1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t use;
121 	struct net_device *physindev;
122 	struct net_device *physoutdev;
123 	unsigned int mask;
124 	unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
skb_frag_size(const skb_frag_t * frag)167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
skb_frag_size_add(skb_frag_t * frag,int delta)177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
skb_frag_size_sub(skb_frag_t * frag,int delta)182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* device driver supports TX zero-copy buffers */
229 	SKBTX_DEV_ZEROCOPY = 1 << 3,
230 
231 	/* generate wifi status information (where possible) */
232 	SKBTX_WIFI_STATUS = 1 << 4,
233 };
234 
235 /*
236  * The callback notifies userspace to release buffers when skb DMA is done in
237  * lower device, the skb last reference should be 0 when calling this.
238  * The ctx field is used to track device context.
239  * The desc field is used to track userspace buffer index.
240  */
241 struct ubuf_info {
242 	void (*callback)(struct ubuf_info *);
243 	void *ctx;
244 	unsigned long desc;
245 };
246 
247 /* This data is invariant across clones and lives at
248  * the end of the header data, ie. at skb->end.
249  */
250 struct skb_shared_info {
251 	unsigned char	nr_frags;
252 	__u8		tx_flags;
253 	unsigned short	gso_size;
254 	/* Warning: this field is not always filled in (UFO)! */
255 	unsigned short	gso_segs;
256 	unsigned short  gso_type;
257 	struct sk_buff	*frag_list;
258 	struct skb_shared_hwtstamps hwtstamps;
259 	__be32          ip6_frag_id;
260 
261 	/*
262 	 * Warning : all fields before dataref are cleared in __alloc_skb()
263 	 */
264 	atomic_t	dataref;
265 
266 	/* Intermediate layers must ensure that destructor_arg
267 	 * remains valid until skb destructor */
268 	void *		destructor_arg;
269 
270 	/* must be last field, see pskb_expand_head() */
271 	skb_frag_t	frags[MAX_SKB_FRAGS];
272 };
273 
274 /* We divide dataref into two halves.  The higher 16 bits hold references
275  * to the payload part of skb->data.  The lower 16 bits hold references to
276  * the entire skb->data.  A clone of a headerless skb holds the length of
277  * the header in skb->hdr_len.
278  *
279  * All users must obey the rule that the skb->data reference count must be
280  * greater than or equal to the payload reference count.
281  *
282  * Holding a reference to the payload part means that the user does not
283  * care about modifications to the header part of skb->data.
284  */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287 
288 
289 enum {
290 	SKB_FCLONE_UNAVAILABLE,
291 	SKB_FCLONE_ORIG,
292 	SKB_FCLONE_CLONE,
293 };
294 
295 enum {
296 	SKB_GSO_TCPV4 = 1 << 0,
297 	SKB_GSO_UDP = 1 << 1,
298 
299 	/* This indicates the skb is from an untrusted source. */
300 	SKB_GSO_DODGY = 1 << 2,
301 
302 	/* This indicates the tcp segment has CWR set. */
303 	SKB_GSO_TCP_ECN = 1 << 3,
304 
305 	SKB_GSO_TCPV6 = 1 << 4,
306 
307 	SKB_GSO_FCOE = 1 << 5,
308 };
309 
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313 
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319 
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324 
325 /**
326  *	struct sk_buff - socket buffer
327  *	@next: Next buffer in list
328  *	@prev: Previous buffer in list
329  *	@tstamp: Time we arrived
330  *	@sk: Socket we are owned by
331  *	@dev: Device we arrived on/are leaving by
332  *	@cb: Control buffer. Free for use by every layer. Put private vars here
333  *	@_skb_refdst: destination entry (with norefcount bit)
334  *	@sp: the security path, used for xfrm
335  *	@len: Length of actual data
336  *	@data_len: Data length
337  *	@mac_len: Length of link layer header
338  *	@hdr_len: writable header length of cloned skb
339  *	@csum: Checksum (must include start/offset pair)
340  *	@csum_start: Offset from skb->head where checksumming should start
341  *	@csum_offset: Offset from csum_start where checksum should be stored
342  *	@priority: Packet queueing priority
343  *	@local_df: allow local fragmentation
344  *	@cloned: Head may be cloned (check refcnt to be sure)
345  *	@ip_summed: Driver fed us an IP checksum
346  *	@nohdr: Payload reference only, must not modify header
347  *	@nfctinfo: Relationship of this skb to the connection
348  *	@pkt_type: Packet class
349  *	@fclone: skbuff clone status
350  *	@ipvs_property: skbuff is owned by ipvs
351  *	@peeked: this packet has been seen already, so stats have been
352  *		done for it, don't do them again
353  *	@nf_trace: netfilter packet trace flag
354  *	@protocol: Packet protocol from driver
355  *	@destructor: Destruct function
356  *	@nfct: Associated connection, if any
357  *	@nfct_reasm: netfilter conntrack re-assembly pointer
358  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359  *	@skb_iif: ifindex of device we arrived on
360  *	@tc_index: Traffic control index
361  *	@tc_verd: traffic control verdict
362  *	@rxhash: the packet hash computed on receive
363  *	@queue_mapping: Queue mapping for multiqueue devices
364  *	@ndisc_nodetype: router type (from link layer)
365  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
366  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367  *		ports.
368  *	@wifi_acked_valid: wifi_acked was set
369  *	@wifi_acked: whether frame was acked on wifi or not
370  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
371  *	@dma_cookie: a cookie to one of several possible DMA operations
372  *		done by skb DMA functions
373  *	@secmark: security marking
374  *	@mark: Generic packet mark
375  *	@dropcount: total number of sk_receive_queue overflows
376  *	@vlan_tci: vlan tag control information
377  *	@transport_header: Transport layer header
378  *	@network_header: Network layer header
379  *	@mac_header: Link layer header
380  *	@tail: Tail pointer
381  *	@end: End pointer
382  *	@head: Head of buffer
383  *	@data: Data head pointer
384  *	@truesize: Buffer size
385  *	@users: User count - see {datagram,tcp}.c
386  */
387 
388 struct sk_buff {
389 	/* These two members must be first. */
390 	struct sk_buff		*next;
391 	struct sk_buff		*prev;
392 
393 	ktime_t			tstamp;
394 
395 	struct sock		*sk;
396 	struct net_device	*dev;
397 
398 	/*
399 	 * This is the control buffer. It is free to use for every
400 	 * layer. Please put your private variables there. If you
401 	 * want to keep them across layers you have to do a skb_clone()
402 	 * first. This is owned by whoever has the skb queued ATM.
403 	 */
404 	char			cb[48] __aligned(8);
405 
406 	unsigned long		_skb_refdst;
407 #ifdef CONFIG_XFRM
408 	struct	sec_path	*sp;
409 #endif
410 	unsigned int		len,
411 				data_len;
412 	__u16			mac_len,
413 				hdr_len;
414 	union {
415 		__wsum		csum;
416 		struct {
417 			__u16	csum_start;
418 			__u16	csum_offset;
419 		};
420 	};
421 	__u32			priority;
422 	kmemcheck_bitfield_begin(flags1);
423 	__u8			local_df:1,
424 				cloned:1,
425 				ip_summed:2,
426 				nohdr:1,
427 				nfctinfo:3;
428 	__u8			pkt_type:3,
429 				fclone:2,
430 				ipvs_property:1,
431 				peeked:1,
432 				nf_trace:1;
433 	kmemcheck_bitfield_end(flags1);
434 	__be16			protocol;
435 
436 	void			(*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 	struct nf_conntrack	*nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 	struct sk_buff		*nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 	struct nf_bridge_info	*nf_bridge;
445 #endif
446 
447 	int			skb_iif;
448 
449 	__u32			rxhash;
450 
451 	__u16			vlan_tci;
452 
453 #ifdef CONFIG_NET_SCHED
454 	__u16			tc_index;	/* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 	__u16			tc_verd;	/* traffic control verdict */
457 #endif
458 #endif
459 
460 	__u16			queue_mapping;
461 	kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 	__u8			ndisc_nodetype:2;
464 #endif
465 	__u8			ooo_okay:1;
466 	__u8			l4_rxhash:1;
467 	__u8			wifi_acked_valid:1;
468 	__u8			wifi_acked:1;
469 	__u8			no_fcs:1;
470 	/* 9/11 bit hole (depending on ndisc_nodetype presence) */
471 	kmemcheck_bitfield_end(flags2);
472 
473 #ifdef CONFIG_NET_DMA
474 	dma_cookie_t		dma_cookie;
475 #endif
476 #ifdef CONFIG_NETWORK_SECMARK
477 	__u32			secmark;
478 #endif
479 	union {
480 		__u32		mark;
481 		__u32		dropcount;
482 		__u32		reserved_tailroom;
483 	};
484 
485 	sk_buff_data_t		transport_header;
486 	sk_buff_data_t		network_header;
487 	sk_buff_data_t		mac_header;
488 	/* These elements must be at the end, see alloc_skb() for details.  */
489 	sk_buff_data_t		tail;
490 	sk_buff_data_t		end;
491 	unsigned char		*head,
492 				*data;
493 	unsigned int		truesize;
494 	atomic_t		users;
495 };
496 
497 #ifdef __KERNEL__
498 /*
499  *	Handling routines are only of interest to the kernel
500  */
501 #include <linux/slab.h>
502 
503 
504 /*
505  * skb might have a dst pointer attached, refcounted or not.
506  * _skb_refdst low order bit is set if refcount was _not_ taken
507  */
508 #define SKB_DST_NOREF	1UL
509 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
510 
511 /**
512  * skb_dst - returns skb dst_entry
513  * @skb: buffer
514  *
515  * Returns skb dst_entry, regardless of reference taken or not.
516  */
skb_dst(const struct sk_buff * skb)517 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
518 {
519 	/* If refdst was not refcounted, check we still are in a
520 	 * rcu_read_lock section
521 	 */
522 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
523 		!rcu_read_lock_held() &&
524 		!rcu_read_lock_bh_held());
525 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
526 }
527 
528 /**
529  * skb_dst_set - sets skb dst
530  * @skb: buffer
531  * @dst: dst entry
532  *
533  * Sets skb dst, assuming a reference was taken on dst and should
534  * be released by skb_dst_drop()
535  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)536 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
537 {
538 	skb->_skb_refdst = (unsigned long)dst;
539 }
540 
541 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
542 
543 /**
544  * skb_dst_is_noref - Test if skb dst isn't refcounted
545  * @skb: buffer
546  */
skb_dst_is_noref(const struct sk_buff * skb)547 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
548 {
549 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
550 }
551 
skb_rtable(const struct sk_buff * skb)552 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
553 {
554 	return (struct rtable *)skb_dst(skb);
555 }
556 
557 extern void kfree_skb(struct sk_buff *skb);
558 extern void consume_skb(struct sk_buff *skb);
559 extern void	       __kfree_skb(struct sk_buff *skb);
560 extern struct sk_buff *__alloc_skb(unsigned int size,
561 				   gfp_t priority, int fclone, int node);
562 extern struct sk_buff *build_skb(void *data);
alloc_skb(unsigned int size,gfp_t priority)563 static inline struct sk_buff *alloc_skb(unsigned int size,
564 					gfp_t priority)
565 {
566 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
567 }
568 
alloc_skb_fclone(unsigned int size,gfp_t priority)569 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
570 					       gfp_t priority)
571 {
572 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
573 }
574 
575 extern void skb_recycle(struct sk_buff *skb);
576 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
577 
578 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
579 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
580 extern struct sk_buff *skb_clone(struct sk_buff *skb,
581 				 gfp_t priority);
582 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
583 				gfp_t priority);
584 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
585 				 int headroom, gfp_t gfp_mask);
586 
587 extern int	       pskb_expand_head(struct sk_buff *skb,
588 					int nhead, int ntail,
589 					gfp_t gfp_mask);
590 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
591 					    unsigned int headroom);
592 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
593 				       int newheadroom, int newtailroom,
594 				       gfp_t priority);
595 extern int	       skb_to_sgvec(struct sk_buff *skb,
596 				    struct scatterlist *sg, int offset,
597 				    int len);
598 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
599 				    struct sk_buff **trailer);
600 extern int	       skb_pad(struct sk_buff *skb, int pad);
601 #define dev_kfree_skb(a)	consume_skb(a)
602 
603 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
604 			int getfrag(void *from, char *to, int offset,
605 			int len,int odd, struct sk_buff *skb),
606 			void *from, int length);
607 
608 struct skb_seq_state {
609 	__u32		lower_offset;
610 	__u32		upper_offset;
611 	__u32		frag_idx;
612 	__u32		stepped_offset;
613 	struct sk_buff	*root_skb;
614 	struct sk_buff	*cur_skb;
615 	__u8		*frag_data;
616 };
617 
618 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
619 					   unsigned int from, unsigned int to,
620 					   struct skb_seq_state *st);
621 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
622 				   struct skb_seq_state *st);
623 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
624 
625 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
626 				    unsigned int to, struct ts_config *config,
627 				    struct ts_state *state);
628 
629 extern void __skb_get_rxhash(struct sk_buff *skb);
skb_get_rxhash(struct sk_buff * skb)630 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
631 {
632 	if (!skb->rxhash)
633 		__skb_get_rxhash(skb);
634 
635 	return skb->rxhash;
636 }
637 
638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)639 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
640 {
641 	return skb->head + skb->end;
642 }
643 
skb_end_offset(const struct sk_buff * skb)644 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
645 {
646 	return skb->end;
647 }
648 #else
skb_end_pointer(const struct sk_buff * skb)649 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
650 {
651 	return skb->end;
652 }
653 
skb_end_offset(const struct sk_buff * skb)654 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
655 {
656 	return skb->end - skb->head;
657 }
658 #endif
659 
660 /* Internal */
661 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
662 
skb_hwtstamps(struct sk_buff * skb)663 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
664 {
665 	return &skb_shinfo(skb)->hwtstamps;
666 }
667 
668 /**
669  *	skb_queue_empty - check if a queue is empty
670  *	@list: queue head
671  *
672  *	Returns true if the queue is empty, false otherwise.
673  */
skb_queue_empty(const struct sk_buff_head * list)674 static inline int skb_queue_empty(const struct sk_buff_head *list)
675 {
676 	return list->next == (struct sk_buff *)list;
677 }
678 
679 /**
680  *	skb_queue_is_last - check if skb is the last entry in the queue
681  *	@list: queue head
682  *	@skb: buffer
683  *
684  *	Returns true if @skb is the last buffer on the list.
685  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)686 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
687 				     const struct sk_buff *skb)
688 {
689 	return skb->next == (struct sk_buff *)list;
690 }
691 
692 /**
693  *	skb_queue_is_first - check if skb is the first entry in the queue
694  *	@list: queue head
695  *	@skb: buffer
696  *
697  *	Returns true if @skb is the first buffer on the list.
698  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)699 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
700 				      const struct sk_buff *skb)
701 {
702 	return skb->prev == (struct sk_buff *)list;
703 }
704 
705 /**
706  *	skb_queue_next - return the next packet in the queue
707  *	@list: queue head
708  *	@skb: current buffer
709  *
710  *	Return the next packet in @list after @skb.  It is only valid to
711  *	call this if skb_queue_is_last() evaluates to false.
712  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)713 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
714 					     const struct sk_buff *skb)
715 {
716 	/* This BUG_ON may seem severe, but if we just return then we
717 	 * are going to dereference garbage.
718 	 */
719 	BUG_ON(skb_queue_is_last(list, skb));
720 	return skb->next;
721 }
722 
723 /**
724  *	skb_queue_prev - return the prev packet in the queue
725  *	@list: queue head
726  *	@skb: current buffer
727  *
728  *	Return the prev packet in @list before @skb.  It is only valid to
729  *	call this if skb_queue_is_first() evaluates to false.
730  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)731 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
732 					     const struct sk_buff *skb)
733 {
734 	/* This BUG_ON may seem severe, but if we just return then we
735 	 * are going to dereference garbage.
736 	 */
737 	BUG_ON(skb_queue_is_first(list, skb));
738 	return skb->prev;
739 }
740 
741 /**
742  *	skb_get - reference buffer
743  *	@skb: buffer to reference
744  *
745  *	Makes another reference to a socket buffer and returns a pointer
746  *	to the buffer.
747  */
skb_get(struct sk_buff * skb)748 static inline struct sk_buff *skb_get(struct sk_buff *skb)
749 {
750 	atomic_inc(&skb->users);
751 	return skb;
752 }
753 
754 /*
755  * If users == 1, we are the only owner and are can avoid redundant
756  * atomic change.
757  */
758 
759 /**
760  *	skb_cloned - is the buffer a clone
761  *	@skb: buffer to check
762  *
763  *	Returns true if the buffer was generated with skb_clone() and is
764  *	one of multiple shared copies of the buffer. Cloned buffers are
765  *	shared data so must not be written to under normal circumstances.
766  */
skb_cloned(const struct sk_buff * skb)767 static inline int skb_cloned(const struct sk_buff *skb)
768 {
769 	return skb->cloned &&
770 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
771 }
772 
skb_unclone(struct sk_buff * skb,gfp_t pri)773 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
774 {
775 	might_sleep_if(pri & __GFP_WAIT);
776 
777 	if (skb_cloned(skb))
778 		return pskb_expand_head(skb, 0, 0, pri);
779 
780 	return 0;
781 }
782 
783 /**
784  *	skb_header_cloned - is the header a clone
785  *	@skb: buffer to check
786  *
787  *	Returns true if modifying the header part of the buffer requires
788  *	the data to be copied.
789  */
skb_header_cloned(const struct sk_buff * skb)790 static inline int skb_header_cloned(const struct sk_buff *skb)
791 {
792 	int dataref;
793 
794 	if (!skb->cloned)
795 		return 0;
796 
797 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
798 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
799 	return dataref != 1;
800 }
801 
802 /**
803  *	skb_header_release - release reference to header
804  *	@skb: buffer to operate on
805  *
806  *	Drop a reference to the header part of the buffer.  This is done
807  *	by acquiring a payload reference.  You must not read from the header
808  *	part of skb->data after this.
809  */
skb_header_release(struct sk_buff * skb)810 static inline void skb_header_release(struct sk_buff *skb)
811 {
812 	BUG_ON(skb->nohdr);
813 	skb->nohdr = 1;
814 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
815 }
816 
817 /**
818  *	skb_shared - is the buffer shared
819  *	@skb: buffer to check
820  *
821  *	Returns true if more than one person has a reference to this
822  *	buffer.
823  */
skb_shared(const struct sk_buff * skb)824 static inline int skb_shared(const struct sk_buff *skb)
825 {
826 	return atomic_read(&skb->users) != 1;
827 }
828 
829 /**
830  *	skb_share_check - check if buffer is shared and if so clone it
831  *	@skb: buffer to check
832  *	@pri: priority for memory allocation
833  *
834  *	If the buffer is shared the buffer is cloned and the old copy
835  *	drops a reference. A new clone with a single reference is returned.
836  *	If the buffer is not shared the original buffer is returned. When
837  *	being called from interrupt status or with spinlocks held pri must
838  *	be GFP_ATOMIC.
839  *
840  *	NULL is returned on a memory allocation failure.
841  */
skb_share_check(struct sk_buff * skb,gfp_t pri)842 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
843 					      gfp_t pri)
844 {
845 	might_sleep_if(pri & __GFP_WAIT);
846 	if (skb_shared(skb)) {
847 		struct sk_buff *nskb = skb_clone(skb, pri);
848 		kfree_skb(skb);
849 		skb = nskb;
850 	}
851 	return skb;
852 }
853 
854 /*
855  *	Copy shared buffers into a new sk_buff. We effectively do COW on
856  *	packets to handle cases where we have a local reader and forward
857  *	and a couple of other messy ones. The normal one is tcpdumping
858  *	a packet thats being forwarded.
859  */
860 
861 /**
862  *	skb_unshare - make a copy of a shared buffer
863  *	@skb: buffer to check
864  *	@pri: priority for memory allocation
865  *
866  *	If the socket buffer is a clone then this function creates a new
867  *	copy of the data, drops a reference count on the old copy and returns
868  *	the new copy with the reference count at 1. If the buffer is not a clone
869  *	the original buffer is returned. When called with a spinlock held or
870  *	from interrupt state @pri must be %GFP_ATOMIC
871  *
872  *	%NULL is returned on a memory allocation failure.
873  */
skb_unshare(struct sk_buff * skb,gfp_t pri)874 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
875 					  gfp_t pri)
876 {
877 	might_sleep_if(pri & __GFP_WAIT);
878 	if (skb_cloned(skb)) {
879 		struct sk_buff *nskb = skb_copy(skb, pri);
880 		kfree_skb(skb);	/* Free our shared copy */
881 		skb = nskb;
882 	}
883 	return skb;
884 }
885 
886 /**
887  *	skb_peek - peek at the head of an &sk_buff_head
888  *	@list_: list to peek at
889  *
890  *	Peek an &sk_buff. Unlike most other operations you _MUST_
891  *	be careful with this one. A peek leaves the buffer on the
892  *	list and someone else may run off with it. You must hold
893  *	the appropriate locks or have a private queue to do this.
894  *
895  *	Returns %NULL for an empty list or a pointer to the head element.
896  *	The reference count is not incremented and the reference is therefore
897  *	volatile. Use with caution.
898  */
skb_peek(const struct sk_buff_head * list_)899 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
900 {
901 	struct sk_buff *list = ((const struct sk_buff *)list_)->next;
902 	if (list == (struct sk_buff *)list_)
903 		list = NULL;
904 	return list;
905 }
906 
907 /**
908  *	skb_peek_next - peek skb following the given one from a queue
909  *	@skb: skb to start from
910  *	@list_: list to peek at
911  *
912  *	Returns %NULL when the end of the list is met or a pointer to the
913  *	next element. The reference count is not incremented and the
914  *	reference is therefore volatile. Use with caution.
915  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)916 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
917 		const struct sk_buff_head *list_)
918 {
919 	struct sk_buff *next = skb->next;
920 	if (next == (struct sk_buff *)list_)
921 		next = NULL;
922 	return next;
923 }
924 
925 /**
926  *	skb_peek_tail - peek at the tail of an &sk_buff_head
927  *	@list_: list to peek at
928  *
929  *	Peek an &sk_buff. Unlike most other operations you _MUST_
930  *	be careful with this one. A peek leaves the buffer on the
931  *	list and someone else may run off with it. You must hold
932  *	the appropriate locks or have a private queue to do this.
933  *
934  *	Returns %NULL for an empty list or a pointer to the tail element.
935  *	The reference count is not incremented and the reference is therefore
936  *	volatile. Use with caution.
937  */
skb_peek_tail(const struct sk_buff_head * list_)938 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
939 {
940 	struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
941 	if (list == (struct sk_buff *)list_)
942 		list = NULL;
943 	return list;
944 }
945 
946 /**
947  *	skb_queue_len	- get queue length
948  *	@list_: list to measure
949  *
950  *	Return the length of an &sk_buff queue.
951  */
skb_queue_len(const struct sk_buff_head * list_)952 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
953 {
954 	return list_->qlen;
955 }
956 
957 /**
958  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
959  *	@list: queue to initialize
960  *
961  *	This initializes only the list and queue length aspects of
962  *	an sk_buff_head object.  This allows to initialize the list
963  *	aspects of an sk_buff_head without reinitializing things like
964  *	the spinlock.  It can also be used for on-stack sk_buff_head
965  *	objects where the spinlock is known to not be used.
966  */
__skb_queue_head_init(struct sk_buff_head * list)967 static inline void __skb_queue_head_init(struct sk_buff_head *list)
968 {
969 	list->prev = list->next = (struct sk_buff *)list;
970 	list->qlen = 0;
971 }
972 
973 /*
974  * This function creates a split out lock class for each invocation;
975  * this is needed for now since a whole lot of users of the skb-queue
976  * infrastructure in drivers have different locking usage (in hardirq)
977  * than the networking core (in softirq only). In the long run either the
978  * network layer or drivers should need annotation to consolidate the
979  * main types of usage into 3 classes.
980  */
skb_queue_head_init(struct sk_buff_head * list)981 static inline void skb_queue_head_init(struct sk_buff_head *list)
982 {
983 	spin_lock_init(&list->lock);
984 	__skb_queue_head_init(list);
985 }
986 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)987 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
988 		struct lock_class_key *class)
989 {
990 	skb_queue_head_init(list);
991 	lockdep_set_class(&list->lock, class);
992 }
993 
994 /*
995  *	Insert an sk_buff on a list.
996  *
997  *	The "__skb_xxxx()" functions are the non-atomic ones that
998  *	can only be called with interrupts disabled.
999  */
1000 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1001 static inline void __skb_insert(struct sk_buff *newsk,
1002 				struct sk_buff *prev, struct sk_buff *next,
1003 				struct sk_buff_head *list)
1004 {
1005 	newsk->next = next;
1006 	newsk->prev = prev;
1007 	next->prev  = prev->next = newsk;
1008 	list->qlen++;
1009 }
1010 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1011 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1012 				      struct sk_buff *prev,
1013 				      struct sk_buff *next)
1014 {
1015 	struct sk_buff *first = list->next;
1016 	struct sk_buff *last = list->prev;
1017 
1018 	first->prev = prev;
1019 	prev->next = first;
1020 
1021 	last->next = next;
1022 	next->prev = last;
1023 }
1024 
1025 /**
1026  *	skb_queue_splice - join two skb lists, this is designed for stacks
1027  *	@list: the new list to add
1028  *	@head: the place to add it in the first list
1029  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1030 static inline void skb_queue_splice(const struct sk_buff_head *list,
1031 				    struct sk_buff_head *head)
1032 {
1033 	if (!skb_queue_empty(list)) {
1034 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1035 		head->qlen += list->qlen;
1036 	}
1037 }
1038 
1039 /**
1040  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1041  *	@list: the new list to add
1042  *	@head: the place to add it in the first list
1043  *
1044  *	The list at @list is reinitialised
1045  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1046 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1047 					 struct sk_buff_head *head)
1048 {
1049 	if (!skb_queue_empty(list)) {
1050 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1051 		head->qlen += list->qlen;
1052 		__skb_queue_head_init(list);
1053 	}
1054 }
1055 
1056 /**
1057  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1058  *	@list: the new list to add
1059  *	@head: the place to add it in the first list
1060  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1061 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1062 					 struct sk_buff_head *head)
1063 {
1064 	if (!skb_queue_empty(list)) {
1065 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1066 		head->qlen += list->qlen;
1067 	}
1068 }
1069 
1070 /**
1071  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1072  *	@list: the new list to add
1073  *	@head: the place to add it in the first list
1074  *
1075  *	Each of the lists is a queue.
1076  *	The list at @list is reinitialised
1077  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1078 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1079 					      struct sk_buff_head *head)
1080 {
1081 	if (!skb_queue_empty(list)) {
1082 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1083 		head->qlen += list->qlen;
1084 		__skb_queue_head_init(list);
1085 	}
1086 }
1087 
1088 /**
1089  *	__skb_queue_after - queue a buffer at the list head
1090  *	@list: list to use
1091  *	@prev: place after this buffer
1092  *	@newsk: buffer to queue
1093  *
1094  *	Queue a buffer int the middle of a list. This function takes no locks
1095  *	and you must therefore hold required locks before calling it.
1096  *
1097  *	A buffer cannot be placed on two lists at the same time.
1098  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1099 static inline void __skb_queue_after(struct sk_buff_head *list,
1100 				     struct sk_buff *prev,
1101 				     struct sk_buff *newsk)
1102 {
1103 	__skb_insert(newsk, prev, prev->next, list);
1104 }
1105 
1106 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1107 		       struct sk_buff_head *list);
1108 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1109 static inline void __skb_queue_before(struct sk_buff_head *list,
1110 				      struct sk_buff *next,
1111 				      struct sk_buff *newsk)
1112 {
1113 	__skb_insert(newsk, next->prev, next, list);
1114 }
1115 
1116 /**
1117  *	__skb_queue_head - queue a buffer at the list head
1118  *	@list: list to use
1119  *	@newsk: buffer to queue
1120  *
1121  *	Queue a buffer at the start of a list. This function takes no locks
1122  *	and you must therefore hold required locks before calling it.
1123  *
1124  *	A buffer cannot be placed on two lists at the same time.
1125  */
1126 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1127 static inline void __skb_queue_head(struct sk_buff_head *list,
1128 				    struct sk_buff *newsk)
1129 {
1130 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1131 }
1132 
1133 /**
1134  *	__skb_queue_tail - queue a buffer at the list tail
1135  *	@list: list to use
1136  *	@newsk: buffer to queue
1137  *
1138  *	Queue a buffer at the end of a list. This function takes no locks
1139  *	and you must therefore hold required locks before calling it.
1140  *
1141  *	A buffer cannot be placed on two lists at the same time.
1142  */
1143 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1144 static inline void __skb_queue_tail(struct sk_buff_head *list,
1145 				   struct sk_buff *newsk)
1146 {
1147 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1148 }
1149 
1150 /*
1151  * remove sk_buff from list. _Must_ be called atomically, and with
1152  * the list known..
1153  */
1154 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1155 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1156 {
1157 	struct sk_buff *next, *prev;
1158 
1159 	list->qlen--;
1160 	next	   = skb->next;
1161 	prev	   = skb->prev;
1162 	skb->next  = skb->prev = NULL;
1163 	next->prev = prev;
1164 	prev->next = next;
1165 }
1166 
1167 /**
1168  *	__skb_dequeue - remove from the head of the queue
1169  *	@list: list to dequeue from
1170  *
1171  *	Remove the head of the list. This function does not take any locks
1172  *	so must be used with appropriate locks held only. The head item is
1173  *	returned or %NULL if the list is empty.
1174  */
1175 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1176 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1177 {
1178 	struct sk_buff *skb = skb_peek(list);
1179 	if (skb)
1180 		__skb_unlink(skb, list);
1181 	return skb;
1182 }
1183 
1184 /**
1185  *	__skb_dequeue_tail - remove from the tail of the queue
1186  *	@list: list to dequeue from
1187  *
1188  *	Remove the tail of the list. This function does not take any locks
1189  *	so must be used with appropriate locks held only. The tail item is
1190  *	returned or %NULL if the list is empty.
1191  */
1192 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1193 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1194 {
1195 	struct sk_buff *skb = skb_peek_tail(list);
1196 	if (skb)
1197 		__skb_unlink(skb, list);
1198 	return skb;
1199 }
1200 
1201 
skb_is_nonlinear(const struct sk_buff * skb)1202 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1203 {
1204 	return skb->data_len;
1205 }
1206 
skb_headlen(const struct sk_buff * skb)1207 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1208 {
1209 	return skb->len - skb->data_len;
1210 }
1211 
skb_pagelen(const struct sk_buff * skb)1212 static inline int skb_pagelen(const struct sk_buff *skb)
1213 {
1214 	int i, len = 0;
1215 
1216 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1217 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1218 	return len + skb_headlen(skb);
1219 }
1220 
skb_has_frags(const struct sk_buff * skb)1221 static inline bool skb_has_frags(const struct sk_buff *skb)
1222 {
1223 	return skb_shinfo(skb)->nr_frags;
1224 }
1225 
1226 /**
1227  * __skb_fill_page_desc - initialise a paged fragment in an skb
1228  * @skb: buffer containing fragment to be initialised
1229  * @i: paged fragment index to initialise
1230  * @page: the page to use for this fragment
1231  * @off: the offset to the data with @page
1232  * @size: the length of the data
1233  *
1234  * Initialises the @i'th fragment of @skb to point to &size bytes at
1235  * offset @off within @page.
1236  *
1237  * Does not take any additional reference on the fragment.
1238  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1239 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1240 					struct page *page, int off, int size)
1241 {
1242 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1243 
1244 	frag->page.p		  = page;
1245 	frag->page_offset	  = off;
1246 	skb_frag_size_set(frag, size);
1247 }
1248 
1249 /**
1250  * skb_fill_page_desc - initialise a paged fragment in an skb
1251  * @skb: buffer containing fragment to be initialised
1252  * @i: paged fragment index to initialise
1253  * @page: the page to use for this fragment
1254  * @off: the offset to the data with @page
1255  * @size: the length of the data
1256  *
1257  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1258  * @skb to point to &size bytes at offset @off within @page. In
1259  * addition updates @skb such that @i is the last fragment.
1260  *
1261  * Does not take any additional reference on the fragment.
1262  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1263 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1264 				      struct page *page, int off, int size)
1265 {
1266 	__skb_fill_page_desc(skb, i, page, off, size);
1267 	skb_shinfo(skb)->nr_frags = i + 1;
1268 }
1269 
1270 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1271 			    int off, int size, unsigned int truesize);
1272 
1273 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1274 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1275 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1276 
1277 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1278 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1279 {
1280 	return skb->head + skb->tail;
1281 }
1282 
skb_reset_tail_pointer(struct sk_buff * skb)1283 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1284 {
1285 	skb->tail = skb->data - skb->head;
1286 }
1287 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1288 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1289 {
1290 	skb_reset_tail_pointer(skb);
1291 	skb->tail += offset;
1292 }
1293 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1294 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1295 {
1296 	return skb->tail;
1297 }
1298 
skb_reset_tail_pointer(struct sk_buff * skb)1299 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1300 {
1301 	skb->tail = skb->data;
1302 }
1303 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1304 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1305 {
1306 	skb->tail = skb->data + offset;
1307 }
1308 
1309 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1310 
1311 /*
1312  *	Add data to an sk_buff
1313  */
1314 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1315 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1316 {
1317 	unsigned char *tmp = skb_tail_pointer(skb);
1318 	SKB_LINEAR_ASSERT(skb);
1319 	skb->tail += len;
1320 	skb->len  += len;
1321 	return tmp;
1322 }
1323 
1324 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1325 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1326 {
1327 	skb->data -= len;
1328 	skb->len  += len;
1329 	return skb->data;
1330 }
1331 
1332 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1333 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1334 {
1335 	skb->len -= len;
1336 	BUG_ON(skb->len < skb->data_len);
1337 	return skb->data += len;
1338 }
1339 
skb_pull_inline(struct sk_buff * skb,unsigned int len)1340 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1341 {
1342 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1343 }
1344 
1345 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1346 
__pskb_pull(struct sk_buff * skb,unsigned int len)1347 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1348 {
1349 	if (len > skb_headlen(skb) &&
1350 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1351 		return NULL;
1352 	skb->len -= len;
1353 	return skb->data += len;
1354 }
1355 
pskb_pull(struct sk_buff * skb,unsigned int len)1356 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1357 {
1358 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1359 }
1360 
pskb_may_pull(struct sk_buff * skb,unsigned int len)1361 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1362 {
1363 	if (likely(len <= skb_headlen(skb)))
1364 		return 1;
1365 	if (unlikely(len > skb->len))
1366 		return 0;
1367 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1368 }
1369 
1370 /**
1371  *	skb_headroom - bytes at buffer head
1372  *	@skb: buffer to check
1373  *
1374  *	Return the number of bytes of free space at the head of an &sk_buff.
1375  */
skb_headroom(const struct sk_buff * skb)1376 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1377 {
1378 	return skb->data - skb->head;
1379 }
1380 
1381 /**
1382  *	skb_tailroom - bytes at buffer end
1383  *	@skb: buffer to check
1384  *
1385  *	Return the number of bytes of free space at the tail of an sk_buff
1386  */
skb_tailroom(const struct sk_buff * skb)1387 static inline int skb_tailroom(const struct sk_buff *skb)
1388 {
1389 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1390 }
1391 
1392 /**
1393  *	skb_availroom - bytes at buffer end
1394  *	@skb: buffer to check
1395  *
1396  *	Return the number of bytes of free space at the tail of an sk_buff
1397  *	allocated by sk_stream_alloc()
1398  */
skb_availroom(const struct sk_buff * skb)1399 static inline int skb_availroom(const struct sk_buff *skb)
1400 {
1401 	if (skb_is_nonlinear(skb))
1402 		return 0;
1403 
1404 	return skb->end - skb->tail - skb->reserved_tailroom;
1405 }
1406 
1407 /**
1408  *	skb_reserve - adjust headroom
1409  *	@skb: buffer to alter
1410  *	@len: bytes to move
1411  *
1412  *	Increase the headroom of an empty &sk_buff by reducing the tail
1413  *	room. This is only allowed for an empty buffer.
1414  */
skb_reserve(struct sk_buff * skb,int len)1415 static inline void skb_reserve(struct sk_buff *skb, int len)
1416 {
1417 	skb->data += len;
1418 	skb->tail += len;
1419 }
1420 
skb_reset_mac_len(struct sk_buff * skb)1421 static inline void skb_reset_mac_len(struct sk_buff *skb)
1422 {
1423 	skb->mac_len = skb->network_header - skb->mac_header;
1424 }
1425 
1426 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_transport_header(const struct sk_buff * skb)1427 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1428 {
1429 	return skb->head + skb->transport_header;
1430 }
1431 
skb_reset_transport_header(struct sk_buff * skb)1432 static inline void skb_reset_transport_header(struct sk_buff *skb)
1433 {
1434 	skb->transport_header = skb->data - skb->head;
1435 }
1436 
skb_set_transport_header(struct sk_buff * skb,const int offset)1437 static inline void skb_set_transport_header(struct sk_buff *skb,
1438 					    const int offset)
1439 {
1440 	skb_reset_transport_header(skb);
1441 	skb->transport_header += offset;
1442 }
1443 
skb_network_header(const struct sk_buff * skb)1444 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1445 {
1446 	return skb->head + skb->network_header;
1447 }
1448 
skb_reset_network_header(struct sk_buff * skb)1449 static inline void skb_reset_network_header(struct sk_buff *skb)
1450 {
1451 	skb->network_header = skb->data - skb->head;
1452 }
1453 
skb_set_network_header(struct sk_buff * skb,const int offset)1454 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1455 {
1456 	skb_reset_network_header(skb);
1457 	skb->network_header += offset;
1458 }
1459 
skb_mac_header(const struct sk_buff * skb)1460 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1461 {
1462 	return skb->head + skb->mac_header;
1463 }
1464 
skb_mac_header_was_set(const struct sk_buff * skb)1465 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1466 {
1467 	return skb->mac_header != ~0U;
1468 }
1469 
skb_reset_mac_header(struct sk_buff * skb)1470 static inline void skb_reset_mac_header(struct sk_buff *skb)
1471 {
1472 	skb->mac_header = skb->data - skb->head;
1473 }
1474 
skb_set_mac_header(struct sk_buff * skb,const int offset)1475 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1476 {
1477 	skb_reset_mac_header(skb);
1478 	skb->mac_header += offset;
1479 }
1480 
1481 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1482 
skb_transport_header(const struct sk_buff * skb)1483 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1484 {
1485 	return skb->transport_header;
1486 }
1487 
skb_reset_transport_header(struct sk_buff * skb)1488 static inline void skb_reset_transport_header(struct sk_buff *skb)
1489 {
1490 	skb->transport_header = skb->data;
1491 }
1492 
skb_set_transport_header(struct sk_buff * skb,const int offset)1493 static inline void skb_set_transport_header(struct sk_buff *skb,
1494 					    const int offset)
1495 {
1496 	skb->transport_header = skb->data + offset;
1497 }
1498 
skb_network_header(const struct sk_buff * skb)1499 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1500 {
1501 	return skb->network_header;
1502 }
1503 
skb_reset_network_header(struct sk_buff * skb)1504 static inline void skb_reset_network_header(struct sk_buff *skb)
1505 {
1506 	skb->network_header = skb->data;
1507 }
1508 
skb_set_network_header(struct sk_buff * skb,const int offset)1509 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1510 {
1511 	skb->network_header = skb->data + offset;
1512 }
1513 
skb_mac_header(const struct sk_buff * skb)1514 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1515 {
1516 	return skb->mac_header;
1517 }
1518 
skb_mac_header_was_set(const struct sk_buff * skb)1519 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1520 {
1521 	return skb->mac_header != NULL;
1522 }
1523 
skb_reset_mac_header(struct sk_buff * skb)1524 static inline void skb_reset_mac_header(struct sk_buff *skb)
1525 {
1526 	skb->mac_header = skb->data;
1527 }
1528 
skb_set_mac_header(struct sk_buff * skb,const int offset)1529 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1530 {
1531 	skb->mac_header = skb->data + offset;
1532 }
1533 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1534 
skb_mac_header_rebuild(struct sk_buff * skb)1535 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1536 {
1537 	if (skb_mac_header_was_set(skb)) {
1538 		const unsigned char *old_mac = skb_mac_header(skb);
1539 
1540 		skb_set_mac_header(skb, -skb->mac_len);
1541 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1542 	}
1543 }
1544 
skb_checksum_start_offset(const struct sk_buff * skb)1545 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1546 {
1547 	return skb->csum_start - skb_headroom(skb);
1548 }
1549 
skb_transport_offset(const struct sk_buff * skb)1550 static inline int skb_transport_offset(const struct sk_buff *skb)
1551 {
1552 	return skb_transport_header(skb) - skb->data;
1553 }
1554 
skb_network_header_len(const struct sk_buff * skb)1555 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1556 {
1557 	return skb->transport_header - skb->network_header;
1558 }
1559 
skb_network_offset(const struct sk_buff * skb)1560 static inline int skb_network_offset(const struct sk_buff *skb)
1561 {
1562 	return skb_network_header(skb) - skb->data;
1563 }
1564 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1565 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1566 {
1567 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1568 }
1569 
1570 /*
1571  * CPUs often take a performance hit when accessing unaligned memory
1572  * locations. The actual performance hit varies, it can be small if the
1573  * hardware handles it or large if we have to take an exception and fix it
1574  * in software.
1575  *
1576  * Since an ethernet header is 14 bytes network drivers often end up with
1577  * the IP header at an unaligned offset. The IP header can be aligned by
1578  * shifting the start of the packet by 2 bytes. Drivers should do this
1579  * with:
1580  *
1581  * skb_reserve(skb, NET_IP_ALIGN);
1582  *
1583  * The downside to this alignment of the IP header is that the DMA is now
1584  * unaligned. On some architectures the cost of an unaligned DMA is high
1585  * and this cost outweighs the gains made by aligning the IP header.
1586  *
1587  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1588  * to be overridden.
1589  */
1590 #ifndef NET_IP_ALIGN
1591 #define NET_IP_ALIGN	2
1592 #endif
1593 
1594 /*
1595  * The networking layer reserves some headroom in skb data (via
1596  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1597  * the header has to grow. In the default case, if the header has to grow
1598  * 32 bytes or less we avoid the reallocation.
1599  *
1600  * Unfortunately this headroom changes the DMA alignment of the resulting
1601  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1602  * on some architectures. An architecture can override this value,
1603  * perhaps setting it to a cacheline in size (since that will maintain
1604  * cacheline alignment of the DMA). It must be a power of 2.
1605  *
1606  * Various parts of the networking layer expect at least 32 bytes of
1607  * headroom, you should not reduce this.
1608  *
1609  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1610  * to reduce average number of cache lines per packet.
1611  * get_rps_cpus() for example only access one 64 bytes aligned block :
1612  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1613  */
1614 #ifndef NET_SKB_PAD
1615 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1616 #endif
1617 
1618 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1619 
__skb_trim(struct sk_buff * skb,unsigned int len)1620 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1621 {
1622 	if (unlikely(skb_is_nonlinear(skb))) {
1623 		WARN_ON(1);
1624 		return;
1625 	}
1626 	skb->len = len;
1627 	skb_set_tail_pointer(skb, len);
1628 }
1629 
1630 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1631 
__pskb_trim(struct sk_buff * skb,unsigned int len)1632 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1633 {
1634 	if (skb->data_len)
1635 		return ___pskb_trim(skb, len);
1636 	__skb_trim(skb, len);
1637 	return 0;
1638 }
1639 
pskb_trim(struct sk_buff * skb,unsigned int len)1640 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1641 {
1642 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1643 }
1644 
1645 /**
1646  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1647  *	@skb: buffer to alter
1648  *	@len: new length
1649  *
1650  *	This is identical to pskb_trim except that the caller knows that
1651  *	the skb is not cloned so we should never get an error due to out-
1652  *	of-memory.
1653  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)1654 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1655 {
1656 	int err = pskb_trim(skb, len);
1657 	BUG_ON(err);
1658 }
1659 
1660 /**
1661  *	skb_orphan - orphan a buffer
1662  *	@skb: buffer to orphan
1663  *
1664  *	If a buffer currently has an owner then we call the owner's
1665  *	destructor function and make the @skb unowned. The buffer continues
1666  *	to exist but is no longer charged to its former owner.
1667  */
skb_orphan(struct sk_buff * skb)1668 static inline void skb_orphan(struct sk_buff *skb)
1669 {
1670 	if (skb->destructor)
1671 		skb->destructor(skb);
1672 	skb->destructor = NULL;
1673 	skb->sk		= NULL;
1674 }
1675 
1676 /**
1677  *	skb_orphan_frags - orphan the frags contained in a buffer
1678  *	@skb: buffer to orphan frags from
1679  *	@gfp_mask: allocation mask for replacement pages
1680  *
1681  *	For each frag in the SKB which needs a destructor (i.e. has an
1682  *	owner) create a copy of that frag and release the original
1683  *	page by calling the destructor.
1684  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)1685 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1686 {
1687 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1688 		return 0;
1689 	return skb_copy_ubufs(skb, gfp_mask);
1690 }
1691 
1692 /**
1693  *	__skb_queue_purge - empty a list
1694  *	@list: list to empty
1695  *
1696  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1697  *	the list and one reference dropped. This function does not take the
1698  *	list lock and the caller must hold the relevant locks to use it.
1699  */
1700 extern void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)1701 static inline void __skb_queue_purge(struct sk_buff_head *list)
1702 {
1703 	struct sk_buff *skb;
1704 	while ((skb = __skb_dequeue(list)) != NULL)
1705 		kfree_skb(skb);
1706 }
1707 
1708 /**
1709  *	__dev_alloc_skb - allocate an skbuff for receiving
1710  *	@length: length to allocate
1711  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1712  *
1713  *	Allocate a new &sk_buff and assign it a usage count of one. The
1714  *	buffer has unspecified headroom built in. Users should allocate
1715  *	the headroom they think they need without accounting for the
1716  *	built in space. The built in space is used for optimisations.
1717  *
1718  *	%NULL is returned if there is no free memory.
1719  */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)1720 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1721 					      gfp_t gfp_mask)
1722 {
1723 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1724 	if (likely(skb))
1725 		skb_reserve(skb, NET_SKB_PAD);
1726 	return skb;
1727 }
1728 
1729 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1730 
1731 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1732 		unsigned int length, gfp_t gfp_mask);
1733 
1734 /**
1735  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1736  *	@dev: network device to receive on
1737  *	@length: length to allocate
1738  *
1739  *	Allocate a new &sk_buff and assign it a usage count of one. The
1740  *	buffer has unspecified headroom built in. Users should allocate
1741  *	the headroom they think they need without accounting for the
1742  *	built in space. The built in space is used for optimisations.
1743  *
1744  *	%NULL is returned if there is no free memory. Although this function
1745  *	allocates memory it can be called from an interrupt.
1746  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)1747 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1748 		unsigned int length)
1749 {
1750 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1751 }
1752 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)1753 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1754 		unsigned int length, gfp_t gfp)
1755 {
1756 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1757 
1758 	if (NET_IP_ALIGN && skb)
1759 		skb_reserve(skb, NET_IP_ALIGN);
1760 	return skb;
1761 }
1762 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)1763 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1764 		unsigned int length)
1765 {
1766 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1767 }
1768 
1769 /**
1770  * skb_frag_page - retrieve the page refered to by a paged fragment
1771  * @frag: the paged fragment
1772  *
1773  * Returns the &struct page associated with @frag.
1774  */
skb_frag_page(const skb_frag_t * frag)1775 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1776 {
1777 	return frag->page.p;
1778 }
1779 
1780 /**
1781  * __skb_frag_ref - take an addition reference on a paged fragment.
1782  * @frag: the paged fragment
1783  *
1784  * Takes an additional reference on the paged fragment @frag.
1785  */
__skb_frag_ref(skb_frag_t * frag)1786 static inline void __skb_frag_ref(skb_frag_t *frag)
1787 {
1788 	get_page(skb_frag_page(frag));
1789 }
1790 
1791 /**
1792  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1793  * @skb: the buffer
1794  * @f: the fragment offset.
1795  *
1796  * Takes an additional reference on the @f'th paged fragment of @skb.
1797  */
skb_frag_ref(struct sk_buff * skb,int f)1798 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1799 {
1800 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1801 }
1802 
1803 /**
1804  * __skb_frag_unref - release a reference on a paged fragment.
1805  * @frag: the paged fragment
1806  *
1807  * Releases a reference on the paged fragment @frag.
1808  */
__skb_frag_unref(skb_frag_t * frag)1809 static inline void __skb_frag_unref(skb_frag_t *frag)
1810 {
1811 	put_page(skb_frag_page(frag));
1812 }
1813 
1814 /**
1815  * skb_frag_unref - release a reference on a paged fragment of an skb.
1816  * @skb: the buffer
1817  * @f: the fragment offset
1818  *
1819  * Releases a reference on the @f'th paged fragment of @skb.
1820  */
skb_frag_unref(struct sk_buff * skb,int f)1821 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1822 {
1823 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1824 }
1825 
1826 /**
1827  * skb_frag_address - gets the address of the data contained in a paged fragment
1828  * @frag: the paged fragment buffer
1829  *
1830  * Returns the address of the data within @frag. The page must already
1831  * be mapped.
1832  */
skb_frag_address(const skb_frag_t * frag)1833 static inline void *skb_frag_address(const skb_frag_t *frag)
1834 {
1835 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1836 }
1837 
1838 /**
1839  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1840  * @frag: the paged fragment buffer
1841  *
1842  * Returns the address of the data within @frag. Checks that the page
1843  * is mapped and returns %NULL otherwise.
1844  */
skb_frag_address_safe(const skb_frag_t * frag)1845 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1846 {
1847 	void *ptr = page_address(skb_frag_page(frag));
1848 	if (unlikely(!ptr))
1849 		return NULL;
1850 
1851 	return ptr + frag->page_offset;
1852 }
1853 
1854 /**
1855  * __skb_frag_set_page - sets the page contained in a paged fragment
1856  * @frag: the paged fragment
1857  * @page: the page to set
1858  *
1859  * Sets the fragment @frag to contain @page.
1860  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)1861 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1862 {
1863 	frag->page.p = page;
1864 }
1865 
1866 /**
1867  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1868  * @skb: the buffer
1869  * @f: the fragment offset
1870  * @page: the page to set
1871  *
1872  * Sets the @f'th fragment of @skb to contain @page.
1873  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)1874 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1875 				     struct page *page)
1876 {
1877 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1878 }
1879 
1880 /**
1881  * skb_frag_dma_map - maps a paged fragment via the DMA API
1882  * @dev: the device to map the fragment to
1883  * @frag: the paged fragment to map
1884  * @offset: the offset within the fragment (starting at the
1885  *          fragment's own offset)
1886  * @size: the number of bytes to map
1887  * @dir: the direction of the mapping (%PCI_DMA_*)
1888  *
1889  * Maps the page associated with @frag to @device.
1890  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)1891 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1892 					  const skb_frag_t *frag,
1893 					  size_t offset, size_t size,
1894 					  enum dma_data_direction dir)
1895 {
1896 	return dma_map_page(dev, skb_frag_page(frag),
1897 			    frag->page_offset + offset, size, dir);
1898 }
1899 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)1900 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1901 					gfp_t gfp_mask)
1902 {
1903 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1904 }
1905 
1906 /**
1907  *	skb_clone_writable - is the header of a clone writable
1908  *	@skb: buffer to check
1909  *	@len: length up to which to write
1910  *
1911  *	Returns true if modifying the header part of the cloned buffer
1912  *	does not requires the data to be copied.
1913  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)1914 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1915 {
1916 	return !skb_header_cloned(skb) &&
1917 	       skb_headroom(skb) + len <= skb->hdr_len;
1918 }
1919 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)1920 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1921 			    int cloned)
1922 {
1923 	int delta = 0;
1924 
1925 	if (headroom > skb_headroom(skb))
1926 		delta = headroom - skb_headroom(skb);
1927 
1928 	if (delta || cloned)
1929 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1930 					GFP_ATOMIC);
1931 	return 0;
1932 }
1933 
1934 /**
1935  *	skb_cow - copy header of skb when it is required
1936  *	@skb: buffer to cow
1937  *	@headroom: needed headroom
1938  *
1939  *	If the skb passed lacks sufficient headroom or its data part
1940  *	is shared, data is reallocated. If reallocation fails, an error
1941  *	is returned and original skb is not changed.
1942  *
1943  *	The result is skb with writable area skb->head...skb->tail
1944  *	and at least @headroom of space at head.
1945  */
skb_cow(struct sk_buff * skb,unsigned int headroom)1946 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1947 {
1948 	return __skb_cow(skb, headroom, skb_cloned(skb));
1949 }
1950 
1951 /**
1952  *	skb_cow_head - skb_cow but only making the head writable
1953  *	@skb: buffer to cow
1954  *	@headroom: needed headroom
1955  *
1956  *	This function is identical to skb_cow except that we replace the
1957  *	skb_cloned check by skb_header_cloned.  It should be used when
1958  *	you only need to push on some header and do not need to modify
1959  *	the data.
1960  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)1961 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1962 {
1963 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1964 }
1965 
1966 /**
1967  *	skb_padto	- pad an skbuff up to a minimal size
1968  *	@skb: buffer to pad
1969  *	@len: minimal length
1970  *
1971  *	Pads up a buffer to ensure the trailing bytes exist and are
1972  *	blanked. If the buffer already contains sufficient data it
1973  *	is untouched. Otherwise it is extended. Returns zero on
1974  *	success. The skb is freed on error.
1975  */
1976 
skb_padto(struct sk_buff * skb,unsigned int len)1977 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1978 {
1979 	unsigned int size = skb->len;
1980 	if (likely(size >= len))
1981 		return 0;
1982 	return skb_pad(skb, len - size);
1983 }
1984 
skb_add_data(struct sk_buff * skb,char __user * from,int copy)1985 static inline int skb_add_data(struct sk_buff *skb,
1986 			       char __user *from, int copy)
1987 {
1988 	const int off = skb->len;
1989 
1990 	if (skb->ip_summed == CHECKSUM_NONE) {
1991 		int err = 0;
1992 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1993 							    copy, 0, &err);
1994 		if (!err) {
1995 			skb->csum = csum_block_add(skb->csum, csum, off);
1996 			return 0;
1997 		}
1998 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1999 		return 0;
2000 
2001 	__skb_trim(skb, off);
2002 	return -EFAULT;
2003 }
2004 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)2005 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
2006 				   const struct page *page, int off)
2007 {
2008 	if (i) {
2009 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2010 
2011 		return page == skb_frag_page(frag) &&
2012 		       off == frag->page_offset + skb_frag_size(frag);
2013 	}
2014 	return 0;
2015 }
2016 
__skb_linearize(struct sk_buff * skb)2017 static inline int __skb_linearize(struct sk_buff *skb)
2018 {
2019 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2020 }
2021 
2022 /**
2023  *	skb_linearize - convert paged skb to linear one
2024  *	@skb: buffer to linarize
2025  *
2026  *	If there is no free memory -ENOMEM is returned, otherwise zero
2027  *	is returned and the old skb data released.
2028  */
skb_linearize(struct sk_buff * skb)2029 static inline int skb_linearize(struct sk_buff *skb)
2030 {
2031 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2032 }
2033 
2034 /**
2035  *	skb_linearize_cow - make sure skb is linear and writable
2036  *	@skb: buffer to process
2037  *
2038  *	If there is no free memory -ENOMEM is returned, otherwise zero
2039  *	is returned and the old skb data released.
2040  */
skb_linearize_cow(struct sk_buff * skb)2041 static inline int skb_linearize_cow(struct sk_buff *skb)
2042 {
2043 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2044 	       __skb_linearize(skb) : 0;
2045 }
2046 
2047 /**
2048  *	skb_postpull_rcsum - update checksum for received skb after pull
2049  *	@skb: buffer to update
2050  *	@start: start of data before pull
2051  *	@len: length of data pulled
2052  *
2053  *	After doing a pull on a received packet, you need to call this to
2054  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2055  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2056  */
2057 
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2058 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2059 				      const void *start, unsigned int len)
2060 {
2061 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2062 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2063 }
2064 
2065 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2066 
2067 /**
2068  *	pskb_trim_rcsum - trim received skb and update checksum
2069  *	@skb: buffer to trim
2070  *	@len: new length
2071  *
2072  *	This is exactly the same as pskb_trim except that it ensures the
2073  *	checksum of received packets are still valid after the operation.
2074  */
2075 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2076 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2077 {
2078 	if (likely(len >= skb->len))
2079 		return 0;
2080 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2081 		skb->ip_summed = CHECKSUM_NONE;
2082 	return __pskb_trim(skb, len);
2083 }
2084 
2085 #define skb_queue_walk(queue, skb) \
2086 		for (skb = (queue)->next;					\
2087 		     skb != (struct sk_buff *)(queue);				\
2088 		     skb = skb->next)
2089 
2090 #define skb_queue_walk_safe(queue, skb, tmp)					\
2091 		for (skb = (queue)->next, tmp = skb->next;			\
2092 		     skb != (struct sk_buff *)(queue);				\
2093 		     skb = tmp, tmp = skb->next)
2094 
2095 #define skb_queue_walk_from(queue, skb)						\
2096 		for (; skb != (struct sk_buff *)(queue);			\
2097 		     skb = skb->next)
2098 
2099 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2100 		for (tmp = skb->next;						\
2101 		     skb != (struct sk_buff *)(queue);				\
2102 		     skb = tmp, tmp = skb->next)
2103 
2104 #define skb_queue_reverse_walk(queue, skb) \
2105 		for (skb = (queue)->prev;					\
2106 		     skb != (struct sk_buff *)(queue);				\
2107 		     skb = skb->prev)
2108 
2109 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2110 		for (skb = (queue)->prev, tmp = skb->prev;			\
2111 		     skb != (struct sk_buff *)(queue);				\
2112 		     skb = tmp, tmp = skb->prev)
2113 
2114 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2115 		for (tmp = skb->prev;						\
2116 		     skb != (struct sk_buff *)(queue);				\
2117 		     skb = tmp, tmp = skb->prev)
2118 
skb_has_frag_list(const struct sk_buff * skb)2119 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2120 {
2121 	return skb_shinfo(skb)->frag_list != NULL;
2122 }
2123 
skb_frag_list_init(struct sk_buff * skb)2124 static inline void skb_frag_list_init(struct sk_buff *skb)
2125 {
2126 	skb_shinfo(skb)->frag_list = NULL;
2127 }
2128 
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)2129 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2130 {
2131 	frag->next = skb_shinfo(skb)->frag_list;
2132 	skb_shinfo(skb)->frag_list = frag;
2133 }
2134 
2135 #define skb_walk_frags(skb, iter)	\
2136 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2137 
2138 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2139 					   int *peeked, int *off, int *err);
2140 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2141 					 int noblock, int *err);
2142 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2143 				     struct poll_table_struct *wait);
2144 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2145 					       int offset, struct iovec *to,
2146 					       int size);
2147 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2148 							int hlen,
2149 							struct iovec *iov);
2150 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2151 						    int offset,
2152 						    const struct iovec *from,
2153 						    int from_offset,
2154 						    int len);
2155 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2156 						     int offset,
2157 						     const struct iovec *to,
2158 						     int to_offset,
2159 						     int size);
2160 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2161 extern void	       skb_free_datagram_locked(struct sock *sk,
2162 						struct sk_buff *skb);
2163 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2164 					 unsigned int flags);
2165 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2166 				    int len, __wsum csum);
2167 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2168 				     void *to, int len);
2169 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2170 				      const void *from, int len);
2171 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2172 					      int offset, u8 *to, int len,
2173 					      __wsum csum);
2174 extern int             skb_splice_bits(struct sk_buff *skb,
2175 						unsigned int offset,
2176 						struct pipe_inode_info *pipe,
2177 						unsigned int len,
2178 						unsigned int flags);
2179 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2180 extern void	       skb_split(struct sk_buff *skb,
2181 				 struct sk_buff *skb1, const u32 len);
2182 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2183 				 int shiftlen);
2184 
2185 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2186 				   netdev_features_t features);
2187 
2188 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2189 
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2190 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2191 				       int len, void *buffer)
2192 {
2193 	int hlen = skb_headlen(skb);
2194 
2195 	if (hlen - offset >= len)
2196 		return skb->data + offset;
2197 
2198 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2199 		return NULL;
2200 
2201 	return buffer;
2202 }
2203 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2204 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2205 					     void *to,
2206 					     const unsigned int len)
2207 {
2208 	memcpy(to, skb->data, len);
2209 }
2210 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2211 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2212 						    const int offset, void *to,
2213 						    const unsigned int len)
2214 {
2215 	memcpy(to, skb->data + offset, len);
2216 }
2217 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2218 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2219 					   const void *from,
2220 					   const unsigned int len)
2221 {
2222 	memcpy(skb->data, from, len);
2223 }
2224 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2225 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2226 						  const int offset,
2227 						  const void *from,
2228 						  const unsigned int len)
2229 {
2230 	memcpy(skb->data + offset, from, len);
2231 }
2232 
2233 extern void skb_init(void);
2234 
skb_get_ktime(const struct sk_buff * skb)2235 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2236 {
2237 	return skb->tstamp;
2238 }
2239 
2240 /**
2241  *	skb_get_timestamp - get timestamp from a skb
2242  *	@skb: skb to get stamp from
2243  *	@stamp: pointer to struct timeval to store stamp in
2244  *
2245  *	Timestamps are stored in the skb as offsets to a base timestamp.
2246  *	This function converts the offset back to a struct timeval and stores
2247  *	it in stamp.
2248  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2249 static inline void skb_get_timestamp(const struct sk_buff *skb,
2250 				     struct timeval *stamp)
2251 {
2252 	*stamp = ktime_to_timeval(skb->tstamp);
2253 }
2254 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2255 static inline void skb_get_timestampns(const struct sk_buff *skb,
2256 				       struct timespec *stamp)
2257 {
2258 	*stamp = ktime_to_timespec(skb->tstamp);
2259 }
2260 
__net_timestamp(struct sk_buff * skb)2261 static inline void __net_timestamp(struct sk_buff *skb)
2262 {
2263 	skb->tstamp = ktime_get_real();
2264 }
2265 
net_timedelta(ktime_t t)2266 static inline ktime_t net_timedelta(ktime_t t)
2267 {
2268 	return ktime_sub(ktime_get_real(), t);
2269 }
2270 
net_invalid_timestamp(void)2271 static inline ktime_t net_invalid_timestamp(void)
2272 {
2273 	return ktime_set(0, 0);
2274 }
2275 
2276 extern void skb_timestamping_init(void);
2277 
2278 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2279 
2280 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2281 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2282 
2283 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2284 
skb_clone_tx_timestamp(struct sk_buff * skb)2285 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2286 {
2287 }
2288 
skb_defer_rx_timestamp(struct sk_buff * skb)2289 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2290 {
2291 	return false;
2292 }
2293 
2294 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2295 
2296 /**
2297  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2298  *
2299  * PHY drivers may accept clones of transmitted packets for
2300  * timestamping via their phy_driver.txtstamp method. These drivers
2301  * must call this function to return the skb back to the stack, with
2302  * or without a timestamp.
2303  *
2304  * @skb: clone of the the original outgoing packet
2305  * @hwtstamps: hardware time stamps, may be NULL if not available
2306  *
2307  */
2308 void skb_complete_tx_timestamp(struct sk_buff *skb,
2309 			       struct skb_shared_hwtstamps *hwtstamps);
2310 
2311 /**
2312  * skb_tstamp_tx - queue clone of skb with send time stamps
2313  * @orig_skb:	the original outgoing packet
2314  * @hwtstamps:	hardware time stamps, may be NULL if not available
2315  *
2316  * If the skb has a socket associated, then this function clones the
2317  * skb (thus sharing the actual data and optional structures), stores
2318  * the optional hardware time stamping information (if non NULL) or
2319  * generates a software time stamp (otherwise), then queues the clone
2320  * to the error queue of the socket.  Errors are silently ignored.
2321  */
2322 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2323 			struct skb_shared_hwtstamps *hwtstamps);
2324 
sw_tx_timestamp(struct sk_buff * skb)2325 static inline void sw_tx_timestamp(struct sk_buff *skb)
2326 {
2327 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2328 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2329 		skb_tstamp_tx(skb, NULL);
2330 }
2331 
2332 /**
2333  * skb_tx_timestamp() - Driver hook for transmit timestamping
2334  *
2335  * Ethernet MAC Drivers should call this function in their hard_xmit()
2336  * function immediately before giving the sk_buff to the MAC hardware.
2337  *
2338  * @skb: A socket buffer.
2339  */
skb_tx_timestamp(struct sk_buff * skb)2340 static inline void skb_tx_timestamp(struct sk_buff *skb)
2341 {
2342 	skb_clone_tx_timestamp(skb);
2343 	sw_tx_timestamp(skb);
2344 }
2345 
2346 /**
2347  * skb_complete_wifi_ack - deliver skb with wifi status
2348  *
2349  * @skb: the original outgoing packet
2350  * @acked: ack status
2351  *
2352  */
2353 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2354 
2355 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2356 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2357 
skb_csum_unnecessary(const struct sk_buff * skb)2358 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2359 {
2360 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2361 }
2362 
2363 /**
2364  *	skb_checksum_complete - Calculate checksum of an entire packet
2365  *	@skb: packet to process
2366  *
2367  *	This function calculates the checksum over the entire packet plus
2368  *	the value of skb->csum.  The latter can be used to supply the
2369  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2370  *	checksum.
2371  *
2372  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2373  *	this function can be used to verify that checksum on received
2374  *	packets.  In that case the function should return zero if the
2375  *	checksum is correct.  In particular, this function will return zero
2376  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2377  *	hardware has already verified the correctness of the checksum.
2378  */
skb_checksum_complete(struct sk_buff * skb)2379 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2380 {
2381 	return skb_csum_unnecessary(skb) ?
2382 	       0 : __skb_checksum_complete(skb);
2383 }
2384 
2385 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2386 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)2387 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2388 {
2389 	if (nfct && atomic_dec_and_test(&nfct->use))
2390 		nf_conntrack_destroy(nfct);
2391 }
nf_conntrack_get(struct nf_conntrack * nfct)2392 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2393 {
2394 	if (nfct)
2395 		atomic_inc(&nfct->use);
2396 }
2397 #endif
2398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
nf_conntrack_get_reasm(struct sk_buff * skb)2399 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2400 {
2401 	if (skb)
2402 		atomic_inc(&skb->users);
2403 }
nf_conntrack_put_reasm(struct sk_buff * skb)2404 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2405 {
2406 	if (skb)
2407 		kfree_skb(skb);
2408 }
2409 #endif
2410 #ifdef CONFIG_BRIDGE_NETFILTER
nf_bridge_put(struct nf_bridge_info * nf_bridge)2411 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2412 {
2413 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2414 		kfree(nf_bridge);
2415 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)2416 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2417 {
2418 	if (nf_bridge)
2419 		atomic_inc(&nf_bridge->use);
2420 }
2421 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)2422 static inline void nf_reset(struct sk_buff *skb)
2423 {
2424 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2425 	nf_conntrack_put(skb->nfct);
2426 	skb->nfct = NULL;
2427 #endif
2428 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2429 	nf_conntrack_put_reasm(skb->nfct_reasm);
2430 	skb->nfct_reasm = NULL;
2431 #endif
2432 #ifdef CONFIG_BRIDGE_NETFILTER
2433 	nf_bridge_put(skb->nf_bridge);
2434 	skb->nf_bridge = NULL;
2435 #endif
2436 }
2437 
nf_reset_trace(struct sk_buff * skb)2438 static inline void nf_reset_trace(struct sk_buff *skb)
2439 {
2440 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2441 	skb->nf_trace = 0;
2442 #endif
2443 }
2444 
2445 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src)2446 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2447 {
2448 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2449 	dst->nfct = src->nfct;
2450 	nf_conntrack_get(src->nfct);
2451 	dst->nfctinfo = src->nfctinfo;
2452 #endif
2453 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2454 	dst->nfct_reasm = src->nfct_reasm;
2455 	nf_conntrack_get_reasm(src->nfct_reasm);
2456 #endif
2457 #ifdef CONFIG_BRIDGE_NETFILTER
2458 	dst->nf_bridge  = src->nf_bridge;
2459 	nf_bridge_get(src->nf_bridge);
2460 #endif
2461 }
2462 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)2463 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2464 {
2465 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2466 	nf_conntrack_put(dst->nfct);
2467 #endif
2468 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2469 	nf_conntrack_put_reasm(dst->nfct_reasm);
2470 #endif
2471 #ifdef CONFIG_BRIDGE_NETFILTER
2472 	nf_bridge_put(dst->nf_bridge);
2473 #endif
2474 	__nf_copy(dst, src);
2475 }
2476 
2477 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2478 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2479 {
2480 	to->secmark = from->secmark;
2481 }
2482 
skb_init_secmark(struct sk_buff * skb)2483 static inline void skb_init_secmark(struct sk_buff *skb)
2484 {
2485 	skb->secmark = 0;
2486 }
2487 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2488 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2489 { }
2490 
skb_init_secmark(struct sk_buff * skb)2491 static inline void skb_init_secmark(struct sk_buff *skb)
2492 { }
2493 #endif
2494 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)2495 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2496 {
2497 	skb->queue_mapping = queue_mapping;
2498 }
2499 
skb_get_queue_mapping(const struct sk_buff * skb)2500 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2501 {
2502 	return skb->queue_mapping;
2503 }
2504 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)2505 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2506 {
2507 	to->queue_mapping = from->queue_mapping;
2508 }
2509 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)2510 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2511 {
2512 	skb->queue_mapping = rx_queue + 1;
2513 }
2514 
skb_get_rx_queue(const struct sk_buff * skb)2515 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2516 {
2517 	return skb->queue_mapping - 1;
2518 }
2519 
skb_rx_queue_recorded(const struct sk_buff * skb)2520 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2521 {
2522 	return skb->queue_mapping != 0;
2523 }
2524 
2525 extern u16 __skb_tx_hash(const struct net_device *dev,
2526 			 const struct sk_buff *skb,
2527 			 unsigned int num_tx_queues);
2528 
2529 #ifdef CONFIG_XFRM
skb_sec_path(struct sk_buff * skb)2530 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2531 {
2532 	return skb->sp;
2533 }
2534 #else
skb_sec_path(struct sk_buff * skb)2535 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2536 {
2537 	return NULL;
2538 }
2539 #endif
2540 
skb_is_gso(const struct sk_buff * skb)2541 static inline bool skb_is_gso(const struct sk_buff *skb)
2542 {
2543 	return skb_shinfo(skb)->gso_size;
2544 }
2545 
skb_is_gso_v6(const struct sk_buff * skb)2546 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2547 {
2548 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2549 }
2550 
2551 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2552 
skb_warn_if_lro(const struct sk_buff * skb)2553 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2554 {
2555 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2556 	 * wanted then gso_type will be set. */
2557 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2558 
2559 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2560 	    unlikely(shinfo->gso_type == 0)) {
2561 		__skb_warn_lro_forwarding(skb);
2562 		return true;
2563 	}
2564 	return false;
2565 }
2566 
skb_forward_csum(struct sk_buff * skb)2567 static inline void skb_forward_csum(struct sk_buff *skb)
2568 {
2569 	/* Unfortunately we don't support this one.  Any brave souls? */
2570 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2571 		skb->ip_summed = CHECKSUM_NONE;
2572 }
2573 
2574 /**
2575  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2576  * @skb: skb to check
2577  *
2578  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2579  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2580  * use this helper, to document places where we make this assertion.
2581  */
skb_checksum_none_assert(const struct sk_buff * skb)2582 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2583 {
2584 #ifdef DEBUG
2585 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2586 #endif
2587 }
2588 
2589 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2590 
skb_is_recycleable(const struct sk_buff * skb,int skb_size)2591 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2592 {
2593 	if (irqs_disabled())
2594 		return false;
2595 
2596 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2597 		return false;
2598 
2599 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2600 		return false;
2601 
2602 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2603 	if (skb_end_offset(skb) < skb_size)
2604 		return false;
2605 
2606 	if (skb_shared(skb) || skb_cloned(skb))
2607 		return false;
2608 
2609 	return true;
2610 }
2611 
2612 /**
2613  * skb_gso_network_seglen - Return length of individual segments of a gso packet
2614  *
2615  * @skb: GSO skb
2616  *
2617  * skb_gso_network_seglen is used to determine the real size of the
2618  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
2619  *
2620  * The MAC/L2 header is not accounted for.
2621  */
skb_gso_network_seglen(const struct sk_buff * skb)2622 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
2623 {
2624 	unsigned int hdr_len = skb_transport_header(skb) -
2625 			       skb_network_header(skb);
2626 	return hdr_len + skb_gso_transport_seglen(skb);
2627 }
2628 #endif	/* __KERNEL__ */
2629 #endif	/* _LINUX_SKBUFF_H */
2630