1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
39 *
40 *
41 * THE PROCEDURE
42 *
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
46 *
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
52 *
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint. In SDIO we
55 * talk to it via the write address and read from the read address.
56 *
57 * Upon entrance to boot mode, the device sends (preceded with a few
58 * zero length packets (ZLPs) on the notification endpoint in USB) a
59 * reboot barker (4 le32 words with the same value). We ack it by
60 * sending the same barker to the device. The device acks with a
61 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62 * then is fully booted. At this point we can upload the firmware.
63 *
64 * Note that different iterations of the device and EEPROM
65 * configurations will send different [re]boot barkers; these are
66 * collected in i2400m_barker_db along with the firmware
67 * characteristics they require.
68 *
69 * This process is accomplished by the i2400m_bootrom_init()
70 * function. All the device interaction happens through the
71 * i2400m_bm_cmd() [boot mode command]. Special return values will
72 * indicate if the device did reset during the process.
73 *
74 * After this, we read the MAC address and then (if needed)
75 * reinitialize the device. We need to read it ahead of time because
76 * in the future, we might not upload the firmware until userspace
77 * 'ifconfig up's the device.
78 *
79 * We can then upload the firmware file. The file is composed of a BCF
80 * header (basic data, keys and signatures) and a list of write
81 * commands and payloads. Optionally more BCF headers might follow the
82 * main payload. We first upload the header [i2400m_dnload_init()] and
83 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85 * the new firmware [i2400m_dnload_finalize()].
86 *
87 * Once firmware is uploaded, we are good to go :)
88 *
89 * When we don't know in which mode we are, we first try by sending a
90 * warm reset request that will take us to boot-mode. If we time out
91 * waiting for a reboot barker, that means maybe we are already in
92 * boot mode, so we send a reboot barker.
93 *
94 * COMMAND EXECUTION
95 *
96 * This code (and process) is single threaded; for executing commands,
97 * we post a URB to the notification endpoint, post the command, wait
98 * for data on the notification buffer. We don't need to worry about
99 * others as we know we are the only ones in there.
100 *
101 * BACKEND IMPLEMENTATION
102 *
103 * This code is bus-generic; the bus-specific driver provides back end
104 * implementations to send a boot mode command to the device and to
105 * read an acknolwedgement from it (or an asynchronous notification)
106 * from it.
107 *
108 * FIRMWARE LOADING
109 *
110 * Note that in some cases, we can't just load a firmware file (for
111 * example, when resuming). For that, we might cache the firmware
112 * file. Thus, when doing the bootstrap, if there is a cache firmware
113 * file, it is used; if not, loading from disk is attempted.
114 *
115 * ROADMAP
116 *
117 * i2400m_barker_db_init Called by i2400m_driver_init()
118 * i2400m_barker_db_add
119 *
120 * i2400m_barker_db_exit Called by i2400m_driver_exit()
121 *
122 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
123 * request_firmware
124 * i2400m_fw_bootstrap
125 * i2400m_fw_check
126 * i2400m_fw_hdr_check
127 * i2400m_fw_dnload
128 * release_firmware
129 *
130 * i2400m_fw_dnload
131 * i2400m_bootrom_init
132 * i2400m_bm_cmd
133 * i2400m_reset
134 * i2400m_dnload_init
135 * i2400m_dnload_init_signed
136 * i2400m_dnload_init_nonsigned
137 * i2400m_download_chunk
138 * i2400m_bm_cmd
139 * i2400m_dnload_bcf
140 * i2400m_bm_cmd
141 * i2400m_dnload_finalize
142 * i2400m_bm_cmd
143 *
144 * i2400m_bm_cmd
145 * i2400m->bus_bm_cmd_send()
146 * i2400m->bus_bm_wait_for_ack
147 * __i2400m_bm_ack_verify
148 * i2400m_is_boot_barker
149 *
150 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
151 * commands before sending
152 *
153 * i2400m_pm_notifier Called on Power Management events
154 * i2400m_fw_cache
155 * i2400m_fw_uncache
156 */
157 #include <linux/firmware.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/usb.h>
161 #include <linux/export.h>
162 #include "i2400m.h"
163
164
165 #define D_SUBMODULE fw
166 #include "debug-levels.h"
167
168
169 static const __le32 i2400m_ACK_BARKER[4] = {
170 cpu_to_le32(I2400M_ACK_BARKER),
171 cpu_to_le32(I2400M_ACK_BARKER),
172 cpu_to_le32(I2400M_ACK_BARKER),
173 cpu_to_le32(I2400M_ACK_BARKER)
174 };
175
176
177 /**
178 * Prepare a boot-mode command for delivery
179 *
180 * @cmd: pointer to bootrom header to prepare
181 *
182 * Computes checksum if so needed. After calling this function, DO NOT
183 * modify the command or header as the checksum won't work anymore.
184 *
185 * We do it from here because some times we cannot do it in the
186 * original context the command was sent (it is a const), so when we
187 * copy it to our staging buffer, we add the checksum there.
188 */
i2400m_bm_cmd_prepare(struct i2400m_bootrom_header * cmd)189 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
190 {
191 if (i2400m_brh_get_use_checksum(cmd)) {
192 int i;
193 u32 checksum = 0;
194 const u32 *checksum_ptr = (void *) cmd->payload;
195 for (i = 0; i < cmd->data_size / 4; i++)
196 checksum += cpu_to_le32(*checksum_ptr++);
197 checksum += cmd->command + cmd->target_addr + cmd->data_size;
198 cmd->block_checksum = cpu_to_le32(checksum);
199 }
200 }
201 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
202
203
204 /*
205 * Database of known barkers.
206 *
207 * A barker is what the device sends indicating he is ready to be
208 * bootloaded. Different versions of the device will send different
209 * barkers. Depending on the barker, it might mean the device wants
210 * some kind of firmware or the other.
211 */
212 static struct i2400m_barker_db {
213 __le32 data[4];
214 } *i2400m_barker_db;
215 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
216
217
218 static
i2400m_zrealloc_2x(void ** ptr,size_t * _count,size_t el_size,gfp_t gfp_flags)219 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
220 gfp_t gfp_flags)
221 {
222 size_t old_count = *_count,
223 new_count = old_count ? 2 * old_count : 2,
224 old_size = el_size * old_count,
225 new_size = el_size * new_count;
226 void *nptr = krealloc(*ptr, new_size, gfp_flags);
227 if (nptr) {
228 /* zero the other half or the whole thing if old_count
229 * was zero */
230 if (old_size == 0)
231 memset(nptr, 0, new_size);
232 else
233 memset(nptr + old_size, 0, old_size);
234 *_count = new_count;
235 *ptr = nptr;
236 return 0;
237 } else
238 return -ENOMEM;
239 }
240
241
242 /*
243 * Add a barker to the database
244 *
245 * This cannot used outside of this module and only at at module_init
246 * time. This is to avoid the need to do locking.
247 */
248 static
i2400m_barker_db_add(u32 barker_id)249 int i2400m_barker_db_add(u32 barker_id)
250 {
251 int result;
252
253 struct i2400m_barker_db *barker;
254 if (i2400m_barker_db_used >= i2400m_barker_db_size) {
255 result = i2400m_zrealloc_2x(
256 (void **) &i2400m_barker_db, &i2400m_barker_db_size,
257 sizeof(i2400m_barker_db[0]), GFP_KERNEL);
258 if (result < 0)
259 return result;
260 }
261 barker = i2400m_barker_db + i2400m_barker_db_used++;
262 barker->data[0] = le32_to_cpu(barker_id);
263 barker->data[1] = le32_to_cpu(barker_id);
264 barker->data[2] = le32_to_cpu(barker_id);
265 barker->data[3] = le32_to_cpu(barker_id);
266 return 0;
267 }
268
269
i2400m_barker_db_exit(void)270 void i2400m_barker_db_exit(void)
271 {
272 kfree(i2400m_barker_db);
273 i2400m_barker_db = NULL;
274 i2400m_barker_db_size = 0;
275 i2400m_barker_db_used = 0;
276 }
277
278
279 /*
280 * Helper function to add all the known stable barkers to the barker
281 * database.
282 */
283 static
i2400m_barker_db_known_barkers(void)284 int i2400m_barker_db_known_barkers(void)
285 {
286 int result;
287
288 result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
289 if (result < 0)
290 goto error_add;
291 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
292 if (result < 0)
293 goto error_add;
294 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
295 if (result < 0)
296 goto error_add;
297 error_add:
298 return result;
299 }
300
301
302 /*
303 * Initialize the barker database
304 *
305 * This can only be used from the module_init function for this
306 * module; this is to avoid the need to do locking.
307 *
308 * @options: command line argument with extra barkers to
309 * recognize. This is a comma-separated list of 32-bit hex
310 * numbers. They are appended to the existing list. Setting 0
311 * cleans the existing list and starts a new one.
312 */
i2400m_barker_db_init(const char * _options)313 int i2400m_barker_db_init(const char *_options)
314 {
315 int result;
316 char *options = NULL, *options_orig, *token;
317
318 i2400m_barker_db = NULL;
319 i2400m_barker_db_size = 0;
320 i2400m_barker_db_used = 0;
321
322 result = i2400m_barker_db_known_barkers();
323 if (result < 0)
324 goto error_add;
325 /* parse command line options from i2400m.barkers */
326 if (_options != NULL) {
327 unsigned barker;
328
329 options_orig = kstrdup(_options, GFP_KERNEL);
330 if (options_orig == NULL)
331 goto error_parse;
332 options = options_orig;
333
334 while ((token = strsep(&options, ",")) != NULL) {
335 if (*token == '\0') /* eat joint commas */
336 continue;
337 if (sscanf(token, "%x", &barker) != 1
338 || barker > 0xffffffff) {
339 printk(KERN_ERR "%s: can't recognize "
340 "i2400m.barkers value '%s' as "
341 "a 32-bit number\n",
342 __func__, token);
343 result = -EINVAL;
344 goto error_parse;
345 }
346 if (barker == 0) {
347 /* clean list and start new */
348 i2400m_barker_db_exit();
349 continue;
350 }
351 result = i2400m_barker_db_add(barker);
352 if (result < 0)
353 goto error_add;
354 }
355 kfree(options_orig);
356 }
357 return 0;
358
359 error_parse:
360 error_add:
361 kfree(i2400m_barker_db);
362 return result;
363 }
364
365
366 /*
367 * Recognize a boot barker
368 *
369 * @buf: buffer where the boot barker.
370 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
371 * here so the function can check it for the caller.
372 *
373 * Note that as a side effect, upon identifying the obtained boot
374 * barker, this function will set i2400m->barker to point to the right
375 * barker database entry. Subsequent calls to the function will result
376 * in verifying that the same type of boot barker is returned when the
377 * device [re]boots (as long as the same device instance is used).
378 *
379 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
380 * buffer in @buf doesn't match any boot barker in the database or
381 * -EILSEQ if the buffer doesn't have the right size.
382 */
i2400m_is_boot_barker(struct i2400m * i2400m,const void * buf,size_t buf_size)383 int i2400m_is_boot_barker(struct i2400m *i2400m,
384 const void *buf, size_t buf_size)
385 {
386 int result;
387 struct device *dev = i2400m_dev(i2400m);
388 struct i2400m_barker_db *barker;
389 int i;
390
391 result = -ENOENT;
392 if (buf_size != sizeof(i2400m_barker_db[i].data))
393 return result;
394
395 /* Short circuit if we have already discovered the barker
396 * associated with the device. */
397 if (i2400m->barker
398 && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
399 unsigned index = (i2400m->barker - i2400m_barker_db)
400 / sizeof(*i2400m->barker);
401 d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
402 index, le32_to_cpu(i2400m->barker->data[0]));
403 return 0;
404 }
405
406 for (i = 0; i < i2400m_barker_db_used; i++) {
407 barker = &i2400m_barker_db[i];
408 BUILD_BUG_ON(sizeof(barker->data) != 16);
409 if (memcmp(buf, barker->data, sizeof(barker->data)))
410 continue;
411
412 if (i2400m->barker == NULL) {
413 i2400m->barker = barker;
414 d_printf(1, dev, "boot barker set to #%u/%08x\n",
415 i, le32_to_cpu(barker->data[0]));
416 if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
417 i2400m->sboot = 0;
418 else
419 i2400m->sboot = 1;
420 } else if (i2400m->barker != barker) {
421 dev_err(dev, "HW inconsistency: device "
422 "reports a different boot barker "
423 "than set (from %08x to %08x)\n",
424 le32_to_cpu(i2400m->barker->data[0]),
425 le32_to_cpu(barker->data[0]));
426 result = -EIO;
427 } else
428 d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
429 i, le32_to_cpu(barker->data[0]));
430 result = 0;
431 break;
432 }
433 return result;
434 }
435 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
436
437
438 /*
439 * Verify the ack data received
440 *
441 * Given a reply to a boot mode command, chew it and verify everything
442 * is ok.
443 *
444 * @opcode: opcode which generated this ack. For error messages.
445 * @ack: pointer to ack data we received
446 * @ack_size: size of that data buffer
447 * @flags: I2400M_BM_CMD_* flags we called the command with.
448 *
449 * Way too long function -- maybe it should be further split
450 */
451 static
__i2400m_bm_ack_verify(struct i2400m * i2400m,int opcode,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)452 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
453 struct i2400m_bootrom_header *ack,
454 size_t ack_size, int flags)
455 {
456 ssize_t result = -ENOMEM;
457 struct device *dev = i2400m_dev(i2400m);
458
459 d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
460 i2400m, opcode, ack, ack_size);
461 if (ack_size < sizeof(*ack)) {
462 result = -EIO;
463 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
464 "return enough data (%zu bytes vs %zu expected)\n",
465 opcode, ack_size, sizeof(*ack));
466 goto error_ack_short;
467 }
468 result = i2400m_is_boot_barker(i2400m, ack, ack_size);
469 if (result >= 0) {
470 result = -ERESTARTSYS;
471 d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
472 goto error_reboot;
473 }
474 if (ack_size == sizeof(i2400m_ACK_BARKER)
475 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
476 result = -EISCONN;
477 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
478 opcode);
479 goto error_reboot_ack;
480 }
481 result = 0;
482 if (flags & I2400M_BM_CMD_RAW)
483 goto out_raw;
484 ack->data_size = le32_to_cpu(ack->data_size);
485 ack->target_addr = le32_to_cpu(ack->target_addr);
486 ack->block_checksum = le32_to_cpu(ack->block_checksum);
487 d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
488 "response %u csum %u rr %u da %u\n",
489 opcode, i2400m_brh_get_opcode(ack),
490 i2400m_brh_get_response(ack),
491 i2400m_brh_get_use_checksum(ack),
492 i2400m_brh_get_response_required(ack),
493 i2400m_brh_get_direct_access(ack));
494 result = -EIO;
495 if (i2400m_brh_get_signature(ack) != 0xcbbc) {
496 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
497 "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
498 goto error_ack_signature;
499 }
500 if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
501 dev_err(dev, "boot-mode cmd %d: HW BUG? "
502 "received response for opcode %u, expected %u\n",
503 opcode, i2400m_brh_get_opcode(ack), opcode);
504 goto error_ack_opcode;
505 }
506 if (i2400m_brh_get_response(ack) != 0) { /* failed? */
507 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
508 opcode, i2400m_brh_get_response(ack));
509 goto error_ack_failed;
510 }
511 if (ack_size < ack->data_size + sizeof(*ack)) {
512 dev_err(dev, "boot-mode cmd %d: SW BUG "
513 "driver provided only %zu bytes for %zu bytes "
514 "of data\n", opcode, ack_size,
515 (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
516 goto error_ack_short_buffer;
517 }
518 result = ack_size;
519 /* Don't you love this stack of empty targets? Well, I don't
520 * either, but it helps track exactly who comes in here and
521 * why :) */
522 error_ack_short_buffer:
523 error_ack_failed:
524 error_ack_opcode:
525 error_ack_signature:
526 out_raw:
527 error_reboot_ack:
528 error_reboot:
529 error_ack_short:
530 d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
531 i2400m, opcode, ack, ack_size, (int) result);
532 return result;
533 }
534
535
536 /**
537 * i2400m_bm_cmd - Execute a boot mode command
538 *
539 * @cmd: buffer containing the command data (pointing at the header).
540 * This data can be ANYWHERE (for USB, we will copy it to an
541 * specific buffer). Make sure everything is in proper little
542 * endian.
543 *
544 * A raw buffer can be also sent, just cast it and set flags to
545 * I2400M_BM_CMD_RAW.
546 *
547 * This function will generate a checksum for you if the
548 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
549 * is set).
550 *
551 * You can use the i2400m->bm_cmd_buf to stage your commands and
552 * send them.
553 *
554 * If NULL, no command is sent (we just wait for an ack).
555 *
556 * @cmd_size: size of the command. Will be auto padded to the
557 * bus-specific drivers padding requirements.
558 *
559 * @ack: buffer where to place the acknowledgement. If it is a regular
560 * command response, all fields will be returned with the right,
561 * native endianess.
562 *
563 * You *cannot* use i2400m->bm_ack_buf for this buffer.
564 *
565 * @ack_size: size of @ack, 16 aligned; you need to provide at least
566 * sizeof(*ack) bytes and then enough to contain the return data
567 * from the command
568 *
569 * @flags: see I2400M_BM_CMD_* above.
570 *
571 * @returns: bytes received by the notification; if < 0, an errno code
572 * denoting an error or:
573 *
574 * -ERESTARTSYS The device has rebooted
575 *
576 * Executes a boot-mode command and waits for a response, doing basic
577 * validation on it; if a zero length response is received, it retries
578 * waiting for a response until a non-zero one is received (timing out
579 * after %I2400M_BOOT_RETRIES retries).
580 */
581 static
i2400m_bm_cmd(struct i2400m * i2400m,const struct i2400m_bootrom_header * cmd,size_t cmd_size,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)582 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
583 const struct i2400m_bootrom_header *cmd, size_t cmd_size,
584 struct i2400m_bootrom_header *ack, size_t ack_size,
585 int flags)
586 {
587 ssize_t result = -ENOMEM, rx_bytes;
588 struct device *dev = i2400m_dev(i2400m);
589 int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
590
591 d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
592 i2400m, cmd, cmd_size, ack, ack_size);
593 BUG_ON(ack_size < sizeof(*ack));
594 BUG_ON(i2400m->boot_mode == 0);
595
596 if (cmd != NULL) { /* send the command */
597 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
598 if (result < 0)
599 goto error_cmd_send;
600 if ((flags & I2400M_BM_CMD_RAW) == 0)
601 d_printf(5, dev,
602 "boot-mode cmd %d csum %u rr %u da %u: "
603 "addr 0x%04x size %u block csum 0x%04x\n",
604 opcode, i2400m_brh_get_use_checksum(cmd),
605 i2400m_brh_get_response_required(cmd),
606 i2400m_brh_get_direct_access(cmd),
607 cmd->target_addr, cmd->data_size,
608 cmd->block_checksum);
609 }
610 result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
611 if (result < 0) {
612 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
613 opcode, (int) result); /* bah, %zd doesn't work */
614 goto error_wait_for_ack;
615 }
616 rx_bytes = result;
617 /* verify the ack and read more if necessary [result is the
618 * final amount of bytes we get in the ack] */
619 result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
620 if (result < 0)
621 goto error_bad_ack;
622 /* Don't you love this stack of empty targets? Well, I don't
623 * either, but it helps track exactly who comes in here and
624 * why :) */
625 result = rx_bytes;
626 error_bad_ack:
627 error_wait_for_ack:
628 error_cmd_send:
629 d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
630 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
631 return result;
632 }
633
634
635 /**
636 * i2400m_download_chunk - write a single chunk of data to the device's memory
637 *
638 * @i2400m: device descriptor
639 * @buf: the buffer to write
640 * @buf_len: length of the buffer to write
641 * @addr: address in the device memory space
642 * @direct: bootrom write mode
643 * @do_csum: should a checksum validation be performed
644 */
i2400m_download_chunk(struct i2400m * i2400m,const void * chunk,size_t __chunk_len,unsigned long addr,unsigned int direct,unsigned int do_csum)645 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
646 size_t __chunk_len, unsigned long addr,
647 unsigned int direct, unsigned int do_csum)
648 {
649 int ret;
650 size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
651 struct device *dev = i2400m_dev(i2400m);
652 struct {
653 struct i2400m_bootrom_header cmd;
654 u8 cmd_payload[chunk_len];
655 } __packed *buf;
656 struct i2400m_bootrom_header ack;
657
658 d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
659 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
660 addr, direct, do_csum);
661 buf = i2400m->bm_cmd_buf;
662 memcpy(buf->cmd_payload, chunk, __chunk_len);
663 memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
664
665 buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
666 __chunk_len & 0x3 ? 0 : do_csum,
667 __chunk_len & 0xf ? 0 : direct);
668 buf->cmd.target_addr = cpu_to_le32(addr);
669 buf->cmd.data_size = cpu_to_le32(__chunk_len);
670 ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
671 &ack, sizeof(ack), 0);
672 if (ret >= 0)
673 ret = 0;
674 d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
675 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
676 addr, direct, do_csum, ret);
677 return ret;
678 }
679
680
681 /*
682 * Download a BCF file's sections to the device
683 *
684 * @i2400m: device descriptor
685 * @bcf: pointer to firmware data (first header followed by the
686 * payloads). Assumed verified and consistent.
687 * @bcf_len: length (in bytes) of the @bcf buffer.
688 *
689 * Returns: < 0 errno code on error or the offset to the jump instruction.
690 *
691 * Given a BCF file, downloads each section (a command and a payload)
692 * to the device's address space. Actually, it just executes each
693 * command i the BCF file.
694 *
695 * The section size has to be aligned to 4 bytes AND the padding has
696 * to be taken from the firmware file, as the signature takes it into
697 * account.
698 */
699 static
i2400m_dnload_bcf(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t bcf_len)700 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
701 const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
702 {
703 ssize_t ret;
704 struct device *dev = i2400m_dev(i2400m);
705 size_t offset, /* iterator offset */
706 data_size, /* Size of the data payload */
707 section_size, /* Size of the whole section (cmd + payload) */
708 section = 1;
709 const struct i2400m_bootrom_header *bh;
710 struct i2400m_bootrom_header ack;
711
712 d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
713 i2400m, bcf, bcf_len);
714 /* Iterate over the command blocks in the BCF file that start
715 * after the header */
716 offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
717 while (1) { /* start sending the file */
718 bh = (void *) bcf + offset;
719 data_size = le32_to_cpu(bh->data_size);
720 section_size = ALIGN(sizeof(*bh) + data_size, 4);
721 d_printf(7, dev,
722 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
723 section, offset, sizeof(*bh) + data_size,
724 le32_to_cpu(bh->target_addr));
725 /*
726 * We look for JUMP cmd from the bootmode header,
727 * either I2400M_BRH_SIGNED_JUMP for secure boot
728 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
729 * should be the bootmode header with JUMP cmd.
730 */
731 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
732 i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
733 d_printf(5, dev, "jump found @%zu\n", offset);
734 break;
735 }
736 if (offset + section_size > bcf_len) {
737 dev_err(dev, "fw %s: bad section #%zu, "
738 "end (@%zu) beyond EOF (@%zu)\n",
739 i2400m->fw_name, section,
740 offset + section_size, bcf_len);
741 ret = -EINVAL;
742 goto error_section_beyond_eof;
743 }
744 __i2400m_msleep(20);
745 ret = i2400m_bm_cmd(i2400m, bh, section_size,
746 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
747 if (ret < 0) {
748 dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
749 "failed %d\n", i2400m->fw_name, section,
750 offset, sizeof(*bh) + data_size, (int) ret);
751 goto error_send;
752 }
753 offset += section_size;
754 section++;
755 }
756 ret = offset;
757 error_section_beyond_eof:
758 error_send:
759 d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
760 i2400m, bcf, bcf_len, (int) ret);
761 return ret;
762 }
763
764
765 /*
766 * Indicate if the device emitted a reboot barker that indicates
767 * "signed boot"
768 */
769 static
i2400m_boot_is_signed(struct i2400m * i2400m)770 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
771 {
772 return likely(i2400m->sboot);
773 }
774
775
776 /*
777 * Do the final steps of uploading firmware
778 *
779 * @bcf_hdr: BCF header we are actually using
780 * @bcf: pointer to the firmware image (which matches the first header
781 * that is followed by the actual payloads).
782 * @offset: [byte] offset into @bcf for the command we need to send.
783 *
784 * Depending on the boot mode (signed vs non-signed), different
785 * actions need to be taken.
786 */
787 static
i2400m_dnload_finalize(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,const struct i2400m_bcf_hdr * bcf,size_t offset)788 int i2400m_dnload_finalize(struct i2400m *i2400m,
789 const struct i2400m_bcf_hdr *bcf_hdr,
790 const struct i2400m_bcf_hdr *bcf, size_t offset)
791 {
792 int ret = 0;
793 struct device *dev = i2400m_dev(i2400m);
794 struct i2400m_bootrom_header *cmd, ack;
795 struct {
796 struct i2400m_bootrom_header cmd;
797 u8 cmd_pl[0];
798 } __packed *cmd_buf;
799 size_t signature_block_offset, signature_block_size;
800
801 d_fnstart(3, dev, "offset %zu\n", offset);
802 cmd = (void *) bcf + offset;
803 if (i2400m_boot_is_signed(i2400m) == 0) {
804 struct i2400m_bootrom_header jump_ack;
805 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
806 le32_to_cpu(cmd->target_addr));
807 cmd_buf = i2400m->bm_cmd_buf;
808 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
809 cmd = &cmd_buf->cmd;
810 /* now cmd points to the actual bootrom_header in cmd_buf */
811 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
812 cmd->data_size = 0;
813 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
814 &jump_ack, sizeof(jump_ack), 0);
815 } else {
816 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
817 le32_to_cpu(cmd->target_addr));
818 cmd_buf = i2400m->bm_cmd_buf;
819 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
820 signature_block_offset =
821 sizeof(*bcf_hdr)
822 + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
823 + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
824 signature_block_size =
825 le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
826 memcpy(cmd_buf->cmd_pl,
827 (void *) bcf_hdr + signature_block_offset,
828 signature_block_size);
829 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
830 sizeof(cmd_buf->cmd) + signature_block_size,
831 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
832 }
833 d_fnend(3, dev, "returning %d\n", ret);
834 return ret;
835 }
836
837
838 /**
839 * i2400m_bootrom_init - Reboots a powered device into boot mode
840 *
841 * @i2400m: device descriptor
842 * @flags:
843 * I2400M_BRI_SOFT: a reboot barker has been seen
844 * already, so don't wait for it.
845 *
846 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
847 * for a reboot barker notification. This is a one shot; if
848 * the state machine needs to send a reboot command it will.
849 *
850 * Returns:
851 *
852 * < 0 errno code on error, 0 if ok.
853 *
854 * Description:
855 *
856 * Tries hard enough to put the device in boot-mode. There are two
857 * main phases to this:
858 *
859 * a. (1) send a reboot command and (2) get a reboot barker
860 *
861 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
862 * getting an ack barker in return
863 *
864 * We want to skip (a) in some cases [soft]. The state machine is
865 * horrible, but it is basically: on each phase, send what has to be
866 * sent (if any), wait for the answer and act on the answer. We might
867 * have to backtrack and retry, so we keep a max tries counter for
868 * that.
869 *
870 * It sucks because we don't know ahead of time which is going to be
871 * the reboot barker (the device might send different ones depending
872 * on its EEPROM config) and once the device reboots and waits for the
873 * echo/ack reboot barker being sent back, it doesn't understand
874 * anything else. So we can be left at the point where we don't know
875 * what to send to it -- cold reset and bus reset seem to have little
876 * effect. So the function iterates (in this case) through all the
877 * known barkers and tries them all until an ACK is
878 * received. Otherwise, it gives up.
879 *
880 * If we get a timeout after sending a warm reset, we do it again.
881 */
i2400m_bootrom_init(struct i2400m * i2400m,enum i2400m_bri flags)882 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
883 {
884 int result;
885 struct device *dev = i2400m_dev(i2400m);
886 struct i2400m_bootrom_header *cmd;
887 struct i2400m_bootrom_header ack;
888 int count = i2400m->bus_bm_retries;
889 int ack_timeout_cnt = 1;
890 unsigned i;
891
892 BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
893 BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
894
895 d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
896 result = -ENOMEM;
897 cmd = i2400m->bm_cmd_buf;
898 if (flags & I2400M_BRI_SOFT)
899 goto do_reboot_ack;
900 do_reboot:
901 ack_timeout_cnt = 1;
902 if (--count < 0)
903 goto error_timeout;
904 d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
905 count);
906 if ((flags & I2400M_BRI_NO_REBOOT) == 0)
907 i2400m_reset(i2400m, I2400M_RT_WARM);
908 result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
909 I2400M_BM_CMD_RAW);
910 flags &= ~I2400M_BRI_NO_REBOOT;
911 switch (result) {
912 case -ERESTARTSYS:
913 /*
914 * at this point, i2400m_bm_cmd(), through
915 * __i2400m_bm_ack_process(), has updated
916 * i2400m->barker and we are good to go.
917 */
918 d_printf(4, dev, "device reboot: got reboot barker\n");
919 break;
920 case -EISCONN: /* we don't know how it got here...but we follow it */
921 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
922 goto do_reboot;
923 case -ETIMEDOUT:
924 /*
925 * Device has timed out, we might be in boot mode
926 * already and expecting an ack; if we don't know what
927 * the barker is, we just send them all. Cold reset
928 * and bus reset don't work. Beats me.
929 */
930 if (i2400m->barker != NULL) {
931 dev_err(dev, "device boot: reboot barker timed out, "
932 "trying (set) %08x echo/ack\n",
933 le32_to_cpu(i2400m->barker->data[0]));
934 goto do_reboot_ack;
935 }
936 for (i = 0; i < i2400m_barker_db_used; i++) {
937 struct i2400m_barker_db *barker = &i2400m_barker_db[i];
938 memcpy(cmd, barker->data, sizeof(barker->data));
939 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
940 &ack, sizeof(ack),
941 I2400M_BM_CMD_RAW);
942 if (result == -EISCONN) {
943 dev_warn(dev, "device boot: got ack barker "
944 "after sending echo/ack barker "
945 "#%d/%08x; rebooting j.i.c.\n",
946 i, le32_to_cpu(barker->data[0]));
947 flags &= ~I2400M_BRI_NO_REBOOT;
948 goto do_reboot;
949 }
950 }
951 dev_err(dev, "device boot: tried all the echo/acks, could "
952 "not get device to respond; giving up");
953 result = -ESHUTDOWN;
954 case -EPROTO:
955 case -ESHUTDOWN: /* dev is gone */
956 case -EINTR: /* user cancelled */
957 goto error_dev_gone;
958 default:
959 dev_err(dev, "device reboot: error %d while waiting "
960 "for reboot barker - rebooting\n", result);
961 d_dump(1, dev, &ack, result);
962 goto do_reboot;
963 }
964 /* At this point we ack back with 4 REBOOT barkers and expect
965 * 4 ACK barkers. This is ugly, as we send a raw command --
966 * hence the cast. _bm_cmd() will catch the reboot ack
967 * notification and report it as -EISCONN. */
968 do_reboot_ack:
969 d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
970 memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
971 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
972 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
973 switch (result) {
974 case -ERESTARTSYS:
975 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
976 if (--count < 0)
977 goto error_timeout;
978 goto do_reboot_ack;
979 case -EISCONN:
980 d_printf(4, dev, "reboot ack: got ack barker - good\n");
981 break;
982 case -ETIMEDOUT: /* no response, maybe it is the other type? */
983 if (ack_timeout_cnt-- < 0) {
984 d_printf(4, dev, "reboot ack timedout: retrying\n");
985 goto do_reboot_ack;
986 } else {
987 dev_err(dev, "reboot ack timedout too long: "
988 "trying reboot\n");
989 goto do_reboot;
990 }
991 break;
992 case -EPROTO:
993 case -ESHUTDOWN: /* dev is gone */
994 goto error_dev_gone;
995 default:
996 dev_err(dev, "device reboot ack: error %d while waiting for "
997 "reboot ack barker - rebooting\n", result);
998 goto do_reboot;
999 }
1000 d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1001 result = 0;
1002 exit_timeout:
1003 error_dev_gone:
1004 d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1005 i2400m, flags, result);
1006 return result;
1007
1008 error_timeout:
1009 dev_err(dev, "Timed out waiting for reboot ack\n");
1010 result = -ETIMEDOUT;
1011 goto exit_timeout;
1012 }
1013
1014
1015 /*
1016 * Read the MAC addr
1017 *
1018 * The position this function reads is fixed in device memory and
1019 * always available, even without firmware.
1020 *
1021 * Note we specify we want to read only six bytes, but provide space
1022 * for 16, as we always get it rounded up.
1023 */
i2400m_read_mac_addr(struct i2400m * i2400m)1024 int i2400m_read_mac_addr(struct i2400m *i2400m)
1025 {
1026 int result;
1027 struct device *dev = i2400m_dev(i2400m);
1028 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1029 struct i2400m_bootrom_header *cmd;
1030 struct {
1031 struct i2400m_bootrom_header ack;
1032 u8 ack_pl[16];
1033 } __packed ack_buf;
1034
1035 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1036 cmd = i2400m->bm_cmd_buf;
1037 cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1038 cmd->target_addr = cpu_to_le32(0x00203fe8);
1039 cmd->data_size = cpu_to_le32(6);
1040 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1041 &ack_buf.ack, sizeof(ack_buf), 0);
1042 if (result < 0) {
1043 dev_err(dev, "BM: read mac addr failed: %d\n", result);
1044 goto error_read_mac;
1045 }
1046 d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1047 if (i2400m->bus_bm_mac_addr_impaired == 1) {
1048 ack_buf.ack_pl[0] = 0x00;
1049 ack_buf.ack_pl[1] = 0x16;
1050 ack_buf.ack_pl[2] = 0xd3;
1051 get_random_bytes(&ack_buf.ack_pl[3], 3);
1052 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1053 "mac addr is %pM\n", ack_buf.ack_pl);
1054 result = 0;
1055 }
1056 net_dev->addr_len = ETH_ALEN;
1057 memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1058 memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1059 error_read_mac:
1060 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1061 return result;
1062 }
1063
1064
1065 /*
1066 * Initialize a non signed boot
1067 *
1068 * This implies sending some magic values to the device's memory. Note
1069 * we convert the values to little endian in the same array
1070 * declaration.
1071 */
1072 static
i2400m_dnload_init_nonsigned(struct i2400m * i2400m)1073 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1074 {
1075 unsigned i = 0;
1076 int ret = 0;
1077 struct device *dev = i2400m_dev(i2400m);
1078 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1079 if (i2400m->bus_bm_pokes_table) {
1080 while (i2400m->bus_bm_pokes_table[i].address) {
1081 ret = i2400m_download_chunk(
1082 i2400m,
1083 &i2400m->bus_bm_pokes_table[i].data,
1084 sizeof(i2400m->bus_bm_pokes_table[i].data),
1085 i2400m->bus_bm_pokes_table[i].address, 1, 1);
1086 if (ret < 0)
1087 break;
1088 i++;
1089 }
1090 }
1091 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1092 return ret;
1093 }
1094
1095
1096 /*
1097 * Initialize the signed boot process
1098 *
1099 * @i2400m: device descriptor
1100 *
1101 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1102 * memory (it has gone through basic validation).
1103 *
1104 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1105 * rebooted.
1106 *
1107 * This writes the firmware BCF header to the device using the
1108 * HASH_PAYLOAD_ONLY command.
1109 */
1110 static
i2400m_dnload_init_signed(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1111 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1112 const struct i2400m_bcf_hdr *bcf_hdr)
1113 {
1114 int ret;
1115 struct device *dev = i2400m_dev(i2400m);
1116 struct {
1117 struct i2400m_bootrom_header cmd;
1118 struct i2400m_bcf_hdr cmd_pl;
1119 } __packed *cmd_buf;
1120 struct i2400m_bootrom_header ack;
1121
1122 d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1123 cmd_buf = i2400m->bm_cmd_buf;
1124 cmd_buf->cmd.command =
1125 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1126 cmd_buf->cmd.target_addr = 0;
1127 cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1128 memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1129 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1130 &ack, sizeof(ack), 0);
1131 if (ret >= 0)
1132 ret = 0;
1133 d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1134 return ret;
1135 }
1136
1137
1138 /*
1139 * Initialize the firmware download at the device size
1140 *
1141 * Multiplex to the one that matters based on the device's mode
1142 * (signed or non-signed).
1143 */
1144 static
i2400m_dnload_init(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1145 int i2400m_dnload_init(struct i2400m *i2400m,
1146 const struct i2400m_bcf_hdr *bcf_hdr)
1147 {
1148 int result;
1149 struct device *dev = i2400m_dev(i2400m);
1150
1151 if (i2400m_boot_is_signed(i2400m)) {
1152 d_printf(1, dev, "signed boot\n");
1153 result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1154 if (result == -ERESTARTSYS)
1155 return result;
1156 if (result < 0)
1157 dev_err(dev, "firmware %s: signed boot download "
1158 "initialization failed: %d\n",
1159 i2400m->fw_name, result);
1160 } else {
1161 /* non-signed boot process without pokes */
1162 d_printf(1, dev, "non-signed boot\n");
1163 result = i2400m_dnload_init_nonsigned(i2400m);
1164 if (result == -ERESTARTSYS)
1165 return result;
1166 if (result < 0)
1167 dev_err(dev, "firmware %s: non-signed download "
1168 "initialization failed: %d\n",
1169 i2400m->fw_name, result);
1170 }
1171 return result;
1172 }
1173
1174
1175 /*
1176 * Run consistency tests on the firmware file and load up headers
1177 *
1178 * Check for the firmware being made for the i2400m device,
1179 * etc...These checks are mostly informative, as the device will make
1180 * them too; but the driver's response is more informative on what
1181 * went wrong.
1182 *
1183 * This will also look at all the headers present on the firmware
1184 * file, and update i2400m->fw_bcf_hdr to point to them.
1185 */
1186 static
i2400m_fw_hdr_check(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,size_t index,size_t offset)1187 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1188 const struct i2400m_bcf_hdr *bcf_hdr,
1189 size_t index, size_t offset)
1190 {
1191 struct device *dev = i2400m_dev(i2400m);
1192
1193 unsigned module_type, header_len, major_version, minor_version,
1194 module_id, module_vendor, date, size;
1195
1196 module_type = le32_to_cpu(bcf_hdr->module_type);
1197 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1198 major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1199 >> 16;
1200 minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1201 module_id = le32_to_cpu(bcf_hdr->module_id);
1202 module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1203 date = le32_to_cpu(bcf_hdr->date);
1204 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1205
1206 d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1207 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1208 i2400m->fw_name, index, offset,
1209 module_type, module_vendor, module_id,
1210 major_version, minor_version, header_len, size, date);
1211
1212 /* Hard errors */
1213 if (major_version != 1) {
1214 dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1215 "v%u.%u not supported\n",
1216 i2400m->fw_name, index, offset,
1217 major_version, minor_version);
1218 return -EBADF;
1219 }
1220
1221 if (module_type != 6) { /* built for the right hardware? */
1222 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1223 "type 0x%x; aborting\n",
1224 i2400m->fw_name, index, offset,
1225 module_type);
1226 return -EBADF;
1227 }
1228
1229 if (module_vendor != 0x8086) {
1230 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1231 "vendor 0x%x; aborting\n",
1232 i2400m->fw_name, index, offset, module_vendor);
1233 return -EBADF;
1234 }
1235
1236 if (date < 0x20080300)
1237 dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1238 "too old; unsupported\n",
1239 i2400m->fw_name, index, offset, date);
1240 return 0;
1241 }
1242
1243
1244 /*
1245 * Run consistency tests on the firmware file and load up headers
1246 *
1247 * Check for the firmware being made for the i2400m device,
1248 * etc...These checks are mostly informative, as the device will make
1249 * them too; but the driver's response is more informative on what
1250 * went wrong.
1251 *
1252 * This will also look at all the headers present on the firmware
1253 * file, and update i2400m->fw_hdrs to point to them.
1254 */
1255 static
i2400m_fw_check(struct i2400m * i2400m,const void * bcf,size_t bcf_size)1256 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1257 {
1258 int result;
1259 struct device *dev = i2400m_dev(i2400m);
1260 size_t headers = 0;
1261 const struct i2400m_bcf_hdr *bcf_hdr;
1262 const void *itr, *next, *top;
1263 size_t slots = 0, used_slots = 0;
1264
1265 for (itr = bcf, top = itr + bcf_size;
1266 itr < top;
1267 headers++, itr = next) {
1268 size_t leftover, offset, header_len, size;
1269
1270 leftover = top - itr;
1271 offset = itr - (const void *) bcf;
1272 if (leftover <= sizeof(*bcf_hdr)) {
1273 dev_err(dev, "firmware %s: %zu B left at @%zx, "
1274 "not enough for BCF header\n",
1275 i2400m->fw_name, leftover, offset);
1276 break;
1277 }
1278 bcf_hdr = itr;
1279 /* Only the first header is supposed to be followed by
1280 * payload */
1281 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1282 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1283 if (headers == 0)
1284 next = itr + size;
1285 else
1286 next = itr + header_len;
1287
1288 result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1289 if (result < 0)
1290 continue;
1291 if (used_slots + 1 >= slots) {
1292 /* +1 -> we need to account for the one we'll
1293 * occupy and at least an extra one for
1294 * always being NULL */
1295 result = i2400m_zrealloc_2x(
1296 (void **) &i2400m->fw_hdrs, &slots,
1297 sizeof(i2400m->fw_hdrs[0]),
1298 GFP_KERNEL);
1299 if (result < 0)
1300 goto error_zrealloc;
1301 }
1302 i2400m->fw_hdrs[used_slots] = bcf_hdr;
1303 used_slots++;
1304 }
1305 if (headers == 0) {
1306 dev_err(dev, "firmware %s: no usable headers found\n",
1307 i2400m->fw_name);
1308 result = -EBADF;
1309 } else
1310 result = 0;
1311 error_zrealloc:
1312 return result;
1313 }
1314
1315
1316 /*
1317 * Match a barker to a BCF header module ID
1318 *
1319 * The device sends a barker which tells the firmware loader which
1320 * header in the BCF file has to be used. This does the matching.
1321 */
1322 static
i2400m_bcf_hdr_match(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1323 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1324 const struct i2400m_bcf_hdr *bcf_hdr)
1325 {
1326 u32 barker = le32_to_cpu(i2400m->barker->data[0])
1327 & 0x7fffffff;
1328 u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1329 & 0x7fffffff; /* high bit used for something else */
1330
1331 /* special case for 5x50 */
1332 if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1333 return 1;
1334 if (module_id == barker)
1335 return 1;
1336 return 0;
1337 }
1338
1339 static
i2400m_bcf_hdr_find(struct i2400m * i2400m)1340 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1341 {
1342 struct device *dev = i2400m_dev(i2400m);
1343 const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1344 unsigned i = 0;
1345 u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1346
1347 d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1348 if (barker == I2400M_NBOOT_BARKER) {
1349 bcf_hdr = i2400m->fw_hdrs[0];
1350 d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1351 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1352 return bcf_hdr;
1353 }
1354 for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1355 bcf_hdr = *bcf_itr;
1356 if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1357 d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1358 i, le32_to_cpu(bcf_hdr->module_id));
1359 return bcf_hdr;
1360 } else
1361 d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1362 i, le32_to_cpu(bcf_hdr->module_id));
1363 }
1364 dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1365 barker);
1366 return NULL;
1367 }
1368
1369
1370 /*
1371 * Download the firmware to the device
1372 *
1373 * @i2400m: device descriptor
1374 * @bcf: pointer to loaded (and minimally verified for consistency)
1375 * firmware
1376 * @bcf_size: size of the @bcf buffer (header plus payloads)
1377 *
1378 * The process for doing this is described in this file's header.
1379 *
1380 * Note we only reinitialize boot-mode if the flags say so. Some hw
1381 * iterations need it, some don't. In any case, if we loop, we always
1382 * need to reinitialize the boot room, hence the flags modification.
1383 */
1384 static
i2400m_fw_dnload(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t fw_size,enum i2400m_bri flags)1385 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1386 size_t fw_size, enum i2400m_bri flags)
1387 {
1388 int ret = 0;
1389 struct device *dev = i2400m_dev(i2400m);
1390 int count = i2400m->bus_bm_retries;
1391 const struct i2400m_bcf_hdr *bcf_hdr;
1392 size_t bcf_size;
1393
1394 d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1395 i2400m, bcf, fw_size);
1396 i2400m->boot_mode = 1;
1397 wmb(); /* Make sure other readers see it */
1398 hw_reboot:
1399 if (count-- == 0) {
1400 ret = -ERESTARTSYS;
1401 dev_err(dev, "device rebooted too many times, aborting\n");
1402 goto error_too_many_reboots;
1403 }
1404 if (flags & I2400M_BRI_MAC_REINIT) {
1405 ret = i2400m_bootrom_init(i2400m, flags);
1406 if (ret < 0) {
1407 dev_err(dev, "bootrom init failed: %d\n", ret);
1408 goto error_bootrom_init;
1409 }
1410 }
1411 flags |= I2400M_BRI_MAC_REINIT;
1412
1413 /*
1414 * Initialize the download, push the bytes to the device and
1415 * then jump to the new firmware. Note @ret is passed with the
1416 * offset of the jump instruction to _dnload_finalize()
1417 *
1418 * Note we need to use the BCF header in the firmware image
1419 * that matches the barker that the device sent when it
1420 * rebooted, so it has to be passed along.
1421 */
1422 ret = -EBADF;
1423 bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1424 if (bcf_hdr == NULL)
1425 goto error_bcf_hdr_find;
1426
1427 ret = i2400m_dnload_init(i2400m, bcf_hdr);
1428 if (ret == -ERESTARTSYS)
1429 goto error_dev_rebooted;
1430 if (ret < 0)
1431 goto error_dnload_init;
1432
1433 /*
1434 * bcf_size refers to one header size plus the fw sections size
1435 * indicated by the header,ie. if there are other extended headers
1436 * at the tail, they are not counted
1437 */
1438 bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1439 ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1440 if (ret == -ERESTARTSYS)
1441 goto error_dev_rebooted;
1442 if (ret < 0) {
1443 dev_err(dev, "fw %s: download failed: %d\n",
1444 i2400m->fw_name, ret);
1445 goto error_dnload_bcf;
1446 }
1447
1448 ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1449 if (ret == -ERESTARTSYS)
1450 goto error_dev_rebooted;
1451 if (ret < 0) {
1452 dev_err(dev, "fw %s: "
1453 "download finalization failed: %d\n",
1454 i2400m->fw_name, ret);
1455 goto error_dnload_finalize;
1456 }
1457
1458 d_printf(2, dev, "fw %s successfully uploaded\n",
1459 i2400m->fw_name);
1460 i2400m->boot_mode = 0;
1461 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1462 error_dnload_finalize:
1463 error_dnload_bcf:
1464 error_dnload_init:
1465 error_bcf_hdr_find:
1466 error_bootrom_init:
1467 error_too_many_reboots:
1468 d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1469 i2400m, bcf, fw_size, ret);
1470 return ret;
1471
1472 error_dev_rebooted:
1473 dev_err(dev, "device rebooted, %d tries left\n", count);
1474 /* we got the notification already, no need to wait for it again */
1475 flags |= I2400M_BRI_SOFT;
1476 goto hw_reboot;
1477 }
1478
1479 static
i2400m_fw_bootstrap(struct i2400m * i2400m,const struct firmware * fw,enum i2400m_bri flags)1480 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1481 enum i2400m_bri flags)
1482 {
1483 int ret;
1484 struct device *dev = i2400m_dev(i2400m);
1485 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1486
1487 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1488 bcf = (void *) fw->data;
1489 ret = i2400m_fw_check(i2400m, bcf, fw->size);
1490 if (ret >= 0)
1491 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1492 if (ret < 0)
1493 dev_err(dev, "%s: cannot use: %d, skipping\n",
1494 i2400m->fw_name, ret);
1495 kfree(i2400m->fw_hdrs);
1496 i2400m->fw_hdrs = NULL;
1497 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1498 return ret;
1499 }
1500
1501
1502 /* Refcounted container for firmware data */
1503 struct i2400m_fw {
1504 struct kref kref;
1505 const struct firmware *fw;
1506 };
1507
1508
1509 static
i2400m_fw_destroy(struct kref * kref)1510 void i2400m_fw_destroy(struct kref *kref)
1511 {
1512 struct i2400m_fw *i2400m_fw =
1513 container_of(kref, struct i2400m_fw, kref);
1514 release_firmware(i2400m_fw->fw);
1515 kfree(i2400m_fw);
1516 }
1517
1518
1519 static
i2400m_fw_get(struct i2400m_fw * i2400m_fw)1520 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1521 {
1522 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1523 kref_get(&i2400m_fw->kref);
1524 return i2400m_fw;
1525 }
1526
1527
1528 static
i2400m_fw_put(struct i2400m_fw * i2400m_fw)1529 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1530 {
1531 kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1532 }
1533
1534
1535 /**
1536 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1537 *
1538 * @i2400m: device descriptor
1539 *
1540 * Returns: >= 0 if ok, < 0 errno code on error.
1541 *
1542 * This sets up the firmware upload environment, loads the firmware
1543 * file from disk, verifies and then calls the firmware upload process
1544 * per se.
1545 *
1546 * Can be called either from probe, or after a warm reset. Can not be
1547 * called from within an interrupt. All the flow in this code is
1548 * single-threade; all I/Os are synchronous.
1549 */
i2400m_dev_bootstrap(struct i2400m * i2400m,enum i2400m_bri flags)1550 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1551 {
1552 int ret, itr;
1553 struct device *dev = i2400m_dev(i2400m);
1554 struct i2400m_fw *i2400m_fw;
1555 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1556 const struct firmware *fw;
1557 const char *fw_name;
1558
1559 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1560
1561 ret = -ENODEV;
1562 spin_lock(&i2400m->rx_lock);
1563 i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1564 spin_unlock(&i2400m->rx_lock);
1565 if (i2400m_fw == (void *) ~0) {
1566 dev_err(dev, "can't load firmware now!");
1567 goto out;
1568 } else if (i2400m_fw != NULL) {
1569 dev_info(dev, "firmware %s: loading from cache\n",
1570 i2400m->fw_name);
1571 ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1572 i2400m_fw_put(i2400m_fw);
1573 goto out;
1574 }
1575
1576 /* Load firmware files to memory. */
1577 for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1578 fw_name = i2400m->bus_fw_names[itr];
1579 if (fw_name == NULL) {
1580 dev_err(dev, "Could not find a usable firmware image\n");
1581 break;
1582 }
1583 d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1584 ret = request_firmware(&fw, fw_name, dev);
1585 if (ret < 0) {
1586 dev_err(dev, "fw %s: cannot load file: %d\n",
1587 fw_name, ret);
1588 continue;
1589 }
1590 i2400m->fw_name = fw_name;
1591 ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1592 release_firmware(fw);
1593 if (ret >= 0) /* firmware loaded successfully */
1594 break;
1595 i2400m->fw_name = NULL;
1596 }
1597 out:
1598 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1599 return ret;
1600 }
1601 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1602
1603
i2400m_fw_cache(struct i2400m * i2400m)1604 void i2400m_fw_cache(struct i2400m *i2400m)
1605 {
1606 int result;
1607 struct i2400m_fw *i2400m_fw;
1608 struct device *dev = i2400m_dev(i2400m);
1609
1610 /* if there is anything there, free it -- now, this'd be weird */
1611 spin_lock(&i2400m->rx_lock);
1612 i2400m_fw = i2400m->fw_cached;
1613 spin_unlock(&i2400m->rx_lock);
1614 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1615 i2400m_fw_put(i2400m_fw);
1616 WARN(1, "%s:%u: still cached fw still present?\n",
1617 __func__, __LINE__);
1618 }
1619
1620 if (i2400m->fw_name == NULL) {
1621 dev_err(dev, "firmware n/a: can't cache\n");
1622 i2400m_fw = (void *) ~0;
1623 goto out;
1624 }
1625
1626 i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1627 if (i2400m_fw == NULL)
1628 goto out;
1629 kref_init(&i2400m_fw->kref);
1630 result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1631 if (result < 0) {
1632 dev_err(dev, "firmware %s: failed to cache: %d\n",
1633 i2400m->fw_name, result);
1634 kfree(i2400m_fw);
1635 i2400m_fw = (void *) ~0;
1636 } else
1637 dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1638 out:
1639 spin_lock(&i2400m->rx_lock);
1640 i2400m->fw_cached = i2400m_fw;
1641 spin_unlock(&i2400m->rx_lock);
1642 }
1643
1644
i2400m_fw_uncache(struct i2400m * i2400m)1645 void i2400m_fw_uncache(struct i2400m *i2400m)
1646 {
1647 struct i2400m_fw *i2400m_fw;
1648
1649 spin_lock(&i2400m->rx_lock);
1650 i2400m_fw = i2400m->fw_cached;
1651 i2400m->fw_cached = NULL;
1652 spin_unlock(&i2400m->rx_lock);
1653
1654 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1655 i2400m_fw_put(i2400m_fw);
1656 }
1657
1658