1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include "isci.h"
57 #include "host.h"
58 #include "phy.h"
59 #include "scu_event_codes.h"
60 #include "probe_roms.h"
61 
62 #undef C
63 #define C(a) (#a)
phy_state_name(enum sci_phy_states state)64 static const char *phy_state_name(enum sci_phy_states state)
65 {
66 	static const char * const strings[] = PHY_STATES;
67 
68 	return strings[state];
69 }
70 #undef C
71 
72 /* Maximum arbitration wait time in micro-seconds */
73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
74 
sci_phy_linkrate(struct isci_phy * iphy)75 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
76 {
77 	return iphy->max_negotiated_speed;
78 }
79 
phy_to_host(struct isci_phy * iphy)80 static struct isci_host *phy_to_host(struct isci_phy *iphy)
81 {
82 	struct isci_phy *table = iphy - iphy->phy_index;
83 	struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84 
85 	return ihost;
86 }
87 
sciphy_to_dev(struct isci_phy * iphy)88 static struct device *sciphy_to_dev(struct isci_phy *iphy)
89 {
90 	return &phy_to_host(iphy)->pdev->dev;
91 }
92 
93 static enum sci_status
sci_phy_transport_layer_initialization(struct isci_phy * iphy,struct scu_transport_layer_registers __iomem * reg)94 sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95 				       struct scu_transport_layer_registers __iomem *reg)
96 {
97 	u32 tl_control;
98 
99 	iphy->transport_layer_registers = reg;
100 
101 	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102 		&iphy->transport_layer_registers->stp_rni);
103 
104 	/*
105 	 * Hardware team recommends that we enable the STP prefetch for all
106 	 * transports
107 	 */
108 	tl_control = readl(&iphy->transport_layer_registers->control);
109 	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110 	writel(tl_control, &iphy->transport_layer_registers->control);
111 
112 	return SCI_SUCCESS;
113 }
114 
115 static enum sci_status
sci_phy_link_layer_initialization(struct isci_phy * iphy,struct scu_link_layer_registers __iomem * llr)116 sci_phy_link_layer_initialization(struct isci_phy *iphy,
117 				  struct scu_link_layer_registers __iomem *llr)
118 {
119 	struct isci_host *ihost = iphy->owning_port->owning_controller;
120 	struct sci_phy_user_params *phy_user;
121 	struct sci_phy_oem_params *phy_oem;
122 	int phy_idx = iphy->phy_index;
123 	struct sci_phy_cap phy_cap;
124 	u32 phy_configuration;
125 	u32 parity_check = 0;
126 	u32 parity_count = 0;
127 	u32 llctl, link_rate;
128 	u32 clksm_value = 0;
129 	u32 sp_timeouts = 0;
130 
131 	phy_user = &ihost->user_parameters.phys[phy_idx];
132 	phy_oem = &ihost->oem_parameters.phys[phy_idx];
133 	iphy->link_layer_registers = llr;
134 
135 	/* Set our IDENTIFY frame data */
136 	#define SCI_END_DEVICE 0x01
137 
138 	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139 	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140 	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141 	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142 	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143 	       &llr->transmit_identification);
144 
145 	/* Write the device SAS Address */
146 	writel(0xFEDCBA98, &llr->sas_device_name_high);
147 	writel(phy_idx, &llr->sas_device_name_low);
148 
149 	/* Write the source SAS Address */
150 	writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151 	writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
152 
153 	/* Clear and Set the PHY Identifier */
154 	writel(0, &llr->identify_frame_phy_id);
155 	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
156 
157 	/* Change the initial state of the phy configuration register */
158 	phy_configuration = readl(&llr->phy_configuration);
159 
160 	/* Hold OOB state machine in reset */
161 	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162 	writel(phy_configuration, &llr->phy_configuration);
163 
164 	/* Configure the SNW capabilities */
165 	phy_cap.all = 0;
166 	phy_cap.start = 1;
167 	phy_cap.gen3_no_ssc = 1;
168 	phy_cap.gen2_no_ssc = 1;
169 	phy_cap.gen1_no_ssc = 1;
170 	if (ihost->oem_parameters.controller.do_enable_ssc) {
171 		struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172 		struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_idx];
173 		struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174 		bool en_sas = false;
175 		bool en_sata = false;
176 		u32 sas_type = 0;
177 		u32 sata_spread = 0x2;
178 		u32 sas_spread = 0x2;
179 
180 		phy_cap.gen3_ssc = 1;
181 		phy_cap.gen2_ssc = 1;
182 		phy_cap.gen1_ssc = 1;
183 
184 		if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185 			en_sas = en_sata = true;
186 		else {
187 			sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188 			sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189 
190 			if (sata_spread)
191 				en_sata = true;
192 
193 			if (sas_spread) {
194 				en_sas = true;
195 				sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196 			}
197 
198 		}
199 
200 		if (en_sas) {
201 			u32 reg;
202 
203 			reg = readl(&xcvr->afe_xcvr_control0);
204 			reg |= (0x00100000 | (sas_type << 19));
205 			writel(reg, &xcvr->afe_xcvr_control0);
206 
207 			reg = readl(&xcvr->afe_tx_ssc_control);
208 			reg |= sas_spread << 8;
209 			writel(reg, &xcvr->afe_tx_ssc_control);
210 		}
211 
212 		if (en_sata) {
213 			u32 reg;
214 
215 			reg = readl(&xcvr->afe_tx_ssc_control);
216 			reg |= sata_spread;
217 			writel(reg, &xcvr->afe_tx_ssc_control);
218 
219 			reg = readl(&llr->stp_control);
220 			reg |= 1 << 12;
221 			writel(reg, &llr->stp_control);
222 		}
223 	}
224 
225 	/* The SAS specification indicates that the phy_capabilities that
226 	 * are transmitted shall have an even parity.  Calculate the parity.
227 	 */
228 	parity_check = phy_cap.all;
229 	while (parity_check != 0) {
230 		if (parity_check & 0x1)
231 			parity_count++;
232 		parity_check >>= 1;
233 	}
234 
235 	/* If parity indicates there are an odd number of bits set, then
236 	 * set the parity bit to 1 in the phy capabilities.
237 	 */
238 	if ((parity_count % 2) != 0)
239 		phy_cap.parity = 1;
240 
241 	writel(phy_cap.all, &llr->phy_capabilities);
242 
243 	/* Set the enable spinup period but disable the ability to send
244 	 * notify enable spinup
245 	 */
246 	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247 			phy_user->notify_enable_spin_up_insertion_frequency),
248 		&llr->notify_enable_spinup_control);
249 
250 	/* Write the ALIGN Insertion Ferequency for connected phy and
251 	 * inpendent of connected state
252 	 */
253 	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254 			phy_user->in_connection_align_insertion_frequency);
255 
256 	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257 			phy_user->align_insertion_frequency);
258 
259 	writel(clksm_value, &llr->clock_skew_management);
260 
261 	if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262 		writel(0x04210400, &llr->afe_lookup_table_control);
263 		writel(0x020A7C05, &llr->sas_primitive_timeout);
264 	} else
265 		writel(0x02108421, &llr->afe_lookup_table_control);
266 
267 	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268 		(u8)ihost->user_parameters.no_outbound_task_timeout);
269 
270 	switch (phy_user->max_speed_generation) {
271 	case SCIC_SDS_PARM_GEN3_SPEED:
272 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273 		break;
274 	case SCIC_SDS_PARM_GEN2_SPEED:
275 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276 		break;
277 	default:
278 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279 		break;
280 	}
281 	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282 	writel(llctl, &llr->link_layer_control);
283 
284 	sp_timeouts = readl(&llr->sas_phy_timeouts);
285 
286 	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287 	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288 
289 	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
290 	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291 	 */
292 	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293 
294 	writel(sp_timeouts, &llr->sas_phy_timeouts);
295 
296 	if (is_a2(ihost->pdev)) {
297 		/* Program the max ARB time for the PHY to 700us so we
298 		 * inter-operate with the PMC expander which shuts down
299 		 * PHYs if the expander PHY generates too many breaks.
300 		 * This time value will guarantee that the initiator PHY
301 		 * will generate the break.
302 		 */
303 		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304 		       &llr->maximum_arbitration_wait_timer_timeout);
305 	}
306 
307 	/* Disable link layer hang detection, rely on the OS timeout for
308 	 * I/O timeouts.
309 	 */
310 	writel(0, &llr->link_layer_hang_detection_timeout);
311 
312 	/* We can exit the initial state to the stopped state */
313 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
314 
315 	return SCI_SUCCESS;
316 }
317 
phy_sata_timeout(unsigned long data)318 static void phy_sata_timeout(unsigned long data)
319 {
320 	struct sci_timer *tmr = (struct sci_timer *)data;
321 	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322 	struct isci_host *ihost = iphy->owning_port->owning_controller;
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&ihost->scic_lock, flags);
326 
327 	if (tmr->cancel)
328 		goto done;
329 
330 	dev_dbg(sciphy_to_dev(iphy),
331 		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332 		 "timeout.\n",
333 		 __func__,
334 		 iphy);
335 
336 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337 done:
338 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
339 }
340 
341 /**
342  * This method returns the port currently containing this phy. If the phy is
343  *    currently contained by the dummy port, then the phy is considered to not
344  *    be part of a port.
345  * @sci_phy: This parameter specifies the phy for which to retrieve the
346  *    containing port.
347  *
348  * This method returns a handle to a port that contains the supplied phy.
349  * NULL This value is returned if the phy is not part of a real
350  * port (i.e. it's contained in the dummy port). !NULL All other
351  * values indicate a handle/pointer to the port containing the phy.
352  */
phy_get_non_dummy_port(struct isci_phy * iphy)353 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
354 {
355 	struct isci_port *iport = iphy->owning_port;
356 
357 	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
358 		return NULL;
359 
360 	return iphy->owning_port;
361 }
362 
363 /**
364  * This method will assign a port to the phy object.
365  * @out]: iphy This parameter specifies the phy for which to assign a port
366  *    object.
367  *
368  *
369  */
sci_phy_set_port(struct isci_phy * iphy,struct isci_port * iport)370 void sci_phy_set_port(
371 	struct isci_phy *iphy,
372 	struct isci_port *iport)
373 {
374 	iphy->owning_port = iport;
375 
376 	if (iphy->bcn_received_while_port_unassigned) {
377 		iphy->bcn_received_while_port_unassigned = false;
378 		sci_port_broadcast_change_received(iphy->owning_port, iphy);
379 	}
380 }
381 
sci_phy_initialize(struct isci_phy * iphy,struct scu_transport_layer_registers __iomem * tl,struct scu_link_layer_registers __iomem * ll)382 enum sci_status sci_phy_initialize(struct isci_phy *iphy,
383 				   struct scu_transport_layer_registers __iomem *tl,
384 				   struct scu_link_layer_registers __iomem *ll)
385 {
386 	/* Perfrom the initialization of the TL hardware */
387 	sci_phy_transport_layer_initialization(iphy, tl);
388 
389 	/* Perofrm the initialization of the PE hardware */
390 	sci_phy_link_layer_initialization(iphy, ll);
391 
392 	/* There is nothing that needs to be done in this state just
393 	 * transition to the stopped state
394 	 */
395 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
396 
397 	return SCI_SUCCESS;
398 }
399 
400 /**
401  * This method assigns the direct attached device ID for this phy.
402  *
403  * @iphy The phy for which the direct attached device id is to
404  *       be assigned.
405  * @device_id The direct attached device ID to assign to the phy.
406  *       This will either be the RNi for the device or an invalid RNi if there
407  *       is no current device assigned to the phy.
408  */
sci_phy_setup_transport(struct isci_phy * iphy,u32 device_id)409 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
410 {
411 	u32 tl_control;
412 
413 	writel(device_id, &iphy->transport_layer_registers->stp_rni);
414 
415 	/*
416 	 * The read should guarantee that the first write gets posted
417 	 * before the next write
418 	 */
419 	tl_control = readl(&iphy->transport_layer_registers->control);
420 	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
421 	writel(tl_control, &iphy->transport_layer_registers->control);
422 }
423 
sci_phy_suspend(struct isci_phy * iphy)424 static void sci_phy_suspend(struct isci_phy *iphy)
425 {
426 	u32 scu_sas_pcfg_value;
427 
428 	scu_sas_pcfg_value =
429 		readl(&iphy->link_layer_registers->phy_configuration);
430 	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
431 	writel(scu_sas_pcfg_value,
432 		&iphy->link_layer_registers->phy_configuration);
433 
434 	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
435 }
436 
sci_phy_resume(struct isci_phy * iphy)437 void sci_phy_resume(struct isci_phy *iphy)
438 {
439 	u32 scu_sas_pcfg_value;
440 
441 	scu_sas_pcfg_value =
442 		readl(&iphy->link_layer_registers->phy_configuration);
443 	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
444 	writel(scu_sas_pcfg_value,
445 		&iphy->link_layer_registers->phy_configuration);
446 }
447 
sci_phy_get_sas_address(struct isci_phy * iphy,struct sci_sas_address * sas)448 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
449 {
450 	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
451 	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
452 }
453 
sci_phy_get_attached_sas_address(struct isci_phy * iphy,struct sci_sas_address * sas)454 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
455 {
456 	struct sas_identify_frame *iaf;
457 
458 	iaf = &iphy->frame_rcvd.iaf;
459 	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
460 }
461 
sci_phy_get_protocols(struct isci_phy * iphy,struct sci_phy_proto * proto)462 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
463 {
464 	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
465 }
466 
sci_phy_start(struct isci_phy * iphy)467 enum sci_status sci_phy_start(struct isci_phy *iphy)
468 {
469 	enum sci_phy_states state = iphy->sm.current_state_id;
470 
471 	if (state != SCI_PHY_STOPPED) {
472 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
473 			__func__, phy_state_name(state));
474 		return SCI_FAILURE_INVALID_STATE;
475 	}
476 
477 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
478 	return SCI_SUCCESS;
479 }
480 
sci_phy_stop(struct isci_phy * iphy)481 enum sci_status sci_phy_stop(struct isci_phy *iphy)
482 {
483 	enum sci_phy_states state = iphy->sm.current_state_id;
484 
485 	switch (state) {
486 	case SCI_PHY_SUB_INITIAL:
487 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
488 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
489 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
490 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
491 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
492 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
493 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
494 	case SCI_PHY_SUB_FINAL:
495 	case SCI_PHY_READY:
496 		break;
497 	default:
498 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
499 			__func__, phy_state_name(state));
500 		return SCI_FAILURE_INVALID_STATE;
501 	}
502 
503 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
504 	return SCI_SUCCESS;
505 }
506 
sci_phy_reset(struct isci_phy * iphy)507 enum sci_status sci_phy_reset(struct isci_phy *iphy)
508 {
509 	enum sci_phy_states state = iphy->sm.current_state_id;
510 
511 	if (state != SCI_PHY_READY) {
512 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
513 			__func__, phy_state_name(state));
514 		return SCI_FAILURE_INVALID_STATE;
515 	}
516 
517 	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
518 	return SCI_SUCCESS;
519 }
520 
sci_phy_consume_power_handler(struct isci_phy * iphy)521 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
522 {
523 	enum sci_phy_states state = iphy->sm.current_state_id;
524 
525 	switch (state) {
526 	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
527 		u32 enable_spinup;
528 
529 		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
530 		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
531 		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
532 
533 		/* Change state to the final state this substate machine has run to completion */
534 		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
535 
536 		return SCI_SUCCESS;
537 	}
538 	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
539 		u32 scu_sas_pcfg_value;
540 
541 		/* Release the spinup hold state and reset the OOB state machine */
542 		scu_sas_pcfg_value =
543 			readl(&iphy->link_layer_registers->phy_configuration);
544 		scu_sas_pcfg_value &=
545 			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
546 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
547 		writel(scu_sas_pcfg_value,
548 			&iphy->link_layer_registers->phy_configuration);
549 
550 		/* Now restart the OOB operation */
551 		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
552 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
553 		writel(scu_sas_pcfg_value,
554 			&iphy->link_layer_registers->phy_configuration);
555 
556 		/* Change state to the final state this substate machine has run to completion */
557 		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
558 
559 		return SCI_SUCCESS;
560 	}
561 	default:
562 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
563 			__func__, phy_state_name(state));
564 		return SCI_FAILURE_INVALID_STATE;
565 	}
566 }
567 
sci_phy_start_sas_link_training(struct isci_phy * iphy)568 static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
569 {
570 	/* continue the link training for the phy as if it were a SAS PHY
571 	 * instead of a SATA PHY. This is done because the completion queue had a SAS
572 	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
573 	 */
574 	u32 phy_control;
575 
576 	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
577 	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
578 	writel(phy_control,
579 	       &iphy->link_layer_registers->phy_configuration);
580 
581 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
582 
583 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
584 }
585 
sci_phy_start_sata_link_training(struct isci_phy * iphy)586 static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
587 {
588 	/* This method continues the link training for the phy as if it were a SATA PHY
589 	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
590 	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
591 	 */
592 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
593 
594 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
595 }
596 
597 /**
598  * sci_phy_complete_link_training - perform processing common to
599  *    all protocols upon completion of link training.
600  * @sci_phy: This parameter specifies the phy object for which link training
601  *    has completed.
602  * @max_link_rate: This parameter specifies the maximum link rate to be
603  *    associated with this phy.
604  * @next_state: This parameter specifies the next state for the phy's starting
605  *    sub-state machine.
606  *
607  */
sci_phy_complete_link_training(struct isci_phy * iphy,enum sas_linkrate max_link_rate,u32 next_state)608 static void sci_phy_complete_link_training(struct isci_phy *iphy,
609 					   enum sas_linkrate max_link_rate,
610 					   u32 next_state)
611 {
612 	iphy->max_negotiated_speed = max_link_rate;
613 
614 	sci_change_state(&iphy->sm, next_state);
615 }
616 
phy_event_name(u32 event_code)617 static const char *phy_event_name(u32 event_code)
618 {
619 	switch (scu_get_event_code(event_code)) {
620 	case SCU_EVENT_PORT_SELECTOR_DETECTED:
621 		return "port selector";
622 	case SCU_EVENT_SENT_PORT_SELECTION:
623 		return "port selection";
624 	case SCU_EVENT_HARD_RESET_TRANSMITTED:
625 		return "tx hard reset";
626 	case SCU_EVENT_HARD_RESET_RECEIVED:
627 		return "rx hard reset";
628 	case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
629 		return "identify timeout";
630 	case SCU_EVENT_LINK_FAILURE:
631 		return "link fail";
632 	case SCU_EVENT_SATA_SPINUP_HOLD:
633 		return "sata spinup hold";
634 	case SCU_EVENT_SAS_15_SSC:
635 	case SCU_EVENT_SAS_15:
636 		return "sas 1.5";
637 	case SCU_EVENT_SAS_30_SSC:
638 	case SCU_EVENT_SAS_30:
639 		return "sas 3.0";
640 	case SCU_EVENT_SAS_60_SSC:
641 	case SCU_EVENT_SAS_60:
642 		return "sas 6.0";
643 	case SCU_EVENT_SATA_15_SSC:
644 	case SCU_EVENT_SATA_15:
645 		return "sata 1.5";
646 	case SCU_EVENT_SATA_30_SSC:
647 	case SCU_EVENT_SATA_30:
648 		return "sata 3.0";
649 	case SCU_EVENT_SATA_60_SSC:
650 	case SCU_EVENT_SATA_60:
651 		return "sata 6.0";
652 	case SCU_EVENT_SAS_PHY_DETECTED:
653 		return "sas detect";
654 	case SCU_EVENT_SATA_PHY_DETECTED:
655 		return "sata detect";
656 	default:
657 		return "unknown";
658 	}
659 }
660 
661 #define phy_event_dbg(iphy, state, code) \
662 	dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
663 		phy_to_host(iphy)->id, iphy->phy_index, \
664 		phy_state_name(state), phy_event_name(code), code)
665 
666 #define phy_event_warn(iphy, state, code) \
667 	dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
668 		phy_to_host(iphy)->id, iphy->phy_index, \
669 		phy_state_name(state), phy_event_name(code), code)
670 
sci_phy_event_handler(struct isci_phy * iphy,u32 event_code)671 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
672 {
673 	enum sci_phy_states state = iphy->sm.current_state_id;
674 
675 	switch (state) {
676 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
677 		switch (scu_get_event_code(event_code)) {
678 		case SCU_EVENT_SAS_PHY_DETECTED:
679 			sci_phy_start_sas_link_training(iphy);
680 			iphy->is_in_link_training = true;
681 			break;
682 		case SCU_EVENT_SATA_SPINUP_HOLD:
683 			sci_phy_start_sata_link_training(iphy);
684 			iphy->is_in_link_training = true;
685 			break;
686 		default:
687 			phy_event_dbg(iphy, state, event_code);
688 			return SCI_FAILURE;
689 		}
690 		return SCI_SUCCESS;
691 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
692 		switch (scu_get_event_code(event_code)) {
693 		case SCU_EVENT_SAS_PHY_DETECTED:
694 			/*
695 			 * Why is this being reported again by the controller?
696 			 * We would re-enter this state so just stay here */
697 			break;
698 		case SCU_EVENT_SAS_15:
699 		case SCU_EVENT_SAS_15_SSC:
700 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
701 						       SCI_PHY_SUB_AWAIT_IAF_UF);
702 			break;
703 		case SCU_EVENT_SAS_30:
704 		case SCU_EVENT_SAS_30_SSC:
705 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
706 						       SCI_PHY_SUB_AWAIT_IAF_UF);
707 			break;
708 		case SCU_EVENT_SAS_60:
709 		case SCU_EVENT_SAS_60_SSC:
710 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
711 						       SCI_PHY_SUB_AWAIT_IAF_UF);
712 			break;
713 		case SCU_EVENT_SATA_SPINUP_HOLD:
714 			/*
715 			 * We were doing SAS PHY link training and received a SATA PHY event
716 			 * continue OOB/SN as if this were a SATA PHY */
717 			sci_phy_start_sata_link_training(iphy);
718 			break;
719 		case SCU_EVENT_LINK_FAILURE:
720 			/* Link failure change state back to the starting state */
721 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
722 			break;
723 		default:
724 			phy_event_warn(iphy, state, event_code);
725 			return SCI_FAILURE;
726 			break;
727 		}
728 		return SCI_SUCCESS;
729 	case SCI_PHY_SUB_AWAIT_IAF_UF:
730 		switch (scu_get_event_code(event_code)) {
731 		case SCU_EVENT_SAS_PHY_DETECTED:
732 			/* Backup the state machine */
733 			sci_phy_start_sas_link_training(iphy);
734 			break;
735 		case SCU_EVENT_SATA_SPINUP_HOLD:
736 			/* We were doing SAS PHY link training and received a
737 			 * SATA PHY event continue OOB/SN as if this were a
738 			 * SATA PHY
739 			 */
740 			sci_phy_start_sata_link_training(iphy);
741 			break;
742 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
743 		case SCU_EVENT_LINK_FAILURE:
744 		case SCU_EVENT_HARD_RESET_RECEIVED:
745 			/* Start the oob/sn state machine over again */
746 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
747 			break;
748 		default:
749 			phy_event_warn(iphy, state, event_code);
750 			return SCI_FAILURE;
751 		}
752 		return SCI_SUCCESS;
753 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
754 		switch (scu_get_event_code(event_code)) {
755 		case SCU_EVENT_LINK_FAILURE:
756 			/* Link failure change state back to the starting state */
757 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
758 			break;
759 		default:
760 			phy_event_warn(iphy, state, event_code);
761 			return SCI_FAILURE;
762 		}
763 		return SCI_SUCCESS;
764 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
765 		switch (scu_get_event_code(event_code)) {
766 		case SCU_EVENT_LINK_FAILURE:
767 			/* Link failure change state back to the starting state */
768 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
769 			break;
770 		case SCU_EVENT_SATA_SPINUP_HOLD:
771 			/* These events are received every 10ms and are
772 			 * expected while in this state
773 			 */
774 			break;
775 
776 		case SCU_EVENT_SAS_PHY_DETECTED:
777 			/* There has been a change in the phy type before OOB/SN for the
778 			 * SATA finished start down the SAS link traning path.
779 			 */
780 			sci_phy_start_sas_link_training(iphy);
781 			break;
782 
783 		default:
784 			phy_event_warn(iphy, state, event_code);
785 			return SCI_FAILURE;
786 		}
787 		return SCI_SUCCESS;
788 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
789 		switch (scu_get_event_code(event_code)) {
790 		case SCU_EVENT_LINK_FAILURE:
791 			/* Link failure change state back to the starting state */
792 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
793 			break;
794 		case SCU_EVENT_SATA_SPINUP_HOLD:
795 			/* These events might be received since we dont know how many may be in
796 			 * the completion queue while waiting for power
797 			 */
798 			break;
799 		case SCU_EVENT_SATA_PHY_DETECTED:
800 			iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
801 
802 			/* We have received the SATA PHY notification change state */
803 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
804 			break;
805 		case SCU_EVENT_SAS_PHY_DETECTED:
806 			/* There has been a change in the phy type before OOB/SN for the
807 			 * SATA finished start down the SAS link traning path.
808 			 */
809 			sci_phy_start_sas_link_training(iphy);
810 			break;
811 		default:
812 			phy_event_warn(iphy, state, event_code);
813 			return SCI_FAILURE;
814 		}
815 		return SCI_SUCCESS;
816 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
817 		switch (scu_get_event_code(event_code)) {
818 		case SCU_EVENT_SATA_PHY_DETECTED:
819 			/*
820 			 * The hardware reports multiple SATA PHY detected events
821 			 * ignore the extras */
822 			break;
823 		case SCU_EVENT_SATA_15:
824 		case SCU_EVENT_SATA_15_SSC:
825 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
826 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
827 			break;
828 		case SCU_EVENT_SATA_30:
829 		case SCU_EVENT_SATA_30_SSC:
830 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
831 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
832 			break;
833 		case SCU_EVENT_SATA_60:
834 		case SCU_EVENT_SATA_60_SSC:
835 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
836 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
837 			break;
838 		case SCU_EVENT_LINK_FAILURE:
839 			/* Link failure change state back to the starting state */
840 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
841 			break;
842 		case SCU_EVENT_SAS_PHY_DETECTED:
843 			/*
844 			 * There has been a change in the phy type before OOB/SN for the
845 			 * SATA finished start down the SAS link traning path. */
846 			sci_phy_start_sas_link_training(iphy);
847 			break;
848 		default:
849 			phy_event_warn(iphy, state, event_code);
850 			return SCI_FAILURE;
851 		}
852 
853 		return SCI_SUCCESS;
854 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
855 		switch (scu_get_event_code(event_code)) {
856 		case SCU_EVENT_SATA_PHY_DETECTED:
857 			/* Backup the state machine */
858 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
859 			break;
860 
861 		case SCU_EVENT_LINK_FAILURE:
862 			/* Link failure change state back to the starting state */
863 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
864 			break;
865 
866 		default:
867 			phy_event_warn(iphy, state, event_code);
868 			return SCI_FAILURE;
869 		}
870 		return SCI_SUCCESS;
871 	case SCI_PHY_READY:
872 		switch (scu_get_event_code(event_code)) {
873 		case SCU_EVENT_LINK_FAILURE:
874 			/* Link failure change state back to the starting state */
875 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
876 			break;
877 		case SCU_EVENT_BROADCAST_CHANGE:
878 			/* Broadcast change received. Notify the port. */
879 			if (phy_get_non_dummy_port(iphy) != NULL)
880 				sci_port_broadcast_change_received(iphy->owning_port, iphy);
881 			else
882 				iphy->bcn_received_while_port_unassigned = true;
883 			break;
884 		default:
885 			phy_event_warn(iphy, state, event_code);
886 			return SCI_FAILURE_INVALID_STATE;
887 		}
888 		return SCI_SUCCESS;
889 	case SCI_PHY_RESETTING:
890 		switch (scu_get_event_code(event_code)) {
891 		case SCU_EVENT_HARD_RESET_TRANSMITTED:
892 			/* Link failure change state back to the starting state */
893 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
894 			break;
895 		default:
896 			phy_event_warn(iphy, state, event_code);
897 			return SCI_FAILURE_INVALID_STATE;
898 			break;
899 		}
900 		return SCI_SUCCESS;
901 	default:
902 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
903 			__func__, phy_state_name(state));
904 		return SCI_FAILURE_INVALID_STATE;
905 	}
906 }
907 
sci_phy_frame_handler(struct isci_phy * iphy,u32 frame_index)908 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
909 {
910 	enum sci_phy_states state = iphy->sm.current_state_id;
911 	struct isci_host *ihost = iphy->owning_port->owning_controller;
912 	enum sci_status result;
913 	unsigned long flags;
914 
915 	switch (state) {
916 	case SCI_PHY_SUB_AWAIT_IAF_UF: {
917 		u32 *frame_words;
918 		struct sas_identify_frame iaf;
919 
920 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
921 								  frame_index,
922 								  (void **)&frame_words);
923 
924 		if (result != SCI_SUCCESS)
925 			return result;
926 
927 		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
928 		if (iaf.frame_type == 0) {
929 			u32 state;
930 
931 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
932 			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
933 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
934 			if (iaf.smp_tport) {
935 				/* We got the IAF for an expander PHY go to the final
936 				 * state since there are no power requirements for
937 				 * expander phys.
938 				 */
939 				state = SCI_PHY_SUB_FINAL;
940 			} else {
941 				/* We got the IAF we can now go to the await spinup
942 				 * semaphore state
943 				 */
944 				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
945 			}
946 			sci_change_state(&iphy->sm, state);
947 			result = SCI_SUCCESS;
948 		} else
949 			dev_warn(sciphy_to_dev(iphy),
950 				"%s: PHY starting substate machine received "
951 				"unexpected frame id %x\n",
952 				__func__, frame_index);
953 
954 		sci_controller_release_frame(ihost, frame_index);
955 		return result;
956 	}
957 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
958 		struct dev_to_host_fis *frame_header;
959 		u32 *fis_frame_data;
960 
961 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
962 								  frame_index,
963 								  (void **)&frame_header);
964 
965 		if (result != SCI_SUCCESS)
966 			return result;
967 
968 		if ((frame_header->fis_type == FIS_REGD2H) &&
969 		    !(frame_header->status & ATA_BUSY)) {
970 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
971 								 frame_index,
972 								 (void **)&fis_frame_data);
973 
974 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
975 			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
976 							  frame_header,
977 							  fis_frame_data);
978 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
979 
980 			/* got IAF we can now go to the await spinup semaphore state */
981 			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
982 
983 			result = SCI_SUCCESS;
984 		} else
985 			dev_warn(sciphy_to_dev(iphy),
986 				 "%s: PHY starting substate machine received "
987 				 "unexpected frame id %x\n",
988 				 __func__, frame_index);
989 
990 		/* Regardless of the result we are done with this frame with it */
991 		sci_controller_release_frame(ihost, frame_index);
992 
993 		return result;
994 	}
995 	default:
996 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
997 			__func__, phy_state_name(state));
998 		return SCI_FAILURE_INVALID_STATE;
999 	}
1000 
1001 }
1002 
sci_phy_starting_initial_substate_enter(struct sci_base_state_machine * sm)1003 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1004 {
1005 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1006 
1007 	/* This is just an temporary state go off to the starting state */
1008 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1009 }
1010 
sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine * sm)1011 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1012 {
1013 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1014 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1015 
1016 	sci_controller_power_control_queue_insert(ihost, iphy);
1017 }
1018 
sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine * sm)1019 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1020 {
1021 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1022 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1023 
1024 	sci_controller_power_control_queue_remove(ihost, iphy);
1025 }
1026 
sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine * sm)1027 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1028 {
1029 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1030 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1031 
1032 	sci_controller_power_control_queue_insert(ihost, iphy);
1033 }
1034 
sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine * sm)1035 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1036 {
1037 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1038 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1039 
1040 	sci_controller_power_control_queue_remove(ihost, iphy);
1041 }
1042 
sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine * sm)1043 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1044 {
1045 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1046 
1047 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1048 }
1049 
sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine * sm)1050 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1051 {
1052 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1053 
1054 	sci_del_timer(&iphy->sata_timer);
1055 }
1056 
sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine * sm)1057 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1058 {
1059 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1060 
1061 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1062 }
1063 
sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine * sm)1064 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1065 {
1066 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1067 
1068 	sci_del_timer(&iphy->sata_timer);
1069 }
1070 
sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine * sm)1071 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1072 {
1073 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1074 
1075 	if (sci_port_link_detected(iphy->owning_port, iphy)) {
1076 
1077 		/*
1078 		 * Clear the PE suspend condition so we can actually
1079 		 * receive SIG FIS
1080 		 * The hardware will not respond to the XRDY until the PE
1081 		 * suspend condition is cleared.
1082 		 */
1083 		sci_phy_resume(iphy);
1084 
1085 		sci_mod_timer(&iphy->sata_timer,
1086 			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1087 	} else
1088 		iphy->is_in_link_training = false;
1089 }
1090 
sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine * sm)1091 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1092 {
1093 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1094 
1095 	sci_del_timer(&iphy->sata_timer);
1096 }
1097 
sci_phy_starting_final_substate_enter(struct sci_base_state_machine * sm)1098 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1099 {
1100 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1101 
1102 	/* State machine has run to completion so exit out and change
1103 	 * the base state machine to the ready state
1104 	 */
1105 	sci_change_state(&iphy->sm, SCI_PHY_READY);
1106 }
1107 
1108 /**
1109  *
1110  * @sci_phy: This is the struct isci_phy object to stop.
1111  *
1112  * This method will stop the struct isci_phy object. This does not reset the
1113  * protocol engine it just suspends it and places it in a state where it will
1114  * not cause the end device to power up. none
1115  */
scu_link_layer_stop_protocol_engine(struct isci_phy * iphy)1116 static void scu_link_layer_stop_protocol_engine(
1117 	struct isci_phy *iphy)
1118 {
1119 	u32 scu_sas_pcfg_value;
1120 	u32 enable_spinup_value;
1121 
1122 	/* Suspend the protocol engine and place it in a sata spinup hold state */
1123 	scu_sas_pcfg_value =
1124 		readl(&iphy->link_layer_registers->phy_configuration);
1125 	scu_sas_pcfg_value |=
1126 		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1127 		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1128 		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1129 	writel(scu_sas_pcfg_value,
1130 	       &iphy->link_layer_registers->phy_configuration);
1131 
1132 	/* Disable the notify enable spinup primitives */
1133 	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1134 	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1135 	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1136 }
1137 
scu_link_layer_start_oob(struct isci_phy * iphy)1138 static void scu_link_layer_start_oob(struct isci_phy *iphy)
1139 {
1140 	struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1141 	u32 val;
1142 
1143 	/** Reset OOB sequence - start */
1144 	val = readl(&ll->phy_configuration);
1145 	val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1146 		 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1147 	writel(val, &ll->phy_configuration);
1148 	readl(&ll->phy_configuration); /* flush */
1149 	/** Reset OOB sequence - end */
1150 
1151 	/** Start OOB sequence - start */
1152 	val = readl(&ll->phy_configuration);
1153 	val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1154 	writel(val, &ll->phy_configuration);
1155 	readl(&ll->phy_configuration); /* flush */
1156 	/** Start OOB sequence - end */
1157 }
1158 
1159 /**
1160  *
1161  *
1162  * This method will transmit a hard reset request on the specified phy. The SCU
1163  * hardware requires that we reset the OOB state machine and set the hard reset
1164  * bit in the phy configuration register. We then must start OOB over with the
1165  * hard reset bit set.
1166  */
scu_link_layer_tx_hard_reset(struct isci_phy * iphy)1167 static void scu_link_layer_tx_hard_reset(
1168 	struct isci_phy *iphy)
1169 {
1170 	u32 phy_configuration_value;
1171 
1172 	/*
1173 	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1174 	 * to the starting state. */
1175 	phy_configuration_value =
1176 		readl(&iphy->link_layer_registers->phy_configuration);
1177 	phy_configuration_value |=
1178 		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1179 		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1180 	writel(phy_configuration_value,
1181 	       &iphy->link_layer_registers->phy_configuration);
1182 
1183 	/* Now take the OOB state machine out of reset */
1184 	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1185 	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1186 	writel(phy_configuration_value,
1187 	       &iphy->link_layer_registers->phy_configuration);
1188 }
1189 
sci_phy_stopped_state_enter(struct sci_base_state_machine * sm)1190 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1191 {
1192 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1193 	struct isci_port *iport = iphy->owning_port;
1194 	struct isci_host *ihost = iport->owning_controller;
1195 
1196 	/*
1197 	 * @todo We need to get to the controller to place this PE in a
1198 	 * reset state
1199 	 */
1200 	sci_del_timer(&iphy->sata_timer);
1201 
1202 	scu_link_layer_stop_protocol_engine(iphy);
1203 
1204 	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1205 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1206 }
1207 
sci_phy_starting_state_enter(struct sci_base_state_machine * sm)1208 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1209 {
1210 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1211 	struct isci_port *iport = iphy->owning_port;
1212 	struct isci_host *ihost = iport->owning_controller;
1213 
1214 	scu_link_layer_stop_protocol_engine(iphy);
1215 	scu_link_layer_start_oob(iphy);
1216 
1217 	/* We don't know what kind of phy we are going to be just yet */
1218 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1219 	iphy->bcn_received_while_port_unassigned = false;
1220 
1221 	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1222 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1223 
1224 	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1225 }
1226 
sci_phy_ready_state_enter(struct sci_base_state_machine * sm)1227 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1228 {
1229 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1230 	struct isci_port *iport = iphy->owning_port;
1231 	struct isci_host *ihost = iport->owning_controller;
1232 
1233 	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1234 }
1235 
sci_phy_ready_state_exit(struct sci_base_state_machine * sm)1236 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1237 {
1238 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1239 
1240 	sci_phy_suspend(iphy);
1241 }
1242 
sci_phy_resetting_state_enter(struct sci_base_state_machine * sm)1243 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1244 {
1245 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1246 
1247 	/* The phy is being reset, therefore deactivate it from the port.  In
1248 	 * the resetting state we don't notify the user regarding link up and
1249 	 * link down notifications
1250 	 */
1251 	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1252 
1253 	if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1254 		scu_link_layer_tx_hard_reset(iphy);
1255 	} else {
1256 		/* The SCU does not need to have a discrete reset state so
1257 		 * just go back to the starting state.
1258 		 */
1259 		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1260 	}
1261 }
1262 
1263 static const struct sci_base_state sci_phy_state_table[] = {
1264 	[SCI_PHY_INITIAL] = { },
1265 	[SCI_PHY_STOPPED] = {
1266 		.enter_state = sci_phy_stopped_state_enter,
1267 	},
1268 	[SCI_PHY_STARTING] = {
1269 		.enter_state = sci_phy_starting_state_enter,
1270 	},
1271 	[SCI_PHY_SUB_INITIAL] = {
1272 		.enter_state = sci_phy_starting_initial_substate_enter,
1273 	},
1274 	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1275 	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1276 	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1277 	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1278 		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1279 		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1280 	},
1281 	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1282 		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1283 		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1284 	},
1285 	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1286 		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1287 		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1288 	},
1289 	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1290 		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1291 		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1292 	},
1293 	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1294 		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1295 		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1296 	},
1297 	[SCI_PHY_SUB_FINAL] = {
1298 		.enter_state = sci_phy_starting_final_substate_enter,
1299 	},
1300 	[SCI_PHY_READY] = {
1301 		.enter_state = sci_phy_ready_state_enter,
1302 		.exit_state = sci_phy_ready_state_exit,
1303 	},
1304 	[SCI_PHY_RESETTING] = {
1305 		.enter_state = sci_phy_resetting_state_enter,
1306 	},
1307 	[SCI_PHY_FINAL] = { },
1308 };
1309 
sci_phy_construct(struct isci_phy * iphy,struct isci_port * iport,u8 phy_index)1310 void sci_phy_construct(struct isci_phy *iphy,
1311 			    struct isci_port *iport, u8 phy_index)
1312 {
1313 	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1314 
1315 	/* Copy the rest of the input data to our locals */
1316 	iphy->owning_port = iport;
1317 	iphy->phy_index = phy_index;
1318 	iphy->bcn_received_while_port_unassigned = false;
1319 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1320 	iphy->link_layer_registers = NULL;
1321 	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1322 
1323 	/* Create the SIGNATURE FIS Timeout timer for this phy */
1324 	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1325 }
1326 
isci_phy_init(struct isci_phy * iphy,struct isci_host * ihost,int index)1327 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1328 {
1329 	struct sci_oem_params *oem = &ihost->oem_parameters;
1330 	u64 sci_sas_addr;
1331 	__be64 sas_addr;
1332 
1333 	sci_sas_addr = oem->phys[index].sas_address.high;
1334 	sci_sas_addr <<= 32;
1335 	sci_sas_addr |= oem->phys[index].sas_address.low;
1336 	sas_addr = cpu_to_be64(sci_sas_addr);
1337 	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1338 
1339 	iphy->sas_phy.enabled = 0;
1340 	iphy->sas_phy.id = index;
1341 	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1342 	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1343 	iphy->sas_phy.ha = &ihost->sas_ha;
1344 	iphy->sas_phy.lldd_phy = iphy;
1345 	iphy->sas_phy.enabled = 1;
1346 	iphy->sas_phy.class = SAS;
1347 	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1348 	iphy->sas_phy.tproto = 0;
1349 	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1350 	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1351 	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1352 	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1353 	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1354 }
1355 
1356 
1357 /**
1358  * isci_phy_control() - This function is one of the SAS Domain Template
1359  *    functions. This is a phy management function.
1360  * @phy: This parameter specifies the sphy being controlled.
1361  * @func: This parameter specifies the phy control function being invoked.
1362  * @buf: This parameter is specific to the phy function being invoked.
1363  *
1364  * status, zero indicates success.
1365  */
isci_phy_control(struct asd_sas_phy * sas_phy,enum phy_func func,void * buf)1366 int isci_phy_control(struct asd_sas_phy *sas_phy,
1367 		     enum phy_func func,
1368 		     void *buf)
1369 {
1370 	int ret = 0;
1371 	struct isci_phy *iphy = sas_phy->lldd_phy;
1372 	struct asd_sas_port *port = sas_phy->port;
1373 	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1374 	unsigned long flags;
1375 
1376 	dev_dbg(&ihost->pdev->dev,
1377 		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1378 		__func__, sas_phy, func, buf, iphy, port);
1379 
1380 	switch (func) {
1381 	case PHY_FUNC_DISABLE:
1382 		spin_lock_irqsave(&ihost->scic_lock, flags);
1383 		sci_phy_stop(iphy);
1384 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1385 		break;
1386 
1387 	case PHY_FUNC_LINK_RESET:
1388 		spin_lock_irqsave(&ihost->scic_lock, flags);
1389 		sci_phy_stop(iphy);
1390 		sci_phy_start(iphy);
1391 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1392 		break;
1393 
1394 	case PHY_FUNC_HARD_RESET:
1395 		if (!port)
1396 			return -ENODEV;
1397 
1398 		ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1399 
1400 		break;
1401 	case PHY_FUNC_GET_EVENTS: {
1402 		struct scu_link_layer_registers __iomem *r;
1403 		struct sas_phy *phy = sas_phy->phy;
1404 
1405 		r = iphy->link_layer_registers;
1406 		phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1407 		phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1408 		phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1409 		phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1410 		break;
1411 	}
1412 
1413 	default:
1414 		dev_dbg(&ihost->pdev->dev,
1415 			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1416 			   __func__, sas_phy, func);
1417 		ret = -ENOSYS;
1418 		break;
1419 	}
1420 	return ret;
1421 }
1422