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)880 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
881 			       unsigned int nr_pages, struct page **pages)
882 {
883 	struct radix_tree_iter iter;
884 	void **slot;
885 	unsigned int ret = 0;
886 
887 	if (unlikely(!nr_pages))
888 		return 0;
889 
890 	rcu_read_lock();
891 restart:
892 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
893 		struct page *page;
894 repeat:
895 		page = radix_tree_deref_slot(slot);
896 		/* The hole, there no reason to continue */
897 		if (unlikely(!page))
898 			break;
899 
900 		if (radix_tree_exception(page)) {
901 			if (radix_tree_deref_retry(page)) {
902 				/*
903 				 * Transient condition which can only trigger
904 				 * when entry at index 0 moves out of or back
905 				 * to root: none yet gotten, safe to restart.
906 				 */
907 				goto restart;
908 			}
909 			/*
910 			 * Otherwise, shmem/tmpfs must be storing a swap entry
911 			 * here as an exceptional entry: so stop looking for
912 			 * contiguous pages.
913 			 */
914 			break;
915 		}
916 
917 		if (!page_cache_get_speculative(page))
918 			goto repeat;
919 
920 		/* Has the page moved? */
921 		if (unlikely(page != *slot)) {
922 			page_cache_release(page);
923 			goto repeat;
924 		}
925 
926 		/*
927 		 * must check mapping and index after taking the ref.
928 		 * otherwise we can get both false positives and false
929 		 * negatives, which is just confusing to the caller.
930 		 */
931 		if (page->mapping == NULL || page->index != iter.index) {
932 			page_cache_release(page);
933 			break;
934 		}
935 
936 		pages[ret] = page;
937 		if (++ret == nr_pages)
938 			break;
939 	}
940 	rcu_read_unlock();
941 	return ret;
942 }
943 EXPORT_SYMBOL(find_get_pages_contig);
944 
945 /**
946  * find_get_pages_tag - find and return pages that match @tag
947  * @mapping:	the address_space to search
948  * @index:	the starting page index
949  * @tag:	the tag index
950  * @nr_pages:	the maximum number of pages
951  * @pages:	where the resulting pages are placed
952  *
953  * Like find_get_pages, except we only return pages which are tagged with
954  * @tag.   We update @index to index the next page for the traversal.
955  */
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,int tag,unsigned int nr_pages,struct page ** pages)956 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
957 			int tag, unsigned int nr_pages, struct page **pages)
958 {
959 	struct radix_tree_iter iter;
960 	void **slot;
961 	unsigned ret = 0;
962 
963 	if (unlikely(!nr_pages))
964 		return 0;
965 
966 	rcu_read_lock();
967 restart:
968 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
969 				   &iter, *index, tag) {
970 		struct page *page;
971 repeat:
972 		page = radix_tree_deref_slot(slot);
973 		if (unlikely(!page))
974 			continue;
975 
976 		if (radix_tree_exception(page)) {
977 			if (radix_tree_deref_retry(page)) {
978 				/*
979 				 * Transient condition which can only trigger
980 				 * when entry at index 0 moves out of or back
981 				 * to root: none yet gotten, safe to restart.
982 				 */
983 				goto restart;
984 			}
985 			/*
986 			 * This function is never used on a shmem/tmpfs
987 			 * mapping, so a swap entry won't be found here.
988 			 */
989 			BUG();
990 		}
991 
992 		if (!page_cache_get_speculative(page))
993 			goto repeat;
994 
995 		/* Has the page moved? */
996 		if (unlikely(page != *slot)) {
997 			page_cache_release(page);
998 			goto repeat;
999 		}
1000 
1001 		pages[ret] = page;
1002 		if (++ret == nr_pages)
1003 			break;
1004 	}
1005 
1006 	rcu_read_unlock();
1007 
1008 	if (ret)
1009 		*index = pages[ret - 1]->index + 1;
1010 
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(find_get_pages_tag);
1014 
1015 /**
1016  * grab_cache_page_nowait - returns locked page at given index in given cache
1017  * @mapping: target address_space
1018  * @index: the page index
1019  *
1020  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1021  * This is intended for speculative data generators, where the data can
1022  * be regenerated if the page couldn't be grabbed.  This routine should
1023  * be safe to call while holding the lock for another page.
1024  *
1025  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1026  * and deadlock against the caller's locked page.
1027  */
1028 struct page *
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)1029 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1030 {
1031 	struct page *page = find_get_page(mapping, index);
1032 
1033 	if (page) {
1034 		if (trylock_page(page))
1035 			return page;
1036 		page_cache_release(page);
1037 		return NULL;
1038 	}
1039 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1040 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1041 		page_cache_release(page);
1042 		page = NULL;
1043 	}
1044 	return page;
1045 }
1046 EXPORT_SYMBOL(grab_cache_page_nowait);
1047 
1048 /*
1049  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1050  * a _large_ part of the i/o request. Imagine the worst scenario:
1051  *
1052  *      ---R__________________________________________B__________
1053  *         ^ reading here                             ^ bad block(assume 4k)
1054  *
1055  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1056  * => failing the whole request => read(R) => read(R+1) =>
1057  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1058  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1059  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1060  *
1061  * It is going insane. Fix it by quickly scaling down the readahead size.
1062  */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)1063 static void shrink_readahead_size_eio(struct file *filp,
1064 					struct file_ra_state *ra)
1065 {
1066 	ra->ra_pages /= 4;
1067 }
1068 
1069 /**
1070  * do_generic_file_read - generic file read routine
1071  * @filp:	the file to read
1072  * @ppos:	current file position
1073  * @desc:	read_descriptor
1074  * @actor:	read method
1075  *
1076  * This is a generic file read routine, and uses the
1077  * mapping->a_ops->readpage() function for the actual low-level stuff.
1078  *
1079  * This is really ugly. But the goto's actually try to clarify some
1080  * of the logic when it comes to error handling etc.
1081  */
do_generic_file_read(struct file * filp,loff_t * ppos,read_descriptor_t * desc,read_actor_t actor)1082 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1083 		read_descriptor_t *desc, read_actor_t actor)
1084 {
1085 	struct address_space *mapping = filp->f_mapping;
1086 	struct inode *inode = mapping->host;
1087 	struct file_ra_state *ra = &filp->f_ra;
1088 	pgoff_t index;
1089 	pgoff_t last_index;
1090 	pgoff_t prev_index;
1091 	unsigned long offset;      /* offset into pagecache page */
1092 	unsigned int prev_offset;
1093 	int error;
1094 
1095 	index = *ppos >> PAGE_CACHE_SHIFT;
1096 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1097 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1098 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1099 	offset = *ppos & ~PAGE_CACHE_MASK;
1100 
1101 	for (;;) {
1102 		struct page *page;
1103 		pgoff_t end_index;
1104 		loff_t isize;
1105 		unsigned long nr, ret;
1106 
1107 		cond_resched();
1108 find_page:
1109 		page = find_get_page(mapping, index);
1110 		if (!page) {
1111 			page_cache_sync_readahead(mapping,
1112 					ra, filp,
1113 					index, last_index - index);
1114 			page = find_get_page(mapping, index);
1115 			if (unlikely(page == NULL))
1116 				goto no_cached_page;
1117 		}
1118 		if (PageReadahead(page)) {
1119 			page_cache_async_readahead(mapping,
1120 					ra, filp, page,
1121 					index, last_index - index);
1122 		}
1123 		if (!PageUptodate(page)) {
1124 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1125 					!mapping->a_ops->is_partially_uptodate)
1126 				goto page_not_up_to_date;
1127 			if (!trylock_page(page))
1128 				goto page_not_up_to_date;
1129 			/* Did it get truncated before we got the lock? */
1130 			if (!page->mapping)
1131 				goto page_not_up_to_date_locked;
1132 			if (!mapping->a_ops->is_partially_uptodate(page,
1133 								desc, offset))
1134 				goto page_not_up_to_date_locked;
1135 			unlock_page(page);
1136 		}
1137 page_ok:
1138 		/*
1139 		 * i_size must be checked after we know the page is Uptodate.
1140 		 *
1141 		 * Checking i_size after the check allows us to calculate
1142 		 * the correct value for "nr", which means the zero-filled
1143 		 * part of the page is not copied back to userspace (unless
1144 		 * another truncate extends the file - this is desired though).
1145 		 */
1146 
1147 		isize = i_size_read(inode);
1148 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1149 		if (unlikely(!isize || index > end_index)) {
1150 			page_cache_release(page);
1151 			goto out;
1152 		}
1153 
1154 		/* nr is the maximum number of bytes to copy from this page */
1155 		nr = PAGE_CACHE_SIZE;
1156 		if (index == end_index) {
1157 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1158 			if (nr <= offset) {
1159 				page_cache_release(page);
1160 				goto out;
1161 			}
1162 		}
1163 		nr = nr - offset;
1164 
1165 		/* If users can be writing to this page using arbitrary
1166 		 * virtual addresses, take care about potential aliasing
1167 		 * before reading the page on the kernel side.
1168 		 */
1169 		if (mapping_writably_mapped(mapping))
1170 			flush_dcache_page(page);
1171 
1172 		/*
1173 		 * When a sequential read accesses a page several times,
1174 		 * only mark it as accessed the first time.
1175 		 */
1176 		if (prev_index != index || offset != prev_offset)
1177 			mark_page_accessed(page);
1178 		prev_index = index;
1179 
1180 		/*
1181 		 * Ok, we have the page, and it's up-to-date, so
1182 		 * now we can copy it to user space...
1183 		 *
1184 		 * The actor routine returns how many bytes were actually used..
1185 		 * NOTE! This may not be the same as how much of a user buffer
1186 		 * we filled up (we may be padding etc), so we can only update
1187 		 * "pos" here (the actor routine has to update the user buffer
1188 		 * pointers and the remaining count).
1189 		 */
1190 		ret = actor(desc, page, offset, nr);
1191 		offset += ret;
1192 		index += offset >> PAGE_CACHE_SHIFT;
1193 		offset &= ~PAGE_CACHE_MASK;
1194 		prev_offset = offset;
1195 
1196 		page_cache_release(page);
1197 		if (ret == nr && desc->count)
1198 			continue;
1199 		goto out;
1200 
1201 page_not_up_to_date:
1202 		/* Get exclusive access to the page ... */
1203 		error = lock_page_killable(page);
1204 		if (unlikely(error))
1205 			goto readpage_error;
1206 
1207 page_not_up_to_date_locked:
1208 		/* Did it get truncated before we got the lock? */
1209 		if (!page->mapping) {
1210 			unlock_page(page);
1211 			page_cache_release(page);
1212 			continue;
1213 		}
1214 
1215 		/* Did somebody else fill it already? */
1216 		if (PageUptodate(page)) {
1217 			unlock_page(page);
1218 			goto page_ok;
1219 		}
1220 
1221 readpage:
1222 		/*
1223 		 * A previous I/O error may have been due to temporary
1224 		 * failures, eg. multipath errors.
1225 		 * PG_error will be set again if readpage fails.
1226 		 */
1227 		ClearPageError(page);
1228 		/* Start the actual read. The read will unlock the page. */
1229 		error = mapping->a_ops->readpage(filp, page);
1230 
1231 		if (unlikely(error)) {
1232 			if (error == AOP_TRUNCATED_PAGE) {
1233 				page_cache_release(page);
1234 				goto find_page;
1235 			}
1236 			goto readpage_error;
1237 		}
1238 
1239 		if (!PageUptodate(page)) {
1240 			error = lock_page_killable(page);
1241 			if (unlikely(error))
1242 				goto readpage_error;
1243 			if (!PageUptodate(page)) {
1244 				if (page->mapping == NULL) {
1245 					/*
1246 					 * invalidate_mapping_pages got it
1247 					 */
1248 					unlock_page(page);
1249 					page_cache_release(page);
1250 					goto find_page;
1251 				}
1252 				unlock_page(page);
1253 				shrink_readahead_size_eio(filp, ra);
1254 				error = -EIO;
1255 				goto readpage_error;
1256 			}
1257 			unlock_page(page);
1258 		}
1259 
1260 		goto page_ok;
1261 
1262 readpage_error:
1263 		/* UHHUH! A synchronous read error occurred. Report it */
1264 		desc->error = error;
1265 		page_cache_release(page);
1266 		goto out;
1267 
1268 no_cached_page:
1269 		/*
1270 		 * Ok, it wasn't cached, so we need to create a new
1271 		 * page..
1272 		 */
1273 		page = page_cache_alloc_cold(mapping);
1274 		if (!page) {
1275 			desc->error = -ENOMEM;
1276 			goto out;
1277 		}
1278 		error = add_to_page_cache_lru(page, mapping,
1279 						index, GFP_KERNEL);
1280 		if (error) {
1281 			page_cache_release(page);
1282 			if (error == -EEXIST)
1283 				goto find_page;
1284 			desc->error = error;
1285 			goto out;
1286 		}
1287 		goto readpage;
1288 	}
1289 
1290 out:
1291 	ra->prev_pos = prev_index;
1292 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1293 	ra->prev_pos |= prev_offset;
1294 
1295 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1296 	file_accessed(filp);
1297 }
1298 
file_read_actor(read_descriptor_t * desc,struct page * page,unsigned long offset,unsigned long size)1299 int file_read_actor(read_descriptor_t *desc, struct page *page,
1300 			unsigned long offset, unsigned long size)
1301 {
1302 	char *kaddr;
1303 	unsigned long left, count = desc->count;
1304 
1305 	if (size > count)
1306 		size = count;
1307 
1308 	/*
1309 	 * Faults on the destination of a read are common, so do it before
1310 	 * taking the kmap.
1311 	 */
1312 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1313 		kaddr = kmap_atomic(page);
1314 		left = __copy_to_user_inatomic(desc->arg.buf,
1315 						kaddr + offset, size);
1316 		kunmap_atomic(kaddr);
1317 		if (left == 0)
1318 			goto success;
1319 	}
1320 
1321 	/* Do it the slow way */
1322 	kaddr = kmap(page);
1323 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1324 	kunmap(page);
1325 
1326 	if (left) {
1327 		size -= left;
1328 		desc->error = -EFAULT;
1329 	}
1330 success:
1331 	desc->count = count - size;
1332 	desc->written += size;
1333 	desc->arg.buf += size;
1334 	return size;
1335 }
1336 
1337 /*
1338  * Performs necessary checks before doing a write
1339  * @iov:	io vector request
1340  * @nr_segs:	number of segments in the iovec
1341  * @count:	number of bytes to write
1342  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1343  *
1344  * Adjust number of segments and amount of bytes to write (nr_segs should be
1345  * properly initialized first). Returns appropriate error code that caller
1346  * should return or zero in case that write should be allowed.
1347  */
generic_segment_checks(const struct iovec * iov,unsigned long * nr_segs,size_t * count,int access_flags)1348 int generic_segment_checks(const struct iovec *iov,
1349 			unsigned long *nr_segs, size_t *count, int access_flags)
1350 {
1351 	unsigned long   seg;
1352 	size_t cnt = 0;
1353 	for (seg = 0; seg < *nr_segs; seg++) {
1354 		const struct iovec *iv = &iov[seg];
1355 
1356 		/*
1357 		 * If any segment has a negative length, or the cumulative
1358 		 * length ever wraps negative then return -EINVAL.
1359 		 */
1360 		cnt += iv->iov_len;
1361 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1362 			return -EINVAL;
1363 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1364 			continue;
1365 		if (seg == 0)
1366 			return -EFAULT;
1367 		*nr_segs = seg;
1368 		cnt -= iv->iov_len;	/* This segment is no good */
1369 		break;
1370 	}
1371 	*count = cnt;
1372 	return 0;
1373 }
1374 EXPORT_SYMBOL(generic_segment_checks);
1375 
1376 /**
1377  * generic_file_aio_read - generic filesystem read routine
1378  * @iocb:	kernel I/O control block
1379  * @iov:	io vector request
1380  * @nr_segs:	number of segments in the iovec
1381  * @pos:	current file position
1382  *
1383  * This is the "read()" routine for all filesystems
1384  * that can use the page cache directly.
1385  */
1386 ssize_t
generic_file_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1387 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1388 		unsigned long nr_segs, loff_t pos)
1389 {
1390 	struct file *filp = iocb->ki_filp;
1391 	ssize_t retval;
1392 	unsigned long seg = 0;
1393 	size_t count;
1394 	loff_t *ppos = &iocb->ki_pos;
1395 
1396 	count = 0;
1397 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1398 	if (retval)
1399 		return retval;
1400 
1401 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1402 	if (filp->f_flags & O_DIRECT) {
1403 		loff_t size;
1404 		struct address_space *mapping;
1405 		struct inode *inode;
1406 
1407 		mapping = filp->f_mapping;
1408 		inode = mapping->host;
1409 		if (!count)
1410 			goto out; /* skip atime */
1411 		size = i_size_read(inode);
1412 		if (pos < size) {
1413 			retval = filemap_write_and_wait_range(mapping, pos,
1414 					pos + iov_length(iov, nr_segs) - 1);
1415 			if (!retval) {
1416 				struct blk_plug plug;
1417 
1418 				blk_start_plug(&plug);
1419 				retval = mapping->a_ops->direct_IO(READ, iocb,
1420 							iov, pos, nr_segs);
1421 				blk_finish_plug(&plug);
1422 			}
1423 			if (retval > 0) {
1424 				*ppos = pos + retval;
1425 				count -= retval;
1426 			}
1427 
1428 			/*
1429 			 * Btrfs can have a short DIO read if we encounter
1430 			 * compressed extents, so if there was an error, or if
1431 			 * we've already read everything we wanted to, or if
1432 			 * there was a short read because we hit EOF, go ahead
1433 			 * and return.  Otherwise fallthrough to buffered io for
1434 			 * the rest of the read.
1435 			 */
1436 			if (retval < 0 || !count || *ppos >= size) {
1437 				file_accessed(filp);
1438 				goto out;
1439 			}
1440 		}
1441 	}
1442 
1443 	count = retval;
1444 	for (seg = 0; seg < nr_segs; seg++) {
1445 		read_descriptor_t desc;
1446 		loff_t offset = 0;
1447 
1448 		/*
1449 		 * If we did a short DIO read we need to skip the section of the
1450 		 * iov that we've already read data into.
1451 		 */
1452 		if (count) {
1453 			if (count > iov[seg].iov_len) {
1454 				count -= iov[seg].iov_len;
1455 				continue;
1456 			}
1457 			offset = count;
1458 			count = 0;
1459 		}
1460 
1461 		desc.written = 0;
1462 		desc.arg.buf = iov[seg].iov_base + offset;
1463 		desc.count = iov[seg].iov_len - offset;
1464 		if (desc.count == 0)
1465 			continue;
1466 		desc.error = 0;
1467 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468 		retval += desc.written;
1469 		if (desc.error) {
1470 			retval = retval ?: desc.error;
1471 			break;
1472 		}
1473 		if (desc.count > 0)
1474 			break;
1475 	}
1476 out:
1477 	return retval;
1478 }
1479 EXPORT_SYMBOL(generic_file_aio_read);
1480 
1481 static ssize_t
do_readahead(struct address_space * mapping,struct file * filp,pgoff_t index,unsigned long nr)1482 do_readahead(struct address_space *mapping, struct file *filp,
1483 	     pgoff_t index, unsigned long nr)
1484 {
1485 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1486 		return -EINVAL;
1487 
1488 	force_page_cache_readahead(mapping, filp, index, nr);
1489 	return 0;
1490 }
1491 
SYSCALL_DEFINE(readahead)1492 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1493 {
1494 	ssize_t ret;
1495 	struct file *file;
1496 
1497 	ret = -EBADF;
1498 	file = fget(fd);
1499 	if (file) {
1500 		if (file->f_mode & FMODE_READ) {
1501 			struct address_space *mapping = file->f_mapping;
1502 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1503 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1504 			unsigned long len = end - start + 1;
1505 			ret = do_readahead(mapping, file, start, len);
1506 		}
1507 		fput(file);
1508 	}
1509 	return ret;
1510 }
1511 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
SyS_readahead(long fd,loff_t offset,long count)1512 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1513 {
1514 	return SYSC_readahead((int) fd, offset, (size_t) count);
1515 }
1516 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1517 #endif
1518 
1519 #ifdef CONFIG_MMU
1520 /**
1521  * page_cache_read - adds requested page to the page cache if not already there
1522  * @file:	file to read
1523  * @offset:	page index
1524  *
1525  * This adds the requested page to the page cache if it isn't already there,
1526  * and schedules an I/O to read in its contents from disk.
1527  */
page_cache_read(struct file * file,pgoff_t offset)1528 static int page_cache_read(struct file *file, pgoff_t offset)
1529 {
1530 	struct address_space *mapping = file->f_mapping;
1531 	struct page *page;
1532 	int ret;
1533 
1534 	do {
1535 		page = page_cache_alloc_cold(mapping);
1536 		if (!page)
1537 			return -ENOMEM;
1538 
1539 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1540 		if (ret == 0)
1541 			ret = mapping->a_ops->readpage(file, page);
1542 		else if (ret == -EEXIST)
1543 			ret = 0; /* losing race to add is OK */
1544 
1545 		page_cache_release(page);
1546 
1547 	} while (ret == AOP_TRUNCATED_PAGE);
1548 
1549 	return ret;
1550 }
1551 
1552 #define MMAP_LOTSAMISS  (100)
1553 
1554 /*
1555  * Synchronous readahead happens when we don't even find
1556  * a page in the page cache at all.
1557  */
do_sync_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,pgoff_t offset)1558 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1559 				   struct file_ra_state *ra,
1560 				   struct file *file,
1561 				   pgoff_t offset)
1562 {
1563 	unsigned long ra_pages;
1564 	struct address_space *mapping = file->f_mapping;
1565 
1566 	/* If we don't want any read-ahead, don't bother */
1567 	if (VM_RandomReadHint(vma))
1568 		return;
1569 	if (!ra->ra_pages)
1570 		return;
1571 
1572 	if (VM_SequentialReadHint(vma)) {
1573 		page_cache_sync_readahead(mapping, ra, file, offset,
1574 					  ra->ra_pages);
1575 		return;
1576 	}
1577 
1578 	/* Avoid banging the cache line if not needed */
1579 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1580 		ra->mmap_miss++;
1581 
1582 	/*
1583 	 * Do we miss much more than hit in this file? If so,
1584 	 * stop bothering with read-ahead. It will only hurt.
1585 	 */
1586 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1587 		return;
1588 
1589 	/*
1590 	 * mmap read-around
1591 	 */
1592 	ra_pages = max_sane_readahead(ra->ra_pages);
1593 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1594 	ra->size = ra_pages;
1595 	ra->async_size = ra_pages / 4;
1596 	ra_submit(ra, mapping, file);
1597 }
1598 
1599 /*
1600  * Asynchronous readahead happens when we find the page and PG_readahead,
1601  * so we want to possibly extend the readahead further..
1602  */
do_async_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t offset)1603 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1604 				    struct file_ra_state *ra,
1605 				    struct file *file,
1606 				    struct page *page,
1607 				    pgoff_t offset)
1608 {
1609 	struct address_space *mapping = file->f_mapping;
1610 
1611 	/* If we don't want any read-ahead, don't bother */
1612 	if (VM_RandomReadHint(vma))
1613 		return;
1614 	if (ra->mmap_miss > 0)
1615 		ra->mmap_miss--;
1616 	if (PageReadahead(page))
1617 		page_cache_async_readahead(mapping, ra, file,
1618 					   page, offset, ra->ra_pages);
1619 }
1620 
1621 /**
1622  * filemap_fault - read in file data for page fault handling
1623  * @vma:	vma in which the fault was taken
1624  * @vmf:	struct vm_fault containing details of the fault
1625  *
1626  * filemap_fault() is invoked via the vma operations vector for a
1627  * mapped memory region to read in file data during a page fault.
1628  *
1629  * The goto's are kind of ugly, but this streamlines the normal case of having
1630  * it in the page cache, and handles the special cases reasonably without
1631  * having a lot of duplicated code.
1632  */
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1633 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1634 {
1635 	int error;
1636 	struct file *file = vma->vm_file;
1637 	struct address_space *mapping = file->f_mapping;
1638 	struct file_ra_state *ra = &file->f_ra;
1639 	struct inode *inode = mapping->host;
1640 	pgoff_t offset = vmf->pgoff;
1641 	struct page *page;
1642 	pgoff_t size;
1643 	int ret = 0;
1644 
1645 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1646 	if (offset >= size)
1647 		return VM_FAULT_SIGBUS;
1648 
1649 	/*
1650 	 * Do we have something in the page cache already?
1651 	 */
1652 	page = find_get_page(mapping, offset);
1653 	if (likely(page)) {
1654 		/*
1655 		 * We found the page, so try async readahead before
1656 		 * waiting for the lock.
1657 		 */
1658 		do_async_mmap_readahead(vma, ra, file, page, offset);
1659 	} else {
1660 		/* No page in the page cache at all */
1661 		do_sync_mmap_readahead(vma, ra, file, offset);
1662 		count_vm_event(PGMAJFAULT);
1663 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1664 		ret = VM_FAULT_MAJOR;
1665 retry_find:
1666 		page = find_get_page(mapping, offset);
1667 		if (!page)
1668 			goto no_cached_page;
1669 	}
1670 
1671 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1672 		page_cache_release(page);
1673 		return ret | VM_FAULT_RETRY;
1674 	}
1675 
1676 	/* Did it get truncated? */
1677 	if (unlikely(page->mapping != mapping)) {
1678 		unlock_page(page);
1679 		put_page(page);
1680 		goto retry_find;
1681 	}
1682 	VM_BUG_ON(page->index != offset);
1683 
1684 	/*
1685 	 * We have a locked page in the page cache, now we need to check
1686 	 * that it's up-to-date. If not, it is going to be due to an error.
1687 	 */
1688 	if (unlikely(!PageUptodate(page)))
1689 		goto page_not_uptodate;
1690 
1691 	/*
1692 	 * Found the page and have a reference on it.
1693 	 * We must recheck i_size under page lock.
1694 	 */
1695 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1696 	if (unlikely(offset >= size)) {
1697 		unlock_page(page);
1698 		page_cache_release(page);
1699 		return VM_FAULT_SIGBUS;
1700 	}
1701 
1702 	vmf->page = page;
1703 	return ret | VM_FAULT_LOCKED;
1704 
1705 no_cached_page:
1706 	/*
1707 	 * We're only likely to ever get here if MADV_RANDOM is in
1708 	 * effect.
1709 	 */
1710 	error = page_cache_read(file, offset);
1711 
1712 	/*
1713 	 * The page we want has now been added to the page cache.
1714 	 * In the unlikely event that someone removed it in the
1715 	 * meantime, we'll just come back here and read it again.
1716 	 */
1717 	if (error >= 0)
1718 		goto retry_find;
1719 
1720 	/*
1721 	 * An error return from page_cache_read can result if the
1722 	 * system is low on memory, or a problem occurs while trying
1723 	 * to schedule I/O.
1724 	 */
1725 	if (error == -ENOMEM)
1726 		return VM_FAULT_OOM;
1727 	return VM_FAULT_SIGBUS;
1728 
1729 page_not_uptodate:
1730 	/*
1731 	 * Umm, take care of errors if the page isn't up-to-date.
1732 	 * Try to re-read it _once_. We do this synchronously,
1733 	 * because there really aren't any performance issues here
1734 	 * and we need to check for errors.
1735 	 */
1736 	ClearPageError(page);
1737 	error = mapping->a_ops->readpage(file, page);
1738 	if (!error) {
1739 		wait_on_page_locked(page);
1740 		if (!PageUptodate(page))
1741 			error = -EIO;
1742 	}
1743 	page_cache_release(page);
1744 
1745 	if (!error || error == AOP_TRUNCATED_PAGE)
1746 		goto retry_find;
1747 
1748 	/* Things didn't work out. Return zero to tell the mm layer so. */
1749 	shrink_readahead_size_eio(file, ra);
1750 	return VM_FAULT_SIGBUS;
1751 }
1752 EXPORT_SYMBOL(filemap_fault);
1753 
1754 const struct vm_operations_struct generic_file_vm_ops = {
1755 	.fault		= filemap_fault,
1756 };
1757 
1758 /* This is used for a general mmap of a disk file */
1759 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1760 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1761 {
1762 	struct address_space *mapping = file->f_mapping;
1763 
1764 	if (!mapping->a_ops->readpage)
1765 		return -ENOEXEC;
1766 	file_accessed(file);
1767 	vma->vm_ops = &generic_file_vm_ops;
1768 	vma->vm_flags |= VM_CAN_NONLINEAR;
1769 	return 0;
1770 }
1771 
1772 /*
1773  * This is for filesystems which do not implement ->writepage.
1774  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1775 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1776 {
1777 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1778 		return -EINVAL;
1779 	return generic_file_mmap(file, vma);
1780 }
1781 #else
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1782 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783 {
1784 	return -ENOSYS;
1785 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1786 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1787 {
1788 	return -ENOSYS;
1789 }
1790 #endif /* CONFIG_MMU */
1791 
1792 EXPORT_SYMBOL(generic_file_mmap);
1793 EXPORT_SYMBOL(generic_file_readonly_mmap);
1794 
__read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)1795 static struct page *__read_cache_page(struct address_space *mapping,
1796 				pgoff_t index,
1797 				int (*filler)(void *, struct page *),
1798 				void *data,
1799 				gfp_t gfp)
1800 {
1801 	struct page *page;
1802 	int err;
1803 repeat:
1804 	page = find_get_page(mapping, index);
1805 	if (!page) {
1806 		page = __page_cache_alloc(gfp | __GFP_COLD);
1807 		if (!page)
1808 			return ERR_PTR(-ENOMEM);
1809 		err = add_to_page_cache_lru(page, mapping, index, gfp);
1810 		if (unlikely(err)) {
1811 			page_cache_release(page);
1812 			if (err == -EEXIST)
1813 				goto repeat;
1814 			/* Presumably ENOMEM for radix tree node */
1815 			return ERR_PTR(err);
1816 		}
1817 		err = filler(data, page);
1818 		if (err < 0) {
1819 			page_cache_release(page);
1820 			page = ERR_PTR(err);
1821 		}
1822 	}
1823 	return page;
1824 }
1825 
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)1826 static struct page *do_read_cache_page(struct address_space *mapping,
1827 				pgoff_t index,
1828 				int (*filler)(void *, struct page *),
1829 				void *data,
1830 				gfp_t gfp)
1831 
1832 {
1833 	struct page *page;
1834 	int err;
1835 
1836 retry:
1837 	page = __read_cache_page(mapping, index, filler, data, gfp);
1838 	if (IS_ERR(page))
1839 		return page;
1840 	if (PageUptodate(page))
1841 		goto out;
1842 
1843 	lock_page(page);
1844 	if (!page->mapping) {
1845 		unlock_page(page);
1846 		page_cache_release(page);
1847 		goto retry;
1848 	}
1849 	if (PageUptodate(page)) {
1850 		unlock_page(page);
1851 		goto out;
1852 	}
1853 	err = filler(data, page);
1854 	if (err < 0) {
1855 		page_cache_release(page);
1856 		return ERR_PTR(err);
1857 	}
1858 out:
1859 	mark_page_accessed(page);
1860 	return page;
1861 }
1862 
1863 /**
1864  * read_cache_page_async - read into page cache, fill it if needed
1865  * @mapping:	the page's address_space
1866  * @index:	the page index
1867  * @filler:	function to perform the read
1868  * @data:	first arg to filler(data, page) function, often left as NULL
1869  *
1870  * Same as read_cache_page, but don't wait for page to become unlocked
1871  * after submitting it to the filler.
1872  *
1873  * Read into the page cache. If a page already exists, and PageUptodate() is
1874  * not set, try to fill the page but don't wait for it to become unlocked.
1875  *
1876  * If the page does not get brought uptodate, return -EIO.
1877  */
read_cache_page_async(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1878 struct page *read_cache_page_async(struct address_space *mapping,
1879 				pgoff_t index,
1880 				int (*filler)(void *, struct page *),
1881 				void *data)
1882 {
1883 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1884 }
1885 EXPORT_SYMBOL(read_cache_page_async);
1886 
wait_on_page_read(struct page * page)1887 static struct page *wait_on_page_read(struct page *page)
1888 {
1889 	if (!IS_ERR(page)) {
1890 		wait_on_page_locked(page);
1891 		if (!PageUptodate(page)) {
1892 			page_cache_release(page);
1893 			page = ERR_PTR(-EIO);
1894 		}
1895 	}
1896 	return page;
1897 }
1898 
1899 /**
1900  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1901  * @mapping:	the page's address_space
1902  * @index:	the page index
1903  * @gfp:	the page allocator flags to use if allocating
1904  *
1905  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1906  * any new page allocations done using the specified allocation flags.
1907  *
1908  * If the page does not get brought uptodate, return -EIO.
1909  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)1910 struct page *read_cache_page_gfp(struct address_space *mapping,
1911 				pgoff_t index,
1912 				gfp_t gfp)
1913 {
1914 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1915 
1916 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1917 }
1918 EXPORT_SYMBOL(read_cache_page_gfp);
1919 
1920 /**
1921  * read_cache_page - read into page cache, fill it if needed
1922  * @mapping:	the page's address_space
1923  * @index:	the page index
1924  * @filler:	function to perform the read
1925  * @data:	first arg to filler(data, page) function, often left as NULL
1926  *
1927  * Read into the page cache. If a page already exists, and PageUptodate() is
1928  * not set, try to fill the page then wait for it to become unlocked.
1929  *
1930  * If the page does not get brought uptodate, return -EIO.
1931  */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1932 struct page *read_cache_page(struct address_space *mapping,
1933 				pgoff_t index,
1934 				int (*filler)(void *, struct page *),
1935 				void *data)
1936 {
1937 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1938 }
1939 EXPORT_SYMBOL(read_cache_page);
1940 
1941 /*
1942  * The logic we want is
1943  *
1944  *	if suid or (sgid and xgrp)
1945  *		remove privs
1946  */
should_remove_suid(struct dentry * dentry)1947 int should_remove_suid(struct dentry *dentry)
1948 {
1949 	umode_t mode = dentry->d_inode->i_mode;
1950 	int kill = 0;
1951 
1952 	/* suid always must be killed */
1953 	if (unlikely(mode & S_ISUID))
1954 		kill = ATTR_KILL_SUID;
1955 
1956 	/*
1957 	 * sgid without any exec bits is just a mandatory locking mark; leave
1958 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1959 	 */
1960 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1961 		kill |= ATTR_KILL_SGID;
1962 
1963 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1964 		return kill;
1965 
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL(should_remove_suid);
1969 
__remove_suid(struct dentry * dentry,int kill)1970 static int __remove_suid(struct dentry *dentry, int kill)
1971 {
1972 	struct iattr newattrs;
1973 
1974 	newattrs.ia_valid = ATTR_FORCE | kill;
1975 	return notify_change(dentry, &newattrs);
1976 }
1977 
file_remove_suid(struct file * file)1978 int file_remove_suid(struct file *file)
1979 {
1980 	struct dentry *dentry = file->f_path.dentry;
1981 	struct inode *inode = dentry->d_inode;
1982 	int killsuid;
1983 	int killpriv;
1984 	int error = 0;
1985 
1986 	/* Fast path for nothing security related */
1987 	if (IS_NOSEC(inode))
1988 		return 0;
1989 
1990 	killsuid = should_remove_suid(dentry);
1991 	killpriv = security_inode_need_killpriv(dentry);
1992 
1993 	if (killpriv < 0)
1994 		return killpriv;
1995 	if (killpriv)
1996 		error = security_inode_killpriv(dentry);
1997 	if (!error && killsuid)
1998 		error = __remove_suid(dentry, killsuid);
1999 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2000 		inode->i_flags |= S_NOSEC;
2001 
2002 	return error;
2003 }
2004 EXPORT_SYMBOL(file_remove_suid);
2005 
__iovec_copy_from_user_inatomic(char * vaddr,const struct iovec * iov,size_t base,size_t bytes)2006 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2007 			const struct iovec *iov, size_t base, size_t bytes)
2008 {
2009 	size_t copied = 0, left = 0;
2010 
2011 	while (bytes) {
2012 		char __user *buf = iov->iov_base + base;
2013 		int copy = min(bytes, iov->iov_len - base);
2014 
2015 		base = 0;
2016 		left = __copy_from_user_inatomic(vaddr, buf, copy);
2017 		copied += copy;
2018 		bytes -= copy;
2019 		vaddr += copy;
2020 		iov++;
2021 
2022 		if (unlikely(left))
2023 			break;
2024 	}
2025 	return copied - left;
2026 }
2027 
2028 /*
2029  * Copy as much as we can into the page and return the number of bytes which
2030  * were successfully copied.  If a fault is encountered then return the number of
2031  * bytes which were copied.
2032  */
iov_iter_copy_from_user_atomic(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)2033 size_t iov_iter_copy_from_user_atomic(struct page *page,
2034 		struct iov_iter *i, unsigned long offset, size_t bytes)
2035 {
2036 	char *kaddr;
2037 	size_t copied;
2038 
2039 	BUG_ON(!in_atomic());
2040 	kaddr = kmap_atomic(page);
2041 	if (likely(i->nr_segs == 1)) {
2042 		int left;
2043 		char __user *buf = i->iov->iov_base + i->iov_offset;
2044 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2045 		copied = bytes - left;
2046 	} else {
2047 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2048 						i->iov, i->iov_offset, bytes);
2049 	}
2050 	kunmap_atomic(kaddr);
2051 
2052 	return copied;
2053 }
2054 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2055 
2056 /*
2057  * This has the same sideeffects and return value as
2058  * iov_iter_copy_from_user_atomic().
2059  * The difference is that it attempts to resolve faults.
2060  * Page must not be locked.
2061  */
iov_iter_copy_from_user(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)2062 size_t iov_iter_copy_from_user(struct page *page,
2063 		struct iov_iter *i, unsigned long offset, size_t bytes)
2064 {
2065 	char *kaddr;
2066 	size_t copied;
2067 
2068 	kaddr = kmap(page);
2069 	if (likely(i->nr_segs == 1)) {
2070 		int left;
2071 		char __user *buf = i->iov->iov_base + i->iov_offset;
2072 		left = __copy_from_user(kaddr + offset, buf, bytes);
2073 		copied = bytes - left;
2074 	} else {
2075 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2076 						i->iov, i->iov_offset, bytes);
2077 	}
2078 	kunmap(page);
2079 	return copied;
2080 }
2081 EXPORT_SYMBOL(iov_iter_copy_from_user);
2082 
iov_iter_advance(struct iov_iter * i,size_t bytes)2083 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2084 {
2085 	BUG_ON(i->count < bytes);
2086 
2087 	if (likely(i->nr_segs == 1)) {
2088 		i->iov_offset += bytes;
2089 		i->count -= bytes;
2090 	} else {
2091 		const struct iovec *iov = i->iov;
2092 		size_t base = i->iov_offset;
2093 		unsigned long nr_segs = i->nr_segs;
2094 
2095 		/*
2096 		 * The !iov->iov_len check ensures we skip over unlikely
2097 		 * zero-length segments (without overruning the iovec).
2098 		 */
2099 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2100 			int copy;
2101 
2102 			copy = min(bytes, iov->iov_len - base);
2103 			BUG_ON(!i->count || i->count < copy);
2104 			i->count -= copy;
2105 			bytes -= copy;
2106 			base += copy;
2107 			if (iov->iov_len == base) {
2108 				iov++;
2109 				nr_segs--;
2110 				base = 0;
2111 			}
2112 		}
2113 		i->iov = iov;
2114 		i->iov_offset = base;
2115 		i->nr_segs = nr_segs;
2116 	}
2117 }
2118 EXPORT_SYMBOL(iov_iter_advance);
2119 
2120 /*
2121  * Fault in the first iovec of the given iov_iter, to a maximum length
2122  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2123  * accessed (ie. because it is an invalid address).
2124  *
2125  * writev-intensive code may want this to prefault several iovecs -- that
2126  * would be possible (callers must not rely on the fact that _only_ the
2127  * first iovec will be faulted with the current implementation).
2128  */
iov_iter_fault_in_readable(struct iov_iter * i,size_t bytes)2129 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2130 {
2131 	char __user *buf = i->iov->iov_base + i->iov_offset;
2132 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2133 	return fault_in_pages_readable(buf, bytes);
2134 }
2135 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2136 
2137 /*
2138  * Return the count of just the current iov_iter segment.
2139  */
iov_iter_single_seg_count(struct iov_iter * i)2140 size_t iov_iter_single_seg_count(struct iov_iter *i)
2141 {
2142 	const struct iovec *iov = i->iov;
2143 	if (i->nr_segs == 1)
2144 		return i->count;
2145 	else
2146 		return min(i->count, iov->iov_len - i->iov_offset);
2147 }
2148 EXPORT_SYMBOL(iov_iter_single_seg_count);
2149 
2150 /*
2151  * Performs necessary checks before doing a write
2152  *
2153  * Can adjust writing position or amount of bytes to write.
2154  * Returns appropriate error code that caller should return or
2155  * zero in case that write should be allowed.
2156  */
generic_write_checks(struct file * file,loff_t * pos,size_t * count,int isblk)2157 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2158 {
2159 	struct inode *inode = file->f_mapping->host;
2160 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2161 
2162         if (unlikely(*pos < 0))
2163                 return -EINVAL;
2164 
2165 	if (!isblk) {
2166 		/* FIXME: this is for backwards compatibility with 2.4 */
2167 		if (file->f_flags & O_APPEND)
2168                         *pos = i_size_read(inode);
2169 
2170 		if (limit != RLIM_INFINITY) {
2171 			if (*pos >= limit) {
2172 				send_sig(SIGXFSZ, current, 0);
2173 				return -EFBIG;
2174 			}
2175 			if (*count > limit - (typeof(limit))*pos) {
2176 				*count = limit - (typeof(limit))*pos;
2177 			}
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * LFS rule
2183 	 */
2184 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2185 				!(file->f_flags & O_LARGEFILE))) {
2186 		if (*pos >= MAX_NON_LFS) {
2187 			return -EFBIG;
2188 		}
2189 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2190 			*count = MAX_NON_LFS - (unsigned long)*pos;
2191 		}
2192 	}
2193 
2194 	/*
2195 	 * Are we about to exceed the fs block limit ?
2196 	 *
2197 	 * If we have written data it becomes a short write.  If we have
2198 	 * exceeded without writing data we send a signal and return EFBIG.
2199 	 * Linus frestrict idea will clean these up nicely..
2200 	 */
2201 	if (likely(!isblk)) {
2202 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2203 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2204 				return -EFBIG;
2205 			}
2206 			/* zero-length writes at ->s_maxbytes are OK */
2207 		}
2208 
2209 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2210 			*count = inode->i_sb->s_maxbytes - *pos;
2211 	} else {
2212 #ifdef CONFIG_BLOCK
2213 		loff_t isize;
2214 		if (bdev_read_only(I_BDEV(inode)))
2215 			return -EPERM;
2216 		isize = i_size_read(inode);
2217 		if (*pos >= isize) {
2218 			if (*count || *pos > isize)
2219 				return -ENOSPC;
2220 		}
2221 
2222 		if (*pos + *count > isize)
2223 			*count = isize - *pos;
2224 #else
2225 		return -EPERM;
2226 #endif
2227 	}
2228 	return 0;
2229 }
2230 EXPORT_SYMBOL(generic_write_checks);
2231 
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2232 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2233 				loff_t pos, unsigned len, unsigned flags,
2234 				struct page **pagep, void **fsdata)
2235 {
2236 	const struct address_space_operations *aops = mapping->a_ops;
2237 
2238 	return aops->write_begin(file, mapping, pos, len, flags,
2239 							pagep, fsdata);
2240 }
2241 EXPORT_SYMBOL(pagecache_write_begin);
2242 
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2243 int pagecache_write_end(struct file *file, struct address_space *mapping,
2244 				loff_t pos, unsigned len, unsigned copied,
2245 				struct page *page, void *fsdata)
2246 {
2247 	const struct address_space_operations *aops = mapping->a_ops;
2248 
2249 	mark_page_accessed(page);
2250 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2251 }
2252 EXPORT_SYMBOL(pagecache_write_end);
2253 
2254 ssize_t
generic_file_direct_write(struct kiocb * iocb,const struct iovec * iov,unsigned long * nr_segs,loff_t pos,loff_t * ppos,size_t count,size_t ocount)2255 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2256 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2257 		size_t count, size_t ocount)
2258 {
2259 	struct file	*file = iocb->ki_filp;
2260 	struct address_space *mapping = file->f_mapping;
2261 	struct inode	*inode = mapping->host;
2262 	ssize_t		written;
2263 	size_t		write_len;
2264 	pgoff_t		end;
2265 
2266 	if (count != ocount)
2267 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2268 
2269 	write_len = iov_length(iov, *nr_segs);
2270 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2271 
2272 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2273 	if (written)
2274 		goto out;
2275 
2276 	/*
2277 	 * After a write we want buffered reads to be sure to go to disk to get
2278 	 * the new data.  We invalidate clean cached page from the region we're
2279 	 * about to write.  We do this *before* the write so that we can return
2280 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2281 	 */
2282 	if (mapping->nrpages) {
2283 		written = invalidate_inode_pages2_range(mapping,
2284 					pos >> PAGE_CACHE_SHIFT, end);
2285 		/*
2286 		 * If a page can not be invalidated, return 0 to fall back
2287 		 * to buffered write.
2288 		 */
2289 		if (written) {
2290 			if (written == -EBUSY)
2291 				return 0;
2292 			goto out;
2293 		}
2294 	}
2295 
2296 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2297 
2298 	/*
2299 	 * Finally, try again to invalidate clean pages which might have been
2300 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2301 	 * if the source of the write was an mmap'ed region of the file
2302 	 * we're writing.  Either one is a pretty crazy thing to do,
2303 	 * so we don't support it 100%.  If this invalidation
2304 	 * fails, tough, the write still worked...
2305 	 */
2306 	if (mapping->nrpages) {
2307 		invalidate_inode_pages2_range(mapping,
2308 					      pos >> PAGE_CACHE_SHIFT, end);
2309 	}
2310 
2311 	if (written > 0) {
2312 		pos += written;
2313 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2314 			i_size_write(inode, pos);
2315 			mark_inode_dirty(inode);
2316 		}
2317 		*ppos = pos;
2318 	}
2319 out:
2320 	return written;
2321 }
2322 EXPORT_SYMBOL(generic_file_direct_write);
2323 
2324 /*
2325  * Find or create a page at the given pagecache position. Return the locked
2326  * page. This function is specifically for buffered writes.
2327  */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)2328 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2329 					pgoff_t index, unsigned flags)
2330 {
2331 	int status;
2332 	gfp_t gfp_mask;
2333 	struct page *page;
2334 	gfp_t gfp_notmask = 0;
2335 
2336 	gfp_mask = mapping_gfp_mask(mapping);
2337 	if (mapping_cap_account_dirty(mapping))
2338 		gfp_mask |= __GFP_WRITE;
2339 	if (flags & AOP_FLAG_NOFS)
2340 		gfp_notmask = __GFP_FS;
2341 repeat:
2342 	page = find_lock_page(mapping, index);
2343 	if (page)
2344 		goto found;
2345 
2346 	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2347 	if (!page)
2348 		return NULL;
2349 	status = add_to_page_cache_lru(page, mapping, index,
2350 						GFP_KERNEL & ~gfp_notmask);
2351 	if (unlikely(status)) {
2352 		page_cache_release(page);
2353 		if (status == -EEXIST)
2354 			goto repeat;
2355 		return NULL;
2356 	}
2357 found:
2358 	wait_on_page_writeback(page);
2359 	return page;
2360 }
2361 EXPORT_SYMBOL(grab_cache_page_write_begin);
2362 
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)2363 static ssize_t generic_perform_write(struct file *file,
2364 				struct iov_iter *i, loff_t pos)
2365 {
2366 	struct address_space *mapping = file->f_mapping;
2367 	const struct address_space_operations *a_ops = mapping->a_ops;
2368 	long status = 0;
2369 	ssize_t written = 0;
2370 	unsigned int flags = 0;
2371 
2372 	/*
2373 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2374 	 */
2375 	if (segment_eq(get_fs(), KERNEL_DS))
2376 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2377 
2378 	do {
2379 		struct page *page;
2380 		unsigned long offset;	/* Offset into pagecache page */
2381 		unsigned long bytes;	/* Bytes to write to page */
2382 		size_t copied;		/* Bytes copied from user */
2383 		void *fsdata;
2384 
2385 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2386 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2387 						iov_iter_count(i));
2388 
2389 again:
2390 		/*
2391 		 * Bring in the user page that we will copy from _first_.
2392 		 * Otherwise there's a nasty deadlock on copying from the
2393 		 * same page as we're writing to, without it being marked
2394 		 * up-to-date.
2395 		 *
2396 		 * Not only is this an optimisation, but it is also required
2397 		 * to check that the address is actually valid, when atomic
2398 		 * usercopies are used, below.
2399 		 */
2400 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2401 			status = -EFAULT;
2402 			break;
2403 		}
2404 
2405 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2406 						&page, &fsdata);
2407 		if (unlikely(status))
2408 			break;
2409 
2410 		if (mapping_writably_mapped(mapping))
2411 			flush_dcache_page(page);
2412 
2413 		pagefault_disable();
2414 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2415 		pagefault_enable();
2416 		flush_dcache_page(page);
2417 
2418 		mark_page_accessed(page);
2419 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2420 						page, fsdata);
2421 		if (unlikely(status < 0))
2422 			break;
2423 		copied = status;
2424 
2425 		cond_resched();
2426 
2427 		iov_iter_advance(i, copied);
2428 		if (unlikely(copied == 0)) {
2429 			/*
2430 			 * If we were unable to copy any data at all, we must
2431 			 * fall back to a single segment length write.
2432 			 *
2433 			 * If we didn't fallback here, we could livelock
2434 			 * because not all segments in the iov can be copied at
2435 			 * once without a pagefault.
2436 			 */
2437 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2438 						iov_iter_single_seg_count(i));
2439 			goto again;
2440 		}
2441 		pos += copied;
2442 		written += copied;
2443 
2444 		balance_dirty_pages_ratelimited(mapping);
2445 		if (fatal_signal_pending(current)) {
2446 			status = -EINTR;
2447 			break;
2448 		}
2449 	} while (iov_iter_count(i));
2450 
2451 	return written ? written : status;
2452 }
2453 
2454 ssize_t
generic_file_buffered_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos,loff_t * ppos,size_t count,ssize_t written)2455 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2456 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2457 		size_t count, ssize_t written)
2458 {
2459 	struct file *file = iocb->ki_filp;
2460 	ssize_t status;
2461 	struct iov_iter i;
2462 
2463 	iov_iter_init(&i, iov, nr_segs, count, written);
2464 	status = generic_perform_write(file, &i, pos);
2465 
2466 	if (likely(status >= 0)) {
2467 		written += status;
2468 		*ppos = pos + status;
2469   	}
2470 
2471 	return written ? written : status;
2472 }
2473 EXPORT_SYMBOL(generic_file_buffered_write);
2474 
2475 /**
2476  * __generic_file_aio_write - write data to a file
2477  * @iocb:	IO state structure (file, offset, etc.)
2478  * @iov:	vector with data to write
2479  * @nr_segs:	number of segments in the vector
2480  * @ppos:	position where to write
2481  *
2482  * This function does all the work needed for actually writing data to a
2483  * file. It does all basic checks, removes SUID from the file, updates
2484  * modification times and calls proper subroutines depending on whether we
2485  * do direct IO or a standard buffered write.
2486  *
2487  * It expects i_mutex to be grabbed unless we work on a block device or similar
2488  * object which does not need locking at all.
2489  *
2490  * This function does *not* take care of syncing data in case of O_SYNC write.
2491  * A caller has to handle it. This is mainly due to the fact that we want to
2492  * avoid syncing under i_mutex.
2493  */
__generic_file_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t * ppos)2494 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2495 				 unsigned long nr_segs, loff_t *ppos)
2496 {
2497 	struct file *file = iocb->ki_filp;
2498 	struct address_space * mapping = file->f_mapping;
2499 	size_t ocount;		/* original count */
2500 	size_t count;		/* after file limit checks */
2501 	struct inode 	*inode = mapping->host;
2502 	loff_t		pos;
2503 	ssize_t		written;
2504 	ssize_t		err;
2505 
2506 	ocount = 0;
2507 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2508 	if (err)
2509 		return err;
2510 
2511 	count = ocount;
2512 	pos = *ppos;
2513 
2514 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2515 
2516 	/* We can write back this queue in page reclaim */
2517 	current->backing_dev_info = mapping->backing_dev_info;
2518 	written = 0;
2519 
2520 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2521 	if (err)
2522 		goto out;
2523 
2524 	if (count == 0)
2525 		goto out;
2526 
2527 	err = file_remove_suid(file);
2528 	if (err)
2529 		goto out;
2530 
2531 	file_update_time(file);
2532 
2533 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2534 	if (unlikely(file->f_flags & O_DIRECT)) {
2535 		loff_t endbyte;
2536 		ssize_t written_buffered;
2537 
2538 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2539 							ppos, count, ocount);
2540 		if (written < 0 || written == count)
2541 			goto out;
2542 		/*
2543 		 * direct-io write to a hole: fall through to buffered I/O
2544 		 * for completing the rest of the request.
2545 		 */
2546 		pos += written;
2547 		count -= written;
2548 		written_buffered = generic_file_buffered_write(iocb, iov,
2549 						nr_segs, pos, ppos, count,
2550 						written);
2551 		/*
2552 		 * If generic_file_buffered_write() retuned a synchronous error
2553 		 * then we want to return the number of bytes which were
2554 		 * direct-written, or the error code if that was zero.  Note
2555 		 * that this differs from normal direct-io semantics, which
2556 		 * will return -EFOO even if some bytes were written.
2557 		 */
2558 		if (written_buffered < 0) {
2559 			err = written_buffered;
2560 			goto out;
2561 		}
2562 
2563 		/*
2564 		 * We need to ensure that the page cache pages are written to
2565 		 * disk and invalidated to preserve the expected O_DIRECT
2566 		 * semantics.
2567 		 */
2568 		endbyte = pos + written_buffered - written - 1;
2569 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2570 		if (err == 0) {
2571 			written = written_buffered;
2572 			invalidate_mapping_pages(mapping,
2573 						 pos >> PAGE_CACHE_SHIFT,
2574 						 endbyte >> PAGE_CACHE_SHIFT);
2575 		} else {
2576 			/*
2577 			 * We don't know how much we wrote, so just return
2578 			 * the number of bytes which were direct-written
2579 			 */
2580 		}
2581 	} else {
2582 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2583 				pos, ppos, count, written);
2584 	}
2585 out:
2586 	current->backing_dev_info = NULL;
2587 	return written ? written : err;
2588 }
2589 EXPORT_SYMBOL(__generic_file_aio_write);
2590 
2591 /**
2592  * generic_file_aio_write - write data to a file
2593  * @iocb:	IO state structure
2594  * @iov:	vector with data to write
2595  * @nr_segs:	number of segments in the vector
2596  * @pos:	position in file where to write
2597  *
2598  * This is a wrapper around __generic_file_aio_write() to be used by most
2599  * filesystems. It takes care of syncing the file in case of O_SYNC file
2600  * and acquires i_mutex as needed.
2601  */
generic_file_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2602 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2603 		unsigned long nr_segs, loff_t pos)
2604 {
2605 	struct file *file = iocb->ki_filp;
2606 	struct inode *inode = file->f_mapping->host;
2607 	struct blk_plug plug;
2608 	ssize_t ret;
2609 
2610 	BUG_ON(iocb->ki_pos != pos);
2611 
2612 	mutex_lock(&inode->i_mutex);
2613 	blk_start_plug(&plug);
2614 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2615 	mutex_unlock(&inode->i_mutex);
2616 
2617 	if (ret > 0 || ret == -EIOCBQUEUED) {
2618 		ssize_t err;
2619 
2620 		err = generic_write_sync(file, pos, ret);
2621 		if (err < 0 && ret > 0)
2622 			ret = err;
2623 	}
2624 	blk_finish_plug(&plug);
2625 	return ret;
2626 }
2627 EXPORT_SYMBOL(generic_file_aio_write);
2628 
2629 /**
2630  * try_to_release_page() - release old fs-specific metadata on a page
2631  *
2632  * @page: the page which the kernel is trying to free
2633  * @gfp_mask: memory allocation flags (and I/O mode)
2634  *
2635  * The address_space is to try to release any data against the page
2636  * (presumably at page->private).  If the release was successful, return `1'.
2637  * Otherwise return zero.
2638  *
2639  * This may also be called if PG_fscache is set on a page, indicating that the
2640  * page is known to the local caching routines.
2641  *
2642  * The @gfp_mask argument specifies whether I/O may be performed to release
2643  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2644  *
2645  */
try_to_release_page(struct page * page,gfp_t gfp_mask)2646 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2647 {
2648 	struct address_space * const mapping = page->mapping;
2649 
2650 	BUG_ON(!PageLocked(page));
2651 	if (PageWriteback(page))
2652 		return 0;
2653 
2654 	if (mapping && mapping->a_ops->releasepage)
2655 		return mapping->a_ops->releasepage(page, gfp_mask);
2656 	return try_to_free_buffers(page);
2657 }
2658 
2659 EXPORT_SYMBOL(try_to_release_page);
2660