1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24
reiserfs_evict_inode(struct inode * inode)25 void reiserfs_evict_inode(struct inode *inode)
26 {
27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 int jbegin_count =
29 JOURNAL_PER_BALANCE_CNT * 2 +
30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 struct reiserfs_transaction_handle th;
32 int depth;
33 int err;
34
35 if (!inode->i_nlink && !is_bad_inode(inode))
36 dquot_initialize(inode);
37
38 truncate_inode_pages(&inode->i_data, 0);
39 if (inode->i_nlink)
40 goto no_delete;
41
42 depth = reiserfs_write_lock_once(inode->i_sb);
43
44 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
46 reiserfs_delete_xattrs(inode);
47
48 if (journal_begin(&th, inode->i_sb, jbegin_count))
49 goto out;
50 reiserfs_update_inode_transaction(inode);
51
52 reiserfs_discard_prealloc(&th, inode);
53
54 err = reiserfs_delete_object(&th, inode);
55
56 /* Do quota update inside a transaction for journaled quotas. We must do that
57 * after delete_object so that quota updates go into the same transaction as
58 * stat data deletion */
59 if (!err)
60 dquot_free_inode(inode);
61
62 if (journal_end(&th, inode->i_sb, jbegin_count))
63 goto out;
64
65 /* check return value from reiserfs_delete_object after
66 * ending the transaction
67 */
68 if (err)
69 goto out;
70
71 /* all items of file are deleted, so we can remove "save" link */
72 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
73 * about an error here */
74 } else {
75 /* no object items are in the tree */
76 ;
77 }
78 out:
79 end_writeback(inode); /* note this must go after the journal_end to prevent deadlock */
80 dquot_drop(inode);
81 inode->i_blocks = 0;
82 reiserfs_write_unlock_once(inode->i_sb, depth);
83 return;
84
85 no_delete:
86 end_writeback(inode);
87 dquot_drop(inode);
88 }
89
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 __u32 objectid, loff_t offset, int type, int length)
92 {
93 key->version = version;
94
95 key->on_disk_key.k_dir_id = dirid;
96 key->on_disk_key.k_objectid = objectid;
97 set_cpu_key_k_offset(key, offset);
98 set_cpu_key_k_type(key, type);
99 key->key_length = length;
100 }
101
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103 offset and type of key */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 int type, int length)
106 {
107 _make_cpu_key(key, get_inode_item_key_version(inode),
108 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 length);
111 }
112
113 //
114 // when key is 0, do not set version and short key
115 //
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 int version,
118 loff_t offset, int type, int length,
119 int entry_count /*or ih_free_space */ )
120 {
121 if (key) {
122 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 ih->ih_key.k_objectid =
124 cpu_to_le32(key->on_disk_key.k_objectid);
125 }
126 put_ih_version(ih, version);
127 set_le_ih_k_offset(ih, offset);
128 set_le_ih_k_type(ih, type);
129 put_ih_item_len(ih, length);
130 /* set_ih_free_space (ih, 0); */
131 // for directory items it is entry count, for directs and stat
132 // datas - 0xffff, for indirects - 0
133 put_ih_entry_count(ih, entry_count);
134 }
135
136 //
137 // FIXME: we might cache recently accessed indirect item
138
139 // Ugh. Not too eager for that....
140 // I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
142
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in. But, Vladimir has a really good idea here. Think
145 ** about what happens for reading a file. For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item. This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right. But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
151 **
152 ** The size of the cache could be dynamic based on the size of the file.
153 **
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
156 **
157 ** --chris
158 */
159
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it. So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers. Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
167 */
fix_tail_page_for_writing(struct page * page)168 static inline void fix_tail_page_for_writing(struct page *page)
169 {
170 struct buffer_head *head, *next, *bh;
171
172 if (page && page_has_buffers(page)) {
173 head = page_buffers(page);
174 bh = head;
175 do {
176 next = bh->b_this_page;
177 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 reiserfs_unmap_buffer(bh);
179 }
180 bh = next;
181 } while (bh != head);
182 }
183 }
184
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186 done already or non-hole position has been found in the indirect item */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 struct item_head *ih,
189 __le32 * item, int pos_in_item)
190 {
191 if (allocated)
192 return 0;
193 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 get_block_num(item, pos_in_item))
195 return 0;
196 return 1;
197 }
198
indirect_item_found(int retval,struct item_head * ih)199 static inline int indirect_item_found(int retval, struct item_head *ih)
200 {
201 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202 }
203
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 b_blocknr_t block, struct inode *inode)
206 {
207 map_bh(bh, inode->i_sb, block);
208 }
209
210 //
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
213 //
file_capable(struct inode * inode,sector_t block)214 static int file_capable(struct inode *inode, sector_t block)
215 {
216 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
217 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
218 return 1;
219
220 return 0;
221 }
222
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 struct inode *inode, struct treepath *path)
225 {
226 struct super_block *s = th->t_super;
227 int len = th->t_blocks_allocated;
228 int err;
229
230 BUG_ON(!th->t_trans_id);
231 BUG_ON(!th->t_refcount);
232
233 pathrelse(path);
234
235 /* we cannot restart while nested */
236 if (th->t_refcount > 1) {
237 return 0;
238 }
239 reiserfs_update_sd(th, inode);
240 err = journal_end(th, s, len);
241 if (!err) {
242 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 if (!err)
244 reiserfs_update_inode_transaction(inode);
245 }
246 return err;
247 }
248
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
253
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
256
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 struct buffer_head *bh_result, int args)
259 {
260 INITIALIZE_PATH(path);
261 struct cpu_key key;
262 struct buffer_head *bh;
263 struct item_head *ih, tmp_ih;
264 b_blocknr_t blocknr;
265 char *p = NULL;
266 int chars;
267 int ret;
268 int result;
269 int done = 0;
270 unsigned long offset;
271
272 // prepare the key to look for the 'block'-th block of file
273 make_cpu_key(&key, inode,
274 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275 3);
276
277 result = search_for_position_by_key(inode->i_sb, &key, &path);
278 if (result != POSITION_FOUND) {
279 pathrelse(&path);
280 if (p)
281 kunmap(bh_result->b_page);
282 if (result == IO_ERROR)
283 return -EIO;
284 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 // That there is some MMAPED data associated with it that is yet to be written to disk.
286 if ((args & GET_BLOCK_NO_HOLE)
287 && !PageUptodate(bh_result->b_page)) {
288 return -ENOENT;
289 }
290 return 0;
291 }
292 //
293 bh = get_last_bh(&path);
294 ih = get_ih(&path);
295 if (is_indirect_le_ih(ih)) {
296 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297
298 /* FIXME: here we could cache indirect item or part of it in
299 the inode to avoid search_by_key in case of subsequent
300 access to file */
301 blocknr = get_block_num(ind_item, path.pos_in_item);
302 ret = 0;
303 if (blocknr) {
304 map_bh(bh_result, inode->i_sb, blocknr);
305 if (path.pos_in_item ==
306 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 set_buffer_boundary(bh_result);
308 }
309 } else
310 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 // That there is some MMAPED data associated with it that is yet to be written to disk.
312 if ((args & GET_BLOCK_NO_HOLE)
313 && !PageUptodate(bh_result->b_page)) {
314 ret = -ENOENT;
315 }
316
317 pathrelse(&path);
318 if (p)
319 kunmap(bh_result->b_page);
320 return ret;
321 }
322 // requested data are in direct item(s)
323 if (!(args & GET_BLOCK_READ_DIRECT)) {
324 // we are called by bmap. FIXME: we can not map block of file
325 // when it is stored in direct item(s)
326 pathrelse(&path);
327 if (p)
328 kunmap(bh_result->b_page);
329 return -ENOENT;
330 }
331
332 /* if we've got a direct item, and the buffer or page was uptodate,
333 ** we don't want to pull data off disk again. skip to the
334 ** end, where we map the buffer and return
335 */
336 if (buffer_uptodate(bh_result)) {
337 goto finished;
338 } else
339 /*
340 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 ** pages without any buffers. If the page is up to date, we don't want
342 ** read old data off disk. Set the up to date bit on the buffer instead
343 ** and jump to the end
344 */
345 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 set_buffer_uptodate(bh_result);
347 goto finished;
348 }
349 // read file tail into part of page
350 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 copy_item_head(&tmp_ih, ih);
352
353 /* we only want to kmap if we are reading the tail into the page.
354 ** this is not the common case, so we don't kmap until we are
355 ** sure we need to. But, this means the item might move if
356 ** kmap schedules
357 */
358 if (!p)
359 p = (char *)kmap(bh_result->b_page);
360
361 p += offset;
362 memset(p, 0, inode->i_sb->s_blocksize);
363 do {
364 if (!is_direct_le_ih(ih)) {
365 BUG();
366 }
367 /* make sure we don't read more bytes than actually exist in
368 ** the file. This can happen in odd cases where i_size isn't
369 ** correct, and when direct item padding results in a few
370 ** extra bytes at the end of the direct item
371 */
372 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 break;
374 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 chars =
376 inode->i_size - (le_ih_k_offset(ih) - 1) -
377 path.pos_in_item;
378 done = 1;
379 } else {
380 chars = ih_item_len(ih) - path.pos_in_item;
381 }
382 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383
384 if (done)
385 break;
386
387 p += chars;
388
389 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 // we done, if read direct item is not the last item of
391 // node FIXME: we could try to check right delimiting key
392 // to see whether direct item continues in the right
393 // neighbor or rely on i_size
394 break;
395
396 // update key to look for the next piece
397 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 result = search_for_position_by_key(inode->i_sb, &key, &path);
399 if (result != POSITION_FOUND)
400 // i/o error most likely
401 break;
402 bh = get_last_bh(&path);
403 ih = get_ih(&path);
404 } while (1);
405
406 flush_dcache_page(bh_result->b_page);
407 kunmap(bh_result->b_page);
408
409 finished:
410 pathrelse(&path);
411
412 if (result == IO_ERROR)
413 return -EIO;
414
415 /* this buffer has valid data, but isn't valid for io. mapping it to
416 * block #0 tells the rest of reiserfs it just has a tail in it
417 */
418 map_bh(bh_result, inode->i_sb, 0);
419 set_buffer_uptodate(bh_result);
420 return 0;
421 }
422
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 struct buffer_head *bh_result, int create)
427 {
428 if (!file_capable(inode, block))
429 return -EFBIG;
430
431 reiserfs_write_lock(inode->i_sb);
432 /* do not read the direct item */
433 _get_block_create_0(inode, block, bh_result, 0);
434 reiserfs_write_unlock(inode->i_sb);
435 return 0;
436 }
437
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now. It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer. __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
444 **
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page. Where it does not produce a valid page for holes, or past the
447 ** end of the file. This turns out to be exactly what we need for reading
448 ** tails for conversion.
449 **
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1. If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
454 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 struct buffer_head *bh_result,
457 int create)
458 {
459 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460 }
461
462 /* This is special helper for reiserfs_get_block in case we are executing
463 direct_IO request. */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 sector_t iblock,
466 struct buffer_head *bh_result,
467 int create)
468 {
469 int ret;
470
471 bh_result->b_page = NULL;
472
473 /* We set the b_size before reiserfs_get_block call since it is
474 referenced in convert_tail_for_hole() that may be called from
475 reiserfs_get_block() */
476 bh_result->b_size = (1 << inode->i_blkbits);
477
478 ret = reiserfs_get_block(inode, iblock, bh_result,
479 create | GET_BLOCK_NO_DANGLE);
480 if (ret)
481 goto out;
482
483 /* don't allow direct io onto tail pages */
484 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 /* make sure future calls to the direct io funcs for this offset
486 ** in the file fail by unmapping the buffer
487 */
488 clear_buffer_mapped(bh_result);
489 ret = -EINVAL;
490 }
491 /* Possible unpacked tail. Flush the data before pages have
492 disappeared */
493 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 int err;
495
496 reiserfs_write_lock(inode->i_sb);
497
498 err = reiserfs_commit_for_inode(inode);
499 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500
501 reiserfs_write_unlock(inode->i_sb);
502
503 if (err < 0)
504 ret = err;
505 }
506 out:
507 return ret;
508 }
509
510 /*
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
515 **
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
519 */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)520 static int convert_tail_for_hole(struct inode *inode,
521 struct buffer_head *bh_result,
522 loff_t tail_offset)
523 {
524 unsigned long index;
525 unsigned long tail_end;
526 unsigned long tail_start;
527 struct page *tail_page;
528 struct page *hole_page = bh_result->b_page;
529 int retval = 0;
530
531 if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 return -EIO;
533
534 /* always try to read until the end of the block */
535 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537
538 index = tail_offset >> PAGE_CACHE_SHIFT;
539 /* hole_page can be zero in case of direct_io, we are sure
540 that we cannot get here if we write with O_DIRECT into
541 tail page */
542 if (!hole_page || index != hole_page->index) {
543 tail_page = grab_cache_page(inode->i_mapping, index);
544 retval = -ENOMEM;
545 if (!tail_page) {
546 goto out;
547 }
548 } else {
549 tail_page = hole_page;
550 }
551
552 /* we don't have to make sure the conversion did not happen while
553 ** we were locking the page because anyone that could convert
554 ** must first take i_mutex.
555 **
556 ** We must fix the tail page for writing because it might have buffers
557 ** that are mapped, but have a block number of 0. This indicates tail
558 ** data that has been read directly into the page, and
559 ** __block_write_begin won't trigger a get_block in this case.
560 */
561 fix_tail_page_for_writing(tail_page);
562 retval = __reiserfs_write_begin(tail_page, tail_start,
563 tail_end - tail_start);
564 if (retval)
565 goto unlock;
566
567 /* tail conversion might change the data in the page */
568 flush_dcache_page(tail_page);
569
570 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571
572 unlock:
573 if (tail_page != hole_page) {
574 unlock_page(tail_page);
575 page_cache_release(tail_page);
576 }
577 out:
578 return retval;
579 }
580
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 sector_t block,
583 struct inode *inode,
584 b_blocknr_t * allocated_block_nr,
585 struct treepath *path, int flags)
586 {
587 BUG_ON(!th->t_trans_id);
588
589 #ifdef REISERFS_PREALLOCATE
590 if (!(flags & GET_BLOCK_NO_IMUX)) {
591 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 path, block);
593 }
594 #endif
595 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 block);
597 }
598
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 struct buffer_head *bh_result, int create)
601 {
602 int repeat, retval = 0;
603 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
604 INITIALIZE_PATH(path);
605 int pos_in_item;
606 struct cpu_key key;
607 struct buffer_head *bh, *unbh = NULL;
608 struct item_head *ih, tmp_ih;
609 __le32 *item;
610 int done;
611 int fs_gen;
612 int lock_depth;
613 struct reiserfs_transaction_handle *th = NULL;
614 /* space reserved in transaction batch:
615 . 3 balancings in direct->indirect conversion
616 . 1 block involved into reiserfs_update_sd()
617 XXX in practically impossible worst case direct2indirect()
618 can incur (much) more than 3 balancings.
619 quota update for user, group */
620 int jbegin_count =
621 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 int version;
624 int dangle = 1;
625 loff_t new_offset =
626 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627
628 lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 version = get_inode_item_key_version(inode);
630
631 if (!file_capable(inode, block)) {
632 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 return -EFBIG;
634 }
635
636 /* if !create, we aren't changing the FS, so we don't need to
637 ** log anything, so we don't need to start a transaction
638 */
639 if (!(create & GET_BLOCK_CREATE)) {
640 int ret;
641 /* find number of block-th logical block of the file */
642 ret = _get_block_create_0(inode, block, bh_result,
643 create | GET_BLOCK_READ_DIRECT);
644 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 return ret;
646 }
647 /*
648 * if we're already in a transaction, make sure to close
649 * any new transactions we start in this func
650 */
651 if ((create & GET_BLOCK_NO_DANGLE) ||
652 reiserfs_transaction_running(inode->i_sb))
653 dangle = 0;
654
655 /* If file is of such a size, that it might have a tail and tails are enabled
656 ** we should mark it as possibly needing tail packing on close
657 */
658 if ((have_large_tails(inode->i_sb)
659 && inode->i_size < i_block_size(inode) * 4)
660 || (have_small_tails(inode->i_sb)
661 && inode->i_size < i_block_size(inode)))
662 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663
664 /* set the key of the first byte in the 'block'-th block of file */
665 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 start_trans:
668 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 if (!th) {
670 retval = -ENOMEM;
671 goto failure;
672 }
673 reiserfs_update_inode_transaction(inode);
674 }
675 research:
676
677 retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 if (retval == IO_ERROR) {
679 retval = -EIO;
680 goto failure;
681 }
682
683 bh = get_last_bh(&path);
684 ih = get_ih(&path);
685 item = get_item(&path);
686 pos_in_item = path.pos_in_item;
687
688 fs_gen = get_generation(inode->i_sb);
689 copy_item_head(&tmp_ih, ih);
690
691 if (allocation_needed
692 (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 /* we have to allocate block for the unformatted node */
694 if (!th) {
695 pathrelse(&path);
696 goto start_trans;
697 }
698
699 repeat =
700 _allocate_block(th, block, inode, &allocated_block_nr,
701 &path, create);
702
703 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 /* restart the transaction to give the journal a chance to free
705 ** some blocks. releases the path, so we have to go back to
706 ** research if we succeed on the second try
707 */
708 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 retval = restart_transaction(th, inode, &path);
710 if (retval)
711 goto failure;
712 repeat =
713 _allocate_block(th, block, inode,
714 &allocated_block_nr, NULL, create);
715
716 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 goto research;
718 }
719 if (repeat == QUOTA_EXCEEDED)
720 retval = -EDQUOT;
721 else
722 retval = -ENOSPC;
723 goto failure;
724 }
725
726 if (fs_changed(fs_gen, inode->i_sb)
727 && item_moved(&tmp_ih, &path)) {
728 goto research;
729 }
730 }
731
732 if (indirect_item_found(retval, ih)) {
733 b_blocknr_t unfm_ptr;
734 /* 'block'-th block is in the file already (there is
735 corresponding cell in some indirect item). But it may be
736 zero unformatted node pointer (hole) */
737 unfm_ptr = get_block_num(item, pos_in_item);
738 if (unfm_ptr == 0) {
739 /* use allocated block to plug the hole */
740 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 if (fs_changed(fs_gen, inode->i_sb)
742 && item_moved(&tmp_ih, &path)) {
743 reiserfs_restore_prepared_buffer(inode->i_sb,
744 bh);
745 goto research;
746 }
747 set_buffer_new(bh_result);
748 if (buffer_dirty(bh_result)
749 && reiserfs_data_ordered(inode->i_sb))
750 reiserfs_add_ordered_list(inode, bh_result);
751 put_block_num(item, pos_in_item, allocated_block_nr);
752 unfm_ptr = allocated_block_nr;
753 journal_mark_dirty(th, inode->i_sb, bh);
754 reiserfs_update_sd(th, inode);
755 }
756 set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 pathrelse(&path);
758 retval = 0;
759 if (!dangle && th)
760 retval = reiserfs_end_persistent_transaction(th);
761
762 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763
764 /* the item was found, so new blocks were not added to the file
765 ** there is no need to make sure the inode is updated with this
766 ** transaction
767 */
768 return retval;
769 }
770
771 if (!th) {
772 pathrelse(&path);
773 goto start_trans;
774 }
775
776 /* desired position is not found or is in the direct item. We have
777 to append file with holes up to 'block'-th block converting
778 direct items to indirect one if necessary */
779 done = 0;
780 do {
781 if (is_statdata_le_ih(ih)) {
782 __le32 unp = 0;
783 struct cpu_key tmp_key;
784
785 /* indirect item has to be inserted */
786 make_le_item_head(&tmp_ih, &key, version, 1,
787 TYPE_INDIRECT, UNFM_P_SIZE,
788 0 /* free_space */ );
789
790 if (cpu_key_k_offset(&key) == 1) {
791 /* we are going to add 'block'-th block to the file. Use
792 allocated block for that */
793 unp = cpu_to_le32(allocated_block_nr);
794 set_block_dev_mapped(bh_result,
795 allocated_block_nr, inode);
796 set_buffer_new(bh_result);
797 done = 1;
798 }
799 tmp_key = key; // ;)
800 set_cpu_key_k_offset(&tmp_key, 1);
801 PATH_LAST_POSITION(&path)++;
802
803 retval =
804 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 inode, (char *)&unp);
806 if (retval) {
807 reiserfs_free_block(th, inode,
808 allocated_block_nr, 1);
809 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810 }
811 //mark_tail_converted (inode);
812 } else if (is_direct_le_ih(ih)) {
813 /* direct item has to be converted */
814 loff_t tail_offset;
815
816 tail_offset =
817 ((le_ih_k_offset(ih) -
818 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 if (tail_offset == cpu_key_k_offset(&key)) {
820 /* direct item we just found fits into block we have
821 to map. Convert it into unformatted node: use
822 bh_result for the conversion */
823 set_block_dev_mapped(bh_result,
824 allocated_block_nr, inode);
825 unbh = bh_result;
826 done = 1;
827 } else {
828 /* we have to padd file tail stored in direct item(s)
829 up to block size and convert it to unformatted
830 node. FIXME: this should also get into page cache */
831
832 pathrelse(&path);
833 /*
834 * ugly, but we can only end the transaction if
835 * we aren't nested
836 */
837 BUG_ON(!th->t_refcount);
838 if (th->t_refcount == 1) {
839 retval =
840 reiserfs_end_persistent_transaction
841 (th);
842 th = NULL;
843 if (retval)
844 goto failure;
845 }
846
847 retval =
848 convert_tail_for_hole(inode, bh_result,
849 tail_offset);
850 if (retval) {
851 if (retval != -ENOSPC)
852 reiserfs_error(inode->i_sb,
853 "clm-6004",
854 "convert tail failed "
855 "inode %lu, error %d",
856 inode->i_ino,
857 retval);
858 if (allocated_block_nr) {
859 /* the bitmap, the super, and the stat data == 3 */
860 if (!th)
861 th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 if (th)
863 reiserfs_free_block(th,
864 inode,
865 allocated_block_nr,
866 1);
867 }
868 goto failure;
869 }
870 goto research;
871 }
872 retval =
873 direct2indirect(th, inode, &path, unbh,
874 tail_offset);
875 if (retval) {
876 reiserfs_unmap_buffer(unbh);
877 reiserfs_free_block(th, inode,
878 allocated_block_nr, 1);
879 goto failure;
880 }
881 /* it is important the set_buffer_uptodate is done after
882 ** the direct2indirect. The buffer might contain valid
883 ** data newer than the data on disk (read by readpage, changed,
884 ** and then sent here by writepage). direct2indirect needs
885 ** to know if unbh was already up to date, so it can decide
886 ** if the data in unbh needs to be replaced with data from
887 ** the disk
888 */
889 set_buffer_uptodate(unbh);
890
891 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 buffer will disappear shortly, so it should not be added to
893 */
894 if (unbh->b_page) {
895 /* we've converted the tail, so we must
896 ** flush unbh before the transaction commits
897 */
898 reiserfs_add_tail_list(inode, unbh);
899
900 /* mark it dirty now to prevent commit_write from adding
901 ** this buffer to the inode's dirty buffer list
902 */
903 /*
904 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 * It's still atomic, but it sets the page dirty too,
906 * which makes it eligible for writeback at any time by the
907 * VM (which was also the case with __mark_buffer_dirty())
908 */
909 mark_buffer_dirty(unbh);
910 }
911 } else {
912 /* append indirect item with holes if needed, when appending
913 pointer to 'block'-th block use block, which is already
914 allocated */
915 struct cpu_key tmp_key;
916 unp_t unf_single = 0; // We use this in case we need to allocate only
917 // one block which is a fastpath
918 unp_t *un;
919 __u64 max_to_insert =
920 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 UNFM_P_SIZE;
922 __u64 blocks_needed;
923
924 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 "vs-804: invalid position for append");
926 /* indirect item has to be appended, set up key of that position */
927 make_cpu_key(&tmp_key, inode,
928 le_key_k_offset(version,
929 &(ih->ih_key)) +
930 op_bytes_number(ih,
931 inode->i_sb->s_blocksize),
932 //pos_in_item * inode->i_sb->s_blocksize,
933 TYPE_INDIRECT, 3); // key type is unimportant
934
935 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 "green-805: invalid offset");
937 blocks_needed =
938 1 +
939 ((cpu_key_k_offset(&key) -
940 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 s_blocksize_bits);
942
943 if (blocks_needed == 1) {
944 un = &unf_single;
945 } else {
946 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 if (!un) {
948 un = &unf_single;
949 blocks_needed = 1;
950 max_to_insert = 0;
951 }
952 }
953 if (blocks_needed <= max_to_insert) {
954 /* we are going to add target block to the file. Use allocated
955 block for that */
956 un[blocks_needed - 1] =
957 cpu_to_le32(allocated_block_nr);
958 set_block_dev_mapped(bh_result,
959 allocated_block_nr, inode);
960 set_buffer_new(bh_result);
961 done = 1;
962 } else {
963 /* paste hole to the indirect item */
964 /* If kmalloc failed, max_to_insert becomes zero and it means we
965 only have space for one block */
966 blocks_needed =
967 max_to_insert ? max_to_insert : 1;
968 }
969 retval =
970 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 (char *)un,
972 UNFM_P_SIZE *
973 blocks_needed);
974
975 if (blocks_needed != 1)
976 kfree(un);
977
978 if (retval) {
979 reiserfs_free_block(th, inode,
980 allocated_block_nr, 1);
981 goto failure;
982 }
983 if (!done) {
984 /* We need to mark new file size in case this function will be
985 interrupted/aborted later on. And we may do this only for
986 holes. */
987 inode->i_size +=
988 inode->i_sb->s_blocksize * blocks_needed;
989 }
990 }
991
992 if (done == 1)
993 break;
994
995 /* this loop could log more blocks than we had originally asked
996 ** for. So, we have to allow the transaction to end if it is
997 ** too big or too full. Update the inode so things are
998 ** consistent if we crash before the function returns
999 **
1000 ** release the path so that anybody waiting on the path before
1001 ** ending their transaction will be able to continue.
1002 */
1003 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 retval = restart_transaction(th, inode, &path);
1005 if (retval)
1006 goto failure;
1007 }
1008 /*
1009 * inserting indirect pointers for a hole can take a
1010 * long time. reschedule if needed and also release the write
1011 * lock for others.
1012 */
1013 if (need_resched()) {
1014 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 schedule();
1016 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017 }
1018
1019 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 if (retval == IO_ERROR) {
1021 retval = -EIO;
1022 goto failure;
1023 }
1024 if (retval == POSITION_FOUND) {
1025 reiserfs_warning(inode->i_sb, "vs-825",
1026 "%K should not be found", &key);
1027 retval = -EEXIST;
1028 if (allocated_block_nr)
1029 reiserfs_free_block(th, inode,
1030 allocated_block_nr, 1);
1031 pathrelse(&path);
1032 goto failure;
1033 }
1034 bh = get_last_bh(&path);
1035 ih = get_ih(&path);
1036 item = get_item(&path);
1037 pos_in_item = path.pos_in_item;
1038 } while (1);
1039
1040 retval = 0;
1041
1042 failure:
1043 if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 int err;
1045 if (th->t_trans_id)
1046 reiserfs_update_sd(th, inode);
1047 err = reiserfs_end_persistent_transaction(th);
1048 if (err)
1049 retval = err;
1050 }
1051
1052 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 reiserfs_check_path(&path);
1054 return retval;
1055 }
1056
1057 static int
reiserfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 struct list_head *pages, unsigned nr_pages)
1060 {
1061 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062 }
1063
1064 /* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
1066 */
real_space_diff(struct inode * inode,int sd_size)1067 static int real_space_diff(struct inode *inode, int sd_size)
1068 {
1069 int bytes;
1070 loff_t blocksize = inode->i_sb->s_blocksize;
1071
1072 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 return sd_size;
1074
1075 /* End of file is also in full block with indirect reference, so round
1076 ** up to the next block.
1077 **
1078 ** there is just no way to know if the tail is actually packed
1079 ** on the file, so we have to assume it isn't. When we pack the
1080 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 ** node pointer
1082 */
1083 bytes =
1084 ((inode->i_size +
1085 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 sd_size;
1087 return bytes;
1088 }
1089
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 int sd_size)
1092 {
1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 return inode->i_size +
1095 (loff_t) (real_space_diff(inode, sd_size));
1096 }
1097 return ((loff_t) real_space_diff(inode, sd_size)) +
1098 (((loff_t) blocks) << 9);
1099 }
1100
1101 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 {
1104 loff_t bytes = inode_get_bytes(inode);
1105 loff_t real_space = real_space_diff(inode, sd_size);
1106
1107 /* keeps fsck and non-quota versions of reiserfs happy */
1108 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 bytes += (loff_t) 511;
1110 }
1111
1112 /* files from before the quota patch might i_blocks such that
1113 ** bytes < real_space. Deal with that here to prevent it from
1114 ** going negative.
1115 */
1116 if (bytes < real_space)
1117 return 0;
1118 return (bytes - real_space) >> 9;
1119 }
1120
1121 //
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1126 //
1127
1128 // called by read_locked_inode
init_inode(struct inode * inode,struct treepath * path)1129 static void init_inode(struct inode *inode, struct treepath *path)
1130 {
1131 struct buffer_head *bh;
1132 struct item_head *ih;
1133 __u32 rdev;
1134 //int version = ITEM_VERSION_1;
1135
1136 bh = PATH_PLAST_BUFFER(path);
1137 ih = PATH_PITEM_HEAD(path);
1138
1139 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140
1141 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 REISERFS_I(inode)->i_flags = 0;
1143 REISERFS_I(inode)->i_prealloc_block = 0;
1144 REISERFS_I(inode)->i_prealloc_count = 0;
1145 REISERFS_I(inode)->i_trans_id = 0;
1146 REISERFS_I(inode)->i_jl = NULL;
1147 reiserfs_init_xattr_rwsem(inode);
1148
1149 if (stat_data_v1(ih)) {
1150 struct stat_data_v1 *sd =
1151 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 unsigned long blocks;
1153
1154 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 set_inode_sd_version(inode, STAT_DATA_V1);
1156 inode->i_mode = sd_v1_mode(sd);
1157 set_nlink(inode, sd_v1_nlink(sd));
1158 inode->i_uid = sd_v1_uid(sd);
1159 inode->i_gid = sd_v1_gid(sd);
1160 inode->i_size = sd_v1_size(sd);
1161 inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 inode->i_atime.tv_nsec = 0;
1165 inode->i_ctime.tv_nsec = 0;
1166 inode->i_mtime.tv_nsec = 0;
1167
1168 inode->i_blocks = sd_v1_blocks(sd);
1169 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 blocks = (inode->i_size + 511) >> 9;
1171 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 if (inode->i_blocks > blocks) {
1173 // there was a bug in <=3.5.23 when i_blocks could take negative
1174 // values. Starting from 3.5.17 this value could even be stored in
1175 // stat data. For such files we set i_blocks based on file
1176 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 // only updated if file's inode will ever change
1178 inode->i_blocks = blocks;
1179 }
1180
1181 rdev = sd_v1_rdev(sd);
1182 REISERFS_I(inode)->i_first_direct_byte =
1183 sd_v1_first_direct_byte(sd);
1184 /* an early bug in the quota code can give us an odd number for the
1185 ** block count. This is incorrect, fix it here.
1186 */
1187 if (inode->i_blocks & 1) {
1188 inode->i_blocks++;
1189 }
1190 inode_set_bytes(inode,
1191 to_real_used_space(inode, inode->i_blocks,
1192 SD_V1_SIZE));
1193 /* nopack is initially zero for v1 objects. For v2 objects,
1194 nopack is initialised from sd_attrs */
1195 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 } else {
1197 // new stat data found, but object may have old items
1198 // (directories and symlinks)
1199 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200
1201 inode->i_mode = sd_v2_mode(sd);
1202 set_nlink(inode, sd_v2_nlink(sd));
1203 inode->i_uid = sd_v2_uid(sd);
1204 inode->i_size = sd_v2_size(sd);
1205 inode->i_gid = sd_v2_gid(sd);
1206 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 inode->i_ctime.tv_nsec = 0;
1210 inode->i_mtime.tv_nsec = 0;
1211 inode->i_atime.tv_nsec = 0;
1212 inode->i_blocks = sd_v2_blocks(sd);
1213 rdev = sd_v2_rdev(sd);
1214 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 inode->i_generation =
1216 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 else
1218 inode->i_generation = sd_v2_generation(sd);
1219
1220 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 else
1223 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 REISERFS_I(inode)->i_first_direct_byte = 0;
1225 set_inode_sd_version(inode, STAT_DATA_V2);
1226 inode_set_bytes(inode,
1227 to_real_used_space(inode, inode->i_blocks,
1228 SD_V2_SIZE));
1229 /* read persistent inode attributes from sd and initialise
1230 generic inode flags from them */
1231 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233 }
1234
1235 pathrelse(path);
1236 if (S_ISREG(inode->i_mode)) {
1237 inode->i_op = &reiserfs_file_inode_operations;
1238 inode->i_fop = &reiserfs_file_operations;
1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 } else if (S_ISDIR(inode->i_mode)) {
1241 inode->i_op = &reiserfs_dir_inode_operations;
1242 inode->i_fop = &reiserfs_dir_operations;
1243 } else if (S_ISLNK(inode->i_mode)) {
1244 inode->i_op = &reiserfs_symlink_inode_operations;
1245 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 } else {
1247 inode->i_blocks = 0;
1248 inode->i_op = &reiserfs_special_inode_operations;
1249 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 }
1251 }
1252
1253 // update new stat data with inode fields
inode2sd(void * sd,struct inode * inode,loff_t size)1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255 {
1256 struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 __u16 flags;
1258
1259 set_sd_v2_mode(sd_v2, inode->i_mode);
1260 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 set_sd_v2_uid(sd_v2, inode->i_uid);
1262 set_sd_v2_size(sd_v2, size);
1263 set_sd_v2_gid(sd_v2, inode->i_gid);
1264 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 else
1271 set_sd_v2_generation(sd_v2, inode->i_generation);
1272 flags = REISERFS_I(inode)->i_attrs;
1273 i_attrs_to_sd_attrs(inode, &flags);
1274 set_sd_v2_attrs(sd_v2, flags);
1275 }
1276
1277 // used to copy inode's fields to old stat data
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279 {
1280 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281
1282 set_sd_v1_mode(sd_v1, inode->i_mode);
1283 set_sd_v1_uid(sd_v1, inode->i_uid);
1284 set_sd_v1_gid(sd_v1, inode->i_gid);
1285 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 set_sd_v1_size(sd_v1, size);
1287 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290
1291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 else
1294 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295
1296 // Sigh. i_first_direct_byte is back
1297 set_sd_v1_first_direct_byte(sd_v1,
1298 REISERFS_I(inode)->i_first_direct_byte);
1299 }
1300
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1303 */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 loff_t size)
1306 {
1307 struct buffer_head *bh;
1308 struct item_head *ih;
1309
1310 bh = PATH_PLAST_BUFFER(path);
1311 ih = PATH_PITEM_HEAD(path);
1312
1313 if (!is_statdata_le_ih(ih))
1314 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 INODE_PKEY(inode), ih);
1316
1317 if (stat_data_v1(ih)) {
1318 // path points to old stat data
1319 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 } else {
1321 inode2sd(B_I_PITEM(bh, ih), inode, size);
1322 }
1323
1324 return;
1325 }
1326
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 struct inode *inode, loff_t size)
1329 {
1330 struct cpu_key key;
1331 INITIALIZE_PATH(path);
1332 struct buffer_head *bh;
1333 int fs_gen;
1334 struct item_head *ih, tmp_ih;
1335 int retval;
1336
1337 BUG_ON(!th->t_trans_id);
1338
1339 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1340
1341 for (;;) {
1342 int pos;
1343 /* look for the object's stat data */
1344 retval = search_item(inode->i_sb, &key, &path);
1345 if (retval == IO_ERROR) {
1346 reiserfs_error(inode->i_sb, "vs-13050",
1347 "i/o failure occurred trying to "
1348 "update %K stat data", &key);
1349 return;
1350 }
1351 if (retval == ITEM_NOT_FOUND) {
1352 pos = PATH_LAST_POSITION(&path);
1353 pathrelse(&path);
1354 if (inode->i_nlink == 0) {
1355 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 return;
1357 }
1358 reiserfs_warning(inode->i_sb, "vs-13060",
1359 "stat data of object %k (nlink == %d) "
1360 "not found (pos %d)",
1361 INODE_PKEY(inode), inode->i_nlink,
1362 pos);
1363 reiserfs_check_path(&path);
1364 return;
1365 }
1366
1367 /* sigh, prepare_for_journal might schedule. When it schedules the
1368 ** FS might change. We have to detect that, and loop back to the
1369 ** search if the stat data item has moved
1370 */
1371 bh = get_last_bh(&path);
1372 ih = get_ih(&path);
1373 copy_item_head(&tmp_ih, ih);
1374 fs_gen = get_generation(inode->i_sb);
1375 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 if (fs_changed(fs_gen, inode->i_sb)
1377 && item_moved(&tmp_ih, &path)) {
1378 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 continue; /* Stat_data item has been moved after scheduling. */
1380 }
1381 break;
1382 }
1383 update_stat_data(&path, inode, size);
1384 journal_mark_dirty(th, th->t_super, bh);
1385 pathrelse(&path);
1386 return;
1387 }
1388
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong. But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1394 */
reiserfs_make_bad_inode(struct inode * inode)1395 static void reiserfs_make_bad_inode(struct inode *inode)
1396 {
1397 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 make_bad_inode(inode);
1399 }
1400
1401 //
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1404 //
1405
reiserfs_init_locked_inode(struct inode * inode,void * p)1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407 {
1408 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 inode->i_ino = args->objectid;
1410 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 return 0;
1412 }
1413
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415 inode stat data fields */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 struct reiserfs_iget_args *args)
1418 {
1419 INITIALIZE_PATH(path_to_sd);
1420 struct cpu_key key;
1421 unsigned long dirino;
1422 int retval;
1423
1424 dirino = args->dirid;
1425
1426 /* set version 1, version 2 could be used too, because stat data
1427 key is the same in both versions */
1428 key.version = KEY_FORMAT_3_5;
1429 key.on_disk_key.k_dir_id = dirino;
1430 key.on_disk_key.k_objectid = inode->i_ino;
1431 key.on_disk_key.k_offset = 0;
1432 key.on_disk_key.k_type = 0;
1433
1434 /* look for the object's stat data */
1435 retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 if (retval == IO_ERROR) {
1437 reiserfs_error(inode->i_sb, "vs-13070",
1438 "i/o failure occurred trying to find "
1439 "stat data of %K", &key);
1440 reiserfs_make_bad_inode(inode);
1441 return;
1442 }
1443 if (retval != ITEM_FOUND) {
1444 /* a stale NFS handle can trigger this without it being an error */
1445 pathrelse(&path_to_sd);
1446 reiserfs_make_bad_inode(inode);
1447 clear_nlink(inode);
1448 return;
1449 }
1450
1451 init_inode(inode, &path_to_sd);
1452
1453 /* It is possible that knfsd is trying to access inode of a file
1454 that is being removed from the disk by some other thread. As we
1455 update sd on unlink all that is required is to check for nlink
1456 here. This bug was first found by Sizif when debugging
1457 SquidNG/Butterfly, forgotten, and found again after Philippe
1458 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459
1460 More logical fix would require changes in fs/inode.c:iput() to
1461 remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 in iget() to return NULL if I_FREEING inode is found in
1463 hash-table. */
1464 /* Currently there is one place where it's ok to meet inode with
1465 nlink==0: processing of open-unlinked and half-truncated files
1466 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 if ((inode->i_nlink == 0) &&
1468 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 reiserfs_warning(inode->i_sb, "vs-13075",
1470 "dead inode read from disk %K. "
1471 "This is likely to be race with knfsd. Ignore",
1472 &key);
1473 reiserfs_make_bad_inode(inode);
1474 }
1475
1476 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1477
1478 /*
1479 * Stat data v1 doesn't support ACLs.
1480 */
1481 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482 cache_no_acl(inode);
1483 }
1484
1485 /**
1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487 *
1488 * @inode: inode from hash table to check
1489 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490 *
1491 * This function is called by iget5_locked() to distinguish reiserfs inodes
1492 * having the same inode numbers. Such inodes can only exist due to some
1493 * error condition. One of them should be bad. Inodes with identical
1494 * inode numbers (objectids) are distinguished by parent directory ids.
1495 *
1496 */
reiserfs_find_actor(struct inode * inode,void * opaque)1497 int reiserfs_find_actor(struct inode *inode, void *opaque)
1498 {
1499 struct reiserfs_iget_args *args;
1500
1501 args = opaque;
1502 /* args is already in CPU order */
1503 return (inode->i_ino == args->objectid) &&
1504 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505 }
1506
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1507 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508 {
1509 struct inode *inode;
1510 struct reiserfs_iget_args args;
1511
1512 args.objectid = key->on_disk_key.k_objectid;
1513 args.dirid = key->on_disk_key.k_dir_id;
1514 reiserfs_write_unlock(s);
1515 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 reiserfs_find_actor, reiserfs_init_locked_inode,
1517 (void *)(&args));
1518 reiserfs_write_lock(s);
1519 if (!inode)
1520 return ERR_PTR(-ENOMEM);
1521
1522 if (inode->i_state & I_NEW) {
1523 reiserfs_read_locked_inode(inode, &args);
1524 unlock_new_inode(inode);
1525 }
1526
1527 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528 /* either due to i/o error or a stale NFS handle */
1529 iput(inode);
1530 inode = NULL;
1531 }
1532 return inode;
1533 }
1534
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536 u32 objectid, u32 dir_id, u32 generation)
1537
1538 {
1539 struct cpu_key key;
1540 struct inode *inode;
1541
1542 key.on_disk_key.k_objectid = objectid;
1543 key.on_disk_key.k_dir_id = dir_id;
1544 reiserfs_write_lock(sb);
1545 inode = reiserfs_iget(sb, &key);
1546 if (inode && !IS_ERR(inode) && generation != 0 &&
1547 generation != inode->i_generation) {
1548 iput(inode);
1549 inode = NULL;
1550 }
1551 reiserfs_write_unlock(sb);
1552
1553 return d_obtain_alias(inode);
1554 }
1555
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 int fh_len, int fh_type)
1558 {
1559 /* fhtype happens to reflect the number of u32s encoded.
1560 * due to a bug in earlier code, fhtype might indicate there
1561 * are more u32s then actually fitted.
1562 * so if fhtype seems to be more than len, reduce fhtype.
1563 * Valid types are:
1564 * 2 - objectid + dir_id - legacy support
1565 * 3 - objectid + dir_id + generation
1566 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1567 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1568 * 6 - as above plus generation of directory
1569 * 6 does not fit in NFSv2 handles
1570 */
1571 if (fh_type > fh_len) {
1572 if (fh_type != 6 || fh_len != 5)
1573 reiserfs_warning(sb, "reiserfs-13077",
1574 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 fh_type, fh_len);
1576 fh_type = fh_len;
1577 }
1578 if (fh_len < 2)
1579 return NULL;
1580
1581 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1583 }
1584
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1585 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586 int fh_len, int fh_type)
1587 {
1588 if (fh_type > fh_len)
1589 fh_type = fh_len;
1590 if (fh_type < 4)
1591 return NULL;
1592
1593 return reiserfs_get_dentry(sb,
1594 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596 (fh_type == 6) ? fid->raw[5] : 0);
1597 }
1598
reiserfs_encode_fh(struct dentry * dentry,__u32 * data,int * lenp,int need_parent)1599 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1600 int need_parent)
1601 {
1602 struct inode *inode = dentry->d_inode;
1603 int maxlen = *lenp;
1604
1605 if (need_parent && (maxlen < 5)) {
1606 *lenp = 5;
1607 return 255;
1608 } else if (maxlen < 3) {
1609 *lenp = 3;
1610 return 255;
1611 }
1612
1613 data[0] = inode->i_ino;
1614 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 data[2] = inode->i_generation;
1616 *lenp = 3;
1617 /* no room for directory info? return what we've stored so far */
1618 if (maxlen < 5 || !need_parent)
1619 return 3;
1620
1621 spin_lock(&dentry->d_lock);
1622 inode = dentry->d_parent->d_inode;
1623 data[3] = inode->i_ino;
1624 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1625 *lenp = 5;
1626 if (maxlen >= 6) {
1627 data[5] = inode->i_generation;
1628 *lenp = 6;
1629 }
1630 spin_unlock(&dentry->d_lock);
1631 return *lenp;
1632 }
1633
1634 /* looks for stat data, then copies fields to it, marks the buffer
1635 containing stat data as dirty */
1636 /* reiserfs inodes are never really dirty, since the dirty inode call
1637 ** always logs them. This call allows the VFS inode marking routines
1638 ** to properly mark inodes for datasync and such, but only actually
1639 ** does something when called for a synchronous update.
1640 */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1641 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1642 {
1643 struct reiserfs_transaction_handle th;
1644 int jbegin_count = 1;
1645
1646 if (inode->i_sb->s_flags & MS_RDONLY)
1647 return -EROFS;
1648 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1649 ** these cases are just when the system needs ram, not when the
1650 ** inode needs to reach disk for safety, and they can safely be
1651 ** ignored because the altered inode has already been logged.
1652 */
1653 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1654 reiserfs_write_lock(inode->i_sb);
1655 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1656 reiserfs_update_sd(&th, inode);
1657 journal_end_sync(&th, inode->i_sb, jbegin_count);
1658 }
1659 reiserfs_write_unlock(inode->i_sb);
1660 }
1661 return 0;
1662 }
1663
1664 /* stat data of new object is inserted already, this inserts the item
1665 containing "." and ".." entries */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1666 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1667 struct inode *inode,
1668 struct item_head *ih, struct treepath *path,
1669 struct inode *dir)
1670 {
1671 struct super_block *sb = th->t_super;
1672 char empty_dir[EMPTY_DIR_SIZE];
1673 char *body = empty_dir;
1674 struct cpu_key key;
1675 int retval;
1676
1677 BUG_ON(!th->t_trans_id);
1678
1679 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1680 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1681 TYPE_DIRENTRY, 3 /*key length */ );
1682
1683 /* compose item head for new item. Directories consist of items of
1684 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1685 is done by reiserfs_new_inode */
1686 if (old_format_only(sb)) {
1687 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1688 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1689
1690 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1691 ih->ih_key.k_objectid,
1692 INODE_PKEY(dir)->k_dir_id,
1693 INODE_PKEY(dir)->k_objectid);
1694 } else {
1695 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1696 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1697
1698 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1699 ih->ih_key.k_objectid,
1700 INODE_PKEY(dir)->k_dir_id,
1701 INODE_PKEY(dir)->k_objectid);
1702 }
1703
1704 /* look for place in the tree for new item */
1705 retval = search_item(sb, &key, path);
1706 if (retval == IO_ERROR) {
1707 reiserfs_error(sb, "vs-13080",
1708 "i/o failure occurred creating new directory");
1709 return -EIO;
1710 }
1711 if (retval == ITEM_FOUND) {
1712 pathrelse(path);
1713 reiserfs_warning(sb, "vs-13070",
1714 "object with this key exists (%k)",
1715 &(ih->ih_key));
1716 return -EEXIST;
1717 }
1718
1719 /* insert item, that is empty directory item */
1720 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1721 }
1722
1723 /* stat data of object has been inserted, this inserts the item
1724 containing the body of symlink */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1725 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1726 struct item_head *ih,
1727 struct treepath *path, const char *symname,
1728 int item_len)
1729 {
1730 struct super_block *sb = th->t_super;
1731 struct cpu_key key;
1732 int retval;
1733
1734 BUG_ON(!th->t_trans_id);
1735
1736 _make_cpu_key(&key, KEY_FORMAT_3_5,
1737 le32_to_cpu(ih->ih_key.k_dir_id),
1738 le32_to_cpu(ih->ih_key.k_objectid),
1739 1, TYPE_DIRECT, 3 /*key length */ );
1740
1741 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1742 0 /*free_space */ );
1743
1744 /* look for place in the tree for new item */
1745 retval = search_item(sb, &key, path);
1746 if (retval == IO_ERROR) {
1747 reiserfs_error(sb, "vs-13080",
1748 "i/o failure occurred creating new symlink");
1749 return -EIO;
1750 }
1751 if (retval == ITEM_FOUND) {
1752 pathrelse(path);
1753 reiserfs_warning(sb, "vs-13080",
1754 "object with this key exists (%k)",
1755 &(ih->ih_key));
1756 return -EEXIST;
1757 }
1758
1759 /* insert item, that is body of symlink */
1760 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1761 }
1762
1763 /* inserts the stat data into the tree, and then calls
1764 reiserfs_new_directory (to insert ".", ".." item if new object is
1765 directory) or reiserfs_new_symlink (to insert symlink body if new
1766 object is symlink) or nothing (if new object is regular file)
1767
1768 NOTE! uid and gid must already be set in the inode. If we return
1769 non-zero due to an error, we have to drop the quota previously allocated
1770 for the fresh inode. This can only be done outside a transaction, so
1771 if we return non-zero, we also end the transaction. */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1772 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1773 struct inode *dir, umode_t mode, const char *symname,
1774 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1775 strlen (symname) for symlinks) */
1776 loff_t i_size, struct dentry *dentry,
1777 struct inode *inode,
1778 struct reiserfs_security_handle *security)
1779 {
1780 struct super_block *sb;
1781 struct reiserfs_iget_args args;
1782 INITIALIZE_PATH(path_to_key);
1783 struct cpu_key key;
1784 struct item_head ih;
1785 struct stat_data sd;
1786 int retval;
1787 int err;
1788
1789 BUG_ON(!th->t_trans_id);
1790
1791 reiserfs_write_unlock(inode->i_sb);
1792 err = dquot_alloc_inode(inode);
1793 reiserfs_write_lock(inode->i_sb);
1794 if (err)
1795 goto out_end_trans;
1796 if (!dir->i_nlink) {
1797 err = -EPERM;
1798 goto out_bad_inode;
1799 }
1800
1801 sb = dir->i_sb;
1802
1803 /* item head of new item */
1804 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1805 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1806 if (!ih.ih_key.k_objectid) {
1807 err = -ENOMEM;
1808 goto out_bad_inode;
1809 }
1810 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1811 if (old_format_only(sb))
1812 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1813 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1814 else
1815 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1816 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1817 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1818 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1819 if (insert_inode_locked4(inode, args.objectid,
1820 reiserfs_find_actor, &args) < 0) {
1821 err = -EINVAL;
1822 goto out_bad_inode;
1823 }
1824 if (old_format_only(sb))
1825 /* not a perfect generation count, as object ids can be reused, but
1826 ** this is as good as reiserfs can do right now.
1827 ** note that the private part of inode isn't filled in yet, we have
1828 ** to use the directory.
1829 */
1830 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1831 else
1832 #if defined( USE_INODE_GENERATION_COUNTER )
1833 inode->i_generation =
1834 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1835 #else
1836 inode->i_generation = ++event;
1837 #endif
1838
1839 /* fill stat data */
1840 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1841
1842 /* uid and gid must already be set by the caller for quota init */
1843
1844 /* symlink cannot be immutable or append only, right? */
1845 if (S_ISLNK(inode->i_mode))
1846 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1847
1848 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1849 inode->i_size = i_size;
1850 inode->i_blocks = 0;
1851 inode->i_bytes = 0;
1852 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1853 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1854
1855 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1856 REISERFS_I(inode)->i_flags = 0;
1857 REISERFS_I(inode)->i_prealloc_block = 0;
1858 REISERFS_I(inode)->i_prealloc_count = 0;
1859 REISERFS_I(inode)->i_trans_id = 0;
1860 REISERFS_I(inode)->i_jl = NULL;
1861 REISERFS_I(inode)->i_attrs =
1862 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1863 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1864 reiserfs_init_xattr_rwsem(inode);
1865
1866 /* key to search for correct place for new stat data */
1867 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1868 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1869 TYPE_STAT_DATA, 3 /*key length */ );
1870
1871 /* find proper place for inserting of stat data */
1872 retval = search_item(sb, &key, &path_to_key);
1873 if (retval == IO_ERROR) {
1874 err = -EIO;
1875 goto out_bad_inode;
1876 }
1877 if (retval == ITEM_FOUND) {
1878 pathrelse(&path_to_key);
1879 err = -EEXIST;
1880 goto out_bad_inode;
1881 }
1882 if (old_format_only(sb)) {
1883 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1884 pathrelse(&path_to_key);
1885 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1886 err = -EINVAL;
1887 goto out_bad_inode;
1888 }
1889 inode2sd_v1(&sd, inode, inode->i_size);
1890 } else {
1891 inode2sd(&sd, inode, inode->i_size);
1892 }
1893 // store in in-core inode the key of stat data and version all
1894 // object items will have (directory items will have old offset
1895 // format, other new objects will consist of new items)
1896 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1897 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1898 else
1899 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1900 if (old_format_only(sb))
1901 set_inode_sd_version(inode, STAT_DATA_V1);
1902 else
1903 set_inode_sd_version(inode, STAT_DATA_V2);
1904
1905 /* insert the stat data into the tree */
1906 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1907 if (REISERFS_I(dir)->new_packing_locality)
1908 th->displace_new_blocks = 1;
1909 #endif
1910 retval =
1911 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1912 (char *)(&sd));
1913 if (retval) {
1914 err = retval;
1915 reiserfs_check_path(&path_to_key);
1916 goto out_bad_inode;
1917 }
1918 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1919 if (!th->displace_new_blocks)
1920 REISERFS_I(dir)->new_packing_locality = 0;
1921 #endif
1922 if (S_ISDIR(mode)) {
1923 /* insert item with "." and ".." */
1924 retval =
1925 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1926 }
1927
1928 if (S_ISLNK(mode)) {
1929 /* insert body of symlink */
1930 if (!old_format_only(sb))
1931 i_size = ROUND_UP(i_size);
1932 retval =
1933 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1934 i_size);
1935 }
1936 if (retval) {
1937 err = retval;
1938 reiserfs_check_path(&path_to_key);
1939 journal_end(th, th->t_super, th->t_blocks_allocated);
1940 goto out_inserted_sd;
1941 }
1942
1943 if (reiserfs_posixacl(inode->i_sb)) {
1944 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1945 if (retval) {
1946 err = retval;
1947 reiserfs_check_path(&path_to_key);
1948 journal_end(th, th->t_super, th->t_blocks_allocated);
1949 goto out_inserted_sd;
1950 }
1951 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1952 reiserfs_warning(inode->i_sb, "jdm-13090",
1953 "ACLs aren't enabled in the fs, "
1954 "but vfs thinks they are!");
1955 } else if (IS_PRIVATE(dir))
1956 inode->i_flags |= S_PRIVATE;
1957
1958 if (security->name) {
1959 retval = reiserfs_security_write(th, inode, security);
1960 if (retval) {
1961 err = retval;
1962 reiserfs_check_path(&path_to_key);
1963 retval = journal_end(th, th->t_super,
1964 th->t_blocks_allocated);
1965 if (retval)
1966 err = retval;
1967 goto out_inserted_sd;
1968 }
1969 }
1970
1971 reiserfs_update_sd(th, inode);
1972 reiserfs_check_path(&path_to_key);
1973
1974 return 0;
1975
1976 /* it looks like you can easily compress these two goto targets into
1977 * one. Keeping it like this doesn't actually hurt anything, and they
1978 * are place holders for what the quota code actually needs.
1979 */
1980 out_bad_inode:
1981 /* Invalidate the object, nothing was inserted yet */
1982 INODE_PKEY(inode)->k_objectid = 0;
1983
1984 /* Quota change must be inside a transaction for journaling */
1985 dquot_free_inode(inode);
1986
1987 out_end_trans:
1988 journal_end(th, th->t_super, th->t_blocks_allocated);
1989 reiserfs_write_unlock(inode->i_sb);
1990 /* Drop can be outside and it needs more credits so it's better to have it outside */
1991 dquot_drop(inode);
1992 reiserfs_write_lock(inode->i_sb);
1993 inode->i_flags |= S_NOQUOTA;
1994 make_bad_inode(inode);
1995
1996 out_inserted_sd:
1997 clear_nlink(inode);
1998 th->t_trans_id = 0; /* so the caller can't use this handle later */
1999 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2000 iput(inode);
2001 return err;
2002 }
2003
2004 /*
2005 ** finds the tail page in the page cache,
2006 ** reads the last block in.
2007 **
2008 ** On success, page_result is set to a locked, pinned page, and bh_result
2009 ** is set to an up to date buffer for the last block in the file. returns 0.
2010 **
2011 ** tail conversion is not done, so bh_result might not be valid for writing
2012 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2013 ** trying to write the block.
2014 **
2015 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2016 */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2017 static int grab_tail_page(struct inode *inode,
2018 struct page **page_result,
2019 struct buffer_head **bh_result)
2020 {
2021
2022 /* we want the page with the last byte in the file,
2023 ** not the page that will hold the next byte for appending
2024 */
2025 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2026 unsigned long pos = 0;
2027 unsigned long start = 0;
2028 unsigned long blocksize = inode->i_sb->s_blocksize;
2029 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2030 struct buffer_head *bh;
2031 struct buffer_head *head;
2032 struct page *page;
2033 int error;
2034
2035 /* we know that we are only called with inode->i_size > 0.
2036 ** we also know that a file tail can never be as big as a block
2037 ** If i_size % blocksize == 0, our file is currently block aligned
2038 ** and it won't need converting or zeroing after a truncate.
2039 */
2040 if ((offset & (blocksize - 1)) == 0) {
2041 return -ENOENT;
2042 }
2043 page = grab_cache_page(inode->i_mapping, index);
2044 error = -ENOMEM;
2045 if (!page) {
2046 goto out;
2047 }
2048 /* start within the page of the last block in the file */
2049 start = (offset / blocksize) * blocksize;
2050
2051 error = __block_write_begin(page, start, offset - start,
2052 reiserfs_get_block_create_0);
2053 if (error)
2054 goto unlock;
2055
2056 head = page_buffers(page);
2057 bh = head;
2058 do {
2059 if (pos >= start) {
2060 break;
2061 }
2062 bh = bh->b_this_page;
2063 pos += blocksize;
2064 } while (bh != head);
2065
2066 if (!buffer_uptodate(bh)) {
2067 /* note, this should never happen, prepare_write should
2068 ** be taking care of this for us. If the buffer isn't up to date,
2069 ** I've screwed up the code to find the buffer, or the code to
2070 ** call prepare_write
2071 */
2072 reiserfs_error(inode->i_sb, "clm-6000",
2073 "error reading block %lu", bh->b_blocknr);
2074 error = -EIO;
2075 goto unlock;
2076 }
2077 *bh_result = bh;
2078 *page_result = page;
2079
2080 out:
2081 return error;
2082
2083 unlock:
2084 unlock_page(page);
2085 page_cache_release(page);
2086 return error;
2087 }
2088
2089 /*
2090 ** vfs version of truncate file. Must NOT be called with
2091 ** a transaction already started.
2092 **
2093 ** some code taken from block_truncate_page
2094 */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2095 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2096 {
2097 struct reiserfs_transaction_handle th;
2098 /* we want the offset for the first byte after the end of the file */
2099 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2100 unsigned blocksize = inode->i_sb->s_blocksize;
2101 unsigned length;
2102 struct page *page = NULL;
2103 int error;
2104 struct buffer_head *bh = NULL;
2105 int err2;
2106 int lock_depth;
2107
2108 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2109
2110 if (inode->i_size > 0) {
2111 error = grab_tail_page(inode, &page, &bh);
2112 if (error) {
2113 // -ENOENT means we truncated past the end of the file,
2114 // and get_block_create_0 could not find a block to read in,
2115 // which is ok.
2116 if (error != -ENOENT)
2117 reiserfs_error(inode->i_sb, "clm-6001",
2118 "grab_tail_page failed %d",
2119 error);
2120 page = NULL;
2121 bh = NULL;
2122 }
2123 }
2124
2125 /* so, if page != NULL, we have a buffer head for the offset at
2126 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2127 ** then we have an unformatted node. Otherwise, we have a direct item,
2128 ** and no zeroing is required on disk. We zero after the truncate,
2129 ** because the truncate might pack the item anyway
2130 ** (it will unmap bh if it packs).
2131 */
2132 /* it is enough to reserve space in transaction for 2 balancings:
2133 one for "save" link adding and another for the first
2134 cut_from_item. 1 is for update_sd */
2135 error = journal_begin(&th, inode->i_sb,
2136 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2137 if (error)
2138 goto out;
2139 reiserfs_update_inode_transaction(inode);
2140 if (update_timestamps)
2141 /* we are doing real truncate: if the system crashes before the last
2142 transaction of truncating gets committed - on reboot the file
2143 either appears truncated properly or not truncated at all */
2144 add_save_link(&th, inode, 1);
2145 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2146 error =
2147 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2148 if (error)
2149 goto out;
2150
2151 /* check reiserfs_do_truncate after ending the transaction */
2152 if (err2) {
2153 error = err2;
2154 goto out;
2155 }
2156
2157 if (update_timestamps) {
2158 error = remove_save_link(inode, 1 /* truncate */);
2159 if (error)
2160 goto out;
2161 }
2162
2163 if (page) {
2164 length = offset & (blocksize - 1);
2165 /* if we are not on a block boundary */
2166 if (length) {
2167 length = blocksize - length;
2168 zero_user(page, offset, length);
2169 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2170 mark_buffer_dirty(bh);
2171 }
2172 }
2173 unlock_page(page);
2174 page_cache_release(page);
2175 }
2176
2177 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2178
2179 return 0;
2180 out:
2181 if (page) {
2182 unlock_page(page);
2183 page_cache_release(page);
2184 }
2185
2186 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2187
2188 return error;
2189 }
2190
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2191 static int map_block_for_writepage(struct inode *inode,
2192 struct buffer_head *bh_result,
2193 unsigned long block)
2194 {
2195 struct reiserfs_transaction_handle th;
2196 int fs_gen;
2197 struct item_head tmp_ih;
2198 struct item_head *ih;
2199 struct buffer_head *bh;
2200 __le32 *item;
2201 struct cpu_key key;
2202 INITIALIZE_PATH(path);
2203 int pos_in_item;
2204 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2205 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2206 int retval;
2207 int use_get_block = 0;
2208 int bytes_copied = 0;
2209 int copy_size;
2210 int trans_running = 0;
2211
2212 /* catch places below that try to log something without starting a trans */
2213 th.t_trans_id = 0;
2214
2215 if (!buffer_uptodate(bh_result)) {
2216 return -EIO;
2217 }
2218
2219 kmap(bh_result->b_page);
2220 start_over:
2221 reiserfs_write_lock(inode->i_sb);
2222 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2223
2224 research:
2225 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2226 if (retval != POSITION_FOUND) {
2227 use_get_block = 1;
2228 goto out;
2229 }
2230
2231 bh = get_last_bh(&path);
2232 ih = get_ih(&path);
2233 item = get_item(&path);
2234 pos_in_item = path.pos_in_item;
2235
2236 /* we've found an unformatted node */
2237 if (indirect_item_found(retval, ih)) {
2238 if (bytes_copied > 0) {
2239 reiserfs_warning(inode->i_sb, "clm-6002",
2240 "bytes_copied %d", bytes_copied);
2241 }
2242 if (!get_block_num(item, pos_in_item)) {
2243 /* crap, we are writing to a hole */
2244 use_get_block = 1;
2245 goto out;
2246 }
2247 set_block_dev_mapped(bh_result,
2248 get_block_num(item, pos_in_item), inode);
2249 } else if (is_direct_le_ih(ih)) {
2250 char *p;
2251 p = page_address(bh_result->b_page);
2252 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2253 copy_size = ih_item_len(ih) - pos_in_item;
2254
2255 fs_gen = get_generation(inode->i_sb);
2256 copy_item_head(&tmp_ih, ih);
2257
2258 if (!trans_running) {
2259 /* vs-3050 is gone, no need to drop the path */
2260 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2261 if (retval)
2262 goto out;
2263 reiserfs_update_inode_transaction(inode);
2264 trans_running = 1;
2265 if (fs_changed(fs_gen, inode->i_sb)
2266 && item_moved(&tmp_ih, &path)) {
2267 reiserfs_restore_prepared_buffer(inode->i_sb,
2268 bh);
2269 goto research;
2270 }
2271 }
2272
2273 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2274
2275 if (fs_changed(fs_gen, inode->i_sb)
2276 && item_moved(&tmp_ih, &path)) {
2277 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2278 goto research;
2279 }
2280
2281 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2282 copy_size);
2283
2284 journal_mark_dirty(&th, inode->i_sb, bh);
2285 bytes_copied += copy_size;
2286 set_block_dev_mapped(bh_result, 0, inode);
2287
2288 /* are there still bytes left? */
2289 if (bytes_copied < bh_result->b_size &&
2290 (byte_offset + bytes_copied) < inode->i_size) {
2291 set_cpu_key_k_offset(&key,
2292 cpu_key_k_offset(&key) +
2293 copy_size);
2294 goto research;
2295 }
2296 } else {
2297 reiserfs_warning(inode->i_sb, "clm-6003",
2298 "bad item inode %lu", inode->i_ino);
2299 retval = -EIO;
2300 goto out;
2301 }
2302 retval = 0;
2303
2304 out:
2305 pathrelse(&path);
2306 if (trans_running) {
2307 int err = journal_end(&th, inode->i_sb, jbegin_count);
2308 if (err)
2309 retval = err;
2310 trans_running = 0;
2311 }
2312 reiserfs_write_unlock(inode->i_sb);
2313
2314 /* this is where we fill in holes in the file. */
2315 if (use_get_block) {
2316 retval = reiserfs_get_block(inode, block, bh_result,
2317 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2318 | GET_BLOCK_NO_DANGLE);
2319 if (!retval) {
2320 if (!buffer_mapped(bh_result)
2321 || bh_result->b_blocknr == 0) {
2322 /* get_block failed to find a mapped unformatted node. */
2323 use_get_block = 0;
2324 goto start_over;
2325 }
2326 }
2327 }
2328 kunmap(bh_result->b_page);
2329
2330 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2331 /* we've copied data from the page into the direct item, so the
2332 * buffer in the page is now clean, mark it to reflect that.
2333 */
2334 lock_buffer(bh_result);
2335 clear_buffer_dirty(bh_result);
2336 unlock_buffer(bh_result);
2337 }
2338 return retval;
2339 }
2340
2341 /*
2342 * mason@suse.com: updated in 2.5.54 to follow the same general io
2343 * start/recovery path as __block_write_full_page, along with special
2344 * code to handle reiserfs tails.
2345 */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2346 static int reiserfs_write_full_page(struct page *page,
2347 struct writeback_control *wbc)
2348 {
2349 struct inode *inode = page->mapping->host;
2350 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2351 int error = 0;
2352 unsigned long block;
2353 sector_t last_block;
2354 struct buffer_head *head, *bh;
2355 int partial = 0;
2356 int nr = 0;
2357 int checked = PageChecked(page);
2358 struct reiserfs_transaction_handle th;
2359 struct super_block *s = inode->i_sb;
2360 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2361 th.t_trans_id = 0;
2362
2363 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2364 if (checked && (current->flags & PF_MEMALLOC)) {
2365 redirty_page_for_writepage(wbc, page);
2366 unlock_page(page);
2367 return 0;
2368 }
2369
2370 /* The page dirty bit is cleared before writepage is called, which
2371 * means we have to tell create_empty_buffers to make dirty buffers
2372 * The page really should be up to date at this point, so tossing
2373 * in the BH_Uptodate is just a sanity check.
2374 */
2375 if (!page_has_buffers(page)) {
2376 create_empty_buffers(page, s->s_blocksize,
2377 (1 << BH_Dirty) | (1 << BH_Uptodate));
2378 }
2379 head = page_buffers(page);
2380
2381 /* last page in the file, zero out any contents past the
2382 ** last byte in the file
2383 */
2384 if (page->index >= end_index) {
2385 unsigned last_offset;
2386
2387 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2388 /* no file contents in this page */
2389 if (page->index >= end_index + 1 || !last_offset) {
2390 unlock_page(page);
2391 return 0;
2392 }
2393 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2394 }
2395 bh = head;
2396 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2397 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2398 /* first map all the buffers, logging any direct items we find */
2399 do {
2400 if (block > last_block) {
2401 /*
2402 * This can happen when the block size is less than
2403 * the page size. The corresponding bytes in the page
2404 * were zero filled above
2405 */
2406 clear_buffer_dirty(bh);
2407 set_buffer_uptodate(bh);
2408 } else if ((checked || buffer_dirty(bh)) &&
2409 (!buffer_mapped(bh) || (buffer_mapped(bh)
2410 && bh->b_blocknr ==
2411 0))) {
2412 /* not mapped yet, or it points to a direct item, search
2413 * the btree for the mapping info, and log any direct
2414 * items found
2415 */
2416 if ((error = map_block_for_writepage(inode, bh, block))) {
2417 goto fail;
2418 }
2419 }
2420 bh = bh->b_this_page;
2421 block++;
2422 } while (bh != head);
2423
2424 /*
2425 * we start the transaction after map_block_for_writepage,
2426 * because it can create holes in the file (an unbounded operation).
2427 * starting it here, we can make a reliable estimate for how many
2428 * blocks we're going to log
2429 */
2430 if (checked) {
2431 ClearPageChecked(page);
2432 reiserfs_write_lock(s);
2433 error = journal_begin(&th, s, bh_per_page + 1);
2434 if (error) {
2435 reiserfs_write_unlock(s);
2436 goto fail;
2437 }
2438 reiserfs_update_inode_transaction(inode);
2439 }
2440 /* now go through and lock any dirty buffers on the page */
2441 do {
2442 get_bh(bh);
2443 if (!buffer_mapped(bh))
2444 continue;
2445 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2446 continue;
2447
2448 if (checked) {
2449 reiserfs_prepare_for_journal(s, bh, 1);
2450 journal_mark_dirty(&th, s, bh);
2451 continue;
2452 }
2453 /* from this point on, we know the buffer is mapped to a
2454 * real block and not a direct item
2455 */
2456 if (wbc->sync_mode != WB_SYNC_NONE) {
2457 lock_buffer(bh);
2458 } else {
2459 if (!trylock_buffer(bh)) {
2460 redirty_page_for_writepage(wbc, page);
2461 continue;
2462 }
2463 }
2464 if (test_clear_buffer_dirty(bh)) {
2465 mark_buffer_async_write(bh);
2466 } else {
2467 unlock_buffer(bh);
2468 }
2469 } while ((bh = bh->b_this_page) != head);
2470
2471 if (checked) {
2472 error = journal_end(&th, s, bh_per_page + 1);
2473 reiserfs_write_unlock(s);
2474 if (error)
2475 goto fail;
2476 }
2477 BUG_ON(PageWriteback(page));
2478 set_page_writeback(page);
2479 unlock_page(page);
2480
2481 /*
2482 * since any buffer might be the only dirty buffer on the page,
2483 * the first submit_bh can bring the page out of writeback.
2484 * be careful with the buffers.
2485 */
2486 do {
2487 struct buffer_head *next = bh->b_this_page;
2488 if (buffer_async_write(bh)) {
2489 submit_bh(WRITE, bh);
2490 nr++;
2491 }
2492 put_bh(bh);
2493 bh = next;
2494 } while (bh != head);
2495
2496 error = 0;
2497 done:
2498 if (nr == 0) {
2499 /*
2500 * if this page only had a direct item, it is very possible for
2501 * no io to be required without there being an error. Or,
2502 * someone else could have locked them and sent them down the
2503 * pipe without locking the page
2504 */
2505 bh = head;
2506 do {
2507 if (!buffer_uptodate(bh)) {
2508 partial = 1;
2509 break;
2510 }
2511 bh = bh->b_this_page;
2512 } while (bh != head);
2513 if (!partial)
2514 SetPageUptodate(page);
2515 end_page_writeback(page);
2516 }
2517 return error;
2518
2519 fail:
2520 /* catches various errors, we need to make sure any valid dirty blocks
2521 * get to the media. The page is currently locked and not marked for
2522 * writeback
2523 */
2524 ClearPageUptodate(page);
2525 bh = head;
2526 do {
2527 get_bh(bh);
2528 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2529 lock_buffer(bh);
2530 mark_buffer_async_write(bh);
2531 } else {
2532 /*
2533 * clear any dirty bits that might have come from getting
2534 * attached to a dirty page
2535 */
2536 clear_buffer_dirty(bh);
2537 }
2538 bh = bh->b_this_page;
2539 } while (bh != head);
2540 SetPageError(page);
2541 BUG_ON(PageWriteback(page));
2542 set_page_writeback(page);
2543 unlock_page(page);
2544 do {
2545 struct buffer_head *next = bh->b_this_page;
2546 if (buffer_async_write(bh)) {
2547 clear_buffer_dirty(bh);
2548 submit_bh(WRITE, bh);
2549 nr++;
2550 }
2551 put_bh(bh);
2552 bh = next;
2553 } while (bh != head);
2554 goto done;
2555 }
2556
reiserfs_readpage(struct file * f,struct page * page)2557 static int reiserfs_readpage(struct file *f, struct page *page)
2558 {
2559 return block_read_full_page(page, reiserfs_get_block);
2560 }
2561
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2562 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2563 {
2564 struct inode *inode = page->mapping->host;
2565 reiserfs_wait_on_write_block(inode->i_sb);
2566 return reiserfs_write_full_page(page, wbc);
2567 }
2568
reiserfs_truncate_failed_write(struct inode * inode)2569 static void reiserfs_truncate_failed_write(struct inode *inode)
2570 {
2571 truncate_inode_pages(inode->i_mapping, inode->i_size);
2572 reiserfs_truncate_file(inode, 0);
2573 }
2574
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2575 static int reiserfs_write_begin(struct file *file,
2576 struct address_space *mapping,
2577 loff_t pos, unsigned len, unsigned flags,
2578 struct page **pagep, void **fsdata)
2579 {
2580 struct inode *inode;
2581 struct page *page;
2582 pgoff_t index;
2583 int ret;
2584 int old_ref = 0;
2585
2586 inode = mapping->host;
2587 *fsdata = 0;
2588 if (flags & AOP_FLAG_CONT_EXPAND &&
2589 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2590 pos ++;
2591 *fsdata = (void *)(unsigned long)flags;
2592 }
2593
2594 index = pos >> PAGE_CACHE_SHIFT;
2595 page = grab_cache_page_write_begin(mapping, index, flags);
2596 if (!page)
2597 return -ENOMEM;
2598 *pagep = page;
2599
2600 reiserfs_wait_on_write_block(inode->i_sb);
2601 fix_tail_page_for_writing(page);
2602 if (reiserfs_transaction_running(inode->i_sb)) {
2603 struct reiserfs_transaction_handle *th;
2604 th = (struct reiserfs_transaction_handle *)current->
2605 journal_info;
2606 BUG_ON(!th->t_refcount);
2607 BUG_ON(!th->t_trans_id);
2608 old_ref = th->t_refcount;
2609 th->t_refcount++;
2610 }
2611 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2612 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2613 struct reiserfs_transaction_handle *th = current->journal_info;
2614 /* this gets a little ugly. If reiserfs_get_block returned an
2615 * error and left a transacstion running, we've got to close it,
2616 * and we've got to free handle if it was a persistent transaction.
2617 *
2618 * But, if we had nested into an existing transaction, we need
2619 * to just drop the ref count on the handle.
2620 *
2621 * If old_ref == 0, the transaction is from reiserfs_get_block,
2622 * and it was a persistent trans. Otherwise, it was nested above.
2623 */
2624 if (th->t_refcount > old_ref) {
2625 if (old_ref)
2626 th->t_refcount--;
2627 else {
2628 int err;
2629 reiserfs_write_lock(inode->i_sb);
2630 err = reiserfs_end_persistent_transaction(th);
2631 reiserfs_write_unlock(inode->i_sb);
2632 if (err)
2633 ret = err;
2634 }
2635 }
2636 }
2637 if (ret) {
2638 unlock_page(page);
2639 page_cache_release(page);
2640 /* Truncate allocated blocks */
2641 reiserfs_truncate_failed_write(inode);
2642 }
2643 return ret;
2644 }
2645
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2646 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2647 {
2648 struct inode *inode = page->mapping->host;
2649 int ret;
2650 int old_ref = 0;
2651
2652 reiserfs_write_unlock(inode->i_sb);
2653 reiserfs_wait_on_write_block(inode->i_sb);
2654 reiserfs_write_lock(inode->i_sb);
2655
2656 fix_tail_page_for_writing(page);
2657 if (reiserfs_transaction_running(inode->i_sb)) {
2658 struct reiserfs_transaction_handle *th;
2659 th = (struct reiserfs_transaction_handle *)current->
2660 journal_info;
2661 BUG_ON(!th->t_refcount);
2662 BUG_ON(!th->t_trans_id);
2663 old_ref = th->t_refcount;
2664 th->t_refcount++;
2665 }
2666
2667 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2668 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2669 struct reiserfs_transaction_handle *th = current->journal_info;
2670 /* this gets a little ugly. If reiserfs_get_block returned an
2671 * error and left a transacstion running, we've got to close it,
2672 * and we've got to free handle if it was a persistent transaction.
2673 *
2674 * But, if we had nested into an existing transaction, we need
2675 * to just drop the ref count on the handle.
2676 *
2677 * If old_ref == 0, the transaction is from reiserfs_get_block,
2678 * and it was a persistent trans. Otherwise, it was nested above.
2679 */
2680 if (th->t_refcount > old_ref) {
2681 if (old_ref)
2682 th->t_refcount--;
2683 else {
2684 int err;
2685 reiserfs_write_lock(inode->i_sb);
2686 err = reiserfs_end_persistent_transaction(th);
2687 reiserfs_write_unlock(inode->i_sb);
2688 if (err)
2689 ret = err;
2690 }
2691 }
2692 }
2693 return ret;
2694
2695 }
2696
reiserfs_aop_bmap(struct address_space * as,sector_t block)2697 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2698 {
2699 return generic_block_bmap(as, block, reiserfs_bmap);
2700 }
2701
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2702 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2703 loff_t pos, unsigned len, unsigned copied,
2704 struct page *page, void *fsdata)
2705 {
2706 struct inode *inode = page->mapping->host;
2707 int ret = 0;
2708 int update_sd = 0;
2709 struct reiserfs_transaction_handle *th;
2710 unsigned start;
2711 int lock_depth = 0;
2712 bool locked = false;
2713
2714 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2715 pos ++;
2716
2717 reiserfs_wait_on_write_block(inode->i_sb);
2718 if (reiserfs_transaction_running(inode->i_sb))
2719 th = current->journal_info;
2720 else
2721 th = NULL;
2722
2723 start = pos & (PAGE_CACHE_SIZE - 1);
2724 if (unlikely(copied < len)) {
2725 if (!PageUptodate(page))
2726 copied = 0;
2727
2728 page_zero_new_buffers(page, start + copied, start + len);
2729 }
2730 flush_dcache_page(page);
2731
2732 reiserfs_commit_page(inode, page, start, start + copied);
2733
2734 /* generic_commit_write does this for us, but does not update the
2735 ** transaction tracking stuff when the size changes. So, we have
2736 ** to do the i_size updates here.
2737 */
2738 if (pos + copied > inode->i_size) {
2739 struct reiserfs_transaction_handle myth;
2740 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2741 locked = true;
2742 /* If the file have grown beyond the border where it
2743 can have a tail, unmark it as needing a tail
2744 packing */
2745 if ((have_large_tails(inode->i_sb)
2746 && inode->i_size > i_block_size(inode) * 4)
2747 || (have_small_tails(inode->i_sb)
2748 && inode->i_size > i_block_size(inode)))
2749 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2750
2751 ret = journal_begin(&myth, inode->i_sb, 1);
2752 if (ret)
2753 goto journal_error;
2754
2755 reiserfs_update_inode_transaction(inode);
2756 inode->i_size = pos + copied;
2757 /*
2758 * this will just nest into our transaction. It's important
2759 * to use mark_inode_dirty so the inode gets pushed around on the
2760 * dirty lists, and so that O_SYNC works as expected
2761 */
2762 mark_inode_dirty(inode);
2763 reiserfs_update_sd(&myth, inode);
2764 update_sd = 1;
2765 ret = journal_end(&myth, inode->i_sb, 1);
2766 if (ret)
2767 goto journal_error;
2768 }
2769 if (th) {
2770 if (!locked) {
2771 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2772 locked = true;
2773 }
2774 if (!update_sd)
2775 mark_inode_dirty(inode);
2776 ret = reiserfs_end_persistent_transaction(th);
2777 if (ret)
2778 goto out;
2779 }
2780
2781 out:
2782 if (locked)
2783 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2784 unlock_page(page);
2785 page_cache_release(page);
2786
2787 if (pos + len > inode->i_size)
2788 reiserfs_truncate_failed_write(inode);
2789
2790 return ret == 0 ? copied : ret;
2791
2792 journal_error:
2793 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2794 locked = false;
2795 if (th) {
2796 if (!update_sd)
2797 reiserfs_update_sd(th, inode);
2798 ret = reiserfs_end_persistent_transaction(th);
2799 }
2800 goto out;
2801 }
2802
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2803 int reiserfs_commit_write(struct file *f, struct page *page,
2804 unsigned from, unsigned to)
2805 {
2806 struct inode *inode = page->mapping->host;
2807 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2808 int ret = 0;
2809 int update_sd = 0;
2810 struct reiserfs_transaction_handle *th = NULL;
2811
2812 reiserfs_write_unlock(inode->i_sb);
2813 reiserfs_wait_on_write_block(inode->i_sb);
2814 reiserfs_write_lock(inode->i_sb);
2815
2816 if (reiserfs_transaction_running(inode->i_sb)) {
2817 th = current->journal_info;
2818 }
2819 reiserfs_commit_page(inode, page, from, to);
2820
2821 /* generic_commit_write does this for us, but does not update the
2822 ** transaction tracking stuff when the size changes. So, we have
2823 ** to do the i_size updates here.
2824 */
2825 if (pos > inode->i_size) {
2826 struct reiserfs_transaction_handle myth;
2827 /* If the file have grown beyond the border where it
2828 can have a tail, unmark it as needing a tail
2829 packing */
2830 if ((have_large_tails(inode->i_sb)
2831 && inode->i_size > i_block_size(inode) * 4)
2832 || (have_small_tails(inode->i_sb)
2833 && inode->i_size > i_block_size(inode)))
2834 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2835
2836 ret = journal_begin(&myth, inode->i_sb, 1);
2837 if (ret)
2838 goto journal_error;
2839
2840 reiserfs_update_inode_transaction(inode);
2841 inode->i_size = pos;
2842 /*
2843 * this will just nest into our transaction. It's important
2844 * to use mark_inode_dirty so the inode gets pushed around on the
2845 * dirty lists, and so that O_SYNC works as expected
2846 */
2847 mark_inode_dirty(inode);
2848 reiserfs_update_sd(&myth, inode);
2849 update_sd = 1;
2850 ret = journal_end(&myth, inode->i_sb, 1);
2851 if (ret)
2852 goto journal_error;
2853 }
2854 if (th) {
2855 if (!update_sd)
2856 mark_inode_dirty(inode);
2857 ret = reiserfs_end_persistent_transaction(th);
2858 if (ret)
2859 goto out;
2860 }
2861
2862 out:
2863 return ret;
2864
2865 journal_error:
2866 if (th) {
2867 if (!update_sd)
2868 reiserfs_update_sd(th, inode);
2869 ret = reiserfs_end_persistent_transaction(th);
2870 }
2871
2872 return ret;
2873 }
2874
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)2875 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2876 {
2877 if (reiserfs_attrs(inode->i_sb)) {
2878 if (sd_attrs & REISERFS_SYNC_FL)
2879 inode->i_flags |= S_SYNC;
2880 else
2881 inode->i_flags &= ~S_SYNC;
2882 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2883 inode->i_flags |= S_IMMUTABLE;
2884 else
2885 inode->i_flags &= ~S_IMMUTABLE;
2886 if (sd_attrs & REISERFS_APPEND_FL)
2887 inode->i_flags |= S_APPEND;
2888 else
2889 inode->i_flags &= ~S_APPEND;
2890 if (sd_attrs & REISERFS_NOATIME_FL)
2891 inode->i_flags |= S_NOATIME;
2892 else
2893 inode->i_flags &= ~S_NOATIME;
2894 if (sd_attrs & REISERFS_NOTAIL_FL)
2895 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2896 else
2897 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2898 }
2899 }
2900
i_attrs_to_sd_attrs(struct inode * inode,__u16 * sd_attrs)2901 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2902 {
2903 if (reiserfs_attrs(inode->i_sb)) {
2904 if (inode->i_flags & S_IMMUTABLE)
2905 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2906 else
2907 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2908 if (inode->i_flags & S_SYNC)
2909 *sd_attrs |= REISERFS_SYNC_FL;
2910 else
2911 *sd_attrs &= ~REISERFS_SYNC_FL;
2912 if (inode->i_flags & S_NOATIME)
2913 *sd_attrs |= REISERFS_NOATIME_FL;
2914 else
2915 *sd_attrs &= ~REISERFS_NOATIME_FL;
2916 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2917 *sd_attrs |= REISERFS_NOTAIL_FL;
2918 else
2919 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2920 }
2921 }
2922
2923 /* decide if this buffer needs to stay around for data logging or ordered
2924 ** write purposes
2925 */
invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)2926 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2927 {
2928 int ret = 1;
2929 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2930
2931 lock_buffer(bh);
2932 spin_lock(&j->j_dirty_buffers_lock);
2933 if (!buffer_mapped(bh)) {
2934 goto free_jh;
2935 }
2936 /* the page is locked, and the only places that log a data buffer
2937 * also lock the page.
2938 */
2939 if (reiserfs_file_data_log(inode)) {
2940 /*
2941 * very conservative, leave the buffer pinned if
2942 * anyone might need it.
2943 */
2944 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2945 ret = 0;
2946 }
2947 } else if (buffer_dirty(bh)) {
2948 struct reiserfs_journal_list *jl;
2949 struct reiserfs_jh *jh = bh->b_private;
2950
2951 /* why is this safe?
2952 * reiserfs_setattr updates i_size in the on disk
2953 * stat data before allowing vmtruncate to be called.
2954 *
2955 * If buffer was put onto the ordered list for this
2956 * transaction, we know for sure either this transaction
2957 * or an older one already has updated i_size on disk,
2958 * and this ordered data won't be referenced in the file
2959 * if we crash.
2960 *
2961 * if the buffer was put onto the ordered list for an older
2962 * transaction, we need to leave it around
2963 */
2964 if (jh && (jl = jh->jl)
2965 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2966 ret = 0;
2967 }
2968 free_jh:
2969 if (ret && bh->b_private) {
2970 reiserfs_free_jh(bh);
2971 }
2972 spin_unlock(&j->j_dirty_buffers_lock);
2973 unlock_buffer(bh);
2974 return ret;
2975 }
2976
2977 /* clm -- taken from fs/buffer.c:block_invalidate_page */
reiserfs_invalidatepage(struct page * page,unsigned long offset)2978 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2979 {
2980 struct buffer_head *head, *bh, *next;
2981 struct inode *inode = page->mapping->host;
2982 unsigned int curr_off = 0;
2983 int ret = 1;
2984
2985 BUG_ON(!PageLocked(page));
2986
2987 if (offset == 0)
2988 ClearPageChecked(page);
2989
2990 if (!page_has_buffers(page))
2991 goto out;
2992
2993 head = page_buffers(page);
2994 bh = head;
2995 do {
2996 unsigned int next_off = curr_off + bh->b_size;
2997 next = bh->b_this_page;
2998
2999 /*
3000 * is this block fully invalidated?
3001 */
3002 if (offset <= curr_off) {
3003 if (invalidatepage_can_drop(inode, bh))
3004 reiserfs_unmap_buffer(bh);
3005 else
3006 ret = 0;
3007 }
3008 curr_off = next_off;
3009 bh = next;
3010 } while (bh != head);
3011
3012 /*
3013 * We release buffers only if the entire page is being invalidated.
3014 * The get_block cached value has been unconditionally invalidated,
3015 * so real IO is not possible anymore.
3016 */
3017 if (!offset && ret) {
3018 ret = try_to_release_page(page, 0);
3019 /* maybe should BUG_ON(!ret); - neilb */
3020 }
3021 out:
3022 return;
3023 }
3024
reiserfs_set_page_dirty(struct page * page)3025 static int reiserfs_set_page_dirty(struct page *page)
3026 {
3027 struct inode *inode = page->mapping->host;
3028 if (reiserfs_file_data_log(inode)) {
3029 SetPageChecked(page);
3030 return __set_page_dirty_nobuffers(page);
3031 }
3032 return __set_page_dirty_buffers(page);
3033 }
3034
3035 /*
3036 * Returns 1 if the page's buffers were dropped. The page is locked.
3037 *
3038 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3039 * in the buffers at page_buffers(page).
3040 *
3041 * even in -o notail mode, we can't be sure an old mount without -o notail
3042 * didn't create files with tails.
3043 */
reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3044 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3045 {
3046 struct inode *inode = page->mapping->host;
3047 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3048 struct buffer_head *head;
3049 struct buffer_head *bh;
3050 int ret = 1;
3051
3052 WARN_ON(PageChecked(page));
3053 spin_lock(&j->j_dirty_buffers_lock);
3054 head = page_buffers(page);
3055 bh = head;
3056 do {
3057 if (bh->b_private) {
3058 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3059 reiserfs_free_jh(bh);
3060 } else {
3061 ret = 0;
3062 break;
3063 }
3064 }
3065 bh = bh->b_this_page;
3066 } while (bh != head);
3067 if (ret)
3068 ret = try_to_free_buffers(page);
3069 spin_unlock(&j->j_dirty_buffers_lock);
3070 return ret;
3071 }
3072
3073 /* We thank Mingming Cao for helping us understand in great detail what
3074 to do in this section of the code. */
reiserfs_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3075 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3076 const struct iovec *iov, loff_t offset,
3077 unsigned long nr_segs)
3078 {
3079 struct file *file = iocb->ki_filp;
3080 struct inode *inode = file->f_mapping->host;
3081 ssize_t ret;
3082
3083 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3084 reiserfs_get_blocks_direct_io);
3085
3086 /*
3087 * In case of error extending write may have instantiated a few
3088 * blocks outside i_size. Trim these off again.
3089 */
3090 if (unlikely((rw & WRITE) && ret < 0)) {
3091 loff_t isize = i_size_read(inode);
3092 loff_t end = offset + iov_length(iov, nr_segs);
3093
3094 if (end > isize)
3095 vmtruncate(inode, isize);
3096 }
3097
3098 return ret;
3099 }
3100
reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3101 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3102 {
3103 struct inode *inode = dentry->d_inode;
3104 unsigned int ia_valid;
3105 int depth;
3106 int error;
3107
3108 error = inode_change_ok(inode, attr);
3109 if (error)
3110 return error;
3111
3112 /* must be turned off for recursive notify_change calls */
3113 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3114
3115 if (is_quota_modification(inode, attr))
3116 dquot_initialize(inode);
3117 depth = reiserfs_write_lock_once(inode->i_sb);
3118 if (attr->ia_valid & ATTR_SIZE) {
3119 /* version 2 items will be caught by the s_maxbytes check
3120 ** done for us in vmtruncate
3121 */
3122 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3123 attr->ia_size > MAX_NON_LFS) {
3124 error = -EFBIG;
3125 goto out;
3126 }
3127
3128 inode_dio_wait(inode);
3129
3130 /* fill in hole pointers in the expanding truncate case. */
3131 if (attr->ia_size > inode->i_size) {
3132 error = generic_cont_expand_simple(inode, attr->ia_size);
3133 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3134 int err;
3135 struct reiserfs_transaction_handle th;
3136 /* we're changing at most 2 bitmaps, inode + super */
3137 err = journal_begin(&th, inode->i_sb, 4);
3138 if (!err) {
3139 reiserfs_discard_prealloc(&th, inode);
3140 err = journal_end(&th, inode->i_sb, 4);
3141 }
3142 if (err)
3143 error = err;
3144 }
3145 if (error)
3146 goto out;
3147 /*
3148 * file size is changed, ctime and mtime are
3149 * to be updated
3150 */
3151 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3152 }
3153 }
3154
3155 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3156 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3157 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3158 /* stat data of format v3.5 has 16 bit uid and gid */
3159 error = -EINVAL;
3160 goto out;
3161 }
3162
3163 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3164 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3165 struct reiserfs_transaction_handle th;
3166 int jbegin_count =
3167 2 *
3168 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3169 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3170 2;
3171
3172 error = reiserfs_chown_xattrs(inode, attr);
3173
3174 if (error)
3175 return error;
3176
3177 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3178 error = journal_begin(&th, inode->i_sb, jbegin_count);
3179 if (error)
3180 goto out;
3181 reiserfs_write_unlock_once(inode->i_sb, depth);
3182 error = dquot_transfer(inode, attr);
3183 depth = reiserfs_write_lock_once(inode->i_sb);
3184 if (error) {
3185 journal_end(&th, inode->i_sb, jbegin_count);
3186 goto out;
3187 }
3188
3189 /* Update corresponding info in inode so that everything is in
3190 * one transaction */
3191 if (attr->ia_valid & ATTR_UID)
3192 inode->i_uid = attr->ia_uid;
3193 if (attr->ia_valid & ATTR_GID)
3194 inode->i_gid = attr->ia_gid;
3195 mark_inode_dirty(inode);
3196 error = journal_end(&th, inode->i_sb, jbegin_count);
3197 if (error)
3198 goto out;
3199 }
3200
3201 /*
3202 * Relax the lock here, as it might truncate the
3203 * inode pages and wait for inode pages locks.
3204 * To release such page lock, the owner needs the
3205 * reiserfs lock
3206 */
3207 reiserfs_write_unlock_once(inode->i_sb, depth);
3208 if ((attr->ia_valid & ATTR_SIZE) &&
3209 attr->ia_size != i_size_read(inode))
3210 error = vmtruncate(inode, attr->ia_size);
3211
3212 if (!error) {
3213 setattr_copy(inode, attr);
3214 mark_inode_dirty(inode);
3215 }
3216 depth = reiserfs_write_lock_once(inode->i_sb);
3217
3218 if (!error && reiserfs_posixacl(inode->i_sb)) {
3219 if (attr->ia_valid & ATTR_MODE)
3220 error = reiserfs_acl_chmod(inode);
3221 }
3222
3223 out:
3224 reiserfs_write_unlock_once(inode->i_sb, depth);
3225
3226 return error;
3227 }
3228
3229 const struct address_space_operations reiserfs_address_space_operations = {
3230 .writepage = reiserfs_writepage,
3231 .readpage = reiserfs_readpage,
3232 .readpages = reiserfs_readpages,
3233 .releasepage = reiserfs_releasepage,
3234 .invalidatepage = reiserfs_invalidatepage,
3235 .write_begin = reiserfs_write_begin,
3236 .write_end = reiserfs_write_end,
3237 .bmap = reiserfs_aop_bmap,
3238 .direct_IO = reiserfs_direct_IO,
3239 .set_page_dirty = reiserfs_set_page_dirty,
3240 };
3241