1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
writeback_in_progress(struct backing_dev_info * bdi)67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 EXPORT_SYMBOL(writeback_in_progress);
72 
inode_to_bdi(struct inode * inode)73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75 	struct super_block *sb = inode->i_sb;
76 
77 	if (strcmp(sb->s_type->name, "bdev") == 0)
78 		return inode->i_mapping->backing_dev_info;
79 
80 	return sb->s_bdi;
81 }
82 
wb_inode(struct list_head * head)83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85 	return list_entry(head, struct inode, i_wb_list);
86 }
87 
88 /*
89  * Include the creation of the trace points after defining the
90  * wb_writeback_work structure and inline functions so that the definition
91  * remains local to this file.
92  */
93 #define CREATE_TRACE_POINTS
94 #include <trace/events/writeback.h>
95 
96 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
bdi_wakeup_flusher(struct backing_dev_info * bdi)97 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
98 {
99 	if (bdi->wb.task) {
100 		wake_up_process(bdi->wb.task);
101 	} else {
102 		/*
103 		 * The bdi thread isn't there, wake up the forker thread which
104 		 * will create and run it.
105 		 */
106 		wake_up_process(default_backing_dev_info.wb.task);
107 	}
108 }
109 
bdi_queue_work(struct backing_dev_info * bdi,struct wb_writeback_work * work)110 static void bdi_queue_work(struct backing_dev_info *bdi,
111 			   struct wb_writeback_work *work)
112 {
113 	trace_writeback_queue(bdi, work);
114 
115 	spin_lock_bh(&bdi->wb_lock);
116 	list_add_tail(&work->list, &bdi->work_list);
117 	if (!bdi->wb.task)
118 		trace_writeback_nothread(bdi, work);
119 	bdi_wakeup_flusher(bdi);
120 	spin_unlock_bh(&bdi->wb_lock);
121 }
122 
123 static void
__bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,bool range_cyclic,enum wb_reason reason)124 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
125 		      bool range_cyclic, enum wb_reason reason)
126 {
127 	struct wb_writeback_work *work;
128 
129 	/*
130 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
131 	 * wakeup the thread for old dirty data writeback
132 	 */
133 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
134 	if (!work) {
135 		if (bdi->wb.task) {
136 			trace_writeback_nowork(bdi);
137 			wake_up_process(bdi->wb.task);
138 		}
139 		return;
140 	}
141 
142 	work->sync_mode	= WB_SYNC_NONE;
143 	work->nr_pages	= nr_pages;
144 	work->range_cyclic = range_cyclic;
145 	work->reason	= reason;
146 
147 	bdi_queue_work(bdi, work);
148 }
149 
150 /**
151  * bdi_start_writeback - start writeback
152  * @bdi: the backing device to write from
153  * @nr_pages: the number of pages to write
154  * @reason: reason why some writeback work was initiated
155  *
156  * Description:
157  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
158  *   started when this function returns, we make no guarantees on
159  *   completion. Caller need not hold sb s_umount semaphore.
160  *
161  */
bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,enum wb_reason reason)162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
163 			enum wb_reason reason)
164 {
165 	__bdi_start_writeback(bdi, nr_pages, true, reason);
166 }
167 
168 /**
169  * bdi_start_background_writeback - start background writeback
170  * @bdi: the backing device to write from
171  *
172  * Description:
173  *   This makes sure WB_SYNC_NONE background writeback happens. When
174  *   this function returns, it is only guaranteed that for given BDI
175  *   some IO is happening if we are over background dirty threshold.
176  *   Caller need not hold sb s_umount semaphore.
177  */
bdi_start_background_writeback(struct backing_dev_info * bdi)178 void bdi_start_background_writeback(struct backing_dev_info *bdi)
179 {
180 	/*
181 	 * We just wake up the flusher thread. It will perform background
182 	 * writeback as soon as there is no other work to do.
183 	 */
184 	trace_writeback_wake_background(bdi);
185 	spin_lock_bh(&bdi->wb_lock);
186 	bdi_wakeup_flusher(bdi);
187 	spin_unlock_bh(&bdi->wb_lock);
188 }
189 
190 /*
191  * Remove the inode from the writeback list it is on.
192  */
inode_wb_list_del(struct inode * inode)193 void inode_wb_list_del(struct inode *inode)
194 {
195 	struct backing_dev_info *bdi = inode_to_bdi(inode);
196 
197 	spin_lock(&bdi->wb.list_lock);
198 	list_del_init(&inode->i_wb_list);
199 	spin_unlock(&bdi->wb.list_lock);
200 }
201 
202 /*
203  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
204  * furthest end of its superblock's dirty-inode list.
205  *
206  * Before stamping the inode's ->dirtied_when, we check to see whether it is
207  * already the most-recently-dirtied inode on the b_dirty list.  If that is
208  * the case then the inode must have been redirtied while it was being written
209  * out and we don't reset its dirtied_when.
210  */
redirty_tail(struct inode * inode,struct bdi_writeback * wb)211 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
212 {
213 	assert_spin_locked(&wb->list_lock);
214 	if (!list_empty(&wb->b_dirty)) {
215 		struct inode *tail;
216 
217 		tail = wb_inode(wb->b_dirty.next);
218 		if (time_before(inode->dirtied_when, tail->dirtied_when))
219 			inode->dirtied_when = jiffies;
220 	}
221 	list_move(&inode->i_wb_list, &wb->b_dirty);
222 }
223 
224 /*
225  * requeue inode for re-scanning after bdi->b_io list is exhausted.
226  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)227 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
228 {
229 	assert_spin_locked(&wb->list_lock);
230 	list_move(&inode->i_wb_list, &wb->b_more_io);
231 }
232 
inode_sync_complete(struct inode * inode)233 static void inode_sync_complete(struct inode *inode)
234 {
235 	/*
236 	 * Prevent speculative execution through
237 	 * spin_unlock(&wb->list_lock);
238 	 */
239 
240 	smp_mb();
241 	wake_up_bit(&inode->i_state, __I_SYNC);
242 }
243 
inode_dirtied_after(struct inode * inode,unsigned long t)244 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
245 {
246 	bool ret = time_after(inode->dirtied_when, t);
247 #ifndef CONFIG_64BIT
248 	/*
249 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
250 	 * It _appears_ to be in the future, but is actually in distant past.
251 	 * This test is necessary to prevent such wrapped-around relative times
252 	 * from permanently stopping the whole bdi writeback.
253 	 */
254 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
255 #endif
256 	return ret;
257 }
258 
259 /*
260  * Move expired (dirtied after work->older_than_this) dirty inodes from
261  * @delaying_queue to @dispatch_queue.
262  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,struct wb_writeback_work * work)263 static int move_expired_inodes(struct list_head *delaying_queue,
264 			       struct list_head *dispatch_queue,
265 			       struct wb_writeback_work *work)
266 {
267 	LIST_HEAD(tmp);
268 	struct list_head *pos, *node;
269 	struct super_block *sb = NULL;
270 	struct inode *inode;
271 	int do_sb_sort = 0;
272 	int moved = 0;
273 
274 	while (!list_empty(delaying_queue)) {
275 		inode = wb_inode(delaying_queue->prev);
276 		if (work->older_than_this &&
277 		    inode_dirtied_after(inode, *work->older_than_this))
278 			break;
279 		if (sb && sb != inode->i_sb)
280 			do_sb_sort = 1;
281 		sb = inode->i_sb;
282 		list_move(&inode->i_wb_list, &tmp);
283 		moved++;
284 	}
285 
286 	/* just one sb in list, splice to dispatch_queue and we're done */
287 	if (!do_sb_sort) {
288 		list_splice(&tmp, dispatch_queue);
289 		goto out;
290 	}
291 
292 	/* Move inodes from one superblock together */
293 	while (!list_empty(&tmp)) {
294 		sb = wb_inode(tmp.prev)->i_sb;
295 		list_for_each_prev_safe(pos, node, &tmp) {
296 			inode = wb_inode(pos);
297 			if (inode->i_sb == sb)
298 				list_move(&inode->i_wb_list, dispatch_queue);
299 		}
300 	}
301 out:
302 	return moved;
303 }
304 
305 /*
306  * Queue all expired dirty inodes for io, eldest first.
307  * Before
308  *         newly dirtied     b_dirty    b_io    b_more_io
309  *         =============>    gf         edc     BA
310  * After
311  *         newly dirtied     b_dirty    b_io    b_more_io
312  *         =============>    g          fBAedc
313  *                                           |
314  *                                           +--> dequeue for IO
315  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work)316 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
317 {
318 	int moved;
319 	assert_spin_locked(&wb->list_lock);
320 	list_splice_init(&wb->b_more_io, &wb->b_io);
321 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
322 	trace_writeback_queue_io(wb, work, moved);
323 }
324 
write_inode(struct inode * inode,struct writeback_control * wbc)325 static int write_inode(struct inode *inode, struct writeback_control *wbc)
326 {
327 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
328 		return inode->i_sb->s_op->write_inode(inode, wbc);
329 	return 0;
330 }
331 
332 /*
333  * Wait for writeback on an inode to complete.
334  */
inode_wait_for_writeback(struct inode * inode,struct bdi_writeback * wb)335 static void inode_wait_for_writeback(struct inode *inode,
336 				     struct bdi_writeback *wb)
337 {
338 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
339 	wait_queue_head_t *wqh;
340 
341 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
342 	while (inode->i_state & I_SYNC) {
343 		spin_unlock(&inode->i_lock);
344 		spin_unlock(&wb->list_lock);
345 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
346 		spin_lock(&wb->list_lock);
347 		spin_lock(&inode->i_lock);
348 	}
349 }
350 
351 /*
352  * Write out an inode's dirty pages.  Called under wb->list_lock and
353  * inode->i_lock.  Either the caller has an active reference on the inode or
354  * the inode has I_WILL_FREE set.
355  *
356  * If `wait' is set, wait on the writeout.
357  *
358  * The whole writeout design is quite complex and fragile.  We want to avoid
359  * starvation of particular inodes when others are being redirtied, prevent
360  * livelocks, etc.
361  */
362 static int
writeback_single_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)363 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
364 		       struct writeback_control *wbc)
365 {
366 	struct address_space *mapping = inode->i_mapping;
367 	long nr_to_write = wbc->nr_to_write;
368 	unsigned dirty;
369 	int ret;
370 
371 	assert_spin_locked(&wb->list_lock);
372 	assert_spin_locked(&inode->i_lock);
373 
374 	if (!atomic_read(&inode->i_count))
375 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
376 	else
377 		WARN_ON(inode->i_state & I_WILL_FREE);
378 
379 	if (inode->i_state & I_SYNC) {
380 		/*
381 		 * If this inode is locked for writeback and we are not doing
382 		 * writeback-for-data-integrity, move it to b_more_io so that
383 		 * writeback can proceed with the other inodes on s_io.
384 		 *
385 		 * We'll have another go at writing back this inode when we
386 		 * completed a full scan of b_io.
387 		 */
388 		if (wbc->sync_mode != WB_SYNC_ALL) {
389 			requeue_io(inode, wb);
390 			trace_writeback_single_inode_requeue(inode, wbc,
391 							     nr_to_write);
392 			return 0;
393 		}
394 
395 		/*
396 		 * It's a data-integrity sync.  We must wait.
397 		 */
398 		inode_wait_for_writeback(inode, wb);
399 	}
400 
401 	BUG_ON(inode->i_state & I_SYNC);
402 
403 	/* Set I_SYNC, reset I_DIRTY_PAGES */
404 	inode->i_state |= I_SYNC;
405 	inode->i_state &= ~I_DIRTY_PAGES;
406 	spin_unlock(&inode->i_lock);
407 	spin_unlock(&wb->list_lock);
408 
409 	ret = do_writepages(mapping, wbc);
410 
411 	/*
412 	 * Make sure to wait on the data before writing out the metadata.
413 	 * This is important for filesystems that modify metadata on data
414 	 * I/O completion.
415 	 */
416 	if (wbc->sync_mode == WB_SYNC_ALL) {
417 		int err = filemap_fdatawait(mapping);
418 		if (ret == 0)
419 			ret = err;
420 	}
421 
422 	/*
423 	 * Some filesystems may redirty the inode during the writeback
424 	 * due to delalloc, clear dirty metadata flags right before
425 	 * write_inode()
426 	 */
427 	spin_lock(&inode->i_lock);
428 	dirty = inode->i_state & I_DIRTY;
429 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
430 	spin_unlock(&inode->i_lock);
431 	/* Don't write the inode if only I_DIRTY_PAGES was set */
432 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
433 		int err = write_inode(inode, wbc);
434 		if (ret == 0)
435 			ret = err;
436 	}
437 
438 	spin_lock(&wb->list_lock);
439 	spin_lock(&inode->i_lock);
440 	inode->i_state &= ~I_SYNC;
441 	if (!(inode->i_state & I_FREEING)) {
442 		/*
443 		 * Sync livelock prevention. Each inode is tagged and synced in
444 		 * one shot. If still dirty, it will be redirty_tail()'ed below.
445 		 * Update the dirty time to prevent enqueue and sync it again.
446 		 */
447 		if ((inode->i_state & I_DIRTY) &&
448 		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
449 			inode->dirtied_when = jiffies;
450 
451 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
452 			/*
453 			 * We didn't write back all the pages.  nfs_writepages()
454 			 * sometimes bales out without doing anything.
455 			 */
456 			inode->i_state |= I_DIRTY_PAGES;
457 			if (wbc->nr_to_write <= 0) {
458 				/*
459 				 * slice used up: queue for next turn
460 				 */
461 				requeue_io(inode, wb);
462 			} else {
463 				/*
464 				 * Writeback blocked by something other than
465 				 * congestion. Delay the inode for some time to
466 				 * avoid spinning on the CPU (100% iowait)
467 				 * retrying writeback of the dirty page/inode
468 				 * that cannot be performed immediately.
469 				 */
470 				redirty_tail(inode, wb);
471 			}
472 		} else if (inode->i_state & I_DIRTY) {
473 			/*
474 			 * Filesystems can dirty the inode during writeback
475 			 * operations, such as delayed allocation during
476 			 * submission or metadata updates after data IO
477 			 * completion.
478 			 */
479 			redirty_tail(inode, wb);
480 		} else {
481 			/*
482 			 * The inode is clean.  At this point we either have
483 			 * a reference to the inode or it's on it's way out.
484 			 * No need to add it back to the LRU.
485 			 */
486 			list_del_init(&inode->i_wb_list);
487 		}
488 	}
489 	inode_sync_complete(inode);
490 	trace_writeback_single_inode(inode, wbc, nr_to_write);
491 	return ret;
492 }
493 
writeback_chunk_size(struct backing_dev_info * bdi,struct wb_writeback_work * work)494 static long writeback_chunk_size(struct backing_dev_info *bdi,
495 				 struct wb_writeback_work *work)
496 {
497 	long pages;
498 
499 	/*
500 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
501 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
502 	 * here avoids calling into writeback_inodes_wb() more than once.
503 	 *
504 	 * The intended call sequence for WB_SYNC_ALL writeback is:
505 	 *
506 	 *      wb_writeback()
507 	 *          writeback_sb_inodes()       <== called only once
508 	 *              write_cache_pages()     <== called once for each inode
509 	 *                   (quickly) tag currently dirty pages
510 	 *                   (maybe slowly) sync all tagged pages
511 	 */
512 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
513 		pages = LONG_MAX;
514 	else {
515 		pages = min(bdi->avg_write_bandwidth / 2,
516 			    global_dirty_limit / DIRTY_SCOPE);
517 		pages = min(pages, work->nr_pages);
518 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
519 				   MIN_WRITEBACK_PAGES);
520 	}
521 
522 	return pages;
523 }
524 
525 /*
526  * Write a portion of b_io inodes which belong to @sb.
527  *
528  * If @only_this_sb is true, then find and write all such
529  * inodes. Otherwise write only ones which go sequentially
530  * in reverse order.
531  *
532  * Return the number of pages and/or inodes written.
533  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)534 static long writeback_sb_inodes(struct super_block *sb,
535 				struct bdi_writeback *wb,
536 				struct wb_writeback_work *work)
537 {
538 	struct writeback_control wbc = {
539 		.sync_mode		= work->sync_mode,
540 		.tagged_writepages	= work->tagged_writepages,
541 		.for_kupdate		= work->for_kupdate,
542 		.for_background		= work->for_background,
543 		.range_cyclic		= work->range_cyclic,
544 		.range_start		= 0,
545 		.range_end		= LLONG_MAX,
546 	};
547 	unsigned long start_time = jiffies;
548 	long write_chunk;
549 	long wrote = 0;  /* count both pages and inodes */
550 
551 	while (!list_empty(&wb->b_io)) {
552 		struct inode *inode = wb_inode(wb->b_io.prev);
553 
554 		if (inode->i_sb != sb) {
555 			if (work->sb) {
556 				/*
557 				 * We only want to write back data for this
558 				 * superblock, move all inodes not belonging
559 				 * to it back onto the dirty list.
560 				 */
561 				redirty_tail(inode, wb);
562 				continue;
563 			}
564 
565 			/*
566 			 * The inode belongs to a different superblock.
567 			 * Bounce back to the caller to unpin this and
568 			 * pin the next superblock.
569 			 */
570 			break;
571 		}
572 
573 		/*
574 		 * Don't bother with new inodes or inodes beeing freed, first
575 		 * kind does not need peridic writeout yet, and for the latter
576 		 * kind writeout is handled by the freer.
577 		 */
578 		spin_lock(&inode->i_lock);
579 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
580 			spin_unlock(&inode->i_lock);
581 			redirty_tail(inode, wb);
582 			continue;
583 		}
584 		__iget(inode);
585 		write_chunk = writeback_chunk_size(wb->bdi, work);
586 		wbc.nr_to_write = write_chunk;
587 		wbc.pages_skipped = 0;
588 
589 		writeback_single_inode(inode, wb, &wbc);
590 
591 		work->nr_pages -= write_chunk - wbc.nr_to_write;
592 		wrote += write_chunk - wbc.nr_to_write;
593 		if (!(inode->i_state & I_DIRTY))
594 			wrote++;
595 		if (wbc.pages_skipped) {
596 			/*
597 			 * writeback is not making progress due to locked
598 			 * buffers.  Skip this inode for now.
599 			 */
600 			redirty_tail(inode, wb);
601 		}
602 		spin_unlock(&inode->i_lock);
603 		spin_unlock(&wb->list_lock);
604 		iput(inode);
605 		cond_resched();
606 		spin_lock(&wb->list_lock);
607 		/*
608 		 * bail out to wb_writeback() often enough to check
609 		 * background threshold and other termination conditions.
610 		 */
611 		if (wrote) {
612 			if (time_is_before_jiffies(start_time + HZ / 10UL))
613 				break;
614 			if (work->nr_pages <= 0)
615 				break;
616 		}
617 	}
618 	return wrote;
619 }
620 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)621 static long __writeback_inodes_wb(struct bdi_writeback *wb,
622 				  struct wb_writeback_work *work)
623 {
624 	unsigned long start_time = jiffies;
625 	long wrote = 0;
626 
627 	while (!list_empty(&wb->b_io)) {
628 		struct inode *inode = wb_inode(wb->b_io.prev);
629 		struct super_block *sb = inode->i_sb;
630 
631 		if (!grab_super_passive(sb)) {
632 			/*
633 			 * grab_super_passive() may fail consistently due to
634 			 * s_umount being grabbed by someone else. Don't use
635 			 * requeue_io() to avoid busy retrying the inode/sb.
636 			 */
637 			redirty_tail(inode, wb);
638 			continue;
639 		}
640 		wrote += writeback_sb_inodes(sb, wb, work);
641 		drop_super(sb);
642 
643 		/* refer to the same tests at the end of writeback_sb_inodes */
644 		if (wrote) {
645 			if (time_is_before_jiffies(start_time + HZ / 10UL))
646 				break;
647 			if (work->nr_pages <= 0)
648 				break;
649 		}
650 	}
651 	/* Leave any unwritten inodes on b_io */
652 	return wrote;
653 }
654 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)655 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
656 				enum wb_reason reason)
657 {
658 	struct wb_writeback_work work = {
659 		.nr_pages	= nr_pages,
660 		.sync_mode	= WB_SYNC_NONE,
661 		.range_cyclic	= 1,
662 		.reason		= reason,
663 	};
664 
665 	spin_lock(&wb->list_lock);
666 	if (list_empty(&wb->b_io))
667 		queue_io(wb, &work);
668 	__writeback_inodes_wb(wb, &work);
669 	spin_unlock(&wb->list_lock);
670 
671 	return nr_pages - work.nr_pages;
672 }
673 
over_bground_thresh(struct backing_dev_info * bdi)674 static bool over_bground_thresh(struct backing_dev_info *bdi)
675 {
676 	unsigned long background_thresh, dirty_thresh;
677 
678 	global_dirty_limits(&background_thresh, &dirty_thresh);
679 
680 	if (global_page_state(NR_FILE_DIRTY) +
681 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
682 		return true;
683 
684 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
685 				bdi_dirty_limit(bdi, background_thresh))
686 		return true;
687 
688 	return false;
689 }
690 
691 /*
692  * Called under wb->list_lock. If there are multiple wb per bdi,
693  * only the flusher working on the first wb should do it.
694  */
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)695 static void wb_update_bandwidth(struct bdi_writeback *wb,
696 				unsigned long start_time)
697 {
698 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
699 }
700 
701 /*
702  * Explicit flushing or periodic writeback of "old" data.
703  *
704  * Define "old": the first time one of an inode's pages is dirtied, we mark the
705  * dirtying-time in the inode's address_space.  So this periodic writeback code
706  * just walks the superblock inode list, writing back any inodes which are
707  * older than a specific point in time.
708  *
709  * Try to run once per dirty_writeback_interval.  But if a writeback event
710  * takes longer than a dirty_writeback_interval interval, then leave a
711  * one-second gap.
712  *
713  * older_than_this takes precedence over nr_to_write.  So we'll only write back
714  * all dirty pages if they are all attached to "old" mappings.
715  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)716 static long wb_writeback(struct bdi_writeback *wb,
717 			 struct wb_writeback_work *work)
718 {
719 	unsigned long wb_start = jiffies;
720 	long nr_pages = work->nr_pages;
721 	unsigned long oldest_jif;
722 	struct inode *inode;
723 	long progress;
724 
725 	oldest_jif = jiffies;
726 	work->older_than_this = &oldest_jif;
727 
728 	spin_lock(&wb->list_lock);
729 	for (;;) {
730 		/*
731 		 * Stop writeback when nr_pages has been consumed
732 		 */
733 		if (work->nr_pages <= 0)
734 			break;
735 
736 		/*
737 		 * Background writeout and kupdate-style writeback may
738 		 * run forever. Stop them if there is other work to do
739 		 * so that e.g. sync can proceed. They'll be restarted
740 		 * after the other works are all done.
741 		 */
742 		if ((work->for_background || work->for_kupdate) &&
743 		    !list_empty(&wb->bdi->work_list))
744 			break;
745 
746 		/*
747 		 * For background writeout, stop when we are below the
748 		 * background dirty threshold
749 		 */
750 		if (work->for_background && !over_bground_thresh(wb->bdi))
751 			break;
752 
753 		/*
754 		 * Kupdate and background works are special and we want to
755 		 * include all inodes that need writing. Livelock avoidance is
756 		 * handled by these works yielding to any other work so we are
757 		 * safe.
758 		 */
759 		if (work->for_kupdate) {
760 			oldest_jif = jiffies -
761 				msecs_to_jiffies(dirty_expire_interval * 10);
762 		} else if (work->for_background)
763 			oldest_jif = jiffies;
764 
765 		trace_writeback_start(wb->bdi, work);
766 		if (list_empty(&wb->b_io))
767 			queue_io(wb, work);
768 		if (work->sb)
769 			progress = writeback_sb_inodes(work->sb, wb, work);
770 		else
771 			progress = __writeback_inodes_wb(wb, work);
772 		trace_writeback_written(wb->bdi, work);
773 
774 		wb_update_bandwidth(wb, wb_start);
775 
776 		/*
777 		 * Did we write something? Try for more
778 		 *
779 		 * Dirty inodes are moved to b_io for writeback in batches.
780 		 * The completion of the current batch does not necessarily
781 		 * mean the overall work is done. So we keep looping as long
782 		 * as made some progress on cleaning pages or inodes.
783 		 */
784 		if (progress)
785 			continue;
786 		/*
787 		 * No more inodes for IO, bail
788 		 */
789 		if (list_empty(&wb->b_more_io))
790 			break;
791 		/*
792 		 * Nothing written. Wait for some inode to
793 		 * become available for writeback. Otherwise
794 		 * we'll just busyloop.
795 		 */
796 		if (!list_empty(&wb->b_more_io))  {
797 			trace_writeback_wait(wb->bdi, work);
798 			inode = wb_inode(wb->b_more_io.prev);
799 			spin_lock(&inode->i_lock);
800 			inode_wait_for_writeback(inode, wb);
801 			spin_unlock(&inode->i_lock);
802 		}
803 	}
804 	spin_unlock(&wb->list_lock);
805 
806 	return nr_pages - work->nr_pages;
807 }
808 
809 /*
810  * Return the next wb_writeback_work struct that hasn't been processed yet.
811  */
812 static struct wb_writeback_work *
get_next_work_item(struct backing_dev_info * bdi)813 get_next_work_item(struct backing_dev_info *bdi)
814 {
815 	struct wb_writeback_work *work = NULL;
816 
817 	spin_lock_bh(&bdi->wb_lock);
818 	if (!list_empty(&bdi->work_list)) {
819 		work = list_entry(bdi->work_list.next,
820 				  struct wb_writeback_work, list);
821 		list_del_init(&work->list);
822 	}
823 	spin_unlock_bh(&bdi->wb_lock);
824 	return work;
825 }
826 
827 /*
828  * Add in the number of potentially dirty inodes, because each inode
829  * write can dirty pagecache in the underlying blockdev.
830  */
get_nr_dirty_pages(void)831 static unsigned long get_nr_dirty_pages(void)
832 {
833 	return global_page_state(NR_FILE_DIRTY) +
834 		global_page_state(NR_UNSTABLE_NFS) +
835 		get_nr_dirty_inodes();
836 }
837 
wb_check_background_flush(struct bdi_writeback * wb)838 static long wb_check_background_flush(struct bdi_writeback *wb)
839 {
840 	if (over_bground_thresh(wb->bdi)) {
841 
842 		struct wb_writeback_work work = {
843 			.nr_pages	= LONG_MAX,
844 			.sync_mode	= WB_SYNC_NONE,
845 			.for_background	= 1,
846 			.range_cyclic	= 1,
847 			.reason		= WB_REASON_BACKGROUND,
848 		};
849 
850 		return wb_writeback(wb, &work);
851 	}
852 
853 	return 0;
854 }
855 
wb_check_old_data_flush(struct bdi_writeback * wb)856 static long wb_check_old_data_flush(struct bdi_writeback *wb)
857 {
858 	unsigned long expired;
859 	long nr_pages;
860 
861 	/*
862 	 * When set to zero, disable periodic writeback
863 	 */
864 	if (!dirty_writeback_interval)
865 		return 0;
866 
867 	expired = wb->last_old_flush +
868 			msecs_to_jiffies(dirty_writeback_interval * 10);
869 	if (time_before(jiffies, expired))
870 		return 0;
871 
872 	wb->last_old_flush = jiffies;
873 	nr_pages = get_nr_dirty_pages();
874 
875 	if (nr_pages) {
876 		struct wb_writeback_work work = {
877 			.nr_pages	= nr_pages,
878 			.sync_mode	= WB_SYNC_NONE,
879 			.for_kupdate	= 1,
880 			.range_cyclic	= 1,
881 			.reason		= WB_REASON_PERIODIC,
882 		};
883 
884 		return wb_writeback(wb, &work);
885 	}
886 
887 	return 0;
888 }
889 
890 /*
891  * Retrieve work items and do the writeback they describe
892  */
wb_do_writeback(struct bdi_writeback * wb,int force_wait)893 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
894 {
895 	struct backing_dev_info *bdi = wb->bdi;
896 	struct wb_writeback_work *work;
897 	long wrote = 0;
898 
899 	set_bit(BDI_writeback_running, &wb->bdi->state);
900 	while ((work = get_next_work_item(bdi)) != NULL) {
901 		/*
902 		 * Override sync mode, in case we must wait for completion
903 		 * because this thread is exiting now.
904 		 */
905 		if (force_wait)
906 			work->sync_mode = WB_SYNC_ALL;
907 
908 		trace_writeback_exec(bdi, work);
909 
910 		wrote += wb_writeback(wb, work);
911 
912 		/*
913 		 * Notify the caller of completion if this is a synchronous
914 		 * work item, otherwise just free it.
915 		 */
916 		if (work->done)
917 			complete(work->done);
918 		else
919 			kfree(work);
920 	}
921 
922 	/*
923 	 * Check for periodic writeback, kupdated() style
924 	 */
925 	wrote += wb_check_old_data_flush(wb);
926 	wrote += wb_check_background_flush(wb);
927 	clear_bit(BDI_writeback_running, &wb->bdi->state);
928 
929 	return wrote;
930 }
931 
932 /*
933  * Handle writeback of dirty data for the device backed by this bdi. Also
934  * wakes up periodically and does kupdated style flushing.
935  */
bdi_writeback_thread(void * data)936 int bdi_writeback_thread(void *data)
937 {
938 	struct bdi_writeback *wb = data;
939 	struct backing_dev_info *bdi = wb->bdi;
940 	long pages_written;
941 
942 	current->flags |= PF_SWAPWRITE;
943 	set_freezable();
944 	wb->last_active = jiffies;
945 
946 	/*
947 	 * Our parent may run at a different priority, just set us to normal
948 	 */
949 	set_user_nice(current, 0);
950 
951 	trace_writeback_thread_start(bdi);
952 
953 	while (!kthread_freezable_should_stop(NULL)) {
954 		/*
955 		 * Remove own delayed wake-up timer, since we are already awake
956 		 * and we'll take care of the preriodic write-back.
957 		 */
958 		del_timer(&wb->wakeup_timer);
959 
960 		pages_written = wb_do_writeback(wb, 0);
961 
962 		trace_writeback_pages_written(pages_written);
963 
964 		if (pages_written)
965 			wb->last_active = jiffies;
966 
967 		set_current_state(TASK_INTERRUPTIBLE);
968 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
969 			__set_current_state(TASK_RUNNING);
970 			continue;
971 		}
972 
973 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
974 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
975 		else {
976 			/*
977 			 * We have nothing to do, so can go sleep without any
978 			 * timeout and save power. When a work is queued or
979 			 * something is made dirty - we will be woken up.
980 			 */
981 			schedule();
982 		}
983 	}
984 
985 	/* Flush any work that raced with us exiting */
986 	if (!list_empty(&bdi->work_list))
987 		wb_do_writeback(wb, 1);
988 
989 	trace_writeback_thread_stop(bdi);
990 	return 0;
991 }
992 
993 
994 /*
995  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
996  * the whole world.
997  */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)998 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
999 {
1000 	struct backing_dev_info *bdi;
1001 
1002 	if (!nr_pages) {
1003 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1004 				global_page_state(NR_UNSTABLE_NFS);
1005 	}
1006 
1007 	rcu_read_lock();
1008 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1009 		if (!bdi_has_dirty_io(bdi))
1010 			continue;
1011 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1012 	}
1013 	rcu_read_unlock();
1014 }
1015 
block_dump___mark_inode_dirty(struct inode * inode)1016 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1017 {
1018 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1019 		struct dentry *dentry;
1020 		const char *name = "?";
1021 
1022 		dentry = d_find_alias(inode);
1023 		if (dentry) {
1024 			spin_lock(&dentry->d_lock);
1025 			name = (const char *) dentry->d_name.name;
1026 		}
1027 		printk(KERN_DEBUG
1028 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1029 		       current->comm, task_pid_nr(current), inode->i_ino,
1030 		       name, inode->i_sb->s_id);
1031 		if (dentry) {
1032 			spin_unlock(&dentry->d_lock);
1033 			dput(dentry);
1034 		}
1035 	}
1036 }
1037 
1038 /**
1039  *	__mark_inode_dirty -	internal function
1040  *	@inode: inode to mark
1041  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1042  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1043  *  	mark_inode_dirty_sync.
1044  *
1045  * Put the inode on the super block's dirty list.
1046  *
1047  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1048  * dirty list only if it is hashed or if it refers to a blockdev.
1049  * If it was not hashed, it will never be added to the dirty list
1050  * even if it is later hashed, as it will have been marked dirty already.
1051  *
1052  * In short, make sure you hash any inodes _before_ you start marking
1053  * them dirty.
1054  *
1055  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1056  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1057  * the kernel-internal blockdev inode represents the dirtying time of the
1058  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1059  * page->mapping->host, so the page-dirtying time is recorded in the internal
1060  * blockdev inode.
1061  */
__mark_inode_dirty(struct inode * inode,int flags)1062 void __mark_inode_dirty(struct inode *inode, int flags)
1063 {
1064 	struct super_block *sb = inode->i_sb;
1065 	struct backing_dev_info *bdi = NULL;
1066 
1067 	/*
1068 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1069 	 * dirty the inode itself
1070 	 */
1071 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1072 		if (sb->s_op->dirty_inode)
1073 			sb->s_op->dirty_inode(inode, flags);
1074 	}
1075 
1076 	/*
1077 	 * make sure that changes are seen by all cpus before we test i_state
1078 	 * -- mikulas
1079 	 */
1080 	smp_mb();
1081 
1082 	/* avoid the locking if we can */
1083 	if ((inode->i_state & flags) == flags)
1084 		return;
1085 
1086 	if (unlikely(block_dump))
1087 		block_dump___mark_inode_dirty(inode);
1088 
1089 	spin_lock(&inode->i_lock);
1090 	if ((inode->i_state & flags) != flags) {
1091 		const int was_dirty = inode->i_state & I_DIRTY;
1092 
1093 		inode->i_state |= flags;
1094 
1095 		/*
1096 		 * If the inode is being synced, just update its dirty state.
1097 		 * The unlocker will place the inode on the appropriate
1098 		 * superblock list, based upon its state.
1099 		 */
1100 		if (inode->i_state & I_SYNC)
1101 			goto out_unlock_inode;
1102 
1103 		/*
1104 		 * Only add valid (hashed) inodes to the superblock's
1105 		 * dirty list.  Add blockdev inodes as well.
1106 		 */
1107 		if (!S_ISBLK(inode->i_mode)) {
1108 			if (inode_unhashed(inode))
1109 				goto out_unlock_inode;
1110 		}
1111 		if (inode->i_state & I_FREEING)
1112 			goto out_unlock_inode;
1113 
1114 		/*
1115 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1116 		 * reposition it (that would break b_dirty time-ordering).
1117 		 */
1118 		if (!was_dirty) {
1119 			bool wakeup_bdi = false;
1120 			bdi = inode_to_bdi(inode);
1121 
1122 			if (bdi_cap_writeback_dirty(bdi)) {
1123 				WARN(!test_bit(BDI_registered, &bdi->state),
1124 				     "bdi-%s not registered\n", bdi->name);
1125 
1126 				/*
1127 				 * If this is the first dirty inode for this
1128 				 * bdi, we have to wake-up the corresponding
1129 				 * bdi thread to make sure background
1130 				 * write-back happens later.
1131 				 */
1132 				if (!wb_has_dirty_io(&bdi->wb))
1133 					wakeup_bdi = true;
1134 			}
1135 
1136 			spin_unlock(&inode->i_lock);
1137 			spin_lock(&bdi->wb.list_lock);
1138 			inode->dirtied_when = jiffies;
1139 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1140 			spin_unlock(&bdi->wb.list_lock);
1141 
1142 			if (wakeup_bdi)
1143 				bdi_wakeup_thread_delayed(bdi);
1144 			return;
1145 		}
1146 	}
1147 out_unlock_inode:
1148 	spin_unlock(&inode->i_lock);
1149 
1150 }
1151 EXPORT_SYMBOL(__mark_inode_dirty);
1152 
wait_sb_inodes(struct super_block * sb)1153 static void wait_sb_inodes(struct super_block *sb)
1154 {
1155 	struct inode *inode, *old_inode = NULL;
1156 
1157 	/*
1158 	 * We need to be protected against the filesystem going from
1159 	 * r/o to r/w or vice versa.
1160 	 */
1161 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1162 
1163 	spin_lock(&inode_sb_list_lock);
1164 
1165 	/*
1166 	 * Data integrity sync. Must wait for all pages under writeback,
1167 	 * because there may have been pages dirtied before our sync
1168 	 * call, but which had writeout started before we write it out.
1169 	 * In which case, the inode may not be on the dirty list, but
1170 	 * we still have to wait for that writeout.
1171 	 */
1172 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1173 		struct address_space *mapping = inode->i_mapping;
1174 
1175 		spin_lock(&inode->i_lock);
1176 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1177 		    (mapping->nrpages == 0)) {
1178 			spin_unlock(&inode->i_lock);
1179 			continue;
1180 		}
1181 		__iget(inode);
1182 		spin_unlock(&inode->i_lock);
1183 		spin_unlock(&inode_sb_list_lock);
1184 
1185 		/*
1186 		 * We hold a reference to 'inode' so it couldn't have been
1187 		 * removed from s_inodes list while we dropped the
1188 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1189 		 * be holding the last reference and we cannot iput it under
1190 		 * inode_sb_list_lock. So we keep the reference and iput it
1191 		 * later.
1192 		 */
1193 		iput(old_inode);
1194 		old_inode = inode;
1195 
1196 		filemap_fdatawait(mapping);
1197 
1198 		cond_resched();
1199 
1200 		spin_lock(&inode_sb_list_lock);
1201 	}
1202 	spin_unlock(&inode_sb_list_lock);
1203 	iput(old_inode);
1204 }
1205 
1206 /**
1207  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1208  * @sb: the superblock
1209  * @nr: the number of pages to write
1210  * @reason: reason why some writeback work initiated
1211  *
1212  * Start writeback on some inodes on this super_block. No guarantees are made
1213  * on how many (if any) will be written, and this function does not wait
1214  * for IO completion of submitted IO.
1215  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)1216 void writeback_inodes_sb_nr(struct super_block *sb,
1217 			    unsigned long nr,
1218 			    enum wb_reason reason)
1219 {
1220 	DECLARE_COMPLETION_ONSTACK(done);
1221 	struct wb_writeback_work work = {
1222 		.sb			= sb,
1223 		.sync_mode		= WB_SYNC_NONE,
1224 		.tagged_writepages	= 1,
1225 		.done			= &done,
1226 		.nr_pages		= nr,
1227 		.reason			= reason,
1228 	};
1229 
1230 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1231 	bdi_queue_work(sb->s_bdi, &work);
1232 	wait_for_completion(&done);
1233 }
1234 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1235 
1236 /**
1237  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1238  * @sb: the superblock
1239  * @reason: reason why some writeback work was initiated
1240  *
1241  * Start writeback on some inodes on this super_block. No guarantees are made
1242  * on how many (if any) will be written, and this function does not wait
1243  * for IO completion of submitted IO.
1244  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)1245 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1246 {
1247 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb);
1250 
1251 /**
1252  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1253  * @sb: the superblock
1254  * @reason: reason why some writeback work was initiated
1255  *
1256  * Invoke writeback_inodes_sb if no writeback is currently underway.
1257  * Returns 1 if writeback was started, 0 if not.
1258  */
writeback_inodes_sb_if_idle(struct super_block * sb,enum wb_reason reason)1259 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1260 {
1261 	if (!writeback_in_progress(sb->s_bdi)) {
1262 		down_read(&sb->s_umount);
1263 		writeback_inodes_sb(sb, reason);
1264 		up_read(&sb->s_umount);
1265 		return 1;
1266 	} else
1267 		return 0;
1268 }
1269 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1270 
1271 /**
1272  * writeback_inodes_sb_nr_if_idle	-	start writeback if none underway
1273  * @sb: the superblock
1274  * @nr: the number of pages to write
1275  * @reason: reason why some writeback work was initiated
1276  *
1277  * Invoke writeback_inodes_sb if no writeback is currently underway.
1278  * Returns 1 if writeback was started, 0 if not.
1279  */
writeback_inodes_sb_nr_if_idle(struct super_block * sb,unsigned long nr,enum wb_reason reason)1280 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1281 				   unsigned long nr,
1282 				   enum wb_reason reason)
1283 {
1284 	if (!writeback_in_progress(sb->s_bdi)) {
1285 		down_read(&sb->s_umount);
1286 		writeback_inodes_sb_nr(sb, nr, reason);
1287 		up_read(&sb->s_umount);
1288 		return 1;
1289 	} else
1290 		return 0;
1291 }
1292 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1293 
1294 /**
1295  * sync_inodes_sb	-	sync sb inode pages
1296  * @sb: the superblock
1297  *
1298  * This function writes and waits on any dirty inode belonging to this
1299  * super_block.
1300  */
sync_inodes_sb(struct super_block * sb)1301 void sync_inodes_sb(struct super_block *sb)
1302 {
1303 	DECLARE_COMPLETION_ONSTACK(done);
1304 	struct wb_writeback_work work = {
1305 		.sb		= sb,
1306 		.sync_mode	= WB_SYNC_ALL,
1307 		.nr_pages	= LONG_MAX,
1308 		.range_cyclic	= 0,
1309 		.done		= &done,
1310 		.reason		= WB_REASON_SYNC,
1311 	};
1312 
1313 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1314 
1315 	bdi_queue_work(sb->s_bdi, &work);
1316 	wait_for_completion(&done);
1317 
1318 	wait_sb_inodes(sb);
1319 }
1320 EXPORT_SYMBOL(sync_inodes_sb);
1321 
1322 /**
1323  * write_inode_now	-	write an inode to disk
1324  * @inode: inode to write to disk
1325  * @sync: whether the write should be synchronous or not
1326  *
1327  * This function commits an inode to disk immediately if it is dirty. This is
1328  * primarily needed by knfsd.
1329  *
1330  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1331  */
write_inode_now(struct inode * inode,int sync)1332 int write_inode_now(struct inode *inode, int sync)
1333 {
1334 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1335 	int ret;
1336 	struct writeback_control wbc = {
1337 		.nr_to_write = LONG_MAX,
1338 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1339 		.range_start = 0,
1340 		.range_end = LLONG_MAX,
1341 	};
1342 
1343 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1344 		wbc.nr_to_write = 0;
1345 
1346 	might_sleep();
1347 	spin_lock(&wb->list_lock);
1348 	spin_lock(&inode->i_lock);
1349 	ret = writeback_single_inode(inode, wb, &wbc);
1350 	spin_unlock(&inode->i_lock);
1351 	spin_unlock(&wb->list_lock);
1352 	return ret;
1353 }
1354 EXPORT_SYMBOL(write_inode_now);
1355 
1356 /**
1357  * sync_inode - write an inode and its pages to disk.
1358  * @inode: the inode to sync
1359  * @wbc: controls the writeback mode
1360  *
1361  * sync_inode() will write an inode and its pages to disk.  It will also
1362  * correctly update the inode on its superblock's dirty inode lists and will
1363  * update inode->i_state.
1364  *
1365  * The caller must have a ref on the inode.
1366  */
sync_inode(struct inode * inode,struct writeback_control * wbc)1367 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1368 {
1369 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1370 	int ret;
1371 
1372 	spin_lock(&wb->list_lock);
1373 	spin_lock(&inode->i_lock);
1374 	ret = writeback_single_inode(inode, wb, wbc);
1375 	spin_unlock(&inode->i_lock);
1376 	spin_unlock(&wb->list_lock);
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL(sync_inode);
1380 
1381 /**
1382  * sync_inode_metadata - write an inode to disk
1383  * @inode: the inode to sync
1384  * @wait: wait for I/O to complete.
1385  *
1386  * Write an inode to disk and adjust its dirty state after completion.
1387  *
1388  * Note: only writes the actual inode, no associated data or other metadata.
1389  */
sync_inode_metadata(struct inode * inode,int wait)1390 int sync_inode_metadata(struct inode *inode, int wait)
1391 {
1392 	struct writeback_control wbc = {
1393 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1394 		.nr_to_write = 0, /* metadata-only */
1395 	};
1396 
1397 	return sync_inode(inode, &wbc);
1398 }
1399 EXPORT_SYMBOL(sync_inode_metadata);
1400