1 /*
2 * SuperH On-Chip RTC Support
3 *
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
7 *
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
9 *
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
12 *
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
16 */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <linux/slab.h>
30 #include <asm/rtc.h>
31
32 #define DRV_NAME "sh-rtc"
33 #define DRV_VERSION "0.2.3"
34
35 #define RTC_REG(r) ((r) * rtc_reg_size)
36
37 #define R64CNT RTC_REG(0)
38
39 #define RSECCNT RTC_REG(1) /* RTC sec */
40 #define RMINCNT RTC_REG(2) /* RTC min */
41 #define RHRCNT RTC_REG(3) /* RTC hour */
42 #define RWKCNT RTC_REG(4) /* RTC week */
43 #define RDAYCNT RTC_REG(5) /* RTC day */
44 #define RMONCNT RTC_REG(6) /* RTC month */
45 #define RYRCNT RTC_REG(7) /* RTC year */
46 #define RSECAR RTC_REG(8) /* ALARM sec */
47 #define RMINAR RTC_REG(9) /* ALARM min */
48 #define RHRAR RTC_REG(10) /* ALARM hour */
49 #define RWKAR RTC_REG(11) /* ALARM week */
50 #define RDAYAR RTC_REG(12) /* ALARM day */
51 #define RMONAR RTC_REG(13) /* ALARM month */
52 #define RCR1 RTC_REG(14) /* Control */
53 #define RCR2 RTC_REG(15) /* Control */
54
55 /*
56 * Note on RYRAR and RCR3: Up until this point most of the register
57 * definitions are consistent across all of the available parts. However,
58 * the placement of the optional RYRAR and RCR3 (the RYRAR control
59 * register used to control RYRCNT/RYRAR compare) varies considerably
60 * across various parts, occasionally being mapped in to a completely
61 * unrelated address space. For proper RYRAR support a separate resource
62 * would have to be handed off, but as this is purely optional in
63 * practice, we simply opt not to support it, thereby keeping the code
64 * quite a bit more simplified.
65 */
66
67 /* ALARM Bits - or with BCD encoded value */
68 #define AR_ENB 0x80 /* Enable for alarm cmp */
69
70 /* Period Bits */
71 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
72 #define PF_COUNT 0x200 /* Half periodic counter */
73 #define PF_OXS 0x400 /* Periodic One x Second */
74 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
75 #define PF_MASK 0xf00
76
77 /* RCR1 Bits */
78 #define RCR1_CF 0x80 /* Carry Flag */
79 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
80 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
81 #define RCR1_AF 0x01 /* Alarm Flag */
82
83 /* RCR2 Bits */
84 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
85 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
86 #define RCR2_RTCEN 0x08 /* ENable RTC */
87 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
88 #define RCR2_RESET 0x02 /* Reset bit */
89 #define RCR2_START 0x01 /* Start bit */
90
91 struct sh_rtc {
92 void __iomem *regbase;
93 unsigned long regsize;
94 struct resource *res;
95 int alarm_irq;
96 int periodic_irq;
97 int carry_irq;
98 struct clk *clk;
99 struct rtc_device *rtc_dev;
100 spinlock_t lock;
101 unsigned long capabilities; /* See asm/rtc.h for cap bits */
102 unsigned short periodic_freq;
103 };
104
__sh_rtc_interrupt(struct sh_rtc * rtc)105 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106 {
107 unsigned int tmp, pending;
108
109 tmp = readb(rtc->regbase + RCR1);
110 pending = tmp & RCR1_CF;
111 tmp &= ~RCR1_CF;
112 writeb(tmp, rtc->regbase + RCR1);
113
114 /* Users have requested One x Second IRQ */
115 if (pending && rtc->periodic_freq & PF_OXS)
116 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117
118 return pending;
119 }
120
__sh_rtc_alarm(struct sh_rtc * rtc)121 static int __sh_rtc_alarm(struct sh_rtc *rtc)
122 {
123 unsigned int tmp, pending;
124
125 tmp = readb(rtc->regbase + RCR1);
126 pending = tmp & RCR1_AF;
127 tmp &= ~(RCR1_AF | RCR1_AIE);
128 writeb(tmp, rtc->regbase + RCR1);
129
130 if (pending)
131 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132
133 return pending;
134 }
135
__sh_rtc_periodic(struct sh_rtc * rtc)136 static int __sh_rtc_periodic(struct sh_rtc *rtc)
137 {
138 struct rtc_device *rtc_dev = rtc->rtc_dev;
139 struct rtc_task *irq_task;
140 unsigned int tmp, pending;
141
142 tmp = readb(rtc->regbase + RCR2);
143 pending = tmp & RCR2_PEF;
144 tmp &= ~RCR2_PEF;
145 writeb(tmp, rtc->regbase + RCR2);
146
147 if (!pending)
148 return 0;
149
150 /* Half period enabled than one skipped and the next notified */
151 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152 rtc->periodic_freq &= ~PF_COUNT;
153 else {
154 if (rtc->periodic_freq & PF_HP)
155 rtc->periodic_freq |= PF_COUNT;
156 if (rtc->periodic_freq & PF_KOU) {
157 spin_lock(&rtc_dev->irq_task_lock);
158 irq_task = rtc_dev->irq_task;
159 if (irq_task)
160 irq_task->func(irq_task->private_data);
161 spin_unlock(&rtc_dev->irq_task_lock);
162 } else
163 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164 }
165
166 return pending;
167 }
168
sh_rtc_interrupt(int irq,void * dev_id)169 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170 {
171 struct sh_rtc *rtc = dev_id;
172 int ret;
173
174 spin_lock(&rtc->lock);
175 ret = __sh_rtc_interrupt(rtc);
176 spin_unlock(&rtc->lock);
177
178 return IRQ_RETVAL(ret);
179 }
180
sh_rtc_alarm(int irq,void * dev_id)181 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182 {
183 struct sh_rtc *rtc = dev_id;
184 int ret;
185
186 spin_lock(&rtc->lock);
187 ret = __sh_rtc_alarm(rtc);
188 spin_unlock(&rtc->lock);
189
190 return IRQ_RETVAL(ret);
191 }
192
sh_rtc_periodic(int irq,void * dev_id)193 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194 {
195 struct sh_rtc *rtc = dev_id;
196 int ret;
197
198 spin_lock(&rtc->lock);
199 ret = __sh_rtc_periodic(rtc);
200 spin_unlock(&rtc->lock);
201
202 return IRQ_RETVAL(ret);
203 }
204
sh_rtc_shared(int irq,void * dev_id)205 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206 {
207 struct sh_rtc *rtc = dev_id;
208 int ret;
209
210 spin_lock(&rtc->lock);
211 ret = __sh_rtc_interrupt(rtc);
212 ret |= __sh_rtc_alarm(rtc);
213 ret |= __sh_rtc_periodic(rtc);
214 spin_unlock(&rtc->lock);
215
216 return IRQ_RETVAL(ret);
217 }
218
sh_rtc_irq_set_state(struct device * dev,int enable)219 static int sh_rtc_irq_set_state(struct device *dev, int enable)
220 {
221 struct sh_rtc *rtc = dev_get_drvdata(dev);
222 unsigned int tmp;
223
224 spin_lock_irq(&rtc->lock);
225
226 tmp = readb(rtc->regbase + RCR2);
227
228 if (enable) {
229 rtc->periodic_freq |= PF_KOU;
230 tmp &= ~RCR2_PEF; /* Clear PES bit */
231 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
232 } else {
233 rtc->periodic_freq &= ~PF_KOU;
234 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
235 }
236
237 writeb(tmp, rtc->regbase + RCR2);
238
239 spin_unlock_irq(&rtc->lock);
240
241 return 0;
242 }
243
sh_rtc_irq_set_freq(struct device * dev,int freq)244 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245 {
246 struct sh_rtc *rtc = dev_get_drvdata(dev);
247 int tmp, ret = 0;
248
249 spin_lock_irq(&rtc->lock);
250 tmp = rtc->periodic_freq & PF_MASK;
251
252 switch (freq) {
253 case 0:
254 rtc->periodic_freq = 0x00;
255 break;
256 case 1:
257 rtc->periodic_freq = 0x60;
258 break;
259 case 2:
260 rtc->periodic_freq = 0x50;
261 break;
262 case 4:
263 rtc->periodic_freq = 0x40;
264 break;
265 case 8:
266 rtc->periodic_freq = 0x30 | PF_HP;
267 break;
268 case 16:
269 rtc->periodic_freq = 0x30;
270 break;
271 case 32:
272 rtc->periodic_freq = 0x20 | PF_HP;
273 break;
274 case 64:
275 rtc->periodic_freq = 0x20;
276 break;
277 case 128:
278 rtc->periodic_freq = 0x10 | PF_HP;
279 break;
280 case 256:
281 rtc->periodic_freq = 0x10;
282 break;
283 default:
284 ret = -ENOTSUPP;
285 }
286
287 if (ret == 0)
288 rtc->periodic_freq |= tmp;
289
290 spin_unlock_irq(&rtc->lock);
291 return ret;
292 }
293
sh_rtc_setaie(struct device * dev,unsigned int enable)294 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295 {
296 struct sh_rtc *rtc = dev_get_drvdata(dev);
297 unsigned int tmp;
298
299 spin_lock_irq(&rtc->lock);
300
301 tmp = readb(rtc->regbase + RCR1);
302
303 if (enable)
304 tmp |= RCR1_AIE;
305 else
306 tmp &= ~RCR1_AIE;
307
308 writeb(tmp, rtc->regbase + RCR1);
309
310 spin_unlock_irq(&rtc->lock);
311 }
312
sh_rtc_proc(struct device * dev,struct seq_file * seq)313 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314 {
315 struct sh_rtc *rtc = dev_get_drvdata(dev);
316 unsigned int tmp;
317
318 tmp = readb(rtc->regbase + RCR1);
319 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320
321 tmp = readb(rtc->regbase + RCR2);
322 seq_printf(seq, "periodic_IRQ\t: %s\n",
323 (tmp & RCR2_PESMASK) ? "yes" : "no");
324
325 return 0;
326 }
327
sh_rtc_setcie(struct device * dev,unsigned int enable)328 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329 {
330 struct sh_rtc *rtc = dev_get_drvdata(dev);
331 unsigned int tmp;
332
333 spin_lock_irq(&rtc->lock);
334
335 tmp = readb(rtc->regbase + RCR1);
336
337 if (!enable)
338 tmp &= ~RCR1_CIE;
339 else
340 tmp |= RCR1_CIE;
341
342 writeb(tmp, rtc->regbase + RCR1);
343
344 spin_unlock_irq(&rtc->lock);
345 }
346
sh_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)347 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
348 {
349 sh_rtc_setaie(dev, enabled);
350 return 0;
351 }
352
sh_rtc_read_time(struct device * dev,struct rtc_time * tm)353 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
354 {
355 struct platform_device *pdev = to_platform_device(dev);
356 struct sh_rtc *rtc = platform_get_drvdata(pdev);
357 unsigned int sec128, sec2, yr, yr100, cf_bit;
358
359 do {
360 unsigned int tmp;
361
362 spin_lock_irq(&rtc->lock);
363
364 tmp = readb(rtc->regbase + RCR1);
365 tmp &= ~RCR1_CF; /* Clear CF-bit */
366 tmp |= RCR1_CIE;
367 writeb(tmp, rtc->regbase + RCR1);
368
369 sec128 = readb(rtc->regbase + R64CNT);
370
371 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
372 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
373 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
374 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
375 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
376 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
377
378 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
379 yr = readw(rtc->regbase + RYRCNT);
380 yr100 = bcd2bin(yr >> 8);
381 yr &= 0xff;
382 } else {
383 yr = readb(rtc->regbase + RYRCNT);
384 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
385 }
386
387 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
388
389 sec2 = readb(rtc->regbase + R64CNT);
390 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
391
392 spin_unlock_irq(&rtc->lock);
393 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
394
395 #if RTC_BIT_INVERTED != 0
396 if ((sec128 & RTC_BIT_INVERTED))
397 tm->tm_sec--;
398 #endif
399
400 /* only keep the carry interrupt enabled if UIE is on */
401 if (!(rtc->periodic_freq & PF_OXS))
402 sh_rtc_setcie(dev, 0);
403
404 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
405 "mday=%d, mon=%d, year=%d, wday=%d\n",
406 __func__,
407 tm->tm_sec, tm->tm_min, tm->tm_hour,
408 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
409
410 return rtc_valid_tm(tm);
411 }
412
sh_rtc_set_time(struct device * dev,struct rtc_time * tm)413 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
414 {
415 struct platform_device *pdev = to_platform_device(dev);
416 struct sh_rtc *rtc = platform_get_drvdata(pdev);
417 unsigned int tmp;
418 int year;
419
420 spin_lock_irq(&rtc->lock);
421
422 /* Reset pre-scaler & stop RTC */
423 tmp = readb(rtc->regbase + RCR2);
424 tmp |= RCR2_RESET;
425 tmp &= ~RCR2_START;
426 writeb(tmp, rtc->regbase + RCR2);
427
428 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
429 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
430 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
431 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
432 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
433 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
434
435 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
436 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
437 bin2bcd(tm->tm_year % 100);
438 writew(year, rtc->regbase + RYRCNT);
439 } else {
440 year = tm->tm_year % 100;
441 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
442 }
443
444 /* Start RTC */
445 tmp = readb(rtc->regbase + RCR2);
446 tmp &= ~RCR2_RESET;
447 tmp |= RCR2_RTCEN | RCR2_START;
448 writeb(tmp, rtc->regbase + RCR2);
449
450 spin_unlock_irq(&rtc->lock);
451
452 return 0;
453 }
454
sh_rtc_read_alarm_value(struct sh_rtc * rtc,int reg_off)455 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
456 {
457 unsigned int byte;
458 int value = 0xff; /* return 0xff for ignored values */
459
460 byte = readb(rtc->regbase + reg_off);
461 if (byte & AR_ENB) {
462 byte &= ~AR_ENB; /* strip the enable bit */
463 value = bcd2bin(byte);
464 }
465
466 return value;
467 }
468
sh_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)469 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
470 {
471 struct platform_device *pdev = to_platform_device(dev);
472 struct sh_rtc *rtc = platform_get_drvdata(pdev);
473 struct rtc_time *tm = &wkalrm->time;
474
475 spin_lock_irq(&rtc->lock);
476
477 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
478 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
479 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
480 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
481 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
482 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
483 if (tm->tm_mon > 0)
484 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
485 tm->tm_year = 0xffff;
486
487 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
488
489 spin_unlock_irq(&rtc->lock);
490
491 return 0;
492 }
493
sh_rtc_write_alarm_value(struct sh_rtc * rtc,int value,int reg_off)494 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
495 int value, int reg_off)
496 {
497 /* < 0 for a value that is ignored */
498 if (value < 0)
499 writeb(0, rtc->regbase + reg_off);
500 else
501 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
502 }
503
sh_rtc_check_alarm(struct rtc_time * tm)504 static int sh_rtc_check_alarm(struct rtc_time *tm)
505 {
506 /*
507 * The original rtc says anything > 0xc0 is "don't care" or "match
508 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
509 * The original rtc doesn't support years - some things use -1 and
510 * some 0xffff. We use -1 to make out tests easier.
511 */
512 if (tm->tm_year == 0xffff)
513 tm->tm_year = -1;
514 if (tm->tm_mon >= 0xff)
515 tm->tm_mon = -1;
516 if (tm->tm_mday >= 0xff)
517 tm->tm_mday = -1;
518 if (tm->tm_wday >= 0xff)
519 tm->tm_wday = -1;
520 if (tm->tm_hour >= 0xff)
521 tm->tm_hour = -1;
522 if (tm->tm_min >= 0xff)
523 tm->tm_min = -1;
524 if (tm->tm_sec >= 0xff)
525 tm->tm_sec = -1;
526
527 if (tm->tm_year > 9999 ||
528 tm->tm_mon >= 12 ||
529 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
530 tm->tm_wday >= 7 ||
531 tm->tm_hour >= 24 ||
532 tm->tm_min >= 60 ||
533 tm->tm_sec >= 60)
534 return -EINVAL;
535
536 return 0;
537 }
538
sh_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)539 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
540 {
541 struct platform_device *pdev = to_platform_device(dev);
542 struct sh_rtc *rtc = platform_get_drvdata(pdev);
543 unsigned int rcr1;
544 struct rtc_time *tm = &wkalrm->time;
545 int mon, err;
546
547 err = sh_rtc_check_alarm(tm);
548 if (unlikely(err < 0))
549 return err;
550
551 spin_lock_irq(&rtc->lock);
552
553 /* disable alarm interrupt and clear the alarm flag */
554 rcr1 = readb(rtc->regbase + RCR1);
555 rcr1 &= ~(RCR1_AF | RCR1_AIE);
556 writeb(rcr1, rtc->regbase + RCR1);
557
558 /* set alarm time */
559 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
560 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
561 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
562 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
563 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
564 mon = tm->tm_mon;
565 if (mon >= 0)
566 mon += 1;
567 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
568
569 if (wkalrm->enabled) {
570 rcr1 |= RCR1_AIE;
571 writeb(rcr1, rtc->regbase + RCR1);
572 }
573
574 spin_unlock_irq(&rtc->lock);
575
576 return 0;
577 }
578
579 static struct rtc_class_ops sh_rtc_ops = {
580 .read_time = sh_rtc_read_time,
581 .set_time = sh_rtc_set_time,
582 .read_alarm = sh_rtc_read_alarm,
583 .set_alarm = sh_rtc_set_alarm,
584 .proc = sh_rtc_proc,
585 .alarm_irq_enable = sh_rtc_alarm_irq_enable,
586 };
587
sh_rtc_probe(struct platform_device * pdev)588 static int __init sh_rtc_probe(struct platform_device *pdev)
589 {
590 struct sh_rtc *rtc;
591 struct resource *res;
592 struct rtc_time r;
593 char clk_name[6];
594 int clk_id, ret;
595
596 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
597 if (unlikely(!rtc))
598 return -ENOMEM;
599
600 spin_lock_init(&rtc->lock);
601
602 /* get periodic/carry/alarm irqs */
603 ret = platform_get_irq(pdev, 0);
604 if (unlikely(ret <= 0)) {
605 ret = -ENOENT;
606 dev_err(&pdev->dev, "No IRQ resource\n");
607 goto err_badres;
608 }
609
610 rtc->periodic_irq = ret;
611 rtc->carry_irq = platform_get_irq(pdev, 1);
612 rtc->alarm_irq = platform_get_irq(pdev, 2);
613
614 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
615 if (unlikely(res == NULL)) {
616 ret = -ENOENT;
617 dev_err(&pdev->dev, "No IO resource\n");
618 goto err_badres;
619 }
620
621 rtc->regsize = resource_size(res);
622
623 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
624 if (unlikely(!rtc->res)) {
625 ret = -EBUSY;
626 goto err_badres;
627 }
628
629 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
630 if (unlikely(!rtc->regbase)) {
631 ret = -EINVAL;
632 goto err_badmap;
633 }
634
635 clk_id = pdev->id;
636 /* With a single device, the clock id is still "rtc0" */
637 if (clk_id < 0)
638 clk_id = 0;
639
640 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
641
642 rtc->clk = clk_get(&pdev->dev, clk_name);
643 if (IS_ERR(rtc->clk)) {
644 /*
645 * No error handling for rtc->clk intentionally, not all
646 * platforms will have a unique clock for the RTC, and
647 * the clk API can handle the struct clk pointer being
648 * NULL.
649 */
650 rtc->clk = NULL;
651 }
652
653 clk_enable(rtc->clk);
654
655 rtc->capabilities = RTC_DEF_CAPABILITIES;
656 if (pdev->dev.platform_data) {
657 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
658
659 /*
660 * Some CPUs have special capabilities in addition to the
661 * default set. Add those in here.
662 */
663 rtc->capabilities |= pinfo->capabilities;
664 }
665
666 if (rtc->carry_irq <= 0) {
667 /* register shared periodic/carry/alarm irq */
668 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
669 0, "sh-rtc", rtc);
670 if (unlikely(ret)) {
671 dev_err(&pdev->dev,
672 "request IRQ failed with %d, IRQ %d\n", ret,
673 rtc->periodic_irq);
674 goto err_unmap;
675 }
676 } else {
677 /* register periodic/carry/alarm irqs */
678 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
679 0, "sh-rtc period", rtc);
680 if (unlikely(ret)) {
681 dev_err(&pdev->dev,
682 "request period IRQ failed with %d, IRQ %d\n",
683 ret, rtc->periodic_irq);
684 goto err_unmap;
685 }
686
687 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
688 0, "sh-rtc carry", rtc);
689 if (unlikely(ret)) {
690 dev_err(&pdev->dev,
691 "request carry IRQ failed with %d, IRQ %d\n",
692 ret, rtc->carry_irq);
693 free_irq(rtc->periodic_irq, rtc);
694 goto err_unmap;
695 }
696
697 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
698 0, "sh-rtc alarm", rtc);
699 if (unlikely(ret)) {
700 dev_err(&pdev->dev,
701 "request alarm IRQ failed with %d, IRQ %d\n",
702 ret, rtc->alarm_irq);
703 free_irq(rtc->carry_irq, rtc);
704 free_irq(rtc->periodic_irq, rtc);
705 goto err_unmap;
706 }
707 }
708
709 platform_set_drvdata(pdev, rtc);
710
711 /* everything disabled by default */
712 sh_rtc_irq_set_freq(&pdev->dev, 0);
713 sh_rtc_irq_set_state(&pdev->dev, 0);
714 sh_rtc_setaie(&pdev->dev, 0);
715 sh_rtc_setcie(&pdev->dev, 0);
716
717 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
718 &sh_rtc_ops, THIS_MODULE);
719 if (IS_ERR(rtc->rtc_dev)) {
720 ret = PTR_ERR(rtc->rtc_dev);
721 free_irq(rtc->periodic_irq, rtc);
722 free_irq(rtc->carry_irq, rtc);
723 free_irq(rtc->alarm_irq, rtc);
724 goto err_unmap;
725 }
726
727 rtc->rtc_dev->max_user_freq = 256;
728
729 /* reset rtc to epoch 0 if time is invalid */
730 if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
731 rtc_time_to_tm(0, &r);
732 rtc_set_time(rtc->rtc_dev, &r);
733 }
734
735 device_init_wakeup(&pdev->dev, 1);
736 return 0;
737
738 err_unmap:
739 clk_disable(rtc->clk);
740 clk_put(rtc->clk);
741 iounmap(rtc->regbase);
742 err_badmap:
743 release_mem_region(rtc->res->start, rtc->regsize);
744 err_badres:
745 kfree(rtc);
746
747 return ret;
748 }
749
sh_rtc_remove(struct platform_device * pdev)750 static int __exit sh_rtc_remove(struct platform_device *pdev)
751 {
752 struct sh_rtc *rtc = platform_get_drvdata(pdev);
753
754 rtc_device_unregister(rtc->rtc_dev);
755 sh_rtc_irq_set_state(&pdev->dev, 0);
756
757 sh_rtc_setaie(&pdev->dev, 0);
758 sh_rtc_setcie(&pdev->dev, 0);
759
760 free_irq(rtc->periodic_irq, rtc);
761
762 if (rtc->carry_irq > 0) {
763 free_irq(rtc->carry_irq, rtc);
764 free_irq(rtc->alarm_irq, rtc);
765 }
766
767 iounmap(rtc->regbase);
768 release_mem_region(rtc->res->start, rtc->regsize);
769
770 clk_disable(rtc->clk);
771 clk_put(rtc->clk);
772
773 platform_set_drvdata(pdev, NULL);
774
775 kfree(rtc);
776
777 return 0;
778 }
779
sh_rtc_set_irq_wake(struct device * dev,int enabled)780 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
781 {
782 struct platform_device *pdev = to_platform_device(dev);
783 struct sh_rtc *rtc = platform_get_drvdata(pdev);
784
785 irq_set_irq_wake(rtc->periodic_irq, enabled);
786
787 if (rtc->carry_irq > 0) {
788 irq_set_irq_wake(rtc->carry_irq, enabled);
789 irq_set_irq_wake(rtc->alarm_irq, enabled);
790 }
791 }
792
sh_rtc_suspend(struct device * dev)793 static int sh_rtc_suspend(struct device *dev)
794 {
795 if (device_may_wakeup(dev))
796 sh_rtc_set_irq_wake(dev, 1);
797
798 return 0;
799 }
800
sh_rtc_resume(struct device * dev)801 static int sh_rtc_resume(struct device *dev)
802 {
803 if (device_may_wakeup(dev))
804 sh_rtc_set_irq_wake(dev, 0);
805
806 return 0;
807 }
808
809 static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
810 .suspend = sh_rtc_suspend,
811 .resume = sh_rtc_resume,
812 };
813
814 static struct platform_driver sh_rtc_platform_driver = {
815 .driver = {
816 .name = DRV_NAME,
817 .owner = THIS_MODULE,
818 .pm = &sh_rtc_dev_pm_ops,
819 },
820 .remove = __exit_p(sh_rtc_remove),
821 };
822
sh_rtc_init(void)823 static int __init sh_rtc_init(void)
824 {
825 return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
826 }
827
sh_rtc_exit(void)828 static void __exit sh_rtc_exit(void)
829 {
830 platform_driver_unregister(&sh_rtc_platform_driver);
831 }
832
833 module_init(sh_rtc_init);
834 module_exit(sh_rtc_exit);
835
836 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
837 MODULE_VERSION(DRV_VERSION);
838 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
839 "Jamie Lenehan <lenehan@twibble.org>, "
840 "Angelo Castello <angelo.castello@st.com>");
841 MODULE_LICENSE("GPL");
842 MODULE_ALIAS("platform:" DRV_NAME);
843