1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Author: Dipankar Sarma <dipankar@in.ibm.com>
21  *
22  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24  * Papers:
25  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27  *
28  * For detailed explanation of Read-Copy Update mechanism see -
29  *		http://lse.sourceforge.net/locking/rcupdate.html
30  *
31  */
32 
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35 
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51 
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 				      struct rcu_head *rhp);
57 #else
rcutorture_record_test_transition(void)58 static inline void rcutorture_record_test_transition(void)
59 {
60 }
rcutorture_record_progress(unsigned long vernum)61 static inline void rcutorture_record_progress(unsigned long vernum)
62 {
63 }
64 #ifdef CONFIG_RCU_TRACE
65 extern void do_trace_rcu_torture_read(char *rcutorturename,
66 				      struct rcu_head *rhp);
67 #else
68 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
69 #endif
70 #endif
71 
72 #define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
73 #define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
74 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
75 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
76 
77 /* Exported common interfaces */
78 
79 #ifdef CONFIG_PREEMPT_RCU
80 
81 /**
82  * call_rcu() - Queue an RCU callback for invocation after a grace period.
83  * @head: structure to be used for queueing the RCU updates.
84  * @func: actual callback function to be invoked after the grace period
85  *
86  * The callback function will be invoked some time after a full grace
87  * period elapses, in other words after all pre-existing RCU read-side
88  * critical sections have completed.  However, the callback function
89  * might well execute concurrently with RCU read-side critical sections
90  * that started after call_rcu() was invoked.  RCU read-side critical
91  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
92  * and may be nested.
93  */
94 extern void call_rcu(struct rcu_head *head,
95 			      void (*func)(struct rcu_head *head));
96 
97 #else /* #ifdef CONFIG_PREEMPT_RCU */
98 
99 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
100 #define	call_rcu	call_rcu_sched
101 
102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
103 
104 /**
105  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
106  * @head: structure to be used for queueing the RCU updates.
107  * @func: actual callback function to be invoked after the grace period
108  *
109  * The callback function will be invoked some time after a full grace
110  * period elapses, in other words after all currently executing RCU
111  * read-side critical sections have completed. call_rcu_bh() assumes
112  * that the read-side critical sections end on completion of a softirq
113  * handler. This means that read-side critical sections in process
114  * context must not be interrupted by softirqs. This interface is to be
115  * used when most of the read-side critical sections are in softirq context.
116  * RCU read-side critical sections are delimited by :
117  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
118  *  OR
119  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
120  *  These may be nested.
121  */
122 extern void call_rcu_bh(struct rcu_head *head,
123 			void (*func)(struct rcu_head *head));
124 
125 /**
126  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
127  * @head: structure to be used for queueing the RCU updates.
128  * @func: actual callback function to be invoked after the grace period
129  *
130  * The callback function will be invoked some time after a full grace
131  * period elapses, in other words after all currently executing RCU
132  * read-side critical sections have completed. call_rcu_sched() assumes
133  * that the read-side critical sections end on enabling of preemption
134  * or on voluntary preemption.
135  * RCU read-side critical sections are delimited by :
136  *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
137  *  OR
138  *  anything that disables preemption.
139  *  These may be nested.
140  */
141 extern void call_rcu_sched(struct rcu_head *head,
142 			   void (*func)(struct rcu_head *rcu));
143 
144 extern void synchronize_sched(void);
145 
146 #ifdef CONFIG_PREEMPT_RCU
147 
148 extern void __rcu_read_lock(void);
149 extern void __rcu_read_unlock(void);
150 void synchronize_rcu(void);
151 
152 /*
153  * Defined as a macro as it is a very low level header included from
154  * areas that don't even know about current.  This gives the rcu_read_lock()
155  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
156  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
157  */
158 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
159 
160 #else /* #ifdef CONFIG_PREEMPT_RCU */
161 
__rcu_read_lock(void)162 static inline void __rcu_read_lock(void)
163 {
164 	preempt_disable();
165 }
166 
__rcu_read_unlock(void)167 static inline void __rcu_read_unlock(void)
168 {
169 	preempt_enable();
170 }
171 
synchronize_rcu(void)172 static inline void synchronize_rcu(void)
173 {
174 	synchronize_sched();
175 }
176 
rcu_preempt_depth(void)177 static inline int rcu_preempt_depth(void)
178 {
179 	return 0;
180 }
181 
182 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
183 
184 /* Internal to kernel */
185 extern void rcu_sched_qs(int cpu);
186 extern void rcu_bh_qs(int cpu);
187 extern void rcu_check_callbacks(int cpu, int user);
188 struct notifier_block;
189 extern void rcu_idle_enter(void);
190 extern void rcu_idle_exit(void);
191 extern void rcu_irq_enter(void);
192 extern void rcu_irq_exit(void);
193 
194 /**
195  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
196  * @a: Code that RCU needs to pay attention to.
197  *
198  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
199  * in the inner idle loop, that is, between the rcu_idle_enter() and
200  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
201  * critical sections.  However, things like powertop need tracepoints
202  * in the inner idle loop.
203  *
204  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
205  * will tell RCU that it needs to pay attending, invoke its argument
206  * (in this example, a call to the do_something_with_RCU() function),
207  * and then tell RCU to go back to ignoring this CPU.  It is permissible
208  * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
209  * quite limited.  If deeper nesting is required, it will be necessary
210  * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
211  *
212  * This macro may be used from process-level code only.
213  */
214 #define RCU_NONIDLE(a) \
215 	do { \
216 		rcu_idle_exit(); \
217 		do { a; } while (0); \
218 		rcu_idle_enter(); \
219 	} while (0)
220 
221 /*
222  * Infrastructure to implement the synchronize_() primitives in
223  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
224  */
225 
226 typedef void call_rcu_func_t(struct rcu_head *head,
227 			     void (*func)(struct rcu_head *head));
228 void wait_rcu_gp(call_rcu_func_t crf);
229 
230 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
231 #include <linux/rcutree.h>
232 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
233 #include <linux/rcutiny.h>
234 #else
235 #error "Unknown RCU implementation specified to kernel configuration"
236 #endif
237 
238 /*
239  * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
240  * initialization and destruction of rcu_head on the stack. rcu_head structures
241  * allocated dynamically in the heap or defined statically don't need any
242  * initialization.
243  */
244 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
245 extern void init_rcu_head_on_stack(struct rcu_head *head);
246 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
247 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head_on_stack(struct rcu_head * head)248 static inline void init_rcu_head_on_stack(struct rcu_head *head)
249 {
250 }
251 
destroy_rcu_head_on_stack(struct rcu_head * head)252 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
253 {
254 }
255 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
256 
257 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
258 bool rcu_lockdep_current_cpu_online(void);
259 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)260 static inline bool rcu_lockdep_current_cpu_online(void)
261 {
262 	return 1;
263 }
264 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
265 
266 #ifdef CONFIG_DEBUG_LOCK_ALLOC
267 
268 #ifdef CONFIG_PROVE_RCU
269 extern int rcu_is_cpu_idle(void);
270 #else /* !CONFIG_PROVE_RCU */
rcu_is_cpu_idle(void)271 static inline int rcu_is_cpu_idle(void)
272 {
273 	return 0;
274 }
275 #endif /* else !CONFIG_PROVE_RCU */
276 
rcu_lock_acquire(struct lockdep_map * map)277 static inline void rcu_lock_acquire(struct lockdep_map *map)
278 {
279 	lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
280 }
281 
rcu_lock_release(struct lockdep_map * map)282 static inline void rcu_lock_release(struct lockdep_map *map)
283 {
284 	lock_release(map, 1, _THIS_IP_);
285 }
286 
287 extern struct lockdep_map rcu_lock_map;
288 extern struct lockdep_map rcu_bh_lock_map;
289 extern struct lockdep_map rcu_sched_lock_map;
290 extern int debug_lockdep_rcu_enabled(void);
291 
292 /**
293  * rcu_read_lock_held() - might we be in RCU read-side critical section?
294  *
295  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
296  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
297  * this assumes we are in an RCU read-side critical section unless it can
298  * prove otherwise.  This is useful for debug checks in functions that
299  * require that they be called within an RCU read-side critical section.
300  *
301  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
302  * and while lockdep is disabled.
303  *
304  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
305  * occur in the same context, for example, it is illegal to invoke
306  * rcu_read_unlock() in process context if the matching rcu_read_lock()
307  * was invoked from within an irq handler.
308  *
309  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
310  * offline from an RCU perspective, so check for those as well.
311  */
rcu_read_lock_held(void)312 static inline int rcu_read_lock_held(void)
313 {
314 	if (!debug_lockdep_rcu_enabled())
315 		return 1;
316 	if (rcu_is_cpu_idle())
317 		return 0;
318 	if (!rcu_lockdep_current_cpu_online())
319 		return 0;
320 	return lock_is_held(&rcu_lock_map);
321 }
322 
323 /*
324  * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
325  * hell.
326  */
327 extern int rcu_read_lock_bh_held(void);
328 
329 /**
330  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
331  *
332  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
333  * RCU-sched read-side critical section.  In absence of
334  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
335  * critical section unless it can prove otherwise.  Note that disabling
336  * of preemption (including disabling irqs) counts as an RCU-sched
337  * read-side critical section.  This is useful for debug checks in functions
338  * that required that they be called within an RCU-sched read-side
339  * critical section.
340  *
341  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
342  * and while lockdep is disabled.
343  *
344  * Note that if the CPU is in the idle loop from an RCU point of
345  * view (ie: that we are in the section between rcu_idle_enter() and
346  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
347  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
348  * that are in such a section, considering these as in extended quiescent
349  * state, so such a CPU is effectively never in an RCU read-side critical
350  * section regardless of what RCU primitives it invokes.  This state of
351  * affairs is required --- we need to keep an RCU-free window in idle
352  * where the CPU may possibly enter into low power mode. This way we can
353  * notice an extended quiescent state to other CPUs that started a grace
354  * period. Otherwise we would delay any grace period as long as we run in
355  * the idle task.
356  *
357  * Similarly, we avoid claiming an SRCU read lock held if the current
358  * CPU is offline.
359  */
360 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)361 static inline int rcu_read_lock_sched_held(void)
362 {
363 	int lockdep_opinion = 0;
364 
365 	if (!debug_lockdep_rcu_enabled())
366 		return 1;
367 	if (rcu_is_cpu_idle())
368 		return 0;
369 	if (!rcu_lockdep_current_cpu_online())
370 		return 0;
371 	if (debug_locks)
372 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
373 	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
374 }
375 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)376 static inline int rcu_read_lock_sched_held(void)
377 {
378 	return 1;
379 }
380 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
381 
382 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
383 
384 # define rcu_lock_acquire(a)		do { } while (0)
385 # define rcu_lock_release(a)		do { } while (0)
386 
rcu_read_lock_held(void)387 static inline int rcu_read_lock_held(void)
388 {
389 	return 1;
390 }
391 
rcu_read_lock_bh_held(void)392 static inline int rcu_read_lock_bh_held(void)
393 {
394 	return 1;
395 }
396 
397 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)398 static inline int rcu_read_lock_sched_held(void)
399 {
400 	return preempt_count() != 0 || irqs_disabled();
401 }
402 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)403 static inline int rcu_read_lock_sched_held(void)
404 {
405 	return 1;
406 }
407 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
408 
409 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
410 
411 #ifdef CONFIG_PROVE_RCU
412 
413 extern int rcu_my_thread_group_empty(void);
414 
415 /**
416  * rcu_lockdep_assert - emit lockdep splat if specified condition not met
417  * @c: condition to check
418  * @s: informative message
419  */
420 #define rcu_lockdep_assert(c, s)					\
421 	do {								\
422 		static bool __section(.data.unlikely) __warned;		\
423 		if (debug_lockdep_rcu_enabled() && !__warned && !(c)) {	\
424 			__warned = true;				\
425 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
426 		}							\
427 	} while (0)
428 
429 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)430 static inline void rcu_preempt_sleep_check(void)
431 {
432 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
433 			   "Illegal context switch in RCU read-side "
434 			   "critical section");
435 }
436 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)437 static inline void rcu_preempt_sleep_check(void)
438 {
439 }
440 #endif /* #else #ifdef CONFIG_PROVE_RCU */
441 
442 #define rcu_sleep_check()						\
443 	do {								\
444 		rcu_preempt_sleep_check();				\
445 		rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),	\
446 				   "Illegal context switch in RCU-bh"	\
447 				   " read-side critical section");	\
448 		rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),	\
449 				   "Illegal context switch in RCU-sched"\
450 				   " read-side critical section");	\
451 	} while (0)
452 
453 #else /* #ifdef CONFIG_PROVE_RCU */
454 
455 #define rcu_lockdep_assert(c, s) do { } while (0)
456 #define rcu_sleep_check() do { } while (0)
457 
458 #endif /* #else #ifdef CONFIG_PROVE_RCU */
459 
460 /*
461  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
462  * and rcu_assign_pointer().  Some of these could be folded into their
463  * callers, but they are left separate in order to ease introduction of
464  * multiple flavors of pointers to match the multiple flavors of RCU
465  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
466  * the future.
467  */
468 
469 #ifdef __CHECKER__
470 #define rcu_dereference_sparse(p, space) \
471 	((void)(((typeof(*p) space *)p) == p))
472 #else /* #ifdef __CHECKER__ */
473 #define rcu_dereference_sparse(p, space)
474 #endif /* #else #ifdef __CHECKER__ */
475 
476 #define __rcu_access_pointer(p, space) \
477 	({ \
478 		typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
479 		rcu_dereference_sparse(p, space); \
480 		((typeof(*p) __force __kernel *)(_________p1)); \
481 	})
482 #define __rcu_dereference_check(p, c, space) \
483 	({ \
484 		typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
485 		rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
486 				      " usage"); \
487 		rcu_dereference_sparse(p, space); \
488 		smp_read_barrier_depends(); \
489 		((typeof(*p) __force __kernel *)(_________p1)); \
490 	})
491 #define __rcu_dereference_protected(p, c, space) \
492 	({ \
493 		rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
494 				      " usage"); \
495 		rcu_dereference_sparse(p, space); \
496 		((typeof(*p) __force __kernel *)(p)); \
497 	})
498 
499 #define __rcu_access_index(p, space) \
500 	({ \
501 		typeof(p) _________p1 = ACCESS_ONCE(p); \
502 		rcu_dereference_sparse(p, space); \
503 		(_________p1); \
504 	})
505 #define __rcu_dereference_index_check(p, c) \
506 	({ \
507 		typeof(p) _________p1 = ACCESS_ONCE(p); \
508 		rcu_lockdep_assert(c, \
509 				   "suspicious rcu_dereference_index_check()" \
510 				   " usage"); \
511 		smp_read_barrier_depends(); \
512 		(_________p1); \
513 	})
514 #define __rcu_assign_pointer(p, v, space) \
515 	({ \
516 		smp_wmb(); \
517 		(p) = (typeof(*v) __force space *)(v); \
518 	})
519 
520 
521 /**
522  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
523  * @p: The pointer to read
524  *
525  * Return the value of the specified RCU-protected pointer, but omit the
526  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
527  * when the value of this pointer is accessed, but the pointer is not
528  * dereferenced, for example, when testing an RCU-protected pointer against
529  * NULL.  Although rcu_access_pointer() may also be used in cases where
530  * update-side locks prevent the value of the pointer from changing, you
531  * should instead use rcu_dereference_protected() for this use case.
532  *
533  * It is also permissible to use rcu_access_pointer() when read-side
534  * access to the pointer was removed at least one grace period ago, as
535  * is the case in the context of the RCU callback that is freeing up
536  * the data, or after a synchronize_rcu() returns.  This can be useful
537  * when tearing down multi-linked structures after a grace period
538  * has elapsed.
539  */
540 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
541 
542 /**
543  * rcu_dereference_check() - rcu_dereference with debug checking
544  * @p: The pointer to read, prior to dereferencing
545  * @c: The conditions under which the dereference will take place
546  *
547  * Do an rcu_dereference(), but check that the conditions under which the
548  * dereference will take place are correct.  Typically the conditions
549  * indicate the various locking conditions that should be held at that
550  * point.  The check should return true if the conditions are satisfied.
551  * An implicit check for being in an RCU read-side critical section
552  * (rcu_read_lock()) is included.
553  *
554  * For example:
555  *
556  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
557  *
558  * could be used to indicate to lockdep that foo->bar may only be dereferenced
559  * if either rcu_read_lock() is held, or that the lock required to replace
560  * the bar struct at foo->bar is held.
561  *
562  * Note that the list of conditions may also include indications of when a lock
563  * need not be held, for example during initialisation or destruction of the
564  * target struct:
565  *
566  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
567  *					      atomic_read(&foo->usage) == 0);
568  *
569  * Inserts memory barriers on architectures that require them
570  * (currently only the Alpha), prevents the compiler from refetching
571  * (and from merging fetches), and, more importantly, documents exactly
572  * which pointers are protected by RCU and checks that the pointer is
573  * annotated as __rcu.
574  */
575 #define rcu_dereference_check(p, c) \
576 	__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
577 
578 /**
579  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
580  * @p: The pointer to read, prior to dereferencing
581  * @c: The conditions under which the dereference will take place
582  *
583  * This is the RCU-bh counterpart to rcu_dereference_check().
584  */
585 #define rcu_dereference_bh_check(p, c) \
586 	__rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
587 
588 /**
589  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
590  * @p: The pointer to read, prior to dereferencing
591  * @c: The conditions under which the dereference will take place
592  *
593  * This is the RCU-sched counterpart to rcu_dereference_check().
594  */
595 #define rcu_dereference_sched_check(p, c) \
596 	__rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
597 				__rcu)
598 
599 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
600 
601 /**
602  * rcu_access_index() - fetch RCU index with no dereferencing
603  * @p: The index to read
604  *
605  * Return the value of the specified RCU-protected index, but omit the
606  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
607  * when the value of this index is accessed, but the index is not
608  * dereferenced, for example, when testing an RCU-protected index against
609  * -1.  Although rcu_access_index() may also be used in cases where
610  * update-side locks prevent the value of the index from changing, you
611  * should instead use rcu_dereference_index_protected() for this use case.
612  */
613 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
614 
615 /**
616  * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
617  * @p: The pointer to read, prior to dereferencing
618  * @c: The conditions under which the dereference will take place
619  *
620  * Similar to rcu_dereference_check(), but omits the sparse checking.
621  * This allows rcu_dereference_index_check() to be used on integers,
622  * which can then be used as array indices.  Attempting to use
623  * rcu_dereference_check() on an integer will give compiler warnings
624  * because the sparse address-space mechanism relies on dereferencing
625  * the RCU-protected pointer.  Dereferencing integers is not something
626  * that even gcc will put up with.
627  *
628  * Note that this function does not implicitly check for RCU read-side
629  * critical sections.  If this function gains lots of uses, it might
630  * make sense to provide versions for each flavor of RCU, but it does
631  * not make sense as of early 2010.
632  */
633 #define rcu_dereference_index_check(p, c) \
634 	__rcu_dereference_index_check((p), (c))
635 
636 /**
637  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
638  * @p: The pointer to read, prior to dereferencing
639  * @c: The conditions under which the dereference will take place
640  *
641  * Return the value of the specified RCU-protected pointer, but omit
642  * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
643  * is useful in cases where update-side locks prevent the value of the
644  * pointer from changing.  Please note that this primitive does -not-
645  * prevent the compiler from repeating this reference or combining it
646  * with other references, so it should not be used without protection
647  * of appropriate locks.
648  *
649  * This function is only for update-side use.  Using this function
650  * when protected only by rcu_read_lock() will result in infrequent
651  * but very ugly failures.
652  */
653 #define rcu_dereference_protected(p, c) \
654 	__rcu_dereference_protected((p), (c), __rcu)
655 
656 
657 /**
658  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
659  * @p: The pointer to read, prior to dereferencing
660  *
661  * This is a simple wrapper around rcu_dereference_check().
662  */
663 #define rcu_dereference(p) rcu_dereference_check(p, 0)
664 
665 /**
666  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
667  * @p: The pointer to read, prior to dereferencing
668  *
669  * Makes rcu_dereference_check() do the dirty work.
670  */
671 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
672 
673 /**
674  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
675  * @p: The pointer to read, prior to dereferencing
676  *
677  * Makes rcu_dereference_check() do the dirty work.
678  */
679 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
680 
681 /**
682  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
683  *
684  * When synchronize_rcu() is invoked on one CPU while other CPUs
685  * are within RCU read-side critical sections, then the
686  * synchronize_rcu() is guaranteed to block until after all the other
687  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
688  * on one CPU while other CPUs are within RCU read-side critical
689  * sections, invocation of the corresponding RCU callback is deferred
690  * until after the all the other CPUs exit their critical sections.
691  *
692  * Note, however, that RCU callbacks are permitted to run concurrently
693  * with new RCU read-side critical sections.  One way that this can happen
694  * is via the following sequence of events: (1) CPU 0 enters an RCU
695  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
696  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
697  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
698  * callback is invoked.  This is legal, because the RCU read-side critical
699  * section that was running concurrently with the call_rcu() (and which
700  * therefore might be referencing something that the corresponding RCU
701  * callback would free up) has completed before the corresponding
702  * RCU callback is invoked.
703  *
704  * RCU read-side critical sections may be nested.  Any deferred actions
705  * will be deferred until the outermost RCU read-side critical section
706  * completes.
707  *
708  * You can avoid reading and understanding the next paragraph by
709  * following this rule: don't put anything in an rcu_read_lock() RCU
710  * read-side critical section that would block in a !PREEMPT kernel.
711  * But if you want the full story, read on!
712  *
713  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
714  * is illegal to block while in an RCU read-side critical section.  In
715  * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
716  * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
717  * be preempted, but explicit blocking is illegal.  Finally, in preemptible
718  * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
719  * RCU read-side critical sections may be preempted and they may also
720  * block, but only when acquiring spinlocks that are subject to priority
721  * inheritance.
722  */
rcu_read_lock(void)723 static inline void rcu_read_lock(void)
724 {
725 	__rcu_read_lock();
726 	__acquire(RCU);
727 	rcu_lock_acquire(&rcu_lock_map);
728 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
729 			   "rcu_read_lock() used illegally while idle");
730 }
731 
732 /*
733  * So where is rcu_write_lock()?  It does not exist, as there is no
734  * way for writers to lock out RCU readers.  This is a feature, not
735  * a bug -- this property is what provides RCU's performance benefits.
736  * Of course, writers must coordinate with each other.  The normal
737  * spinlock primitives work well for this, but any other technique may be
738  * used as well.  RCU does not care how the writers keep out of each
739  * others' way, as long as they do so.
740  */
741 
742 /**
743  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
744  *
745  * See rcu_read_lock() for more information.
746  */
rcu_read_unlock(void)747 static inline void rcu_read_unlock(void)
748 {
749 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
750 			   "rcu_read_unlock() used illegally while idle");
751 	rcu_lock_release(&rcu_lock_map);
752 	__release(RCU);
753 	__rcu_read_unlock();
754 }
755 
756 /**
757  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
758  *
759  * This is equivalent of rcu_read_lock(), but to be used when updates
760  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
761  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
762  * softirq handler to be a quiescent state, a process in RCU read-side
763  * critical section must be protected by disabling softirqs. Read-side
764  * critical sections in interrupt context can use just rcu_read_lock(),
765  * though this should at least be commented to avoid confusing people
766  * reading the code.
767  *
768  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
769  * must occur in the same context, for example, it is illegal to invoke
770  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
771  * was invoked from some other task.
772  */
rcu_read_lock_bh(void)773 static inline void rcu_read_lock_bh(void)
774 {
775 	local_bh_disable();
776 	__acquire(RCU_BH);
777 	rcu_lock_acquire(&rcu_bh_lock_map);
778 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
779 			   "rcu_read_lock_bh() used illegally while idle");
780 }
781 
782 /*
783  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
784  *
785  * See rcu_read_lock_bh() for more information.
786  */
rcu_read_unlock_bh(void)787 static inline void rcu_read_unlock_bh(void)
788 {
789 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
790 			   "rcu_read_unlock_bh() used illegally while idle");
791 	rcu_lock_release(&rcu_bh_lock_map);
792 	__release(RCU_BH);
793 	local_bh_enable();
794 }
795 
796 /**
797  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
798  *
799  * This is equivalent of rcu_read_lock(), but to be used when updates
800  * are being done using call_rcu_sched() or synchronize_rcu_sched().
801  * Read-side critical sections can also be introduced by anything that
802  * disables preemption, including local_irq_disable() and friends.
803  *
804  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
805  * must occur in the same context, for example, it is illegal to invoke
806  * rcu_read_unlock_sched() from process context if the matching
807  * rcu_read_lock_sched() was invoked from an NMI handler.
808  */
rcu_read_lock_sched(void)809 static inline void rcu_read_lock_sched(void)
810 {
811 	preempt_disable();
812 	__acquire(RCU_SCHED);
813 	rcu_lock_acquire(&rcu_sched_lock_map);
814 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
815 			   "rcu_read_lock_sched() used illegally while idle");
816 }
817 
818 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)819 static inline notrace void rcu_read_lock_sched_notrace(void)
820 {
821 	preempt_disable_notrace();
822 	__acquire(RCU_SCHED);
823 }
824 
825 /*
826  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
827  *
828  * See rcu_read_lock_sched for more information.
829  */
rcu_read_unlock_sched(void)830 static inline void rcu_read_unlock_sched(void)
831 {
832 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
833 			   "rcu_read_unlock_sched() used illegally while idle");
834 	rcu_lock_release(&rcu_sched_lock_map);
835 	__release(RCU_SCHED);
836 	preempt_enable();
837 }
838 
839 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)840 static inline notrace void rcu_read_unlock_sched_notrace(void)
841 {
842 	__release(RCU_SCHED);
843 	preempt_enable_notrace();
844 }
845 
846 /**
847  * rcu_assign_pointer() - assign to RCU-protected pointer
848  * @p: pointer to assign to
849  * @v: value to assign (publish)
850  *
851  * Assigns the specified value to the specified RCU-protected
852  * pointer, ensuring that any concurrent RCU readers will see
853  * any prior initialization.  Returns the value assigned.
854  *
855  * Inserts memory barriers on architectures that require them
856  * (which is most of them), and also prevents the compiler from
857  * reordering the code that initializes the structure after the pointer
858  * assignment.  More importantly, this call documents which pointers
859  * will be dereferenced by RCU read-side code.
860  *
861  * In some special cases, you may use RCU_INIT_POINTER() instead
862  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
863  * to the fact that it does not constrain either the CPU or the compiler.
864  * That said, using RCU_INIT_POINTER() when you should have used
865  * rcu_assign_pointer() is a very bad thing that results in
866  * impossible-to-diagnose memory corruption.  So please be careful.
867  * See the RCU_INIT_POINTER() comment header for details.
868  */
869 #define rcu_assign_pointer(p, v) \
870 	__rcu_assign_pointer((p), (v), __rcu)
871 
872 /**
873  * RCU_INIT_POINTER() - initialize an RCU protected pointer
874  *
875  * Initialize an RCU-protected pointer in special cases where readers
876  * do not need ordering constraints on the CPU or the compiler.  These
877  * special cases are:
878  *
879  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
880  * 2.	The caller has taken whatever steps are required to prevent
881  *	RCU readers from concurrently accessing this pointer -or-
882  * 3.	The referenced data structure has already been exposed to
883  *	readers either at compile time or via rcu_assign_pointer() -and-
884  *	a.	You have not made -any- reader-visible changes to
885  *		this structure since then -or-
886  *	b.	It is OK for readers accessing this structure from its
887  *		new location to see the old state of the structure.  (For
888  *		example, the changes were to statistical counters or to
889  *		other state where exact synchronization is not required.)
890  *
891  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
892  * result in impossible-to-diagnose memory corruption.  As in the structures
893  * will look OK in crash dumps, but any concurrent RCU readers might
894  * see pre-initialized values of the referenced data structure.  So
895  * please be very careful how you use RCU_INIT_POINTER()!!!
896  *
897  * If you are creating an RCU-protected linked structure that is accessed
898  * by a single external-to-structure RCU-protected pointer, then you may
899  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
900  * pointers, but you must use rcu_assign_pointer() to initialize the
901  * external-to-structure pointer -after- you have completely initialized
902  * the reader-accessible portions of the linked structure.
903  */
904 #define RCU_INIT_POINTER(p, v) \
905 		p = (typeof(*v) __force __rcu *)(v)
906 
__is_kfree_rcu_offset(unsigned long offset)907 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
908 {
909 	return offset < 4096;
910 }
911 
912 static __always_inline
__kfree_rcu(struct rcu_head * head,unsigned long offset)913 void __kfree_rcu(struct rcu_head *head, unsigned long offset)
914 {
915 	typedef void (*rcu_callback)(struct rcu_head *);
916 
917 	BUILD_BUG_ON(!__builtin_constant_p(offset));
918 
919 	/* See the kfree_rcu() header comment. */
920 	BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
921 
922 	kfree_call_rcu(head, (rcu_callback)offset);
923 }
924 
925 /**
926  * kfree_rcu() - kfree an object after a grace period.
927  * @ptr:	pointer to kfree
928  * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
929  *
930  * Many rcu callbacks functions just call kfree() on the base structure.
931  * These functions are trivial, but their size adds up, and furthermore
932  * when they are used in a kernel module, that module must invoke the
933  * high-latency rcu_barrier() function at module-unload time.
934  *
935  * The kfree_rcu() function handles this issue.  Rather than encoding a
936  * function address in the embedded rcu_head structure, kfree_rcu() instead
937  * encodes the offset of the rcu_head structure within the base structure.
938  * Because the functions are not allowed in the low-order 4096 bytes of
939  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
940  * If the offset is larger than 4095 bytes, a compile-time error will
941  * be generated in __kfree_rcu().  If this error is triggered, you can
942  * either fall back to use of call_rcu() or rearrange the structure to
943  * position the rcu_head structure into the first 4096 bytes.
944  *
945  * Note that the allowable offset might decrease in the future, for example,
946  * to allow something like kmem_cache_free_rcu().
947  */
948 #define kfree_rcu(ptr, rcu_head)					\
949 	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
950 
951 #endif /* __LINUX_RCUPDATE_H */
952