1 /**
2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2007 Anton Altaparmakov
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43
44 /**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
48 *
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
51 *
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
54 *
55 * Return 1 if the attributes match and 0 if not.
56 *
57 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
58 * allowed to sleep.
59 */
ntfs_test_inode(struct inode * vi,ntfs_attr * na)60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 ntfs_inode *ni;
63
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
81 }
82 /* Match! */
83 return 1;
84 }
85
86 /**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
90 *
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
93 *
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
98 *
99 * Return 0 on success and -errno on error.
100 *
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103 */
ntfs_init_locked_inode(struct inode * vi,ntfs_attr * na)104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 ntfs_inode *ni = NTFS_I(vi);
107
108 vi->i_ino = na->mft_no;
109
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
113
114 ni->name = na->name;
115 ni->name_len = na->name_len;
116
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
122 }
123
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
126
127 /*
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
133 */
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
136
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
144 }
145 return 0;
146 }
147
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
153
154 /**
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
158 *
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
161 *
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
166 *
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
169 */
ntfs_iget(struct super_block * sb,unsigned long mft_no)170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
175
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
180
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
185
186 err = 0;
187
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
192 }
193 /*
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
196 */
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
200 }
201 return vi;
202 }
203
204 /**
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
210 *
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
214 *
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
219 *
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222 *
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
226 */
ntfs_attr_iget(struct inode * base_vi,ATTR_TYPE type,ntfschar * name,u32 name_len)227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
229 {
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
233
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
236
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
241
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
246
247 err = 0;
248
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
253 }
254 /*
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
258 */
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
262 }
263 return vi;
264 }
265
266 /**
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
271 *
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
275 *
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
280 *
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
284 */
ntfs_index_iget(struct inode * base_vi,ntfschar * name,u32 name_len)285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
287 {
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
291
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
296
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
301
302 err = 0;
303
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
308 }
309 /*
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
313 */
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
317 }
318 return vi;
319 }
320
ntfs_alloc_big_inode(struct super_block * sb)321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 ntfs_inode *ni;
324
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
330 }
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
333 }
334
ntfs_i_callback(struct rcu_head * head)335 static void ntfs_i_callback(struct rcu_head *head)
336 {
337 struct inode *inode = container_of(head, struct inode, i_rcu);
338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339 }
340
ntfs_destroy_big_inode(struct inode * inode)341 void ntfs_destroy_big_inode(struct inode *inode)
342 {
343 ntfs_inode *ni = NTFS_I(inode);
344
345 ntfs_debug("Entering.");
346 BUG_ON(ni->page);
347 if (!atomic_dec_and_test(&ni->count))
348 BUG();
349 call_rcu(&inode->i_rcu, ntfs_i_callback);
350 }
351
ntfs_alloc_extent_inode(void)352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353 {
354 ntfs_inode *ni;
355
356 ntfs_debug("Entering.");
357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 if (likely(ni != NULL)) {
359 ni->state = 0;
360 return ni;
361 }
362 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 return NULL;
364 }
365
ntfs_destroy_extent_inode(ntfs_inode * ni)366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367 {
368 ntfs_debug("Entering.");
369 BUG_ON(ni->page);
370 if (!atomic_dec_and_test(&ni->count))
371 BUG();
372 kmem_cache_free(ntfs_inode_cache, ni);
373 }
374
375 /*
376 * The attribute runlist lock has separate locking rules from the
377 * normal runlist lock, so split the two lock-classes:
378 */
379 static struct lock_class_key attr_list_rl_lock_class;
380
381 /**
382 * __ntfs_init_inode - initialize ntfs specific part of an inode
383 * @sb: super block of mounted volume
384 * @ni: freshly allocated ntfs inode which to initialize
385 *
386 * Initialize an ntfs inode to defaults.
387 *
388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389 * untouched. Make sure to initialize them elsewhere.
390 *
391 * Return zero on success and -ENOMEM on error.
392 */
__ntfs_init_inode(struct super_block * sb,ntfs_inode * ni)393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394 {
395 ntfs_debug("Entering.");
396 rwlock_init(&ni->size_lock);
397 ni->initialized_size = ni->allocated_size = 0;
398 ni->seq_no = 0;
399 atomic_set(&ni->count, 1);
400 ni->vol = NTFS_SB(sb);
401 ntfs_init_runlist(&ni->runlist);
402 mutex_init(&ni->mrec_lock);
403 ni->page = NULL;
404 ni->page_ofs = 0;
405 ni->attr_list_size = 0;
406 ni->attr_list = NULL;
407 ntfs_init_runlist(&ni->attr_list_rl);
408 lockdep_set_class(&ni->attr_list_rl.lock,
409 &attr_list_rl_lock_class);
410 ni->itype.index.block_size = 0;
411 ni->itype.index.vcn_size = 0;
412 ni->itype.index.collation_rule = 0;
413 ni->itype.index.block_size_bits = 0;
414 ni->itype.index.vcn_size_bits = 0;
415 mutex_init(&ni->extent_lock);
416 ni->nr_extents = 0;
417 ni->ext.base_ntfs_ino = NULL;
418 }
419
420 /*
421 * Extent inodes get MFT-mapped in a nested way, while the base inode
422 * is still mapped. Teach this nesting to the lock validator by creating
423 * a separate class for nested inode's mrec_lock's:
424 */
425 static struct lock_class_key extent_inode_mrec_lock_key;
426
ntfs_new_extent_inode(struct super_block * sb,unsigned long mft_no)427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 unsigned long mft_no)
429 {
430 ntfs_inode *ni = ntfs_alloc_extent_inode();
431
432 ntfs_debug("Entering.");
433 if (likely(ni != NULL)) {
434 __ntfs_init_inode(sb, ni);
435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 ni->mft_no = mft_no;
437 ni->type = AT_UNUSED;
438 ni->name = NULL;
439 ni->name_len = 0;
440 }
441 return ni;
442 }
443
444 /**
445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446 * @ctx: initialized attribute search context
447 *
448 * Search all file name attributes in the inode described by the attribute
449 * search context @ctx and check if any of the names are in the $Extend system
450 * directory.
451 *
452 * Return values:
453 * 1: file is in $Extend directory
454 * 0: file is not in $Extend directory
455 * -errno: failed to determine if the file is in the $Extend directory
456 */
ntfs_is_extended_system_file(ntfs_attr_search_ctx * ctx)457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458 {
459 int nr_links, err;
460
461 /* Restart search. */
462 ntfs_attr_reinit_search_ctx(ctx);
463
464 /* Get number of hard links. */
465 nr_links = le16_to_cpu(ctx->mrec->link_count);
466
467 /* Loop through all hard links. */
468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 ctx))) {
470 FILE_NAME_ATTR *file_name_attr;
471 ATTR_RECORD *attr = ctx->attr;
472 u8 *p, *p2;
473
474 nr_links--;
475 /*
476 * Maximum sanity checking as we are called on an inode that
477 * we suspect might be corrupt.
478 */
479 p = (u8*)attr + le32_to_cpu(attr->length);
480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 "attribute. You should run chkdsk.");
485 return -EIO;
486 }
487 if (attr->non_resident) {
488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 "name. You should run chkdsk.");
490 return -EIO;
491 }
492 if (attr->flags) {
493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 "invalid flags. You should run "
495 "chkdsk.");
496 return -EIO;
497 }
498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 "name. You should run chkdsk.");
501 return -EIO;
502 }
503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 le16_to_cpu(attr->data.resident.value_offset));
505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
506 if (p2 < (u8*)attr || p2 > p)
507 goto err_corrupt_attr;
508 /* This attribute is ok, but is it in the $Extend directory? */
509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 return 1; /* YES, it's an extended system file. */
511 }
512 if (unlikely(err != -ENOENT))
513 return err;
514 if (unlikely(nr_links)) {
515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 "doesn't match number of name attributes. You "
517 "should run chkdsk.");
518 return -EIO;
519 }
520 return 0; /* NO, it is not an extended system file. */
521 }
522
523 /**
524 * ntfs_read_locked_inode - read an inode from its device
525 * @vi: inode to read
526 *
527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528 * described by @vi into memory from the device.
529 *
530 * The only fields in @vi that we need to/can look at when the function is
531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
532 * the number of the inode to load.
533 *
534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535 * for reading and sets up the necessary @vi fields as well as initializing
536 * the ntfs inode.
537 *
538 * Q: What locks are held when the function is called?
539 * A: i_state has I_NEW set, hence the inode is locked, also
540 * i_count is set to 1, so it is not going to go away
541 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
542 * is allowed to write to them. We should of course be honouring them but
543 * we need to do that using the IS_* macros defined in include/linux/fs.h.
544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545 *
546 * Return 0 on success and -errno on error. In the error case, the inode will
547 * have had make_bad_inode() executed on it.
548 */
ntfs_read_locked_inode(struct inode * vi)549 static int ntfs_read_locked_inode(struct inode *vi)
550 {
551 ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 ntfs_inode *ni;
553 struct inode *bvi;
554 MFT_RECORD *m;
555 ATTR_RECORD *a;
556 STANDARD_INFORMATION *si;
557 ntfs_attr_search_ctx *ctx;
558 int err = 0;
559
560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561
562 /* Setup the generic vfs inode parts now. */
563
564 /*
565 * This is for checking whether an inode has changed w.r.t. a file so
566 * that the file can be updated if necessary (compare with f_version).
567 */
568 vi->i_version = 1;
569
570 vi->i_uid = vol->uid;
571 vi->i_gid = vol->gid;
572 vi->i_mode = 0;
573
574 /*
575 * Initialize the ntfs specific part of @vi special casing
576 * FILE_MFT which we need to do at mount time.
577 */
578 if (vi->i_ino != FILE_MFT)
579 ntfs_init_big_inode(vi);
580 ni = NTFS_I(vi);
581
582 m = map_mft_record(ni);
583 if (IS_ERR(m)) {
584 err = PTR_ERR(m);
585 goto err_out;
586 }
587 ctx = ntfs_attr_get_search_ctx(ni, m);
588 if (!ctx) {
589 err = -ENOMEM;
590 goto unm_err_out;
591 }
592
593 if (!(m->flags & MFT_RECORD_IN_USE)) {
594 ntfs_error(vi->i_sb, "Inode is not in use!");
595 goto unm_err_out;
596 }
597 if (m->base_mft_record) {
598 ntfs_error(vi->i_sb, "Inode is an extent inode!");
599 goto unm_err_out;
600 }
601
602 /* Transfer information from mft record into vfs and ntfs inodes. */
603 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
604
605 /*
606 * FIXME: Keep in mind that link_count is two for files which have both
607 * a long file name and a short file name as separate entries, so if
608 * we are hiding short file names this will be too high. Either we need
609 * to account for the short file names by subtracting them or we need
610 * to make sure we delete files even though i_nlink is not zero which
611 * might be tricky due to vfs interactions. Need to think about this
612 * some more when implementing the unlink command.
613 */
614 set_nlink(vi, le16_to_cpu(m->link_count));
615 /*
616 * FIXME: Reparse points can have the directory bit set even though
617 * they would be S_IFLNK. Need to deal with this further below when we
618 * implement reparse points / symbolic links but it will do for now.
619 * Also if not a directory, it could be something else, rather than
620 * a regular file. But again, will do for now.
621 */
622 /* Everyone gets all permissions. */
623 vi->i_mode |= S_IRWXUGO;
624 /* If read-only, no one gets write permissions. */
625 if (IS_RDONLY(vi))
626 vi->i_mode &= ~S_IWUGO;
627 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
628 vi->i_mode |= S_IFDIR;
629 /*
630 * Apply the directory permissions mask set in the mount
631 * options.
632 */
633 vi->i_mode &= ~vol->dmask;
634 /* Things break without this kludge! */
635 if (vi->i_nlink > 1)
636 set_nlink(vi, 1);
637 } else {
638 vi->i_mode |= S_IFREG;
639 /* Apply the file permissions mask set in the mount options. */
640 vi->i_mode &= ~vol->fmask;
641 }
642 /*
643 * Find the standard information attribute in the mft record. At this
644 * stage we haven't setup the attribute list stuff yet, so this could
645 * in fact fail if the standard information is in an extent record, but
646 * I don't think this actually ever happens.
647 */
648 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
649 ctx);
650 if (unlikely(err)) {
651 if (err == -ENOENT) {
652 /*
653 * TODO: We should be performing a hot fix here (if the
654 * recover mount option is set) by creating a new
655 * attribute.
656 */
657 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
658 "is missing.");
659 }
660 goto unm_err_out;
661 }
662 a = ctx->attr;
663 /* Get the standard information attribute value. */
664 si = (STANDARD_INFORMATION*)((u8*)a +
665 le16_to_cpu(a->data.resident.value_offset));
666
667 /* Transfer information from the standard information into vi. */
668 /*
669 * Note: The i_?times do not quite map perfectly onto the NTFS times,
670 * but they are close enough, and in the end it doesn't really matter
671 * that much...
672 */
673 /*
674 * mtime is the last change of the data within the file. Not changed
675 * when only metadata is changed, e.g. a rename doesn't affect mtime.
676 */
677 vi->i_mtime = ntfs2utc(si->last_data_change_time);
678 /*
679 * ctime is the last change of the metadata of the file. This obviously
680 * always changes, when mtime is changed. ctime can be changed on its
681 * own, mtime is then not changed, e.g. when a file is renamed.
682 */
683 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
684 /*
685 * Last access to the data within the file. Not changed during a rename
686 * for example but changed whenever the file is written to.
687 */
688 vi->i_atime = ntfs2utc(si->last_access_time);
689
690 /* Find the attribute list attribute if present. */
691 ntfs_attr_reinit_search_ctx(ctx);
692 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
693 if (err) {
694 if (unlikely(err != -ENOENT)) {
695 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
696 "attribute.");
697 goto unm_err_out;
698 }
699 } else /* if (!err) */ {
700 if (vi->i_ino == FILE_MFT)
701 goto skip_attr_list_load;
702 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
703 NInoSetAttrList(ni);
704 a = ctx->attr;
705 if (a->flags & ATTR_COMPRESSION_MASK) {
706 ntfs_error(vi->i_sb, "Attribute list attribute is "
707 "compressed.");
708 goto unm_err_out;
709 }
710 if (a->flags & ATTR_IS_ENCRYPTED ||
711 a->flags & ATTR_IS_SPARSE) {
712 if (a->non_resident) {
713 ntfs_error(vi->i_sb, "Non-resident attribute "
714 "list attribute is encrypted/"
715 "sparse.");
716 goto unm_err_out;
717 }
718 ntfs_warning(vi->i_sb, "Resident attribute list "
719 "attribute in inode 0x%lx is marked "
720 "encrypted/sparse which is not true. "
721 "However, Windows allows this and "
722 "chkdsk does not detect or correct it "
723 "so we will just ignore the invalid "
724 "flags and pretend they are not set.",
725 vi->i_ino);
726 }
727 /* Now allocate memory for the attribute list. */
728 ni->attr_list_size = (u32)ntfs_attr_size(a);
729 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
730 if (!ni->attr_list) {
731 ntfs_error(vi->i_sb, "Not enough memory to allocate "
732 "buffer for attribute list.");
733 err = -ENOMEM;
734 goto unm_err_out;
735 }
736 if (a->non_resident) {
737 NInoSetAttrListNonResident(ni);
738 if (a->data.non_resident.lowest_vcn) {
739 ntfs_error(vi->i_sb, "Attribute list has non "
740 "zero lowest_vcn.");
741 goto unm_err_out;
742 }
743 /*
744 * Setup the runlist. No need for locking as we have
745 * exclusive access to the inode at this time.
746 */
747 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
748 a, NULL);
749 if (IS_ERR(ni->attr_list_rl.rl)) {
750 err = PTR_ERR(ni->attr_list_rl.rl);
751 ni->attr_list_rl.rl = NULL;
752 ntfs_error(vi->i_sb, "Mapping pairs "
753 "decompression failed.");
754 goto unm_err_out;
755 }
756 /* Now load the attribute list. */
757 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
758 ni->attr_list, ni->attr_list_size,
759 sle64_to_cpu(a->data.non_resident.
760 initialized_size)))) {
761 ntfs_error(vi->i_sb, "Failed to load "
762 "attribute list attribute.");
763 goto unm_err_out;
764 }
765 } else /* if (!a->non_resident) */ {
766 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
767 + le32_to_cpu(
768 a->data.resident.value_length) >
769 (u8*)ctx->mrec + vol->mft_record_size) {
770 ntfs_error(vi->i_sb, "Corrupt attribute list "
771 "in inode.");
772 goto unm_err_out;
773 }
774 /* Now copy the attribute list. */
775 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
776 a->data.resident.value_offset),
777 le32_to_cpu(
778 a->data.resident.value_length));
779 }
780 }
781 skip_attr_list_load:
782 /*
783 * If an attribute list is present we now have the attribute list value
784 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
785 */
786 if (S_ISDIR(vi->i_mode)) {
787 loff_t bvi_size;
788 ntfs_inode *bni;
789 INDEX_ROOT *ir;
790 u8 *ir_end, *index_end;
791
792 /* It is a directory, find index root attribute. */
793 ntfs_attr_reinit_search_ctx(ctx);
794 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
795 0, NULL, 0, ctx);
796 if (unlikely(err)) {
797 if (err == -ENOENT) {
798 // FIXME: File is corrupt! Hot-fix with empty
799 // index root attribute if recovery option is
800 // set.
801 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
802 "is missing.");
803 }
804 goto unm_err_out;
805 }
806 a = ctx->attr;
807 /* Set up the state. */
808 if (unlikely(a->non_resident)) {
809 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
810 "resident.");
811 goto unm_err_out;
812 }
813 /* Ensure the attribute name is placed before the value. */
814 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
815 le16_to_cpu(a->data.resident.value_offset)))) {
816 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
817 "placed after the attribute value.");
818 goto unm_err_out;
819 }
820 /*
821 * Compressed/encrypted index root just means that the newly
822 * created files in that directory should be created compressed/
823 * encrypted. However index root cannot be both compressed and
824 * encrypted.
825 */
826 if (a->flags & ATTR_COMPRESSION_MASK)
827 NInoSetCompressed(ni);
828 if (a->flags & ATTR_IS_ENCRYPTED) {
829 if (a->flags & ATTR_COMPRESSION_MASK) {
830 ntfs_error(vi->i_sb, "Found encrypted and "
831 "compressed attribute.");
832 goto unm_err_out;
833 }
834 NInoSetEncrypted(ni);
835 }
836 if (a->flags & ATTR_IS_SPARSE)
837 NInoSetSparse(ni);
838 ir = (INDEX_ROOT*)((u8*)a +
839 le16_to_cpu(a->data.resident.value_offset));
840 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
841 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
842 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
843 "corrupt.");
844 goto unm_err_out;
845 }
846 index_end = (u8*)&ir->index +
847 le32_to_cpu(ir->index.index_length);
848 if (index_end > ir_end) {
849 ntfs_error(vi->i_sb, "Directory index is corrupt.");
850 goto unm_err_out;
851 }
852 if (ir->type != AT_FILE_NAME) {
853 ntfs_error(vi->i_sb, "Indexed attribute is not "
854 "$FILE_NAME.");
855 goto unm_err_out;
856 }
857 if (ir->collation_rule != COLLATION_FILE_NAME) {
858 ntfs_error(vi->i_sb, "Index collation rule is not "
859 "COLLATION_FILE_NAME.");
860 goto unm_err_out;
861 }
862 ni->itype.index.collation_rule = ir->collation_rule;
863 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
864 if (ni->itype.index.block_size &
865 (ni->itype.index.block_size - 1)) {
866 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
867 "power of two.",
868 ni->itype.index.block_size);
869 goto unm_err_out;
870 }
871 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
872 ntfs_error(vi->i_sb, "Index block size (%u) > "
873 "PAGE_CACHE_SIZE (%ld) is not "
874 "supported. Sorry.",
875 ni->itype.index.block_size,
876 PAGE_CACHE_SIZE);
877 err = -EOPNOTSUPP;
878 goto unm_err_out;
879 }
880 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
881 ntfs_error(vi->i_sb, "Index block size (%u) < "
882 "NTFS_BLOCK_SIZE (%i) is not "
883 "supported. Sorry.",
884 ni->itype.index.block_size,
885 NTFS_BLOCK_SIZE);
886 err = -EOPNOTSUPP;
887 goto unm_err_out;
888 }
889 ni->itype.index.block_size_bits =
890 ffs(ni->itype.index.block_size) - 1;
891 /* Determine the size of a vcn in the directory index. */
892 if (vol->cluster_size <= ni->itype.index.block_size) {
893 ni->itype.index.vcn_size = vol->cluster_size;
894 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
895 } else {
896 ni->itype.index.vcn_size = vol->sector_size;
897 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
898 }
899
900 /* Setup the index allocation attribute, even if not present. */
901 NInoSetMstProtected(ni);
902 ni->type = AT_INDEX_ALLOCATION;
903 ni->name = I30;
904 ni->name_len = 4;
905
906 if (!(ir->index.flags & LARGE_INDEX)) {
907 /* No index allocation. */
908 vi->i_size = ni->initialized_size =
909 ni->allocated_size = 0;
910 /* We are done with the mft record, so we release it. */
911 ntfs_attr_put_search_ctx(ctx);
912 unmap_mft_record(ni);
913 m = NULL;
914 ctx = NULL;
915 goto skip_large_dir_stuff;
916 } /* LARGE_INDEX: Index allocation present. Setup state. */
917 NInoSetIndexAllocPresent(ni);
918 /* Find index allocation attribute. */
919 ntfs_attr_reinit_search_ctx(ctx);
920 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
921 CASE_SENSITIVE, 0, NULL, 0, ctx);
922 if (unlikely(err)) {
923 if (err == -ENOENT)
924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
925 "attribute is not present but "
926 "$INDEX_ROOT indicated it is.");
927 else
928 ntfs_error(vi->i_sb, "Failed to lookup "
929 "$INDEX_ALLOCATION "
930 "attribute.");
931 goto unm_err_out;
932 }
933 a = ctx->attr;
934 if (!a->non_resident) {
935 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
936 "is resident.");
937 goto unm_err_out;
938 }
939 /*
940 * Ensure the attribute name is placed before the mapping pairs
941 * array.
942 */
943 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
944 le16_to_cpu(
945 a->data.non_resident.mapping_pairs_offset)))) {
946 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
947 "is placed after the mapping pairs "
948 "array.");
949 goto unm_err_out;
950 }
951 if (a->flags & ATTR_IS_ENCRYPTED) {
952 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
953 "is encrypted.");
954 goto unm_err_out;
955 }
956 if (a->flags & ATTR_IS_SPARSE) {
957 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
958 "is sparse.");
959 goto unm_err_out;
960 }
961 if (a->flags & ATTR_COMPRESSION_MASK) {
962 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
963 "is compressed.");
964 goto unm_err_out;
965 }
966 if (a->data.non_resident.lowest_vcn) {
967 ntfs_error(vi->i_sb, "First extent of "
968 "$INDEX_ALLOCATION attribute has non "
969 "zero lowest_vcn.");
970 goto unm_err_out;
971 }
972 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
973 ni->initialized_size = sle64_to_cpu(
974 a->data.non_resident.initialized_size);
975 ni->allocated_size = sle64_to_cpu(
976 a->data.non_resident.allocated_size);
977 /*
978 * We are done with the mft record, so we release it. Otherwise
979 * we would deadlock in ntfs_attr_iget().
980 */
981 ntfs_attr_put_search_ctx(ctx);
982 unmap_mft_record(ni);
983 m = NULL;
984 ctx = NULL;
985 /* Get the index bitmap attribute inode. */
986 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
987 if (IS_ERR(bvi)) {
988 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
989 err = PTR_ERR(bvi);
990 goto unm_err_out;
991 }
992 bni = NTFS_I(bvi);
993 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
994 NInoSparse(bni)) {
995 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
996 "and/or encrypted and/or sparse.");
997 goto iput_unm_err_out;
998 }
999 /* Consistency check bitmap size vs. index allocation size. */
1000 bvi_size = i_size_read(bvi);
1001 if ((bvi_size << 3) < (vi->i_size >>
1002 ni->itype.index.block_size_bits)) {
1003 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1004 "for index allocation (0x%llx).",
1005 bvi_size << 3, vi->i_size);
1006 goto iput_unm_err_out;
1007 }
1008 /* No longer need the bitmap attribute inode. */
1009 iput(bvi);
1010 skip_large_dir_stuff:
1011 /* Setup the operations for this inode. */
1012 vi->i_op = &ntfs_dir_inode_ops;
1013 vi->i_fop = &ntfs_dir_ops;
1014 } else {
1015 /* It is a file. */
1016 ntfs_attr_reinit_search_ctx(ctx);
1017
1018 /* Setup the data attribute, even if not present. */
1019 ni->type = AT_DATA;
1020 ni->name = NULL;
1021 ni->name_len = 0;
1022
1023 /* Find first extent of the unnamed data attribute. */
1024 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1025 if (unlikely(err)) {
1026 vi->i_size = ni->initialized_size =
1027 ni->allocated_size = 0;
1028 if (err != -ENOENT) {
1029 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1030 "attribute.");
1031 goto unm_err_out;
1032 }
1033 /*
1034 * FILE_Secure does not have an unnamed $DATA
1035 * attribute, so we special case it here.
1036 */
1037 if (vi->i_ino == FILE_Secure)
1038 goto no_data_attr_special_case;
1039 /*
1040 * Most if not all the system files in the $Extend
1041 * system directory do not have unnamed data
1042 * attributes so we need to check if the parent
1043 * directory of the file is FILE_Extend and if it is
1044 * ignore this error. To do this we need to get the
1045 * name of this inode from the mft record as the name
1046 * contains the back reference to the parent directory.
1047 */
1048 if (ntfs_is_extended_system_file(ctx) > 0)
1049 goto no_data_attr_special_case;
1050 // FIXME: File is corrupt! Hot-fix with empty data
1051 // attribute if recovery option is set.
1052 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1053 goto unm_err_out;
1054 }
1055 a = ctx->attr;
1056 /* Setup the state. */
1057 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1058 if (a->flags & ATTR_COMPRESSION_MASK) {
1059 NInoSetCompressed(ni);
1060 if (vol->cluster_size > 4096) {
1061 ntfs_error(vi->i_sb, "Found "
1062 "compressed data but "
1063 "compression is "
1064 "disabled due to "
1065 "cluster size (%i) > "
1066 "4kiB.",
1067 vol->cluster_size);
1068 goto unm_err_out;
1069 }
1070 if ((a->flags & ATTR_COMPRESSION_MASK)
1071 != ATTR_IS_COMPRESSED) {
1072 ntfs_error(vi->i_sb, "Found unknown "
1073 "compression method "
1074 "or corrupt file.");
1075 goto unm_err_out;
1076 }
1077 }
1078 if (a->flags & ATTR_IS_SPARSE)
1079 NInoSetSparse(ni);
1080 }
1081 if (a->flags & ATTR_IS_ENCRYPTED) {
1082 if (NInoCompressed(ni)) {
1083 ntfs_error(vi->i_sb, "Found encrypted and "
1084 "compressed data.");
1085 goto unm_err_out;
1086 }
1087 NInoSetEncrypted(ni);
1088 }
1089 if (a->non_resident) {
1090 NInoSetNonResident(ni);
1091 if (NInoCompressed(ni) || NInoSparse(ni)) {
1092 if (NInoCompressed(ni) && a->data.non_resident.
1093 compression_unit != 4) {
1094 ntfs_error(vi->i_sb, "Found "
1095 "non-standard "
1096 "compression unit (%u "
1097 "instead of 4). "
1098 "Cannot handle this.",
1099 a->data.non_resident.
1100 compression_unit);
1101 err = -EOPNOTSUPP;
1102 goto unm_err_out;
1103 }
1104 if (a->data.non_resident.compression_unit) {
1105 ni->itype.compressed.block_size = 1U <<
1106 (a->data.non_resident.
1107 compression_unit +
1108 vol->cluster_size_bits);
1109 ni->itype.compressed.block_size_bits =
1110 ffs(ni->itype.
1111 compressed.
1112 block_size) - 1;
1113 ni->itype.compressed.block_clusters =
1114 1U << a->data.
1115 non_resident.
1116 compression_unit;
1117 } else {
1118 ni->itype.compressed.block_size = 0;
1119 ni->itype.compressed.block_size_bits =
1120 0;
1121 ni->itype.compressed.block_clusters =
1122 0;
1123 }
1124 ni->itype.compressed.size = sle64_to_cpu(
1125 a->data.non_resident.
1126 compressed_size);
1127 }
1128 if (a->data.non_resident.lowest_vcn) {
1129 ntfs_error(vi->i_sb, "First extent of $DATA "
1130 "attribute has non zero "
1131 "lowest_vcn.");
1132 goto unm_err_out;
1133 }
1134 vi->i_size = sle64_to_cpu(
1135 a->data.non_resident.data_size);
1136 ni->initialized_size = sle64_to_cpu(
1137 a->data.non_resident.initialized_size);
1138 ni->allocated_size = sle64_to_cpu(
1139 a->data.non_resident.allocated_size);
1140 } else { /* Resident attribute. */
1141 vi->i_size = ni->initialized_size = le32_to_cpu(
1142 a->data.resident.value_length);
1143 ni->allocated_size = le32_to_cpu(a->length) -
1144 le16_to_cpu(
1145 a->data.resident.value_offset);
1146 if (vi->i_size > ni->allocated_size) {
1147 ntfs_error(vi->i_sb, "Resident data attribute "
1148 "is corrupt (size exceeds "
1149 "allocation).");
1150 goto unm_err_out;
1151 }
1152 }
1153 no_data_attr_special_case:
1154 /* We are done with the mft record, so we release it. */
1155 ntfs_attr_put_search_ctx(ctx);
1156 unmap_mft_record(ni);
1157 m = NULL;
1158 ctx = NULL;
1159 /* Setup the operations for this inode. */
1160 vi->i_op = &ntfs_file_inode_ops;
1161 vi->i_fop = &ntfs_file_ops;
1162 }
1163 if (NInoMstProtected(ni))
1164 vi->i_mapping->a_ops = &ntfs_mst_aops;
1165 else
1166 vi->i_mapping->a_ops = &ntfs_aops;
1167 /*
1168 * The number of 512-byte blocks used on disk (for stat). This is in so
1169 * far inaccurate as it doesn't account for any named streams or other
1170 * special non-resident attributes, but that is how Windows works, too,
1171 * so we are at least consistent with Windows, if not entirely
1172 * consistent with the Linux Way. Doing it the Linux Way would cause a
1173 * significant slowdown as it would involve iterating over all
1174 * attributes in the mft record and adding the allocated/compressed
1175 * sizes of all non-resident attributes present to give us the Linux
1176 * correct size that should go into i_blocks (after division by 512).
1177 */
1178 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1179 vi->i_blocks = ni->itype.compressed.size >> 9;
1180 else
1181 vi->i_blocks = ni->allocated_size >> 9;
1182 ntfs_debug("Done.");
1183 return 0;
1184 iput_unm_err_out:
1185 iput(bvi);
1186 unm_err_out:
1187 if (!err)
1188 err = -EIO;
1189 if (ctx)
1190 ntfs_attr_put_search_ctx(ctx);
1191 if (m)
1192 unmap_mft_record(ni);
1193 err_out:
1194 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1195 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1196 make_bad_inode(vi);
1197 if (err != -EOPNOTSUPP && err != -ENOMEM)
1198 NVolSetErrors(vol);
1199 return err;
1200 }
1201
1202 /**
1203 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1204 * @base_vi: base inode
1205 * @vi: attribute inode to read
1206 *
1207 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1208 * attribute inode described by @vi into memory from the base mft record
1209 * described by @base_ni.
1210 *
1211 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1212 * reading and looks up the attribute described by @vi before setting up the
1213 * necessary fields in @vi as well as initializing the ntfs inode.
1214 *
1215 * Q: What locks are held when the function is called?
1216 * A: i_state has I_NEW set, hence the inode is locked, also
1217 * i_count is set to 1, so it is not going to go away
1218 *
1219 * Return 0 on success and -errno on error. In the error case, the inode will
1220 * have had make_bad_inode() executed on it.
1221 *
1222 * Note this cannot be called for AT_INDEX_ALLOCATION.
1223 */
ntfs_read_locked_attr_inode(struct inode * base_vi,struct inode * vi)1224 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1225 {
1226 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1227 ntfs_inode *ni, *base_ni;
1228 MFT_RECORD *m;
1229 ATTR_RECORD *a;
1230 ntfs_attr_search_ctx *ctx;
1231 int err = 0;
1232
1233 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1234
1235 ntfs_init_big_inode(vi);
1236
1237 ni = NTFS_I(vi);
1238 base_ni = NTFS_I(base_vi);
1239
1240 /* Just mirror the values from the base inode. */
1241 vi->i_version = base_vi->i_version;
1242 vi->i_uid = base_vi->i_uid;
1243 vi->i_gid = base_vi->i_gid;
1244 set_nlink(vi, base_vi->i_nlink);
1245 vi->i_mtime = base_vi->i_mtime;
1246 vi->i_ctime = base_vi->i_ctime;
1247 vi->i_atime = base_vi->i_atime;
1248 vi->i_generation = ni->seq_no = base_ni->seq_no;
1249
1250 /* Set inode type to zero but preserve permissions. */
1251 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1252
1253 m = map_mft_record(base_ni);
1254 if (IS_ERR(m)) {
1255 err = PTR_ERR(m);
1256 goto err_out;
1257 }
1258 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1259 if (!ctx) {
1260 err = -ENOMEM;
1261 goto unm_err_out;
1262 }
1263 /* Find the attribute. */
1264 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1265 CASE_SENSITIVE, 0, NULL, 0, ctx);
1266 if (unlikely(err))
1267 goto unm_err_out;
1268 a = ctx->attr;
1269 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1270 if (a->flags & ATTR_COMPRESSION_MASK) {
1271 NInoSetCompressed(ni);
1272 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1273 ni->name_len)) {
1274 ntfs_error(vi->i_sb, "Found compressed "
1275 "non-data or named data "
1276 "attribute. Please report "
1277 "you saw this message to "
1278 "linux-ntfs-dev@lists."
1279 "sourceforge.net");
1280 goto unm_err_out;
1281 }
1282 if (vol->cluster_size > 4096) {
1283 ntfs_error(vi->i_sb, "Found compressed "
1284 "attribute but compression is "
1285 "disabled due to cluster size "
1286 "(%i) > 4kiB.",
1287 vol->cluster_size);
1288 goto unm_err_out;
1289 }
1290 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1291 ATTR_IS_COMPRESSED) {
1292 ntfs_error(vi->i_sb, "Found unknown "
1293 "compression method.");
1294 goto unm_err_out;
1295 }
1296 }
1297 /*
1298 * The compressed/sparse flag set in an index root just means
1299 * to compress all files.
1300 */
1301 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1302 ntfs_error(vi->i_sb, "Found mst protected attribute "
1303 "but the attribute is %s. Please "
1304 "report you saw this message to "
1305 "linux-ntfs-dev@lists.sourceforge.net",
1306 NInoCompressed(ni) ? "compressed" :
1307 "sparse");
1308 goto unm_err_out;
1309 }
1310 if (a->flags & ATTR_IS_SPARSE)
1311 NInoSetSparse(ni);
1312 }
1313 if (a->flags & ATTR_IS_ENCRYPTED) {
1314 if (NInoCompressed(ni)) {
1315 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1316 "data.");
1317 goto unm_err_out;
1318 }
1319 /*
1320 * The encryption flag set in an index root just means to
1321 * encrypt all files.
1322 */
1323 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1324 ntfs_error(vi->i_sb, "Found mst protected attribute "
1325 "but the attribute is encrypted. "
1326 "Please report you saw this message "
1327 "to linux-ntfs-dev@lists.sourceforge."
1328 "net");
1329 goto unm_err_out;
1330 }
1331 if (ni->type != AT_DATA) {
1332 ntfs_error(vi->i_sb, "Found encrypted non-data "
1333 "attribute.");
1334 goto unm_err_out;
1335 }
1336 NInoSetEncrypted(ni);
1337 }
1338 if (!a->non_resident) {
1339 /* Ensure the attribute name is placed before the value. */
1340 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1341 le16_to_cpu(a->data.resident.value_offset)))) {
1342 ntfs_error(vol->sb, "Attribute name is placed after "
1343 "the attribute value.");
1344 goto unm_err_out;
1345 }
1346 if (NInoMstProtected(ni)) {
1347 ntfs_error(vi->i_sb, "Found mst protected attribute "
1348 "but the attribute is resident. "
1349 "Please report you saw this message to "
1350 "linux-ntfs-dev@lists.sourceforge.net");
1351 goto unm_err_out;
1352 }
1353 vi->i_size = ni->initialized_size = le32_to_cpu(
1354 a->data.resident.value_length);
1355 ni->allocated_size = le32_to_cpu(a->length) -
1356 le16_to_cpu(a->data.resident.value_offset);
1357 if (vi->i_size > ni->allocated_size) {
1358 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1359 "(size exceeds allocation).");
1360 goto unm_err_out;
1361 }
1362 } else {
1363 NInoSetNonResident(ni);
1364 /*
1365 * Ensure the attribute name is placed before the mapping pairs
1366 * array.
1367 */
1368 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1369 le16_to_cpu(
1370 a->data.non_resident.mapping_pairs_offset)))) {
1371 ntfs_error(vol->sb, "Attribute name is placed after "
1372 "the mapping pairs array.");
1373 goto unm_err_out;
1374 }
1375 if (NInoCompressed(ni) || NInoSparse(ni)) {
1376 if (NInoCompressed(ni) && a->data.non_resident.
1377 compression_unit != 4) {
1378 ntfs_error(vi->i_sb, "Found non-standard "
1379 "compression unit (%u instead "
1380 "of 4). Cannot handle this.",
1381 a->data.non_resident.
1382 compression_unit);
1383 err = -EOPNOTSUPP;
1384 goto unm_err_out;
1385 }
1386 if (a->data.non_resident.compression_unit) {
1387 ni->itype.compressed.block_size = 1U <<
1388 (a->data.non_resident.
1389 compression_unit +
1390 vol->cluster_size_bits);
1391 ni->itype.compressed.block_size_bits =
1392 ffs(ni->itype.compressed.
1393 block_size) - 1;
1394 ni->itype.compressed.block_clusters = 1U <<
1395 a->data.non_resident.
1396 compression_unit;
1397 } else {
1398 ni->itype.compressed.block_size = 0;
1399 ni->itype.compressed.block_size_bits = 0;
1400 ni->itype.compressed.block_clusters = 0;
1401 }
1402 ni->itype.compressed.size = sle64_to_cpu(
1403 a->data.non_resident.compressed_size);
1404 }
1405 if (a->data.non_resident.lowest_vcn) {
1406 ntfs_error(vi->i_sb, "First extent of attribute has "
1407 "non-zero lowest_vcn.");
1408 goto unm_err_out;
1409 }
1410 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1411 ni->initialized_size = sle64_to_cpu(
1412 a->data.non_resident.initialized_size);
1413 ni->allocated_size = sle64_to_cpu(
1414 a->data.non_resident.allocated_size);
1415 }
1416 if (NInoMstProtected(ni))
1417 vi->i_mapping->a_ops = &ntfs_mst_aops;
1418 else
1419 vi->i_mapping->a_ops = &ntfs_aops;
1420 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1421 vi->i_blocks = ni->itype.compressed.size >> 9;
1422 else
1423 vi->i_blocks = ni->allocated_size >> 9;
1424 /*
1425 * Make sure the base inode does not go away and attach it to the
1426 * attribute inode.
1427 */
1428 igrab(base_vi);
1429 ni->ext.base_ntfs_ino = base_ni;
1430 ni->nr_extents = -1;
1431
1432 ntfs_attr_put_search_ctx(ctx);
1433 unmap_mft_record(base_ni);
1434
1435 ntfs_debug("Done.");
1436 return 0;
1437
1438 unm_err_out:
1439 if (!err)
1440 err = -EIO;
1441 if (ctx)
1442 ntfs_attr_put_search_ctx(ctx);
1443 unmap_mft_record(base_ni);
1444 err_out:
1445 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1446 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1447 "Marking corrupt inode and base inode 0x%lx as bad. "
1448 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1449 base_vi->i_ino);
1450 make_bad_inode(vi);
1451 if (err != -ENOMEM)
1452 NVolSetErrors(vol);
1453 return err;
1454 }
1455
1456 /**
1457 * ntfs_read_locked_index_inode - read an index inode from its base inode
1458 * @base_vi: base inode
1459 * @vi: index inode to read
1460 *
1461 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1462 * index inode described by @vi into memory from the base mft record described
1463 * by @base_ni.
1464 *
1465 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1466 * reading and looks up the attributes relating to the index described by @vi
1467 * before setting up the necessary fields in @vi as well as initializing the
1468 * ntfs inode.
1469 *
1470 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1471 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1472 * are setup like directory inodes since directories are a special case of
1473 * indices ao they need to be treated in much the same way. Most importantly,
1474 * for small indices the index allocation attribute might not actually exist.
1475 * However, the index root attribute always exists but this does not need to
1476 * have an inode associated with it and this is why we define a new inode type
1477 * index. Also, like for directories, we need to have an attribute inode for
1478 * the bitmap attribute corresponding to the index allocation attribute and we
1479 * can store this in the appropriate field of the inode, just like we do for
1480 * normal directory inodes.
1481 *
1482 * Q: What locks are held when the function is called?
1483 * A: i_state has I_NEW set, hence the inode is locked, also
1484 * i_count is set to 1, so it is not going to go away
1485 *
1486 * Return 0 on success and -errno on error. In the error case, the inode will
1487 * have had make_bad_inode() executed on it.
1488 */
ntfs_read_locked_index_inode(struct inode * base_vi,struct inode * vi)1489 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1490 {
1491 loff_t bvi_size;
1492 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1493 ntfs_inode *ni, *base_ni, *bni;
1494 struct inode *bvi;
1495 MFT_RECORD *m;
1496 ATTR_RECORD *a;
1497 ntfs_attr_search_ctx *ctx;
1498 INDEX_ROOT *ir;
1499 u8 *ir_end, *index_end;
1500 int err = 0;
1501
1502 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1503 ntfs_init_big_inode(vi);
1504 ni = NTFS_I(vi);
1505 base_ni = NTFS_I(base_vi);
1506 /* Just mirror the values from the base inode. */
1507 vi->i_version = base_vi->i_version;
1508 vi->i_uid = base_vi->i_uid;
1509 vi->i_gid = base_vi->i_gid;
1510 set_nlink(vi, base_vi->i_nlink);
1511 vi->i_mtime = base_vi->i_mtime;
1512 vi->i_ctime = base_vi->i_ctime;
1513 vi->i_atime = base_vi->i_atime;
1514 vi->i_generation = ni->seq_no = base_ni->seq_no;
1515 /* Set inode type to zero but preserve permissions. */
1516 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1517 /* Map the mft record for the base inode. */
1518 m = map_mft_record(base_ni);
1519 if (IS_ERR(m)) {
1520 err = PTR_ERR(m);
1521 goto err_out;
1522 }
1523 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1524 if (!ctx) {
1525 err = -ENOMEM;
1526 goto unm_err_out;
1527 }
1528 /* Find the index root attribute. */
1529 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1530 CASE_SENSITIVE, 0, NULL, 0, ctx);
1531 if (unlikely(err)) {
1532 if (err == -ENOENT)
1533 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1534 "missing.");
1535 goto unm_err_out;
1536 }
1537 a = ctx->attr;
1538 /* Set up the state. */
1539 if (unlikely(a->non_resident)) {
1540 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1541 goto unm_err_out;
1542 }
1543 /* Ensure the attribute name is placed before the value. */
1544 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1545 le16_to_cpu(a->data.resident.value_offset)))) {
1546 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1547 "after the attribute value.");
1548 goto unm_err_out;
1549 }
1550 /*
1551 * Compressed/encrypted/sparse index root is not allowed, except for
1552 * directories of course but those are not dealt with here.
1553 */
1554 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1555 ATTR_IS_SPARSE)) {
1556 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1557 "root attribute.");
1558 goto unm_err_out;
1559 }
1560 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1561 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1562 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1563 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1564 goto unm_err_out;
1565 }
1566 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1567 if (index_end > ir_end) {
1568 ntfs_error(vi->i_sb, "Index is corrupt.");
1569 goto unm_err_out;
1570 }
1571 if (ir->type) {
1572 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1573 le32_to_cpu(ir->type));
1574 goto unm_err_out;
1575 }
1576 ni->itype.index.collation_rule = ir->collation_rule;
1577 ntfs_debug("Index collation rule is 0x%x.",
1578 le32_to_cpu(ir->collation_rule));
1579 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1580 if (!is_power_of_2(ni->itype.index.block_size)) {
1581 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1582 "two.", ni->itype.index.block_size);
1583 goto unm_err_out;
1584 }
1585 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1586 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1587 "(%ld) is not supported. Sorry.",
1588 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1589 err = -EOPNOTSUPP;
1590 goto unm_err_out;
1591 }
1592 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1593 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1594 "(%i) is not supported. Sorry.",
1595 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1596 err = -EOPNOTSUPP;
1597 goto unm_err_out;
1598 }
1599 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1600 /* Determine the size of a vcn in the index. */
1601 if (vol->cluster_size <= ni->itype.index.block_size) {
1602 ni->itype.index.vcn_size = vol->cluster_size;
1603 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1604 } else {
1605 ni->itype.index.vcn_size = vol->sector_size;
1606 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1607 }
1608 /* Check for presence of index allocation attribute. */
1609 if (!(ir->index.flags & LARGE_INDEX)) {
1610 /* No index allocation. */
1611 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1612 /* We are done with the mft record, so we release it. */
1613 ntfs_attr_put_search_ctx(ctx);
1614 unmap_mft_record(base_ni);
1615 m = NULL;
1616 ctx = NULL;
1617 goto skip_large_index_stuff;
1618 } /* LARGE_INDEX: Index allocation present. Setup state. */
1619 NInoSetIndexAllocPresent(ni);
1620 /* Find index allocation attribute. */
1621 ntfs_attr_reinit_search_ctx(ctx);
1622 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1623 CASE_SENSITIVE, 0, NULL, 0, ctx);
1624 if (unlikely(err)) {
1625 if (err == -ENOENT)
1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1627 "not present but $INDEX_ROOT "
1628 "indicated it is.");
1629 else
1630 ntfs_error(vi->i_sb, "Failed to lookup "
1631 "$INDEX_ALLOCATION attribute.");
1632 goto unm_err_out;
1633 }
1634 a = ctx->attr;
1635 if (!a->non_resident) {
1636 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1637 "resident.");
1638 goto unm_err_out;
1639 }
1640 /*
1641 * Ensure the attribute name is placed before the mapping pairs array.
1642 */
1643 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1644 le16_to_cpu(
1645 a->data.non_resident.mapping_pairs_offset)))) {
1646 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1647 "placed after the mapping pairs array.");
1648 goto unm_err_out;
1649 }
1650 if (a->flags & ATTR_IS_ENCRYPTED) {
1651 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1652 "encrypted.");
1653 goto unm_err_out;
1654 }
1655 if (a->flags & ATTR_IS_SPARSE) {
1656 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1657 goto unm_err_out;
1658 }
1659 if (a->flags & ATTR_COMPRESSION_MASK) {
1660 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1661 "compressed.");
1662 goto unm_err_out;
1663 }
1664 if (a->data.non_resident.lowest_vcn) {
1665 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1666 "attribute has non zero lowest_vcn.");
1667 goto unm_err_out;
1668 }
1669 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1670 ni->initialized_size = sle64_to_cpu(
1671 a->data.non_resident.initialized_size);
1672 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1673 /*
1674 * We are done with the mft record, so we release it. Otherwise
1675 * we would deadlock in ntfs_attr_iget().
1676 */
1677 ntfs_attr_put_search_ctx(ctx);
1678 unmap_mft_record(base_ni);
1679 m = NULL;
1680 ctx = NULL;
1681 /* Get the index bitmap attribute inode. */
1682 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1683 if (IS_ERR(bvi)) {
1684 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1685 err = PTR_ERR(bvi);
1686 goto unm_err_out;
1687 }
1688 bni = NTFS_I(bvi);
1689 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1690 NInoSparse(bni)) {
1691 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1692 "encrypted and/or sparse.");
1693 goto iput_unm_err_out;
1694 }
1695 /* Consistency check bitmap size vs. index allocation size. */
1696 bvi_size = i_size_read(bvi);
1697 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1698 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1699 "index allocation (0x%llx).", bvi_size << 3,
1700 vi->i_size);
1701 goto iput_unm_err_out;
1702 }
1703 iput(bvi);
1704 skip_large_index_stuff:
1705 /* Setup the operations for this index inode. */
1706 vi->i_op = NULL;
1707 vi->i_fop = NULL;
1708 vi->i_mapping->a_ops = &ntfs_mst_aops;
1709 vi->i_blocks = ni->allocated_size >> 9;
1710 /*
1711 * Make sure the base inode doesn't go away and attach it to the
1712 * index inode.
1713 */
1714 igrab(base_vi);
1715 ni->ext.base_ntfs_ino = base_ni;
1716 ni->nr_extents = -1;
1717
1718 ntfs_debug("Done.");
1719 return 0;
1720 iput_unm_err_out:
1721 iput(bvi);
1722 unm_err_out:
1723 if (!err)
1724 err = -EIO;
1725 if (ctx)
1726 ntfs_attr_put_search_ctx(ctx);
1727 if (m)
1728 unmap_mft_record(base_ni);
1729 err_out:
1730 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1731 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1732 ni->name_len);
1733 make_bad_inode(vi);
1734 if (err != -EOPNOTSUPP && err != -ENOMEM)
1735 NVolSetErrors(vol);
1736 return err;
1737 }
1738
1739 /*
1740 * The MFT inode has special locking, so teach the lock validator
1741 * about this by splitting off the locking rules of the MFT from
1742 * the locking rules of other inodes. The MFT inode can never be
1743 * accessed from the VFS side (or even internally), only by the
1744 * map_mft functions.
1745 */
1746 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1747
1748 /**
1749 * ntfs_read_inode_mount - special read_inode for mount time use only
1750 * @vi: inode to read
1751 *
1752 * Read inode FILE_MFT at mount time, only called with super_block lock
1753 * held from within the read_super() code path.
1754 *
1755 * This function exists because when it is called the page cache for $MFT/$DATA
1756 * is not initialized and hence we cannot get at the contents of mft records
1757 * by calling map_mft_record*().
1758 *
1759 * Further it needs to cope with the circular references problem, i.e. cannot
1760 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1761 * we do not know where the other extent mft records are yet and again, because
1762 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1763 * attribute list is actually present in $MFT inode.
1764 *
1765 * We solve these problems by starting with the $DATA attribute before anything
1766 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1767 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1768 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1769 * sufficient information for the next step to complete.
1770 *
1771 * This should work but there are two possible pit falls (see inline comments
1772 * below), but only time will tell if they are real pits or just smoke...
1773 */
ntfs_read_inode_mount(struct inode * vi)1774 int ntfs_read_inode_mount(struct inode *vi)
1775 {
1776 VCN next_vcn, last_vcn, highest_vcn;
1777 s64 block;
1778 struct super_block *sb = vi->i_sb;
1779 ntfs_volume *vol = NTFS_SB(sb);
1780 struct buffer_head *bh;
1781 ntfs_inode *ni;
1782 MFT_RECORD *m = NULL;
1783 ATTR_RECORD *a;
1784 ntfs_attr_search_ctx *ctx;
1785 unsigned int i, nr_blocks;
1786 int err;
1787
1788 ntfs_debug("Entering.");
1789
1790 /* Initialize the ntfs specific part of @vi. */
1791 ntfs_init_big_inode(vi);
1792
1793 ni = NTFS_I(vi);
1794
1795 /* Setup the data attribute. It is special as it is mst protected. */
1796 NInoSetNonResident(ni);
1797 NInoSetMstProtected(ni);
1798 NInoSetSparseDisabled(ni);
1799 ni->type = AT_DATA;
1800 ni->name = NULL;
1801 ni->name_len = 0;
1802 /*
1803 * This sets up our little cheat allowing us to reuse the async read io
1804 * completion handler for directories.
1805 */
1806 ni->itype.index.block_size = vol->mft_record_size;
1807 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1808
1809 /* Very important! Needed to be able to call map_mft_record*(). */
1810 vol->mft_ino = vi;
1811
1812 /* Allocate enough memory to read the first mft record. */
1813 if (vol->mft_record_size > 64 * 1024) {
1814 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1815 vol->mft_record_size);
1816 goto err_out;
1817 }
1818 i = vol->mft_record_size;
1819 if (i < sb->s_blocksize)
1820 i = sb->s_blocksize;
1821 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1822 if (!m) {
1823 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1824 goto err_out;
1825 }
1826
1827 /* Determine the first block of the $MFT/$DATA attribute. */
1828 block = vol->mft_lcn << vol->cluster_size_bits >>
1829 sb->s_blocksize_bits;
1830 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1831 if (!nr_blocks)
1832 nr_blocks = 1;
1833
1834 /* Load $MFT/$DATA's first mft record. */
1835 for (i = 0; i < nr_blocks; i++) {
1836 bh = sb_bread(sb, block++);
1837 if (!bh) {
1838 ntfs_error(sb, "Device read failed.");
1839 goto err_out;
1840 }
1841 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1842 sb->s_blocksize);
1843 brelse(bh);
1844 }
1845
1846 /* Apply the mst fixups. */
1847 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1848 /* FIXME: Try to use the $MFTMirr now. */
1849 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1850 goto err_out;
1851 }
1852
1853 /* Need this to sanity check attribute list references to $MFT. */
1854 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1855
1856 /* Provides readpage() and sync_page() for map_mft_record(). */
1857 vi->i_mapping->a_ops = &ntfs_mst_aops;
1858
1859 ctx = ntfs_attr_get_search_ctx(ni, m);
1860 if (!ctx) {
1861 err = -ENOMEM;
1862 goto err_out;
1863 }
1864
1865 /* Find the attribute list attribute if present. */
1866 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1867 if (err) {
1868 if (unlikely(err != -ENOENT)) {
1869 ntfs_error(sb, "Failed to lookup attribute list "
1870 "attribute. You should run chkdsk.");
1871 goto put_err_out;
1872 }
1873 } else /* if (!err) */ {
1874 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1875 u8 *al_end;
1876 static const char *es = " Not allowed. $MFT is corrupt. "
1877 "You should run chkdsk.";
1878
1879 ntfs_debug("Attribute list attribute found in $MFT.");
1880 NInoSetAttrList(ni);
1881 a = ctx->attr;
1882 if (a->flags & ATTR_COMPRESSION_MASK) {
1883 ntfs_error(sb, "Attribute list attribute is "
1884 "compressed.%s", es);
1885 goto put_err_out;
1886 }
1887 if (a->flags & ATTR_IS_ENCRYPTED ||
1888 a->flags & ATTR_IS_SPARSE) {
1889 if (a->non_resident) {
1890 ntfs_error(sb, "Non-resident attribute list "
1891 "attribute is encrypted/"
1892 "sparse.%s", es);
1893 goto put_err_out;
1894 }
1895 ntfs_warning(sb, "Resident attribute list attribute "
1896 "in $MFT system file is marked "
1897 "encrypted/sparse which is not true. "
1898 "However, Windows allows this and "
1899 "chkdsk does not detect or correct it "
1900 "so we will just ignore the invalid "
1901 "flags and pretend they are not set.");
1902 }
1903 /* Now allocate memory for the attribute list. */
1904 ni->attr_list_size = (u32)ntfs_attr_size(a);
1905 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1906 if (!ni->attr_list) {
1907 ntfs_error(sb, "Not enough memory to allocate buffer "
1908 "for attribute list.");
1909 goto put_err_out;
1910 }
1911 if (a->non_resident) {
1912 NInoSetAttrListNonResident(ni);
1913 if (a->data.non_resident.lowest_vcn) {
1914 ntfs_error(sb, "Attribute list has non zero "
1915 "lowest_vcn. $MFT is corrupt. "
1916 "You should run chkdsk.");
1917 goto put_err_out;
1918 }
1919 /* Setup the runlist. */
1920 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1921 a, NULL);
1922 if (IS_ERR(ni->attr_list_rl.rl)) {
1923 err = PTR_ERR(ni->attr_list_rl.rl);
1924 ni->attr_list_rl.rl = NULL;
1925 ntfs_error(sb, "Mapping pairs decompression "
1926 "failed with error code %i.",
1927 -err);
1928 goto put_err_out;
1929 }
1930 /* Now load the attribute list. */
1931 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1932 ni->attr_list, ni->attr_list_size,
1933 sle64_to_cpu(a->data.
1934 non_resident.initialized_size)))) {
1935 ntfs_error(sb, "Failed to load attribute list "
1936 "attribute with error code %i.",
1937 -err);
1938 goto put_err_out;
1939 }
1940 } else /* if (!ctx.attr->non_resident) */ {
1941 if ((u8*)a + le16_to_cpu(
1942 a->data.resident.value_offset) +
1943 le32_to_cpu(
1944 a->data.resident.value_length) >
1945 (u8*)ctx->mrec + vol->mft_record_size) {
1946 ntfs_error(sb, "Corrupt attribute list "
1947 "attribute.");
1948 goto put_err_out;
1949 }
1950 /* Now copy the attribute list. */
1951 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1952 a->data.resident.value_offset),
1953 le32_to_cpu(
1954 a->data.resident.value_length));
1955 }
1956 /* The attribute list is now setup in memory. */
1957 /*
1958 * FIXME: I don't know if this case is actually possible.
1959 * According to logic it is not possible but I have seen too
1960 * many weird things in MS software to rely on logic... Thus we
1961 * perform a manual search and make sure the first $MFT/$DATA
1962 * extent is in the base inode. If it is not we abort with an
1963 * error and if we ever see a report of this error we will need
1964 * to do some magic in order to have the necessary mft record
1965 * loaded and in the right place in the page cache. But
1966 * hopefully logic will prevail and this never happens...
1967 */
1968 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1969 al_end = (u8*)al_entry + ni->attr_list_size;
1970 for (;; al_entry = next_al_entry) {
1971 /* Out of bounds check. */
1972 if ((u8*)al_entry < ni->attr_list ||
1973 (u8*)al_entry > al_end)
1974 goto em_put_err_out;
1975 /* Catch the end of the attribute list. */
1976 if ((u8*)al_entry == al_end)
1977 goto em_put_err_out;
1978 if (!al_entry->length)
1979 goto em_put_err_out;
1980 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1981 le16_to_cpu(al_entry->length) > al_end)
1982 goto em_put_err_out;
1983 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1984 le16_to_cpu(al_entry->length));
1985 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1986 goto em_put_err_out;
1987 if (AT_DATA != al_entry->type)
1988 continue;
1989 /* We want an unnamed attribute. */
1990 if (al_entry->name_length)
1991 goto em_put_err_out;
1992 /* Want the first entry, i.e. lowest_vcn == 0. */
1993 if (al_entry->lowest_vcn)
1994 goto em_put_err_out;
1995 /* First entry has to be in the base mft record. */
1996 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1997 /* MFT references do not match, logic fails. */
1998 ntfs_error(sb, "BUG: The first $DATA extent "
1999 "of $MFT is not in the base "
2000 "mft record. Please report "
2001 "you saw this message to "
2002 "linux-ntfs-dev@lists."
2003 "sourceforge.net");
2004 goto put_err_out;
2005 } else {
2006 /* Sequence numbers must match. */
2007 if (MSEQNO_LE(al_entry->mft_reference) !=
2008 ni->seq_no)
2009 goto em_put_err_out;
2010 /* Got it. All is ok. We can stop now. */
2011 break;
2012 }
2013 }
2014 }
2015
2016 ntfs_attr_reinit_search_ctx(ctx);
2017
2018 /* Now load all attribute extents. */
2019 a = NULL;
2020 next_vcn = last_vcn = highest_vcn = 0;
2021 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2022 ctx))) {
2023 runlist_element *nrl;
2024
2025 /* Cache the current attribute. */
2026 a = ctx->attr;
2027 /* $MFT must be non-resident. */
2028 if (!a->non_resident) {
2029 ntfs_error(sb, "$MFT must be non-resident but a "
2030 "resident extent was found. $MFT is "
2031 "corrupt. Run chkdsk.");
2032 goto put_err_out;
2033 }
2034 /* $MFT must be uncompressed and unencrypted. */
2035 if (a->flags & ATTR_COMPRESSION_MASK ||
2036 a->flags & ATTR_IS_ENCRYPTED ||
2037 a->flags & ATTR_IS_SPARSE) {
2038 ntfs_error(sb, "$MFT must be uncompressed, "
2039 "non-sparse, and unencrypted but a "
2040 "compressed/sparse/encrypted extent "
2041 "was found. $MFT is corrupt. Run "
2042 "chkdsk.");
2043 goto put_err_out;
2044 }
2045 /*
2046 * Decompress the mapping pairs array of this extent and merge
2047 * the result into the existing runlist. No need for locking
2048 * as we have exclusive access to the inode at this time and we
2049 * are a mount in progress task, too.
2050 */
2051 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2052 if (IS_ERR(nrl)) {
2053 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2054 "failed with error code %ld. $MFT is "
2055 "corrupt.", PTR_ERR(nrl));
2056 goto put_err_out;
2057 }
2058 ni->runlist.rl = nrl;
2059
2060 /* Are we in the first extent? */
2061 if (!next_vcn) {
2062 if (a->data.non_resident.lowest_vcn) {
2063 ntfs_error(sb, "First extent of $DATA "
2064 "attribute has non zero "
2065 "lowest_vcn. $MFT is corrupt. "
2066 "You should run chkdsk.");
2067 goto put_err_out;
2068 }
2069 /* Get the last vcn in the $DATA attribute. */
2070 last_vcn = sle64_to_cpu(
2071 a->data.non_resident.allocated_size)
2072 >> vol->cluster_size_bits;
2073 /* Fill in the inode size. */
2074 vi->i_size = sle64_to_cpu(
2075 a->data.non_resident.data_size);
2076 ni->initialized_size = sle64_to_cpu(
2077 a->data.non_resident.initialized_size);
2078 ni->allocated_size = sle64_to_cpu(
2079 a->data.non_resident.allocated_size);
2080 /*
2081 * Verify the number of mft records does not exceed
2082 * 2^32 - 1.
2083 */
2084 if ((vi->i_size >> vol->mft_record_size_bits) >=
2085 (1ULL << 32)) {
2086 ntfs_error(sb, "$MFT is too big! Aborting.");
2087 goto put_err_out;
2088 }
2089 /*
2090 * We have got the first extent of the runlist for
2091 * $MFT which means it is now relatively safe to call
2092 * the normal ntfs_read_inode() function.
2093 * Complete reading the inode, this will actually
2094 * re-read the mft record for $MFT, this time entering
2095 * it into the page cache with which we complete the
2096 * kick start of the volume. It should be safe to do
2097 * this now as the first extent of $MFT/$DATA is
2098 * already known and we would hope that we don't need
2099 * further extents in order to find the other
2100 * attributes belonging to $MFT. Only time will tell if
2101 * this is really the case. If not we will have to play
2102 * magic at this point, possibly duplicating a lot of
2103 * ntfs_read_inode() at this point. We will need to
2104 * ensure we do enough of its work to be able to call
2105 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2106 * hope this never happens...
2107 */
2108 ntfs_read_locked_inode(vi);
2109 if (is_bad_inode(vi)) {
2110 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2111 "failed. BUG or corrupt $MFT. "
2112 "Run chkdsk and if no errors "
2113 "are found, please report you "
2114 "saw this message to "
2115 "linux-ntfs-dev@lists."
2116 "sourceforge.net");
2117 ntfs_attr_put_search_ctx(ctx);
2118 /* Revert to the safe super operations. */
2119 ntfs_free(m);
2120 return -1;
2121 }
2122 /*
2123 * Re-initialize some specifics about $MFT's inode as
2124 * ntfs_read_inode() will have set up the default ones.
2125 */
2126 /* Set uid and gid to root. */
2127 vi->i_uid = vi->i_gid = 0;
2128 /* Regular file. No access for anyone. */
2129 vi->i_mode = S_IFREG;
2130 /* No VFS initiated operations allowed for $MFT. */
2131 vi->i_op = &ntfs_empty_inode_ops;
2132 vi->i_fop = &ntfs_empty_file_ops;
2133 }
2134
2135 /* Get the lowest vcn for the next extent. */
2136 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2137 next_vcn = highest_vcn + 1;
2138
2139 /* Only one extent or error, which we catch below. */
2140 if (next_vcn <= 0)
2141 break;
2142
2143 /* Avoid endless loops due to corruption. */
2144 if (next_vcn < sle64_to_cpu(
2145 a->data.non_resident.lowest_vcn)) {
2146 ntfs_error(sb, "$MFT has corrupt attribute list "
2147 "attribute. Run chkdsk.");
2148 goto put_err_out;
2149 }
2150 }
2151 if (err != -ENOENT) {
2152 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2153 "$MFT is corrupt. Run chkdsk.");
2154 goto put_err_out;
2155 }
2156 if (!a) {
2157 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2158 "corrupt. Run chkdsk.");
2159 goto put_err_out;
2160 }
2161 if (highest_vcn && highest_vcn != last_vcn - 1) {
2162 ntfs_error(sb, "Failed to load the complete runlist for "
2163 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2164 "Run chkdsk.");
2165 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2166 (unsigned long long)highest_vcn,
2167 (unsigned long long)last_vcn - 1);
2168 goto put_err_out;
2169 }
2170 ntfs_attr_put_search_ctx(ctx);
2171 ntfs_debug("Done.");
2172 ntfs_free(m);
2173
2174 /*
2175 * Split the locking rules of the MFT inode from the
2176 * locking rules of other inodes:
2177 */
2178 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2179 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2180
2181 return 0;
2182
2183 em_put_err_out:
2184 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2185 "attribute list. $MFT is corrupt. Run chkdsk.");
2186 put_err_out:
2187 ntfs_attr_put_search_ctx(ctx);
2188 err_out:
2189 ntfs_error(sb, "Failed. Marking inode as bad.");
2190 make_bad_inode(vi);
2191 ntfs_free(m);
2192 return -1;
2193 }
2194
__ntfs_clear_inode(ntfs_inode * ni)2195 static void __ntfs_clear_inode(ntfs_inode *ni)
2196 {
2197 /* Free all alocated memory. */
2198 down_write(&ni->runlist.lock);
2199 if (ni->runlist.rl) {
2200 ntfs_free(ni->runlist.rl);
2201 ni->runlist.rl = NULL;
2202 }
2203 up_write(&ni->runlist.lock);
2204
2205 if (ni->attr_list) {
2206 ntfs_free(ni->attr_list);
2207 ni->attr_list = NULL;
2208 }
2209
2210 down_write(&ni->attr_list_rl.lock);
2211 if (ni->attr_list_rl.rl) {
2212 ntfs_free(ni->attr_list_rl.rl);
2213 ni->attr_list_rl.rl = NULL;
2214 }
2215 up_write(&ni->attr_list_rl.lock);
2216
2217 if (ni->name_len && ni->name != I30) {
2218 /* Catch bugs... */
2219 BUG_ON(!ni->name);
2220 kfree(ni->name);
2221 }
2222 }
2223
ntfs_clear_extent_inode(ntfs_inode * ni)2224 void ntfs_clear_extent_inode(ntfs_inode *ni)
2225 {
2226 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2227
2228 BUG_ON(NInoAttr(ni));
2229 BUG_ON(ni->nr_extents != -1);
2230
2231 #ifdef NTFS_RW
2232 if (NInoDirty(ni)) {
2233 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2234 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2235 "Losing data! This is a BUG!!!");
2236 // FIXME: Do something!!!
2237 }
2238 #endif /* NTFS_RW */
2239
2240 __ntfs_clear_inode(ni);
2241
2242 /* Bye, bye... */
2243 ntfs_destroy_extent_inode(ni);
2244 }
2245
2246 /**
2247 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2248 * @vi: vfs inode pending annihilation
2249 *
2250 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2251 * is called, which deallocates all memory belonging to the NTFS specific part
2252 * of the inode and returns.
2253 *
2254 * If the MFT record is dirty, we commit it before doing anything else.
2255 */
ntfs_evict_big_inode(struct inode * vi)2256 void ntfs_evict_big_inode(struct inode *vi)
2257 {
2258 ntfs_inode *ni = NTFS_I(vi);
2259
2260 truncate_inode_pages(&vi->i_data, 0);
2261 end_writeback(vi);
2262
2263 #ifdef NTFS_RW
2264 if (NInoDirty(ni)) {
2265 bool was_bad = (is_bad_inode(vi));
2266
2267 /* Committing the inode also commits all extent inodes. */
2268 ntfs_commit_inode(vi);
2269
2270 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2271 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2272 "0x%lx. Losing data!", vi->i_ino);
2273 // FIXME: Do something!!!
2274 }
2275 }
2276 #endif /* NTFS_RW */
2277
2278 /* No need to lock at this stage as no one else has a reference. */
2279 if (ni->nr_extents > 0) {
2280 int i;
2281
2282 for (i = 0; i < ni->nr_extents; i++)
2283 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2284 kfree(ni->ext.extent_ntfs_inos);
2285 }
2286
2287 __ntfs_clear_inode(ni);
2288
2289 if (NInoAttr(ni)) {
2290 /* Release the base inode if we are holding it. */
2291 if (ni->nr_extents == -1) {
2292 iput(VFS_I(ni->ext.base_ntfs_ino));
2293 ni->nr_extents = 0;
2294 ni->ext.base_ntfs_ino = NULL;
2295 }
2296 }
2297 return;
2298 }
2299
2300 /**
2301 * ntfs_show_options - show mount options in /proc/mounts
2302 * @sf: seq_file in which to write our mount options
2303 * @root: root of the mounted tree whose mount options to display
2304 *
2305 * Called by the VFS once for each mounted ntfs volume when someone reads
2306 * /proc/mounts in order to display the NTFS specific mount options of each
2307 * mount. The mount options of fs specified by @root are written to the seq file
2308 * @sf and success is returned.
2309 */
ntfs_show_options(struct seq_file * sf,struct dentry * root)2310 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2311 {
2312 ntfs_volume *vol = NTFS_SB(root->d_sb);
2313 int i;
2314
2315 seq_printf(sf, ",uid=%i", vol->uid);
2316 seq_printf(sf, ",gid=%i", vol->gid);
2317 if (vol->fmask == vol->dmask)
2318 seq_printf(sf, ",umask=0%o", vol->fmask);
2319 else {
2320 seq_printf(sf, ",fmask=0%o", vol->fmask);
2321 seq_printf(sf, ",dmask=0%o", vol->dmask);
2322 }
2323 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2324 if (NVolCaseSensitive(vol))
2325 seq_printf(sf, ",case_sensitive");
2326 if (NVolShowSystemFiles(vol))
2327 seq_printf(sf, ",show_sys_files");
2328 if (!NVolSparseEnabled(vol))
2329 seq_printf(sf, ",disable_sparse");
2330 for (i = 0; on_errors_arr[i].val; i++) {
2331 if (on_errors_arr[i].val & vol->on_errors)
2332 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2333 }
2334 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2335 return 0;
2336 }
2337
2338 #ifdef NTFS_RW
2339
2340 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2341 "chkdsk.";
2342
2343 /**
2344 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2345 * @vi: inode for which the i_size was changed
2346 *
2347 * We only support i_size changes for normal files at present, i.e. not
2348 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2349 * below.
2350 *
2351 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2352 * that the change is allowed.
2353 *
2354 * This implies for us that @vi is a file inode rather than a directory, index,
2355 * or attribute inode as well as that @vi is a base inode.
2356 *
2357 * Returns 0 on success or -errno on error.
2358 *
2359 * Called with ->i_mutex held.
2360 */
ntfs_truncate(struct inode * vi)2361 int ntfs_truncate(struct inode *vi)
2362 {
2363 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2364 VCN highest_vcn;
2365 unsigned long flags;
2366 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2367 ntfs_volume *vol = ni->vol;
2368 ntfs_attr_search_ctx *ctx;
2369 MFT_RECORD *m;
2370 ATTR_RECORD *a;
2371 const char *te = " Leaving file length out of sync with i_size.";
2372 int err, mp_size, size_change, alloc_change;
2373 u32 attr_len;
2374
2375 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2376 BUG_ON(NInoAttr(ni));
2377 BUG_ON(S_ISDIR(vi->i_mode));
2378 BUG_ON(NInoMstProtected(ni));
2379 BUG_ON(ni->nr_extents < 0);
2380 retry_truncate:
2381 /*
2382 * Lock the runlist for writing and map the mft record to ensure it is
2383 * safe to mess with the attribute runlist and sizes.
2384 */
2385 down_write(&ni->runlist.lock);
2386 if (!NInoAttr(ni))
2387 base_ni = ni;
2388 else
2389 base_ni = ni->ext.base_ntfs_ino;
2390 m = map_mft_record(base_ni);
2391 if (IS_ERR(m)) {
2392 err = PTR_ERR(m);
2393 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2394 "(error code %d).%s", vi->i_ino, err, te);
2395 ctx = NULL;
2396 m = NULL;
2397 goto old_bad_out;
2398 }
2399 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2400 if (unlikely(!ctx)) {
2401 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2402 "inode 0x%lx (not enough memory).%s",
2403 vi->i_ino, te);
2404 err = -ENOMEM;
2405 goto old_bad_out;
2406 }
2407 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2408 CASE_SENSITIVE, 0, NULL, 0, ctx);
2409 if (unlikely(err)) {
2410 if (err == -ENOENT) {
2411 ntfs_error(vi->i_sb, "Open attribute is missing from "
2412 "mft record. Inode 0x%lx is corrupt. "
2413 "Run chkdsk.%s", vi->i_ino, te);
2414 err = -EIO;
2415 } else
2416 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2417 "inode 0x%lx (error code %d).%s",
2418 vi->i_ino, err, te);
2419 goto old_bad_out;
2420 }
2421 m = ctx->mrec;
2422 a = ctx->attr;
2423 /*
2424 * The i_size of the vfs inode is the new size for the attribute value.
2425 */
2426 new_size = i_size_read(vi);
2427 /* The current size of the attribute value is the old size. */
2428 old_size = ntfs_attr_size(a);
2429 /* Calculate the new allocated size. */
2430 if (NInoNonResident(ni))
2431 new_alloc_size = (new_size + vol->cluster_size - 1) &
2432 ~(s64)vol->cluster_size_mask;
2433 else
2434 new_alloc_size = (new_size + 7) & ~7;
2435 /* The current allocated size is the old allocated size. */
2436 read_lock_irqsave(&ni->size_lock, flags);
2437 old_alloc_size = ni->allocated_size;
2438 read_unlock_irqrestore(&ni->size_lock, flags);
2439 /*
2440 * The change in the file size. This will be 0 if no change, >0 if the
2441 * size is growing, and <0 if the size is shrinking.
2442 */
2443 size_change = -1;
2444 if (new_size - old_size >= 0) {
2445 size_change = 1;
2446 if (new_size == old_size)
2447 size_change = 0;
2448 }
2449 /* As above for the allocated size. */
2450 alloc_change = -1;
2451 if (new_alloc_size - old_alloc_size >= 0) {
2452 alloc_change = 1;
2453 if (new_alloc_size == old_alloc_size)
2454 alloc_change = 0;
2455 }
2456 /*
2457 * If neither the size nor the allocation are being changed there is
2458 * nothing to do.
2459 */
2460 if (!size_change && !alloc_change)
2461 goto unm_done;
2462 /* If the size is changing, check if new size is allowed in $AttrDef. */
2463 if (size_change) {
2464 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2465 if (unlikely(err)) {
2466 if (err == -ERANGE) {
2467 ntfs_error(vol->sb, "Truncate would cause the "
2468 "inode 0x%lx to %simum size "
2469 "for its attribute type "
2470 "(0x%x). Aborting truncate.",
2471 vi->i_ino,
2472 new_size > old_size ? "exceed "
2473 "the max" : "go under the min",
2474 le32_to_cpu(ni->type));
2475 err = -EFBIG;
2476 } else {
2477 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2478 "attribute type 0x%x. "
2479 "Aborting truncate.",
2480 vi->i_ino,
2481 le32_to_cpu(ni->type));
2482 err = -EIO;
2483 }
2484 /* Reset the vfs inode size to the old size. */
2485 i_size_write(vi, old_size);
2486 goto err_out;
2487 }
2488 }
2489 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2490 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2491 "supported yet for %s files, ignoring.",
2492 NInoCompressed(ni) ? "compressed" :
2493 "encrypted");
2494 err = -EOPNOTSUPP;
2495 goto bad_out;
2496 }
2497 if (a->non_resident)
2498 goto do_non_resident_truncate;
2499 BUG_ON(NInoNonResident(ni));
2500 /* Resize the attribute record to best fit the new attribute size. */
2501 if (new_size < vol->mft_record_size &&
2502 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2503 /* The resize succeeded! */
2504 flush_dcache_mft_record_page(ctx->ntfs_ino);
2505 mark_mft_record_dirty(ctx->ntfs_ino);
2506 write_lock_irqsave(&ni->size_lock, flags);
2507 /* Update the sizes in the ntfs inode and all is done. */
2508 ni->allocated_size = le32_to_cpu(a->length) -
2509 le16_to_cpu(a->data.resident.value_offset);
2510 /*
2511 * Note ntfs_resident_attr_value_resize() has already done any
2512 * necessary data clearing in the attribute record. When the
2513 * file is being shrunk vmtruncate() will already have cleared
2514 * the top part of the last partial page, i.e. since this is
2515 * the resident case this is the page with index 0. However,
2516 * when the file is being expanded, the page cache page data
2517 * between the old data_size, i.e. old_size, and the new_size
2518 * has not been zeroed. Fortunately, we do not need to zero it
2519 * either since on one hand it will either already be zero due
2520 * to both readpage and writepage clearing partial page data
2521 * beyond i_size in which case there is nothing to do or in the
2522 * case of the file being mmap()ped at the same time, POSIX
2523 * specifies that the behaviour is unspecified thus we do not
2524 * have to do anything. This means that in our implementation
2525 * in the rare case that the file is mmap()ped and a write
2526 * occurred into the mmap()ped region just beyond the file size
2527 * and writepage has not yet been called to write out the page
2528 * (which would clear the area beyond the file size) and we now
2529 * extend the file size to incorporate this dirty region
2530 * outside the file size, a write of the page would result in
2531 * this data being written to disk instead of being cleared.
2532 * Given both POSIX and the Linux mmap(2) man page specify that
2533 * this corner case is undefined, we choose to leave it like
2534 * that as this is much simpler for us as we cannot lock the
2535 * relevant page now since we are holding too many ntfs locks
2536 * which would result in a lock reversal deadlock.
2537 */
2538 ni->initialized_size = new_size;
2539 write_unlock_irqrestore(&ni->size_lock, flags);
2540 goto unm_done;
2541 }
2542 /* If the above resize failed, this must be an attribute extension. */
2543 BUG_ON(size_change < 0);
2544 /*
2545 * We have to drop all the locks so we can call
2546 * ntfs_attr_make_non_resident(). This could be optimised by try-
2547 * locking the first page cache page and only if that fails dropping
2548 * the locks, locking the page, and redoing all the locking and
2549 * lookups. While this would be a huge optimisation, it is not worth
2550 * it as this is definitely a slow code path as it only ever can happen
2551 * once for any given file.
2552 */
2553 ntfs_attr_put_search_ctx(ctx);
2554 unmap_mft_record(base_ni);
2555 up_write(&ni->runlist.lock);
2556 /*
2557 * Not enough space in the mft record, try to make the attribute
2558 * non-resident and if successful restart the truncation process.
2559 */
2560 err = ntfs_attr_make_non_resident(ni, old_size);
2561 if (likely(!err))
2562 goto retry_truncate;
2563 /*
2564 * Could not make non-resident. If this is due to this not being
2565 * permitted for this attribute type or there not being enough space,
2566 * try to make other attributes non-resident. Otherwise fail.
2567 */
2568 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2569 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2570 "type 0x%x, because the conversion from "
2571 "resident to non-resident attribute failed "
2572 "with error code %i.", vi->i_ino,
2573 (unsigned)le32_to_cpu(ni->type), err);
2574 if (err != -ENOMEM)
2575 err = -EIO;
2576 goto conv_err_out;
2577 }
2578 /* TODO: Not implemented from here, abort. */
2579 if (err == -ENOSPC)
2580 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2581 "disk for the non-resident attribute value. "
2582 "This case is not implemented yet.");
2583 else /* if (err == -EPERM) */
2584 ntfs_error(vol->sb, "This attribute type may not be "
2585 "non-resident. This case is not implemented "
2586 "yet.");
2587 err = -EOPNOTSUPP;
2588 goto conv_err_out;
2589 #if 0
2590 // TODO: Attempt to make other attributes non-resident.
2591 if (!err)
2592 goto do_resident_extend;
2593 /*
2594 * Both the attribute list attribute and the standard information
2595 * attribute must remain in the base inode. Thus, if this is one of
2596 * these attributes, we have to try to move other attributes out into
2597 * extent mft records instead.
2598 */
2599 if (ni->type == AT_ATTRIBUTE_LIST ||
2600 ni->type == AT_STANDARD_INFORMATION) {
2601 // TODO: Attempt to move other attributes into extent mft
2602 // records.
2603 err = -EOPNOTSUPP;
2604 if (!err)
2605 goto do_resident_extend;
2606 goto err_out;
2607 }
2608 // TODO: Attempt to move this attribute to an extent mft record, but
2609 // only if it is not already the only attribute in an mft record in
2610 // which case there would be nothing to gain.
2611 err = -EOPNOTSUPP;
2612 if (!err)
2613 goto do_resident_extend;
2614 /* There is nothing we can do to make enough space. )-: */
2615 goto err_out;
2616 #endif
2617 do_non_resident_truncate:
2618 BUG_ON(!NInoNonResident(ni));
2619 if (alloc_change < 0) {
2620 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2621 if (highest_vcn > 0 &&
2622 old_alloc_size >> vol->cluster_size_bits >
2623 highest_vcn + 1) {
2624 /*
2625 * This attribute has multiple extents. Not yet
2626 * supported.
2627 */
2628 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2629 "attribute type 0x%x, because the "
2630 "attribute is highly fragmented (it "
2631 "consists of multiple extents) and "
2632 "this case is not implemented yet.",
2633 vi->i_ino,
2634 (unsigned)le32_to_cpu(ni->type));
2635 err = -EOPNOTSUPP;
2636 goto bad_out;
2637 }
2638 }
2639 /*
2640 * If the size is shrinking, need to reduce the initialized_size and
2641 * the data_size before reducing the allocation.
2642 */
2643 if (size_change < 0) {
2644 /*
2645 * Make the valid size smaller (i_size is already up-to-date).
2646 */
2647 write_lock_irqsave(&ni->size_lock, flags);
2648 if (new_size < ni->initialized_size) {
2649 ni->initialized_size = new_size;
2650 a->data.non_resident.initialized_size =
2651 cpu_to_sle64(new_size);
2652 }
2653 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2654 write_unlock_irqrestore(&ni->size_lock, flags);
2655 flush_dcache_mft_record_page(ctx->ntfs_ino);
2656 mark_mft_record_dirty(ctx->ntfs_ino);
2657 /* If the allocated size is not changing, we are done. */
2658 if (!alloc_change)
2659 goto unm_done;
2660 /*
2661 * If the size is shrinking it makes no sense for the
2662 * allocation to be growing.
2663 */
2664 BUG_ON(alloc_change > 0);
2665 } else /* if (size_change >= 0) */ {
2666 /*
2667 * The file size is growing or staying the same but the
2668 * allocation can be shrinking, growing or staying the same.
2669 */
2670 if (alloc_change > 0) {
2671 /*
2672 * We need to extend the allocation and possibly update
2673 * the data size. If we are updating the data size,
2674 * since we are not touching the initialized_size we do
2675 * not need to worry about the actual data on disk.
2676 * And as far as the page cache is concerned, there
2677 * will be no pages beyond the old data size and any
2678 * partial region in the last page between the old and
2679 * new data size (or the end of the page if the new
2680 * data size is outside the page) does not need to be
2681 * modified as explained above for the resident
2682 * attribute truncate case. To do this, we simply drop
2683 * the locks we hold and leave all the work to our
2684 * friendly helper ntfs_attr_extend_allocation().
2685 */
2686 ntfs_attr_put_search_ctx(ctx);
2687 unmap_mft_record(base_ni);
2688 up_write(&ni->runlist.lock);
2689 err = ntfs_attr_extend_allocation(ni, new_size,
2690 size_change > 0 ? new_size : -1, -1);
2691 /*
2692 * ntfs_attr_extend_allocation() will have done error
2693 * output already.
2694 */
2695 goto done;
2696 }
2697 if (!alloc_change)
2698 goto alloc_done;
2699 }
2700 /* alloc_change < 0 */
2701 /* Free the clusters. */
2702 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2703 vol->cluster_size_bits, -1, ctx);
2704 m = ctx->mrec;
2705 a = ctx->attr;
2706 if (unlikely(nr_freed < 0)) {
2707 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2708 "%lli). Unmount and run chkdsk to recover "
2709 "the lost cluster(s).", (long long)nr_freed);
2710 NVolSetErrors(vol);
2711 nr_freed = 0;
2712 }
2713 /* Truncate the runlist. */
2714 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2715 new_alloc_size >> vol->cluster_size_bits);
2716 /*
2717 * If the runlist truncation failed and/or the search context is no
2718 * longer valid, we cannot resize the attribute record or build the
2719 * mapping pairs array thus we mark the inode bad so that no access to
2720 * the freed clusters can happen.
2721 */
2722 if (unlikely(err || IS_ERR(m))) {
2723 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2724 IS_ERR(m) ?
2725 "restore attribute search context" :
2726 "truncate attribute runlist",
2727 IS_ERR(m) ? PTR_ERR(m) : err, es);
2728 err = -EIO;
2729 goto bad_out;
2730 }
2731 /* Get the size for the shrunk mapping pairs array for the runlist. */
2732 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2733 if (unlikely(mp_size <= 0)) {
2734 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2735 "attribute type 0x%x, because determining the "
2736 "size for the mapping pairs failed with error "
2737 "code %i.%s", vi->i_ino,
2738 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2739 err = -EIO;
2740 goto bad_out;
2741 }
2742 /*
2743 * Shrink the attribute record for the new mapping pairs array. Note,
2744 * this cannot fail since we are making the attribute smaller thus by
2745 * definition there is enough space to do so.
2746 */
2747 attr_len = le32_to_cpu(a->length);
2748 err = ntfs_attr_record_resize(m, a, mp_size +
2749 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2750 BUG_ON(err);
2751 /*
2752 * Generate the mapping pairs array directly into the attribute record.
2753 */
2754 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2755 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2756 mp_size, ni->runlist.rl, 0, -1, NULL);
2757 if (unlikely(err)) {
2758 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2759 "attribute type 0x%x, because building the "
2760 "mapping pairs failed with error code %i.%s",
2761 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2762 err, es);
2763 err = -EIO;
2764 goto bad_out;
2765 }
2766 /* Update the allocated/compressed size as well as the highest vcn. */
2767 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2768 vol->cluster_size_bits) - 1);
2769 write_lock_irqsave(&ni->size_lock, flags);
2770 ni->allocated_size = new_alloc_size;
2771 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2772 if (NInoSparse(ni) || NInoCompressed(ni)) {
2773 if (nr_freed) {
2774 ni->itype.compressed.size -= nr_freed <<
2775 vol->cluster_size_bits;
2776 BUG_ON(ni->itype.compressed.size < 0);
2777 a->data.non_resident.compressed_size = cpu_to_sle64(
2778 ni->itype.compressed.size);
2779 vi->i_blocks = ni->itype.compressed.size >> 9;
2780 }
2781 } else
2782 vi->i_blocks = new_alloc_size >> 9;
2783 write_unlock_irqrestore(&ni->size_lock, flags);
2784 /*
2785 * We have shrunk the allocation. If this is a shrinking truncate we
2786 * have already dealt with the initialized_size and the data_size above
2787 * and we are done. If the truncate is only changing the allocation
2788 * and not the data_size, we are also done. If this is an extending
2789 * truncate, need to extend the data_size now which is ensured by the
2790 * fact that @size_change is positive.
2791 */
2792 alloc_done:
2793 /*
2794 * If the size is growing, need to update it now. If it is shrinking,
2795 * we have already updated it above (before the allocation change).
2796 */
2797 if (size_change > 0)
2798 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2799 /* Ensure the modified mft record is written out. */
2800 flush_dcache_mft_record_page(ctx->ntfs_ino);
2801 mark_mft_record_dirty(ctx->ntfs_ino);
2802 unm_done:
2803 ntfs_attr_put_search_ctx(ctx);
2804 unmap_mft_record(base_ni);
2805 up_write(&ni->runlist.lock);
2806 done:
2807 /* Update the mtime and ctime on the base inode. */
2808 /* normally ->truncate shouldn't update ctime or mtime,
2809 * but ntfs did before so it got a copy & paste version
2810 * of file_update_time. one day someone should fix this
2811 * for real.
2812 */
2813 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2814 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2815 int sync_it = 0;
2816
2817 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2818 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2819 sync_it = 1;
2820 VFS_I(base_ni)->i_mtime = now;
2821 VFS_I(base_ni)->i_ctime = now;
2822
2823 if (sync_it)
2824 mark_inode_dirty_sync(VFS_I(base_ni));
2825 }
2826
2827 if (likely(!err)) {
2828 NInoClearTruncateFailed(ni);
2829 ntfs_debug("Done.");
2830 }
2831 return err;
2832 old_bad_out:
2833 old_size = -1;
2834 bad_out:
2835 if (err != -ENOMEM && err != -EOPNOTSUPP)
2836 NVolSetErrors(vol);
2837 if (err != -EOPNOTSUPP)
2838 NInoSetTruncateFailed(ni);
2839 else if (old_size >= 0)
2840 i_size_write(vi, old_size);
2841 err_out:
2842 if (ctx)
2843 ntfs_attr_put_search_ctx(ctx);
2844 if (m)
2845 unmap_mft_record(base_ni);
2846 up_write(&ni->runlist.lock);
2847 out:
2848 ntfs_debug("Failed. Returning error code %i.", err);
2849 return err;
2850 conv_err_out:
2851 if (err != -ENOMEM && err != -EOPNOTSUPP)
2852 NVolSetErrors(vol);
2853 if (err != -EOPNOTSUPP)
2854 NInoSetTruncateFailed(ni);
2855 else
2856 i_size_write(vi, old_size);
2857 goto out;
2858 }
2859
2860 /**
2861 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2862 * @vi: inode for which the i_size was changed
2863 *
2864 * Wrapper for ntfs_truncate() that has no return value.
2865 *
2866 * See ntfs_truncate() description above for details.
2867 */
ntfs_truncate_vfs(struct inode * vi)2868 void ntfs_truncate_vfs(struct inode *vi) {
2869 ntfs_truncate(vi);
2870 }
2871
2872 /**
2873 * ntfs_setattr - called from notify_change() when an attribute is being changed
2874 * @dentry: dentry whose attributes to change
2875 * @attr: structure describing the attributes and the changes
2876 *
2877 * We have to trap VFS attempts to truncate the file described by @dentry as
2878 * soon as possible, because we do not implement changes in i_size yet. So we
2879 * abort all i_size changes here.
2880 *
2881 * We also abort all changes of user, group, and mode as we do not implement
2882 * the NTFS ACLs yet.
2883 *
2884 * Called with ->i_mutex held.
2885 */
ntfs_setattr(struct dentry * dentry,struct iattr * attr)2886 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2887 {
2888 struct inode *vi = dentry->d_inode;
2889 int err;
2890 unsigned int ia_valid = attr->ia_valid;
2891
2892 err = inode_change_ok(vi, attr);
2893 if (err)
2894 goto out;
2895 /* We do not support NTFS ACLs yet. */
2896 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2897 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2898 "supported yet, ignoring.");
2899 err = -EOPNOTSUPP;
2900 goto out;
2901 }
2902 if (ia_valid & ATTR_SIZE) {
2903 if (attr->ia_size != i_size_read(vi)) {
2904 ntfs_inode *ni = NTFS_I(vi);
2905 /*
2906 * FIXME: For now we do not support resizing of
2907 * compressed or encrypted files yet.
2908 */
2909 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2910 ntfs_warning(vi->i_sb, "Changes in inode size "
2911 "are not supported yet for "
2912 "%s files, ignoring.",
2913 NInoCompressed(ni) ?
2914 "compressed" : "encrypted");
2915 err = -EOPNOTSUPP;
2916 } else
2917 err = vmtruncate(vi, attr->ia_size);
2918 if (err || ia_valid == ATTR_SIZE)
2919 goto out;
2920 } else {
2921 /*
2922 * We skipped the truncate but must still update
2923 * timestamps.
2924 */
2925 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2926 }
2927 }
2928 if (ia_valid & ATTR_ATIME)
2929 vi->i_atime = timespec_trunc(attr->ia_atime,
2930 vi->i_sb->s_time_gran);
2931 if (ia_valid & ATTR_MTIME)
2932 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2933 vi->i_sb->s_time_gran);
2934 if (ia_valid & ATTR_CTIME)
2935 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2936 vi->i_sb->s_time_gran);
2937 mark_inode_dirty(vi);
2938 out:
2939 return err;
2940 }
2941
2942 /**
2943 * ntfs_write_inode - write out a dirty inode
2944 * @vi: inode to write out
2945 * @sync: if true, write out synchronously
2946 *
2947 * Write out a dirty inode to disk including any extent inodes if present.
2948 *
2949 * If @sync is true, commit the inode to disk and wait for io completion. This
2950 * is done using write_mft_record().
2951 *
2952 * If @sync is false, just schedule the write to happen but do not wait for i/o
2953 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2954 * marking the page (and in this case mft record) dirty but we do not implement
2955 * this yet as write_mft_record() largely ignores the @sync parameter and
2956 * always performs synchronous writes.
2957 *
2958 * Return 0 on success and -errno on error.
2959 */
__ntfs_write_inode(struct inode * vi,int sync)2960 int __ntfs_write_inode(struct inode *vi, int sync)
2961 {
2962 sle64 nt;
2963 ntfs_inode *ni = NTFS_I(vi);
2964 ntfs_attr_search_ctx *ctx;
2965 MFT_RECORD *m;
2966 STANDARD_INFORMATION *si;
2967 int err = 0;
2968 bool modified = false;
2969
2970 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2971 vi->i_ino);
2972 /*
2973 * Dirty attribute inodes are written via their real inodes so just
2974 * clean them here. Access time updates are taken care off when the
2975 * real inode is written.
2976 */
2977 if (NInoAttr(ni)) {
2978 NInoClearDirty(ni);
2979 ntfs_debug("Done.");
2980 return 0;
2981 }
2982 /* Map, pin, and lock the mft record belonging to the inode. */
2983 m = map_mft_record(ni);
2984 if (IS_ERR(m)) {
2985 err = PTR_ERR(m);
2986 goto err_out;
2987 }
2988 /* Update the access times in the standard information attribute. */
2989 ctx = ntfs_attr_get_search_ctx(ni, m);
2990 if (unlikely(!ctx)) {
2991 err = -ENOMEM;
2992 goto unm_err_out;
2993 }
2994 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2995 CASE_SENSITIVE, 0, NULL, 0, ctx);
2996 if (unlikely(err)) {
2997 ntfs_attr_put_search_ctx(ctx);
2998 goto unm_err_out;
2999 }
3000 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3001 le16_to_cpu(ctx->attr->data.resident.value_offset));
3002 /* Update the access times if they have changed. */
3003 nt = utc2ntfs(vi->i_mtime);
3004 if (si->last_data_change_time != nt) {
3005 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3006 "new = 0x%llx", vi->i_ino, (long long)
3007 sle64_to_cpu(si->last_data_change_time),
3008 (long long)sle64_to_cpu(nt));
3009 si->last_data_change_time = nt;
3010 modified = true;
3011 }
3012 nt = utc2ntfs(vi->i_ctime);
3013 if (si->last_mft_change_time != nt) {
3014 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3015 "new = 0x%llx", vi->i_ino, (long long)
3016 sle64_to_cpu(si->last_mft_change_time),
3017 (long long)sle64_to_cpu(nt));
3018 si->last_mft_change_time = nt;
3019 modified = true;
3020 }
3021 nt = utc2ntfs(vi->i_atime);
3022 if (si->last_access_time != nt) {
3023 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3024 "new = 0x%llx", vi->i_ino,
3025 (long long)sle64_to_cpu(si->last_access_time),
3026 (long long)sle64_to_cpu(nt));
3027 si->last_access_time = nt;
3028 modified = true;
3029 }
3030 /*
3031 * If we just modified the standard information attribute we need to
3032 * mark the mft record it is in dirty. We do this manually so that
3033 * mark_inode_dirty() is not called which would redirty the inode and
3034 * hence result in an infinite loop of trying to write the inode.
3035 * There is no need to mark the base inode nor the base mft record
3036 * dirty, since we are going to write this mft record below in any case
3037 * and the base mft record may actually not have been modified so it
3038 * might not need to be written out.
3039 * NOTE: It is not a problem when the inode for $MFT itself is being
3040 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3041 * on the $MFT inode and hence ntfs_write_inode() will not be
3042 * re-invoked because of it which in turn is ok since the dirtied mft
3043 * record will be cleaned and written out to disk below, i.e. before
3044 * this function returns.
3045 */
3046 if (modified) {
3047 flush_dcache_mft_record_page(ctx->ntfs_ino);
3048 if (!NInoTestSetDirty(ctx->ntfs_ino))
3049 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3050 ctx->ntfs_ino->page_ofs);
3051 }
3052 ntfs_attr_put_search_ctx(ctx);
3053 /* Now the access times are updated, write the base mft record. */
3054 if (NInoDirty(ni))
3055 err = write_mft_record(ni, m, sync);
3056 /* Write all attached extent mft records. */
3057 mutex_lock(&ni->extent_lock);
3058 if (ni->nr_extents > 0) {
3059 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3060 int i;
3061
3062 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3063 for (i = 0; i < ni->nr_extents; i++) {
3064 ntfs_inode *tni = extent_nis[i];
3065
3066 if (NInoDirty(tni)) {
3067 MFT_RECORD *tm = map_mft_record(tni);
3068 int ret;
3069
3070 if (IS_ERR(tm)) {
3071 if (!err || err == -ENOMEM)
3072 err = PTR_ERR(tm);
3073 continue;
3074 }
3075 ret = write_mft_record(tni, tm, sync);
3076 unmap_mft_record(tni);
3077 if (unlikely(ret)) {
3078 if (!err || err == -ENOMEM)
3079 err = ret;
3080 }
3081 }
3082 }
3083 }
3084 mutex_unlock(&ni->extent_lock);
3085 unmap_mft_record(ni);
3086 if (unlikely(err))
3087 goto err_out;
3088 ntfs_debug("Done.");
3089 return 0;
3090 unm_err_out:
3091 unmap_mft_record(ni);
3092 err_out:
3093 if (err == -ENOMEM) {
3094 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3095 "Marking the inode dirty again, so the VFS "
3096 "retries later.");
3097 mark_inode_dirty(vi);
3098 } else {
3099 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3100 NVolSetErrors(ni->vol);
3101 }
3102 return err;
3103 }
3104
3105 #endif /* NTFS_RW */
3106