1 /*
2  * Copyright (C) 2005, 2006
3  * Avishay Traeger (avishay@gmail.com)
4  * Copyright (C) 2008, 2009
5  * Boaz Harrosh <bharrosh@panasas.com>
6  *
7  * This file is part of exofs.
8  *
9  * exofs is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation.  Since it is based on ext2, and the only
12  * valid version of GPL for the Linux kernel is version 2, the only valid
13  * version of GPL for exofs is version 2.
14  *
15  * exofs is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with exofs; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/module.h>
27 #include <asm/div64.h>
28 #include <linux/lcm.h>
29 
30 #include "ore_raid.h"
31 
32 MODULE_AUTHOR("Boaz Harrosh <bharrosh@panasas.com>");
33 MODULE_DESCRIPTION("Objects Raid Engine ore.ko");
34 MODULE_LICENSE("GPL");
35 
36 /* ore_verify_layout does a couple of things:
37  * 1. Given a minimum number of needed parameters fixes up the rest of the
38  *    members to be operatonals for the ore. The needed parameters are those
39  *    that are defined by the pnfs-objects layout STD.
40  * 2. Check to see if the current ore code actually supports these parameters
41  *    for example stripe_unit must be a multple of the system PAGE_SIZE,
42  *    and etc...
43  * 3. Cache some havily used calculations that will be needed by users.
44  */
45 
46 enum { BIO_MAX_PAGES_KMALLOC =
47 		(PAGE_SIZE - sizeof(struct bio)) / sizeof(struct bio_vec),};
48 
ore_verify_layout(unsigned total_comps,struct ore_layout * layout)49 int ore_verify_layout(unsigned total_comps, struct ore_layout *layout)
50 {
51 	u64 stripe_length;
52 
53 	switch (layout->raid_algorithm) {
54 	case PNFS_OSD_RAID_0:
55 		layout->parity = 0;
56 		break;
57 	case PNFS_OSD_RAID_5:
58 		layout->parity = 1;
59 		break;
60 	case PNFS_OSD_RAID_PQ:
61 	case PNFS_OSD_RAID_4:
62 	default:
63 		ORE_ERR("Only RAID_0/5 for now\n");
64 		return -EINVAL;
65 	}
66 	if (0 != (layout->stripe_unit & ~PAGE_MASK)) {
67 		ORE_ERR("Stripe Unit(0x%llx)"
68 			  " must be Multples of PAGE_SIZE(0x%lx)\n",
69 			  _LLU(layout->stripe_unit), PAGE_SIZE);
70 		return -EINVAL;
71 	}
72 	if (layout->group_width) {
73 		if (!layout->group_depth) {
74 			ORE_ERR("group_depth == 0 && group_width != 0\n");
75 			return -EINVAL;
76 		}
77 		if (total_comps < (layout->group_width * layout->mirrors_p1)) {
78 			ORE_ERR("Data Map wrong, "
79 				"numdevs=%d < group_width=%d * mirrors=%d\n",
80 				total_comps, layout->group_width,
81 				layout->mirrors_p1);
82 			return -EINVAL;
83 		}
84 		layout->group_count = total_comps / layout->mirrors_p1 /
85 						layout->group_width;
86 	} else {
87 		if (layout->group_depth) {
88 			printk(KERN_NOTICE "Warning: group_depth ignored "
89 				"group_width == 0 && group_depth == %lld\n",
90 				_LLU(layout->group_depth));
91 		}
92 		layout->group_width = total_comps / layout->mirrors_p1;
93 		layout->group_depth = -1;
94 		layout->group_count = 1;
95 	}
96 
97 	stripe_length = (u64)layout->group_width * layout->stripe_unit;
98 	if (stripe_length >= (1ULL << 32)) {
99 		ORE_ERR("Stripe_length(0x%llx) >= 32bit is not supported\n",
100 			_LLU(stripe_length));
101 		return -EINVAL;
102 	}
103 
104 	layout->max_io_length =
105 		(BIO_MAX_PAGES_KMALLOC * PAGE_SIZE - layout->stripe_unit) *
106 					(layout->group_width - layout->parity);
107 	if (layout->parity) {
108 		unsigned stripe_length =
109 				(layout->group_width - layout->parity) *
110 				layout->stripe_unit;
111 
112 		layout->max_io_length /= stripe_length;
113 		layout->max_io_length *= stripe_length;
114 	}
115 	return 0;
116 }
117 EXPORT_SYMBOL(ore_verify_layout);
118 
_ios_cred(struct ore_io_state * ios,unsigned index)119 static u8 *_ios_cred(struct ore_io_state *ios, unsigned index)
120 {
121 	return ios->oc->comps[index & ios->oc->single_comp].cred;
122 }
123 
_ios_obj(struct ore_io_state * ios,unsigned index)124 static struct osd_obj_id *_ios_obj(struct ore_io_state *ios, unsigned index)
125 {
126 	return &ios->oc->comps[index & ios->oc->single_comp].obj;
127 }
128 
_ios_od(struct ore_io_state * ios,unsigned index)129 static struct osd_dev *_ios_od(struct ore_io_state *ios, unsigned index)
130 {
131 	ORE_DBGMSG2("oc->first_dev=%d oc->numdevs=%d i=%d oc->ods=%p\n",
132 		    ios->oc->first_dev, ios->oc->numdevs, index,
133 		    ios->oc->ods);
134 
135 	return ore_comp_dev(ios->oc, index);
136 }
137 
_ore_get_io_state(struct ore_layout * layout,struct ore_components * oc,unsigned numdevs,unsigned sgs_per_dev,unsigned num_par_pages,struct ore_io_state ** pios)138 int  _ore_get_io_state(struct ore_layout *layout,
139 			struct ore_components *oc, unsigned numdevs,
140 			unsigned sgs_per_dev, unsigned num_par_pages,
141 			struct ore_io_state **pios)
142 {
143 	struct ore_io_state *ios;
144 	struct page **pages;
145 	struct osd_sg_entry *sgilist;
146 	struct __alloc_all_io_state {
147 		struct ore_io_state ios;
148 		struct ore_per_dev_state per_dev[numdevs];
149 		union {
150 			struct osd_sg_entry sglist[sgs_per_dev * numdevs];
151 			struct page *pages[num_par_pages];
152 		};
153 	} *_aios;
154 
155 	if (likely(sizeof(*_aios) <= PAGE_SIZE)) {
156 		_aios = kzalloc(sizeof(*_aios), GFP_KERNEL);
157 		if (unlikely(!_aios)) {
158 			ORE_DBGMSG("Failed kzalloc bytes=%zd\n",
159 				   sizeof(*_aios));
160 			*pios = NULL;
161 			return -ENOMEM;
162 		}
163 		pages = num_par_pages ? _aios->pages : NULL;
164 		sgilist = sgs_per_dev ? _aios->sglist : NULL;
165 		ios = &_aios->ios;
166 	} else {
167 		struct __alloc_small_io_state {
168 			struct ore_io_state ios;
169 			struct ore_per_dev_state per_dev[numdevs];
170 		} *_aio_small;
171 		union __extra_part {
172 			struct osd_sg_entry sglist[sgs_per_dev * numdevs];
173 			struct page *pages[num_par_pages];
174 		} *extra_part;
175 
176 		_aio_small = kzalloc(sizeof(*_aio_small), GFP_KERNEL);
177 		if (unlikely(!_aio_small)) {
178 			ORE_DBGMSG("Failed alloc first part bytes=%zd\n",
179 				   sizeof(*_aio_small));
180 			*pios = NULL;
181 			return -ENOMEM;
182 		}
183 		extra_part = kzalloc(sizeof(*extra_part), GFP_KERNEL);
184 		if (unlikely(!extra_part)) {
185 			ORE_DBGMSG("Failed alloc second part bytes=%zd\n",
186 				   sizeof(*extra_part));
187 			kfree(_aio_small);
188 			*pios = NULL;
189 			return -ENOMEM;
190 		}
191 
192 		pages = num_par_pages ? extra_part->pages : NULL;
193 		sgilist = sgs_per_dev ? extra_part->sglist : NULL;
194 		/* In this case the per_dev[0].sgilist holds the pointer to
195 		 * be freed
196 		 */
197 		ios = &_aio_small->ios;
198 		ios->extra_part_alloc = true;
199 	}
200 
201 	if (pages) {
202 		ios->parity_pages = pages;
203 		ios->max_par_pages = num_par_pages;
204 	}
205 	if (sgilist) {
206 		unsigned d;
207 
208 		for (d = 0; d < numdevs; ++d) {
209 			ios->per_dev[d].sglist = sgilist;
210 			sgilist += sgs_per_dev;
211 		}
212 		ios->sgs_per_dev = sgs_per_dev;
213 	}
214 
215 	ios->layout = layout;
216 	ios->oc = oc;
217 	*pios = ios;
218 	return 0;
219 }
220 
221 /* Allocate an io_state for only a single group of devices
222  *
223  * If a user needs to call ore_read/write() this version must be used becase it
224  * allocates extra stuff for striping and raid.
225  * The ore might decide to only IO less then @length bytes do to alignmets
226  * and constrains as follows:
227  * - The IO cannot cross group boundary.
228  * - In raid5/6 The end of the IO must align at end of a stripe eg.
229  *   (@offset + @length) % strip_size == 0. Or the complete range is within a
230  *   single stripe.
231  * - Memory condition only permitted a shorter IO. (A user can use @length=~0
232  *   And check the returned ios->length for max_io_size.)
233  *
234  * The caller must check returned ios->length (and/or ios->nr_pages) and
235  * re-issue these pages that fall outside of ios->length
236  */
ore_get_rw_state(struct ore_layout * layout,struct ore_components * oc,bool is_reading,u64 offset,u64 length,struct ore_io_state ** pios)237 int  ore_get_rw_state(struct ore_layout *layout, struct ore_components *oc,
238 		      bool is_reading, u64 offset, u64 length,
239 		      struct ore_io_state **pios)
240 {
241 	struct ore_io_state *ios;
242 	unsigned numdevs = layout->group_width * layout->mirrors_p1;
243 	unsigned sgs_per_dev = 0, max_par_pages = 0;
244 	int ret;
245 
246 	if (layout->parity && length) {
247 		unsigned data_devs = layout->group_width - layout->parity;
248 		unsigned stripe_size = layout->stripe_unit * data_devs;
249 		unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
250 		u32 remainder;
251 		u64 num_stripes;
252 		u64 num_raid_units;
253 
254 		num_stripes = div_u64_rem(length, stripe_size, &remainder);
255 		if (remainder)
256 			++num_stripes;
257 
258 		num_raid_units =  num_stripes * layout->parity;
259 
260 		if (is_reading) {
261 			/* For reads add per_dev sglist array */
262 			/* TODO: Raid 6 we need twice more. Actually:
263 			*         num_stripes / LCMdP(W,P);
264 			*         if (W%P != 0) num_stripes *= parity;
265 			*/
266 
267 			/* first/last seg is split */
268 			num_raid_units += layout->group_width;
269 			sgs_per_dev = div_u64(num_raid_units, data_devs) + 2;
270 		} else {
271 			/* For Writes add parity pages array. */
272 			max_par_pages = num_raid_units * pages_in_unit *
273 						sizeof(struct page *);
274 		}
275 	}
276 
277 	ret = _ore_get_io_state(layout, oc, numdevs, sgs_per_dev, max_par_pages,
278 				pios);
279 	if (unlikely(ret))
280 		return ret;
281 
282 	ios = *pios;
283 	ios->reading = is_reading;
284 	ios->offset = offset;
285 
286 	if (length) {
287 		ore_calc_stripe_info(layout, offset, length, &ios->si);
288 		ios->length = ios->si.length;
289 		ios->nr_pages = ((ios->offset & (PAGE_SIZE - 1)) +
290 				 ios->length + PAGE_SIZE - 1) / PAGE_SIZE;
291 		if (layout->parity)
292 			_ore_post_alloc_raid_stuff(ios);
293 	}
294 
295 	return 0;
296 }
297 EXPORT_SYMBOL(ore_get_rw_state);
298 
299 /* Allocate an io_state for all the devices in the comps array
300  *
301  * This version of io_state allocation is used mostly by create/remove
302  * and trunc where we currently need all the devices. The only wastful
303  * bit is the read/write_attributes with no IO. Those sites should
304  * be converted to use ore_get_rw_state() with length=0
305  */
ore_get_io_state(struct ore_layout * layout,struct ore_components * oc,struct ore_io_state ** pios)306 int  ore_get_io_state(struct ore_layout *layout, struct ore_components *oc,
307 		      struct ore_io_state **pios)
308 {
309 	return _ore_get_io_state(layout, oc, oc->numdevs, 0, 0, pios);
310 }
311 EXPORT_SYMBOL(ore_get_io_state);
312 
ore_put_io_state(struct ore_io_state * ios)313 void ore_put_io_state(struct ore_io_state *ios)
314 {
315 	if (ios) {
316 		unsigned i;
317 
318 		for (i = 0; i < ios->numdevs; i++) {
319 			struct ore_per_dev_state *per_dev = &ios->per_dev[i];
320 
321 			if (per_dev->or)
322 				osd_end_request(per_dev->or);
323 			if (per_dev->bio)
324 				bio_put(per_dev->bio);
325 		}
326 
327 		_ore_free_raid_stuff(ios);
328 		kfree(ios);
329 	}
330 }
331 EXPORT_SYMBOL(ore_put_io_state);
332 
_sync_done(struct ore_io_state * ios,void * p)333 static void _sync_done(struct ore_io_state *ios, void *p)
334 {
335 	struct completion *waiting = p;
336 
337 	complete(waiting);
338 }
339 
_last_io(struct kref * kref)340 static void _last_io(struct kref *kref)
341 {
342 	struct ore_io_state *ios = container_of(
343 					kref, struct ore_io_state, kref);
344 
345 	ios->done(ios, ios->private);
346 }
347 
_done_io(struct osd_request * or,void * p)348 static void _done_io(struct osd_request *or, void *p)
349 {
350 	struct ore_io_state *ios = p;
351 
352 	kref_put(&ios->kref, _last_io);
353 }
354 
ore_io_execute(struct ore_io_state * ios)355 int ore_io_execute(struct ore_io_state *ios)
356 {
357 	DECLARE_COMPLETION_ONSTACK(wait);
358 	bool sync = (ios->done == NULL);
359 	int i, ret;
360 
361 	if (sync) {
362 		ios->done = _sync_done;
363 		ios->private = &wait;
364 	}
365 
366 	for (i = 0; i < ios->numdevs; i++) {
367 		struct osd_request *or = ios->per_dev[i].or;
368 		if (unlikely(!or))
369 			continue;
370 
371 		ret = osd_finalize_request(or, 0, _ios_cred(ios, i), NULL);
372 		if (unlikely(ret)) {
373 			ORE_DBGMSG("Failed to osd_finalize_request() => %d\n",
374 				     ret);
375 			return ret;
376 		}
377 	}
378 
379 	kref_init(&ios->kref);
380 
381 	for (i = 0; i < ios->numdevs; i++) {
382 		struct osd_request *or = ios->per_dev[i].or;
383 		if (unlikely(!or))
384 			continue;
385 
386 		kref_get(&ios->kref);
387 		osd_execute_request_async(or, _done_io, ios);
388 	}
389 
390 	kref_put(&ios->kref, _last_io);
391 	ret = 0;
392 
393 	if (sync) {
394 		wait_for_completion(&wait);
395 		ret = ore_check_io(ios, NULL);
396 	}
397 	return ret;
398 }
399 
_clear_bio(struct bio * bio)400 static void _clear_bio(struct bio *bio)
401 {
402 	struct bio_vec *bv;
403 	unsigned i;
404 
405 	__bio_for_each_segment(bv, bio, i, 0) {
406 		unsigned this_count = bv->bv_len;
407 
408 		if (likely(PAGE_SIZE == this_count))
409 			clear_highpage(bv->bv_page);
410 		else
411 			zero_user(bv->bv_page, bv->bv_offset, this_count);
412 	}
413 }
414 
ore_check_io(struct ore_io_state * ios,ore_on_dev_error on_dev_error)415 int ore_check_io(struct ore_io_state *ios, ore_on_dev_error on_dev_error)
416 {
417 	enum osd_err_priority acumulated_osd_err = 0;
418 	int acumulated_lin_err = 0;
419 	int i;
420 
421 	for (i = 0; i < ios->numdevs; i++) {
422 		struct osd_sense_info osi;
423 		struct ore_per_dev_state *per_dev = &ios->per_dev[i];
424 		struct osd_request *or = per_dev->or;
425 		int ret;
426 
427 		if (unlikely(!or))
428 			continue;
429 
430 		ret = osd_req_decode_sense(or, &osi);
431 		if (likely(!ret))
432 			continue;
433 
434 		if (OSD_ERR_PRI_CLEAR_PAGES == osi.osd_err_pri) {
435 			/* start read offset passed endof file */
436 			_clear_bio(per_dev->bio);
437 			ORE_DBGMSG("start read offset passed end of file "
438 				"offset=0x%llx, length=0x%llx\n",
439 				_LLU(per_dev->offset),
440 				_LLU(per_dev->length));
441 
442 			continue; /* we recovered */
443 		}
444 
445 		if (on_dev_error) {
446 			u64 residual = ios->reading ?
447 					or->in.residual : or->out.residual;
448 			u64 offset = (ios->offset + ios->length) - residual;
449 			unsigned dev = per_dev->dev - ios->oc->first_dev;
450 			struct ore_dev *od = ios->oc->ods[dev];
451 
452 			on_dev_error(ios, od, dev, osi.osd_err_pri,
453 				     offset, residual);
454 		}
455 		if (osi.osd_err_pri >= acumulated_osd_err) {
456 			acumulated_osd_err = osi.osd_err_pri;
457 			acumulated_lin_err = ret;
458 		}
459 	}
460 
461 	return acumulated_lin_err;
462 }
463 EXPORT_SYMBOL(ore_check_io);
464 
465 /*
466  * L - logical offset into the file
467  *
468  * D - number of Data devices
469  *	D = group_width - parity
470  *
471  * U - The number of bytes in a stripe within a group
472  *	U =  stripe_unit * D
473  *
474  * T - The number of bytes striped within a group of component objects
475  *     (before advancing to the next group)
476  *	T = U * group_depth
477  *
478  * S - The number of bytes striped across all component objects
479  *     before the pattern repeats
480  *	S = T * group_count
481  *
482  * M - The "major" (i.e., across all components) cycle number
483  *	M = L / S
484  *
485  * G - Counts the groups from the beginning of the major cycle
486  *	G = (L - (M * S)) / T	[or (L % S) / T]
487  *
488  * H - The byte offset within the group
489  *	H = (L - (M * S)) % T	[or (L % S) % T]
490  *
491  * N - The "minor" (i.e., across the group) stripe number
492  *	N = H / U
493  *
494  * C - The component index coresponding to L
495  *
496  *	C = (H - (N * U)) / stripe_unit + G * D
497  *	[or (L % U) / stripe_unit + G * D]
498  *
499  * O - The component offset coresponding to L
500  *	O = L % stripe_unit + N * stripe_unit + M * group_depth * stripe_unit
501  *
502  * LCMdP – Parity cycle: Lowest Common Multiple of group_width, parity
503  *          divide by parity
504  *	LCMdP = lcm(group_width, parity) / parity
505  *
506  * R - The parity Rotation stripe
507  *     (Note parity cycle always starts at a group's boundary)
508  *	R = N % LCMdP
509  *
510  * I = the first parity device index
511  *	I = (group_width + group_width - R*parity - parity) % group_width
512  *
513  * Craid - The component index Rotated
514  *	Craid = (group_width + C - R*parity) % group_width
515  *      (We add the group_width to avoid negative numbers modulo math)
516  */
ore_calc_stripe_info(struct ore_layout * layout,u64 file_offset,u64 length,struct ore_striping_info * si)517 void ore_calc_stripe_info(struct ore_layout *layout, u64 file_offset,
518 			  u64 length, struct ore_striping_info *si)
519 {
520 	u32	stripe_unit = layout->stripe_unit;
521 	u32	group_width = layout->group_width;
522 	u64	group_depth = layout->group_depth;
523 	u32	parity      = layout->parity;
524 
525 	u32	D = group_width - parity;
526 	u32	U = D * stripe_unit;
527 	u64	T = U * group_depth;
528 	u64	S = T * layout->group_count;
529 	u64	M = div64_u64(file_offset, S);
530 
531 	/*
532 	G = (L - (M * S)) / T
533 	H = (L - (M * S)) % T
534 	*/
535 	u64	LmodS = file_offset - M * S;
536 	u32	G = div64_u64(LmodS, T);
537 	u64	H = LmodS - G * T;
538 
539 	u32	N = div_u64(H, U);
540 	u32	Nlast;
541 
542 	/* "H - (N * U)" is just "H % U" so it's bound to u32 */
543 	u32	C = (u32)(H - (N * U)) / stripe_unit + G * group_width;
544 
545 	div_u64_rem(file_offset, stripe_unit, &si->unit_off);
546 
547 	si->obj_offset = si->unit_off + (N * stripe_unit) +
548 				  (M * group_depth * stripe_unit);
549 
550 	if (parity) {
551 		u32 LCMdP = lcm(group_width, parity) / parity;
552 		/* R     = N % LCMdP; */
553 		u32 RxP   = (N % LCMdP) * parity;
554 		u32 first_dev = C - C % group_width;
555 
556 		si->par_dev = (group_width + group_width - parity - RxP) %
557 			      group_width + first_dev;
558 		si->dev = (group_width + C - RxP) % group_width + first_dev;
559 		si->bytes_in_stripe = U;
560 		si->first_stripe_start = M * S + G * T + N * U;
561 	} else {
562 		/* Make the math correct see _prepare_one_group */
563 		si->par_dev = group_width;
564 		si->dev = C;
565 	}
566 
567 	si->dev *= layout->mirrors_p1;
568 	si->par_dev *= layout->mirrors_p1;
569 	si->offset = file_offset;
570 	si->length = T - H;
571 	if (si->length > length)
572 		si->length = length;
573 
574 	Nlast = div_u64(H + si->length + U - 1, U);
575 	si->maxdevUnits = Nlast - N;
576 
577 	si->M = M;
578 }
579 EXPORT_SYMBOL(ore_calc_stripe_info);
580 
_ore_add_stripe_unit(struct ore_io_state * ios,unsigned * cur_pg,unsigned pgbase,struct page ** pages,struct ore_per_dev_state * per_dev,int cur_len)581 int _ore_add_stripe_unit(struct ore_io_state *ios,  unsigned *cur_pg,
582 			 unsigned pgbase, struct page **pages,
583 			 struct ore_per_dev_state *per_dev, int cur_len)
584 {
585 	unsigned pg = *cur_pg;
586 	struct request_queue *q =
587 			osd_request_queue(_ios_od(ios, per_dev->dev));
588 	unsigned len = cur_len;
589 	int ret;
590 
591 	if (per_dev->bio == NULL) {
592 		unsigned bio_size;
593 
594 		if (!ios->reading) {
595 			bio_size = ios->si.maxdevUnits;
596 		} else {
597 			bio_size = (ios->si.maxdevUnits + 1) *
598 			     (ios->layout->group_width - ios->layout->parity) /
599 			     ios->layout->group_width;
600 		}
601 		bio_size *= (ios->layout->stripe_unit / PAGE_SIZE);
602 
603 		per_dev->bio = bio_kmalloc(GFP_KERNEL, bio_size);
604 		if (unlikely(!per_dev->bio)) {
605 			ORE_DBGMSG("Failed to allocate BIO size=%u\n",
606 				     bio_size);
607 			ret = -ENOMEM;
608 			goto out;
609 		}
610 	}
611 
612 	while (cur_len > 0) {
613 		unsigned pglen = min_t(unsigned, PAGE_SIZE - pgbase, cur_len);
614 		unsigned added_len;
615 
616 		cur_len -= pglen;
617 
618 		added_len = bio_add_pc_page(q, per_dev->bio, pages[pg],
619 					    pglen, pgbase);
620 		if (unlikely(pglen != added_len)) {
621 			/* If bi_vcnt == bi_max then this is a SW BUG */
622 			ORE_DBGMSG("Failed bio_add_pc_page bi_vcnt=0x%x "
623 				   "bi_max=0x%x BIO_MAX=0x%x cur_len=0x%x\n",
624 				   per_dev->bio->bi_vcnt,
625 				   per_dev->bio->bi_max_vecs,
626 				   BIO_MAX_PAGES_KMALLOC, cur_len);
627 			ret = -ENOMEM;
628 			goto out;
629 		}
630 		_add_stripe_page(ios->sp2d, &ios->si, pages[pg]);
631 
632 		pgbase = 0;
633 		++pg;
634 	}
635 	BUG_ON(cur_len);
636 
637 	per_dev->length += len;
638 	*cur_pg = pg;
639 	ret = 0;
640 out:	/* we fail the complete unit on an error eg don't advance
641 	 * per_dev->length and cur_pg. This means that we might have a bigger
642 	 * bio than the CDB requested length (per_dev->length). That's fine
643 	 * only the oposite is fatal.
644 	 */
645 	return ret;
646 }
647 
_prepare_for_striping(struct ore_io_state * ios)648 static int _prepare_for_striping(struct ore_io_state *ios)
649 {
650 	struct ore_striping_info *si = &ios->si;
651 	unsigned stripe_unit = ios->layout->stripe_unit;
652 	unsigned mirrors_p1 = ios->layout->mirrors_p1;
653 	unsigned group_width = ios->layout->group_width;
654 	unsigned devs_in_group = group_width * mirrors_p1;
655 	unsigned dev = si->dev;
656 	unsigned first_dev = dev - (dev % devs_in_group);
657 	unsigned dev_order;
658 	unsigned cur_pg = ios->pages_consumed;
659 	u64 length = ios->length;
660 	int ret = 0;
661 
662 	if (!ios->pages) {
663 		ios->numdevs = ios->layout->mirrors_p1;
664 		return 0;
665 	}
666 
667 	BUG_ON(length > si->length);
668 
669 	dev_order = _dev_order(devs_in_group, mirrors_p1, si->par_dev, dev);
670 	si->cur_comp = dev_order;
671 	si->cur_pg = si->unit_off / PAGE_SIZE;
672 
673 	while (length) {
674 		unsigned comp = dev - first_dev;
675 		struct ore_per_dev_state *per_dev = &ios->per_dev[comp];
676 		unsigned cur_len, page_off = 0;
677 
678 		if (!per_dev->length) {
679 			per_dev->dev = dev;
680 			if (dev == si->dev) {
681 				WARN_ON(dev == si->par_dev);
682 				per_dev->offset = si->obj_offset;
683 				cur_len = stripe_unit - si->unit_off;
684 				page_off = si->unit_off & ~PAGE_MASK;
685 				BUG_ON(page_off && (page_off != ios->pgbase));
686 			} else {
687 				if (si->cur_comp > dev_order)
688 					per_dev->offset =
689 						si->obj_offset - si->unit_off;
690 				else /* si->cur_comp < dev_order */
691 					per_dev->offset =
692 						si->obj_offset + stripe_unit -
693 								   si->unit_off;
694 				cur_len = stripe_unit;
695 			}
696 		} else {
697 			cur_len = stripe_unit;
698 		}
699 		if (cur_len >= length)
700 			cur_len = length;
701 
702 		ret = _ore_add_stripe_unit(ios, &cur_pg, page_off, ios->pages,
703 					   per_dev, cur_len);
704 		if (unlikely(ret))
705 			goto out;
706 
707 		dev += mirrors_p1;
708 		dev = (dev % devs_in_group) + first_dev;
709 
710 		length -= cur_len;
711 
712 		si->cur_comp = (si->cur_comp + 1) % group_width;
713 		if (unlikely((dev == si->par_dev) || (!length && ios->sp2d))) {
714 			if (!length && ios->sp2d) {
715 				/* If we are writing and this is the very last
716 				 * stripe. then operate on parity dev.
717 				 */
718 				dev = si->par_dev;
719 			}
720 			if (ios->sp2d)
721 				/* In writes cur_len just means if it's the
722 				 * last one. See _ore_add_parity_unit.
723 				 */
724 				cur_len = length;
725 			per_dev = &ios->per_dev[dev - first_dev];
726 			if (!per_dev->length) {
727 				/* Only/always the parity unit of the first
728 				 * stripe will be empty. So this is a chance to
729 				 * initialize the per_dev info.
730 				 */
731 				per_dev->dev = dev;
732 				per_dev->offset = si->obj_offset - si->unit_off;
733 			}
734 
735 			ret = _ore_add_parity_unit(ios, si, per_dev, cur_len);
736 			if (unlikely(ret))
737 					goto out;
738 
739 			/* Rotate next par_dev backwards with wraping */
740 			si->par_dev = (devs_in_group + si->par_dev -
741 				       ios->layout->parity * mirrors_p1) %
742 				      devs_in_group + first_dev;
743 			/* Next stripe, start fresh */
744 			si->cur_comp = 0;
745 			si->cur_pg = 0;
746 		}
747 	}
748 out:
749 	ios->numdevs = devs_in_group;
750 	ios->pages_consumed = cur_pg;
751 	return ret;
752 }
753 
ore_create(struct ore_io_state * ios)754 int ore_create(struct ore_io_state *ios)
755 {
756 	int i, ret;
757 
758 	for (i = 0; i < ios->oc->numdevs; i++) {
759 		struct osd_request *or;
760 
761 		or = osd_start_request(_ios_od(ios, i), GFP_KERNEL);
762 		if (unlikely(!or)) {
763 			ORE_ERR("%s: osd_start_request failed\n", __func__);
764 			ret = -ENOMEM;
765 			goto out;
766 		}
767 		ios->per_dev[i].or = or;
768 		ios->numdevs++;
769 
770 		osd_req_create_object(or, _ios_obj(ios, i));
771 	}
772 	ret = ore_io_execute(ios);
773 
774 out:
775 	return ret;
776 }
777 EXPORT_SYMBOL(ore_create);
778 
ore_remove(struct ore_io_state * ios)779 int ore_remove(struct ore_io_state *ios)
780 {
781 	int i, ret;
782 
783 	for (i = 0; i < ios->oc->numdevs; i++) {
784 		struct osd_request *or;
785 
786 		or = osd_start_request(_ios_od(ios, i), GFP_KERNEL);
787 		if (unlikely(!or)) {
788 			ORE_ERR("%s: osd_start_request failed\n", __func__);
789 			ret = -ENOMEM;
790 			goto out;
791 		}
792 		ios->per_dev[i].or = or;
793 		ios->numdevs++;
794 
795 		osd_req_remove_object(or, _ios_obj(ios, i));
796 	}
797 	ret = ore_io_execute(ios);
798 
799 out:
800 	return ret;
801 }
802 EXPORT_SYMBOL(ore_remove);
803 
_write_mirror(struct ore_io_state * ios,int cur_comp)804 static int _write_mirror(struct ore_io_state *ios, int cur_comp)
805 {
806 	struct ore_per_dev_state *master_dev = &ios->per_dev[cur_comp];
807 	unsigned dev = ios->per_dev[cur_comp].dev;
808 	unsigned last_comp = cur_comp + ios->layout->mirrors_p1;
809 	int ret = 0;
810 
811 	if (ios->pages && !master_dev->length)
812 		return 0; /* Just an empty slot */
813 
814 	for (; cur_comp < last_comp; ++cur_comp, ++dev) {
815 		struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp];
816 		struct osd_request *or;
817 
818 		or = osd_start_request(_ios_od(ios, dev), GFP_KERNEL);
819 		if (unlikely(!or)) {
820 			ORE_ERR("%s: osd_start_request failed\n", __func__);
821 			ret = -ENOMEM;
822 			goto out;
823 		}
824 		per_dev->or = or;
825 
826 		if (ios->pages) {
827 			struct bio *bio;
828 
829 			if (per_dev != master_dev) {
830 				bio = bio_kmalloc(GFP_KERNEL,
831 						  master_dev->bio->bi_max_vecs);
832 				if (unlikely(!bio)) {
833 					ORE_DBGMSG(
834 					      "Failed to allocate BIO size=%u\n",
835 					      master_dev->bio->bi_max_vecs);
836 					ret = -ENOMEM;
837 					goto out;
838 				}
839 
840 				__bio_clone(bio, master_dev->bio);
841 				bio->bi_bdev = NULL;
842 				bio->bi_next = NULL;
843 				per_dev->offset = master_dev->offset;
844 				per_dev->length = master_dev->length;
845 				per_dev->bio =  bio;
846 				per_dev->dev = dev;
847 			} else {
848 				bio = master_dev->bio;
849 				/* FIXME: bio_set_dir() */
850 				bio->bi_rw |= REQ_WRITE;
851 			}
852 
853 			osd_req_write(or, _ios_obj(ios, cur_comp),
854 				      per_dev->offset, bio, per_dev->length);
855 			ORE_DBGMSG("write(0x%llx) offset=0x%llx "
856 				      "length=0x%llx dev=%d\n",
857 				     _LLU(_ios_obj(ios, cur_comp)->id),
858 				     _LLU(per_dev->offset),
859 				     _LLU(per_dev->length), dev);
860 		} else if (ios->kern_buff) {
861 			per_dev->offset = ios->si.obj_offset;
862 			per_dev->dev = ios->si.dev + dev;
863 
864 			/* no cross device without page array */
865 			BUG_ON((ios->layout->group_width > 1) &&
866 			       (ios->si.unit_off + ios->length >
867 				ios->layout->stripe_unit));
868 
869 			ret = osd_req_write_kern(or, _ios_obj(ios, cur_comp),
870 						 per_dev->offset,
871 						 ios->kern_buff, ios->length);
872 			if (unlikely(ret))
873 				goto out;
874 			ORE_DBGMSG2("write_kern(0x%llx) offset=0x%llx "
875 				      "length=0x%llx dev=%d\n",
876 				     _LLU(_ios_obj(ios, cur_comp)->id),
877 				     _LLU(per_dev->offset),
878 				     _LLU(ios->length), per_dev->dev);
879 		} else {
880 			osd_req_set_attributes(or, _ios_obj(ios, cur_comp));
881 			ORE_DBGMSG2("obj(0x%llx) set_attributes=%d dev=%d\n",
882 				     _LLU(_ios_obj(ios, cur_comp)->id),
883 				     ios->out_attr_len, dev);
884 		}
885 
886 		if (ios->out_attr)
887 			osd_req_add_set_attr_list(or, ios->out_attr,
888 						  ios->out_attr_len);
889 
890 		if (ios->in_attr)
891 			osd_req_add_get_attr_list(or, ios->in_attr,
892 						  ios->in_attr_len);
893 	}
894 
895 out:
896 	return ret;
897 }
898 
ore_write(struct ore_io_state * ios)899 int ore_write(struct ore_io_state *ios)
900 {
901 	int i;
902 	int ret;
903 
904 	if (unlikely(ios->sp2d && !ios->r4w)) {
905 		/* A library is attempting a RAID-write without providing
906 		 * a pages lock interface.
907 		 */
908 		WARN_ON_ONCE(1);
909 		return -ENOTSUPP;
910 	}
911 
912 	ret = _prepare_for_striping(ios);
913 	if (unlikely(ret))
914 		return ret;
915 
916 	for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) {
917 		ret = _write_mirror(ios, i);
918 		if (unlikely(ret))
919 			return ret;
920 	}
921 
922 	ret = ore_io_execute(ios);
923 	return ret;
924 }
925 EXPORT_SYMBOL(ore_write);
926 
_ore_read_mirror(struct ore_io_state * ios,unsigned cur_comp)927 int _ore_read_mirror(struct ore_io_state *ios, unsigned cur_comp)
928 {
929 	struct osd_request *or;
930 	struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp];
931 	struct osd_obj_id *obj = _ios_obj(ios, cur_comp);
932 	unsigned first_dev = (unsigned)obj->id;
933 
934 	if (ios->pages && !per_dev->length)
935 		return 0; /* Just an empty slot */
936 
937 	first_dev = per_dev->dev + first_dev % ios->layout->mirrors_p1;
938 	or = osd_start_request(_ios_od(ios, first_dev), GFP_KERNEL);
939 	if (unlikely(!or)) {
940 		ORE_ERR("%s: osd_start_request failed\n", __func__);
941 		return -ENOMEM;
942 	}
943 	per_dev->or = or;
944 
945 	if (ios->pages) {
946 		if (per_dev->cur_sg) {
947 			/* finalize the last sg_entry */
948 			_ore_add_sg_seg(per_dev, 0, false);
949 			if (unlikely(!per_dev->cur_sg))
950 				return 0; /* Skip parity only device */
951 
952 			osd_req_read_sg(or, obj, per_dev->bio,
953 					per_dev->sglist, per_dev->cur_sg);
954 		} else {
955 			/* The no raid case */
956 			osd_req_read(or, obj, per_dev->offset,
957 				     per_dev->bio, per_dev->length);
958 		}
959 
960 		ORE_DBGMSG("read(0x%llx) offset=0x%llx length=0x%llx"
961 			     " dev=%d sg_len=%d\n", _LLU(obj->id),
962 			     _LLU(per_dev->offset), _LLU(per_dev->length),
963 			     first_dev, per_dev->cur_sg);
964 	} else {
965 		BUG_ON(ios->kern_buff);
966 
967 		osd_req_get_attributes(or, obj);
968 		ORE_DBGMSG2("obj(0x%llx) get_attributes=%d dev=%d\n",
969 			      _LLU(obj->id),
970 			      ios->in_attr_len, first_dev);
971 	}
972 	if (ios->out_attr)
973 		osd_req_add_set_attr_list(or, ios->out_attr, ios->out_attr_len);
974 
975 	if (ios->in_attr)
976 		osd_req_add_get_attr_list(or, ios->in_attr, ios->in_attr_len);
977 
978 	return 0;
979 }
980 
ore_read(struct ore_io_state * ios)981 int ore_read(struct ore_io_state *ios)
982 {
983 	int i;
984 	int ret;
985 
986 	ret = _prepare_for_striping(ios);
987 	if (unlikely(ret))
988 		return ret;
989 
990 	for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) {
991 		ret = _ore_read_mirror(ios, i);
992 		if (unlikely(ret))
993 			return ret;
994 	}
995 
996 	ret = ore_io_execute(ios);
997 	return ret;
998 }
999 EXPORT_SYMBOL(ore_read);
1000 
extract_attr_from_ios(struct ore_io_state * ios,struct osd_attr * attr)1001 int extract_attr_from_ios(struct ore_io_state *ios, struct osd_attr *attr)
1002 {
1003 	struct osd_attr cur_attr = {.attr_page = 0}; /* start with zeros */
1004 	void *iter = NULL;
1005 	int nelem;
1006 
1007 	do {
1008 		nelem = 1;
1009 		osd_req_decode_get_attr_list(ios->per_dev[0].or,
1010 					     &cur_attr, &nelem, &iter);
1011 		if ((cur_attr.attr_page == attr->attr_page) &&
1012 		    (cur_attr.attr_id == attr->attr_id)) {
1013 			attr->len = cur_attr.len;
1014 			attr->val_ptr = cur_attr.val_ptr;
1015 			return 0;
1016 		}
1017 	} while (iter);
1018 
1019 	return -EIO;
1020 }
1021 EXPORT_SYMBOL(extract_attr_from_ios);
1022 
_truncate_mirrors(struct ore_io_state * ios,unsigned cur_comp,struct osd_attr * attr)1023 static int _truncate_mirrors(struct ore_io_state *ios, unsigned cur_comp,
1024 			     struct osd_attr *attr)
1025 {
1026 	int last_comp = cur_comp + ios->layout->mirrors_p1;
1027 
1028 	for (; cur_comp < last_comp; ++cur_comp) {
1029 		struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp];
1030 		struct osd_request *or;
1031 
1032 		or = osd_start_request(_ios_od(ios, cur_comp), GFP_KERNEL);
1033 		if (unlikely(!or)) {
1034 			ORE_ERR("%s: osd_start_request failed\n", __func__);
1035 			return -ENOMEM;
1036 		}
1037 		per_dev->or = or;
1038 
1039 		osd_req_set_attributes(or, _ios_obj(ios, cur_comp));
1040 		osd_req_add_set_attr_list(or, attr, 1);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 struct _trunc_info {
1047 	struct ore_striping_info si;
1048 	u64 prev_group_obj_off;
1049 	u64 next_group_obj_off;
1050 
1051 	unsigned first_group_dev;
1052 	unsigned nex_group_dev;
1053 };
1054 
_calc_trunk_info(struct ore_layout * layout,u64 file_offset,struct _trunc_info * ti)1055 static void _calc_trunk_info(struct ore_layout *layout, u64 file_offset,
1056 			     struct _trunc_info *ti)
1057 {
1058 	unsigned stripe_unit = layout->stripe_unit;
1059 
1060 	ore_calc_stripe_info(layout, file_offset, 0, &ti->si);
1061 
1062 	ti->prev_group_obj_off = ti->si.M * stripe_unit;
1063 	ti->next_group_obj_off = ti->si.M ? (ti->si.M - 1) * stripe_unit : 0;
1064 
1065 	ti->first_group_dev = ti->si.dev - (ti->si.dev % layout->group_width);
1066 	ti->nex_group_dev = ti->first_group_dev + layout->group_width;
1067 }
1068 
ore_truncate(struct ore_layout * layout,struct ore_components * oc,u64 size)1069 int ore_truncate(struct ore_layout *layout, struct ore_components *oc,
1070 		   u64 size)
1071 {
1072 	struct ore_io_state *ios;
1073 	struct exofs_trunc_attr {
1074 		struct osd_attr attr;
1075 		__be64 newsize;
1076 	} *size_attrs;
1077 	struct _trunc_info ti;
1078 	int i, ret;
1079 
1080 	ret = ore_get_io_state(layout, oc, &ios);
1081 	if (unlikely(ret))
1082 		return ret;
1083 
1084 	_calc_trunk_info(ios->layout, size, &ti);
1085 
1086 	size_attrs = kcalloc(ios->oc->numdevs, sizeof(*size_attrs),
1087 			     GFP_KERNEL);
1088 	if (unlikely(!size_attrs)) {
1089 		ret = -ENOMEM;
1090 		goto out;
1091 	}
1092 
1093 	ios->numdevs = ios->oc->numdevs;
1094 
1095 	for (i = 0; i < ios->numdevs; ++i) {
1096 		struct exofs_trunc_attr *size_attr = &size_attrs[i];
1097 		u64 obj_size;
1098 
1099 		if (i < ti.first_group_dev)
1100 			obj_size = ti.prev_group_obj_off;
1101 		else if (i >= ti.nex_group_dev)
1102 			obj_size = ti.next_group_obj_off;
1103 		else if (i < ti.si.dev) /* dev within this group */
1104 			obj_size = ti.si.obj_offset +
1105 				      ios->layout->stripe_unit - ti.si.unit_off;
1106 		else if (i == ti.si.dev)
1107 			obj_size = ti.si.obj_offset;
1108 		else /* i > ti.dev */
1109 			obj_size = ti.si.obj_offset - ti.si.unit_off;
1110 
1111 		size_attr->newsize = cpu_to_be64(obj_size);
1112 		size_attr->attr = g_attr_logical_length;
1113 		size_attr->attr.val_ptr = &size_attr->newsize;
1114 
1115 		ORE_DBGMSG2("trunc(0x%llx) obj_offset=0x%llx dev=%d\n",
1116 			     _LLU(oc->comps->obj.id), _LLU(obj_size), i);
1117 		ret = _truncate_mirrors(ios, i * ios->layout->mirrors_p1,
1118 					&size_attr->attr);
1119 		if (unlikely(ret))
1120 			goto out;
1121 	}
1122 	ret = ore_io_execute(ios);
1123 
1124 out:
1125 	kfree(size_attrs);
1126 	ore_put_io_state(ios);
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL(ore_truncate);
1130 
1131 const struct osd_attr g_attr_logical_length = ATTR_DEF(
1132 	OSD_APAGE_OBJECT_INFORMATION, OSD_ATTR_OI_LOGICAL_LENGTH, 8);
1133 EXPORT_SYMBOL(g_attr_logical_length);
1134