1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 */
28
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33 #include "e1000.h"
34
35 static s32 e1000_check_downshift(struct e1000_hw *hw);
36 static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39 static void e1000_clear_vfta(struct e1000_hw *hw);
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
41 bool link_up);
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 u16 *max_length);
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48 static s32 e1000_id_led_init(struct e1000_hw *hw);
49 static void e1000_init_rx_addrs(struct e1000_hw *hw);
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57 static s32 e1000_set_phy_type(struct e1000_hw *hw);
58 static void e1000_phy_init_script(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70 u16 words, u16 *data);
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
78 u16 phy_data);
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
80 u16 *phy_data);
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83 static void e1000_release_eeprom(struct e1000_hw *hw);
84 static void e1000_standby_eeprom(struct e1000_hw *hw);
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 u16 *data);
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 u16 *data);
92
93 /* IGP cable length table */
94 static const
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 120, 120
107 };
108
109 static DEFINE_SPINLOCK(e1000_eeprom_lock);
110
111 /**
112 * e1000_set_phy_type - Set the phy type member in the hw struct.
113 * @hw: Struct containing variables accessed by shared code
114 */
e1000_set_phy_type(struct e1000_hw * hw)115 static s32 e1000_set_phy_type(struct e1000_hw *hw)
116 {
117 e_dbg("e1000_set_phy_type");
118
119 if (hw->mac_type == e1000_undefined)
120 return -E1000_ERR_PHY_TYPE;
121
122 switch (hw->phy_id) {
123 case M88E1000_E_PHY_ID:
124 case M88E1000_I_PHY_ID:
125 case M88E1011_I_PHY_ID:
126 case M88E1111_I_PHY_ID:
127 case M88E1118_E_PHY_ID:
128 hw->phy_type = e1000_phy_m88;
129 break;
130 case IGP01E1000_I_PHY_ID:
131 if (hw->mac_type == e1000_82541 ||
132 hw->mac_type == e1000_82541_rev_2 ||
133 hw->mac_type == e1000_82547 ||
134 hw->mac_type == e1000_82547_rev_2)
135 hw->phy_type = e1000_phy_igp;
136 break;
137 case RTL8211B_PHY_ID:
138 hw->phy_type = e1000_phy_8211;
139 break;
140 case RTL8201N_PHY_ID:
141 hw->phy_type = e1000_phy_8201;
142 break;
143 default:
144 /* Should never have loaded on this device */
145 hw->phy_type = e1000_phy_undefined;
146 return -E1000_ERR_PHY_TYPE;
147 }
148
149 return E1000_SUCCESS;
150 }
151
152 /**
153 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
154 * @hw: Struct containing variables accessed by shared code
155 */
e1000_phy_init_script(struct e1000_hw * hw)156 static void e1000_phy_init_script(struct e1000_hw *hw)
157 {
158 u32 ret_val;
159 u16 phy_saved_data;
160
161 e_dbg("e1000_phy_init_script");
162
163 if (hw->phy_init_script) {
164 msleep(20);
165
166 /* Save off the current value of register 0x2F5B to be restored at
167 * the end of this routine. */
168 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
169
170 /* Disabled the PHY transmitter */
171 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
172 msleep(20);
173
174 e1000_write_phy_reg(hw, 0x0000, 0x0140);
175 msleep(5);
176
177 switch (hw->mac_type) {
178 case e1000_82541:
179 case e1000_82547:
180 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
181 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
182 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
183 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
184 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
185 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
186 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
187 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
188 e1000_write_phy_reg(hw, 0x2010, 0x0008);
189 break;
190
191 case e1000_82541_rev_2:
192 case e1000_82547_rev_2:
193 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
194 break;
195 default:
196 break;
197 }
198
199 e1000_write_phy_reg(hw, 0x0000, 0x3300);
200 msleep(20);
201
202 /* Now enable the transmitter */
203 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
204
205 if (hw->mac_type == e1000_82547) {
206 u16 fused, fine, coarse;
207
208 /* Move to analog registers page */
209 e1000_read_phy_reg(hw,
210 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
211 &fused);
212
213 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
214 e1000_read_phy_reg(hw,
215 IGP01E1000_ANALOG_FUSE_STATUS,
216 &fused);
217
218 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
219 coarse =
220 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
221
222 if (coarse >
223 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
224 coarse -=
225 IGP01E1000_ANALOG_FUSE_COARSE_10;
226 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
227 } else if (coarse ==
228 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
229 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
230
231 fused =
232 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
233 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
234 (coarse &
235 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
236
237 e1000_write_phy_reg(hw,
238 IGP01E1000_ANALOG_FUSE_CONTROL,
239 fused);
240 e1000_write_phy_reg(hw,
241 IGP01E1000_ANALOG_FUSE_BYPASS,
242 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
243 }
244 }
245 }
246 }
247
248 /**
249 * e1000_set_mac_type - Set the mac type member in the hw struct.
250 * @hw: Struct containing variables accessed by shared code
251 */
e1000_set_mac_type(struct e1000_hw * hw)252 s32 e1000_set_mac_type(struct e1000_hw *hw)
253 {
254 e_dbg("e1000_set_mac_type");
255
256 switch (hw->device_id) {
257 case E1000_DEV_ID_82542:
258 switch (hw->revision_id) {
259 case E1000_82542_2_0_REV_ID:
260 hw->mac_type = e1000_82542_rev2_0;
261 break;
262 case E1000_82542_2_1_REV_ID:
263 hw->mac_type = e1000_82542_rev2_1;
264 break;
265 default:
266 /* Invalid 82542 revision ID */
267 return -E1000_ERR_MAC_TYPE;
268 }
269 break;
270 case E1000_DEV_ID_82543GC_FIBER:
271 case E1000_DEV_ID_82543GC_COPPER:
272 hw->mac_type = e1000_82543;
273 break;
274 case E1000_DEV_ID_82544EI_COPPER:
275 case E1000_DEV_ID_82544EI_FIBER:
276 case E1000_DEV_ID_82544GC_COPPER:
277 case E1000_DEV_ID_82544GC_LOM:
278 hw->mac_type = e1000_82544;
279 break;
280 case E1000_DEV_ID_82540EM:
281 case E1000_DEV_ID_82540EM_LOM:
282 case E1000_DEV_ID_82540EP:
283 case E1000_DEV_ID_82540EP_LOM:
284 case E1000_DEV_ID_82540EP_LP:
285 hw->mac_type = e1000_82540;
286 break;
287 case E1000_DEV_ID_82545EM_COPPER:
288 case E1000_DEV_ID_82545EM_FIBER:
289 hw->mac_type = e1000_82545;
290 break;
291 case E1000_DEV_ID_82545GM_COPPER:
292 case E1000_DEV_ID_82545GM_FIBER:
293 case E1000_DEV_ID_82545GM_SERDES:
294 hw->mac_type = e1000_82545_rev_3;
295 break;
296 case E1000_DEV_ID_82546EB_COPPER:
297 case E1000_DEV_ID_82546EB_FIBER:
298 case E1000_DEV_ID_82546EB_QUAD_COPPER:
299 hw->mac_type = e1000_82546;
300 break;
301 case E1000_DEV_ID_82546GB_COPPER:
302 case E1000_DEV_ID_82546GB_FIBER:
303 case E1000_DEV_ID_82546GB_SERDES:
304 case E1000_DEV_ID_82546GB_PCIE:
305 case E1000_DEV_ID_82546GB_QUAD_COPPER:
306 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
307 hw->mac_type = e1000_82546_rev_3;
308 break;
309 case E1000_DEV_ID_82541EI:
310 case E1000_DEV_ID_82541EI_MOBILE:
311 case E1000_DEV_ID_82541ER_LOM:
312 hw->mac_type = e1000_82541;
313 break;
314 case E1000_DEV_ID_82541ER:
315 case E1000_DEV_ID_82541GI:
316 case E1000_DEV_ID_82541GI_LF:
317 case E1000_DEV_ID_82541GI_MOBILE:
318 hw->mac_type = e1000_82541_rev_2;
319 break;
320 case E1000_DEV_ID_82547EI:
321 case E1000_DEV_ID_82547EI_MOBILE:
322 hw->mac_type = e1000_82547;
323 break;
324 case E1000_DEV_ID_82547GI:
325 hw->mac_type = e1000_82547_rev_2;
326 break;
327 case E1000_DEV_ID_INTEL_CE4100_GBE:
328 hw->mac_type = e1000_ce4100;
329 break;
330 default:
331 /* Should never have loaded on this device */
332 return -E1000_ERR_MAC_TYPE;
333 }
334
335 switch (hw->mac_type) {
336 case e1000_82541:
337 case e1000_82547:
338 case e1000_82541_rev_2:
339 case e1000_82547_rev_2:
340 hw->asf_firmware_present = true;
341 break;
342 default:
343 break;
344 }
345
346 /* The 82543 chip does not count tx_carrier_errors properly in
347 * FD mode
348 */
349 if (hw->mac_type == e1000_82543)
350 hw->bad_tx_carr_stats_fd = true;
351
352 if (hw->mac_type > e1000_82544)
353 hw->has_smbus = true;
354
355 return E1000_SUCCESS;
356 }
357
358 /**
359 * e1000_set_media_type - Set media type and TBI compatibility.
360 * @hw: Struct containing variables accessed by shared code
361 */
e1000_set_media_type(struct e1000_hw * hw)362 void e1000_set_media_type(struct e1000_hw *hw)
363 {
364 u32 status;
365
366 e_dbg("e1000_set_media_type");
367
368 if (hw->mac_type != e1000_82543) {
369 /* tbi_compatibility is only valid on 82543 */
370 hw->tbi_compatibility_en = false;
371 }
372
373 switch (hw->device_id) {
374 case E1000_DEV_ID_82545GM_SERDES:
375 case E1000_DEV_ID_82546GB_SERDES:
376 hw->media_type = e1000_media_type_internal_serdes;
377 break;
378 default:
379 switch (hw->mac_type) {
380 case e1000_82542_rev2_0:
381 case e1000_82542_rev2_1:
382 hw->media_type = e1000_media_type_fiber;
383 break;
384 case e1000_ce4100:
385 hw->media_type = e1000_media_type_copper;
386 break;
387 default:
388 status = er32(STATUS);
389 if (status & E1000_STATUS_TBIMODE) {
390 hw->media_type = e1000_media_type_fiber;
391 /* tbi_compatibility not valid on fiber */
392 hw->tbi_compatibility_en = false;
393 } else {
394 hw->media_type = e1000_media_type_copper;
395 }
396 break;
397 }
398 }
399 }
400
401 /**
402 * e1000_reset_hw: reset the hardware completely
403 * @hw: Struct containing variables accessed by shared code
404 *
405 * Reset the transmit and receive units; mask and clear all interrupts.
406 */
e1000_reset_hw(struct e1000_hw * hw)407 s32 e1000_reset_hw(struct e1000_hw *hw)
408 {
409 u32 ctrl;
410 u32 ctrl_ext;
411 u32 icr;
412 u32 manc;
413 u32 led_ctrl;
414 s32 ret_val;
415
416 e_dbg("e1000_reset_hw");
417
418 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
419 if (hw->mac_type == e1000_82542_rev2_0) {
420 e_dbg("Disabling MWI on 82542 rev 2.0\n");
421 e1000_pci_clear_mwi(hw);
422 }
423
424 /* Clear interrupt mask to stop board from generating interrupts */
425 e_dbg("Masking off all interrupts\n");
426 ew32(IMC, 0xffffffff);
427
428 /* Disable the Transmit and Receive units. Then delay to allow
429 * any pending transactions to complete before we hit the MAC with
430 * the global reset.
431 */
432 ew32(RCTL, 0);
433 ew32(TCTL, E1000_TCTL_PSP);
434 E1000_WRITE_FLUSH();
435
436 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
437 hw->tbi_compatibility_on = false;
438
439 /* Delay to allow any outstanding PCI transactions to complete before
440 * resetting the device
441 */
442 msleep(10);
443
444 ctrl = er32(CTRL);
445
446 /* Must reset the PHY before resetting the MAC */
447 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
448 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
449 E1000_WRITE_FLUSH();
450 msleep(5);
451 }
452
453 /* Issue a global reset to the MAC. This will reset the chip's
454 * transmit, receive, DMA, and link units. It will not effect
455 * the current PCI configuration. The global reset bit is self-
456 * clearing, and should clear within a microsecond.
457 */
458 e_dbg("Issuing a global reset to MAC\n");
459
460 switch (hw->mac_type) {
461 case e1000_82544:
462 case e1000_82540:
463 case e1000_82545:
464 case e1000_82546:
465 case e1000_82541:
466 case e1000_82541_rev_2:
467 /* These controllers can't ack the 64-bit write when issuing the
468 * reset, so use IO-mapping as a workaround to issue the reset */
469 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
470 break;
471 case e1000_82545_rev_3:
472 case e1000_82546_rev_3:
473 /* Reset is performed on a shadow of the control register */
474 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
475 break;
476 case e1000_ce4100:
477 default:
478 ew32(CTRL, (ctrl | E1000_CTRL_RST));
479 break;
480 }
481
482 /* After MAC reset, force reload of EEPROM to restore power-on settings to
483 * device. Later controllers reload the EEPROM automatically, so just wait
484 * for reload to complete.
485 */
486 switch (hw->mac_type) {
487 case e1000_82542_rev2_0:
488 case e1000_82542_rev2_1:
489 case e1000_82543:
490 case e1000_82544:
491 /* Wait for reset to complete */
492 udelay(10);
493 ctrl_ext = er32(CTRL_EXT);
494 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
495 ew32(CTRL_EXT, ctrl_ext);
496 E1000_WRITE_FLUSH();
497 /* Wait for EEPROM reload */
498 msleep(2);
499 break;
500 case e1000_82541:
501 case e1000_82541_rev_2:
502 case e1000_82547:
503 case e1000_82547_rev_2:
504 /* Wait for EEPROM reload */
505 msleep(20);
506 break;
507 default:
508 /* Auto read done will delay 5ms or poll based on mac type */
509 ret_val = e1000_get_auto_rd_done(hw);
510 if (ret_val)
511 return ret_val;
512 break;
513 }
514
515 /* Disable HW ARPs on ASF enabled adapters */
516 if (hw->mac_type >= e1000_82540) {
517 manc = er32(MANC);
518 manc &= ~(E1000_MANC_ARP_EN);
519 ew32(MANC, manc);
520 }
521
522 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
523 e1000_phy_init_script(hw);
524
525 /* Configure activity LED after PHY reset */
526 led_ctrl = er32(LEDCTL);
527 led_ctrl &= IGP_ACTIVITY_LED_MASK;
528 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
529 ew32(LEDCTL, led_ctrl);
530 }
531
532 /* Clear interrupt mask to stop board from generating interrupts */
533 e_dbg("Masking off all interrupts\n");
534 ew32(IMC, 0xffffffff);
535
536 /* Clear any pending interrupt events. */
537 icr = er32(ICR);
538
539 /* If MWI was previously enabled, reenable it. */
540 if (hw->mac_type == e1000_82542_rev2_0) {
541 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
542 e1000_pci_set_mwi(hw);
543 }
544
545 return E1000_SUCCESS;
546 }
547
548 /**
549 * e1000_init_hw: Performs basic configuration of the adapter.
550 * @hw: Struct containing variables accessed by shared code
551 *
552 * Assumes that the controller has previously been reset and is in a
553 * post-reset uninitialized state. Initializes the receive address registers,
554 * multicast table, and VLAN filter table. Calls routines to setup link
555 * configuration and flow control settings. Clears all on-chip counters. Leaves
556 * the transmit and receive units disabled and uninitialized.
557 */
e1000_init_hw(struct e1000_hw * hw)558 s32 e1000_init_hw(struct e1000_hw *hw)
559 {
560 u32 ctrl;
561 u32 i;
562 s32 ret_val;
563 u32 mta_size;
564 u32 ctrl_ext;
565
566 e_dbg("e1000_init_hw");
567
568 /* Initialize Identification LED */
569 ret_val = e1000_id_led_init(hw);
570 if (ret_val) {
571 e_dbg("Error Initializing Identification LED\n");
572 return ret_val;
573 }
574
575 /* Set the media type and TBI compatibility */
576 e1000_set_media_type(hw);
577
578 /* Disabling VLAN filtering. */
579 e_dbg("Initializing the IEEE VLAN\n");
580 if (hw->mac_type < e1000_82545_rev_3)
581 ew32(VET, 0);
582 e1000_clear_vfta(hw);
583
584 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
585 if (hw->mac_type == e1000_82542_rev2_0) {
586 e_dbg("Disabling MWI on 82542 rev 2.0\n");
587 e1000_pci_clear_mwi(hw);
588 ew32(RCTL, E1000_RCTL_RST);
589 E1000_WRITE_FLUSH();
590 msleep(5);
591 }
592
593 /* Setup the receive address. This involves initializing all of the Receive
594 * Address Registers (RARs 0 - 15).
595 */
596 e1000_init_rx_addrs(hw);
597
598 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
599 if (hw->mac_type == e1000_82542_rev2_0) {
600 ew32(RCTL, 0);
601 E1000_WRITE_FLUSH();
602 msleep(1);
603 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
604 e1000_pci_set_mwi(hw);
605 }
606
607 /* Zero out the Multicast HASH table */
608 e_dbg("Zeroing the MTA\n");
609 mta_size = E1000_MC_TBL_SIZE;
610 for (i = 0; i < mta_size; i++) {
611 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
612 /* use write flush to prevent Memory Write Block (MWB) from
613 * occurring when accessing our register space */
614 E1000_WRITE_FLUSH();
615 }
616
617 /* Set the PCI priority bit correctly in the CTRL register. This
618 * determines if the adapter gives priority to receives, or if it
619 * gives equal priority to transmits and receives. Valid only on
620 * 82542 and 82543 silicon.
621 */
622 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
623 ctrl = er32(CTRL);
624 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
625 }
626
627 switch (hw->mac_type) {
628 case e1000_82545_rev_3:
629 case e1000_82546_rev_3:
630 break;
631 default:
632 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
633 if (hw->bus_type == e1000_bus_type_pcix
634 && e1000_pcix_get_mmrbc(hw) > 2048)
635 e1000_pcix_set_mmrbc(hw, 2048);
636 break;
637 }
638
639 /* Call a subroutine to configure the link and setup flow control. */
640 ret_val = e1000_setup_link(hw);
641
642 /* Set the transmit descriptor write-back policy */
643 if (hw->mac_type > e1000_82544) {
644 ctrl = er32(TXDCTL);
645 ctrl =
646 (ctrl & ~E1000_TXDCTL_WTHRESH) |
647 E1000_TXDCTL_FULL_TX_DESC_WB;
648 ew32(TXDCTL, ctrl);
649 }
650
651 /* Clear all of the statistics registers (clear on read). It is
652 * important that we do this after we have tried to establish link
653 * because the symbol error count will increment wildly if there
654 * is no link.
655 */
656 e1000_clear_hw_cntrs(hw);
657
658 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
659 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
660 ctrl_ext = er32(CTRL_EXT);
661 /* Relaxed ordering must be disabled to avoid a parity
662 * error crash in a PCI slot. */
663 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
664 ew32(CTRL_EXT, ctrl_ext);
665 }
666
667 return ret_val;
668 }
669
670 /**
671 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
672 * @hw: Struct containing variables accessed by shared code.
673 */
e1000_adjust_serdes_amplitude(struct e1000_hw * hw)674 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
675 {
676 u16 eeprom_data;
677 s32 ret_val;
678
679 e_dbg("e1000_adjust_serdes_amplitude");
680
681 if (hw->media_type != e1000_media_type_internal_serdes)
682 return E1000_SUCCESS;
683
684 switch (hw->mac_type) {
685 case e1000_82545_rev_3:
686 case e1000_82546_rev_3:
687 break;
688 default:
689 return E1000_SUCCESS;
690 }
691
692 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
693 &eeprom_data);
694 if (ret_val) {
695 return ret_val;
696 }
697
698 if (eeprom_data != EEPROM_RESERVED_WORD) {
699 /* Adjust SERDES output amplitude only. */
700 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
701 ret_val =
702 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
703 if (ret_val)
704 return ret_val;
705 }
706
707 return E1000_SUCCESS;
708 }
709
710 /**
711 * e1000_setup_link - Configures flow control and link settings.
712 * @hw: Struct containing variables accessed by shared code
713 *
714 * Determines which flow control settings to use. Calls the appropriate media-
715 * specific link configuration function. Configures the flow control settings.
716 * Assuming the adapter has a valid link partner, a valid link should be
717 * established. Assumes the hardware has previously been reset and the
718 * transmitter and receiver are not enabled.
719 */
e1000_setup_link(struct e1000_hw * hw)720 s32 e1000_setup_link(struct e1000_hw *hw)
721 {
722 u32 ctrl_ext;
723 s32 ret_val;
724 u16 eeprom_data;
725
726 e_dbg("e1000_setup_link");
727
728 /* Read and store word 0x0F of the EEPROM. This word contains bits
729 * that determine the hardware's default PAUSE (flow control) mode,
730 * a bit that determines whether the HW defaults to enabling or
731 * disabling auto-negotiation, and the direction of the
732 * SW defined pins. If there is no SW over-ride of the flow
733 * control setting, then the variable hw->fc will
734 * be initialized based on a value in the EEPROM.
735 */
736 if (hw->fc == E1000_FC_DEFAULT) {
737 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
738 1, &eeprom_data);
739 if (ret_val) {
740 e_dbg("EEPROM Read Error\n");
741 return -E1000_ERR_EEPROM;
742 }
743 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
744 hw->fc = E1000_FC_NONE;
745 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
746 EEPROM_WORD0F_ASM_DIR)
747 hw->fc = E1000_FC_TX_PAUSE;
748 else
749 hw->fc = E1000_FC_FULL;
750 }
751
752 /* We want to save off the original Flow Control configuration just
753 * in case we get disconnected and then reconnected into a different
754 * hub or switch with different Flow Control capabilities.
755 */
756 if (hw->mac_type == e1000_82542_rev2_0)
757 hw->fc &= (~E1000_FC_TX_PAUSE);
758
759 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
760 hw->fc &= (~E1000_FC_RX_PAUSE);
761
762 hw->original_fc = hw->fc;
763
764 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
765
766 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
767 * polarity value for the SW controlled pins, and setup the
768 * Extended Device Control reg with that info.
769 * This is needed because one of the SW controlled pins is used for
770 * signal detection. So this should be done before e1000_setup_pcs_link()
771 * or e1000_phy_setup() is called.
772 */
773 if (hw->mac_type == e1000_82543) {
774 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
775 1, &eeprom_data);
776 if (ret_val) {
777 e_dbg("EEPROM Read Error\n");
778 return -E1000_ERR_EEPROM;
779 }
780 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
781 SWDPIO__EXT_SHIFT);
782 ew32(CTRL_EXT, ctrl_ext);
783 }
784
785 /* Call the necessary subroutine to configure the link. */
786 ret_val = (hw->media_type == e1000_media_type_copper) ?
787 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
788
789 /* Initialize the flow control address, type, and PAUSE timer
790 * registers to their default values. This is done even if flow
791 * control is disabled, because it does not hurt anything to
792 * initialize these registers.
793 */
794 e_dbg("Initializing the Flow Control address, type and timer regs\n");
795
796 ew32(FCT, FLOW_CONTROL_TYPE);
797 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
798 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
799
800 ew32(FCTTV, hw->fc_pause_time);
801
802 /* Set the flow control receive threshold registers. Normally,
803 * these registers will be set to a default threshold that may be
804 * adjusted later by the driver's runtime code. However, if the
805 * ability to transmit pause frames in not enabled, then these
806 * registers will be set to 0.
807 */
808 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
809 ew32(FCRTL, 0);
810 ew32(FCRTH, 0);
811 } else {
812 /* We need to set up the Receive Threshold high and low water marks
813 * as well as (optionally) enabling the transmission of XON frames.
814 */
815 if (hw->fc_send_xon) {
816 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
817 ew32(FCRTH, hw->fc_high_water);
818 } else {
819 ew32(FCRTL, hw->fc_low_water);
820 ew32(FCRTH, hw->fc_high_water);
821 }
822 }
823 return ret_val;
824 }
825
826 /**
827 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
828 * @hw: Struct containing variables accessed by shared code
829 *
830 * Manipulates Physical Coding Sublayer functions in order to configure
831 * link. Assumes the hardware has been previously reset and the transmitter
832 * and receiver are not enabled.
833 */
e1000_setup_fiber_serdes_link(struct e1000_hw * hw)834 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
835 {
836 u32 ctrl;
837 u32 status;
838 u32 txcw = 0;
839 u32 i;
840 u32 signal = 0;
841 s32 ret_val;
842
843 e_dbg("e1000_setup_fiber_serdes_link");
844
845 /* On adapters with a MAC newer than 82544, SWDP 1 will be
846 * set when the optics detect a signal. On older adapters, it will be
847 * cleared when there is a signal. This applies to fiber media only.
848 * If we're on serdes media, adjust the output amplitude to value
849 * set in the EEPROM.
850 */
851 ctrl = er32(CTRL);
852 if (hw->media_type == e1000_media_type_fiber)
853 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
854
855 ret_val = e1000_adjust_serdes_amplitude(hw);
856 if (ret_val)
857 return ret_val;
858
859 /* Take the link out of reset */
860 ctrl &= ~(E1000_CTRL_LRST);
861
862 /* Adjust VCO speed to improve BER performance */
863 ret_val = e1000_set_vco_speed(hw);
864 if (ret_val)
865 return ret_val;
866
867 e1000_config_collision_dist(hw);
868
869 /* Check for a software override of the flow control settings, and setup
870 * the device accordingly. If auto-negotiation is enabled, then software
871 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
872 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
873 * auto-negotiation is disabled, then software will have to manually
874 * configure the two flow control enable bits in the CTRL register.
875 *
876 * The possible values of the "fc" parameter are:
877 * 0: Flow control is completely disabled
878 * 1: Rx flow control is enabled (we can receive pause frames, but
879 * not send pause frames).
880 * 2: Tx flow control is enabled (we can send pause frames but we do
881 * not support receiving pause frames).
882 * 3: Both Rx and TX flow control (symmetric) are enabled.
883 */
884 switch (hw->fc) {
885 case E1000_FC_NONE:
886 /* Flow control is completely disabled by a software over-ride. */
887 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
888 break;
889 case E1000_FC_RX_PAUSE:
890 /* RX Flow control is enabled and TX Flow control is disabled by a
891 * software over-ride. Since there really isn't a way to advertise
892 * that we are capable of RX Pause ONLY, we will advertise that we
893 * support both symmetric and asymmetric RX PAUSE. Later, we will
894 * disable the adapter's ability to send PAUSE frames.
895 */
896 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
897 break;
898 case E1000_FC_TX_PAUSE:
899 /* TX Flow control is enabled, and RX Flow control is disabled, by a
900 * software over-ride.
901 */
902 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
903 break;
904 case E1000_FC_FULL:
905 /* Flow control (both RX and TX) is enabled by a software over-ride. */
906 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
907 break;
908 default:
909 e_dbg("Flow control param set incorrectly\n");
910 return -E1000_ERR_CONFIG;
911 break;
912 }
913
914 /* Since auto-negotiation is enabled, take the link out of reset (the link
915 * will be in reset, because we previously reset the chip). This will
916 * restart auto-negotiation. If auto-negotiation is successful then the
917 * link-up status bit will be set and the flow control enable bits (RFCE
918 * and TFCE) will be set according to their negotiated value.
919 */
920 e_dbg("Auto-negotiation enabled\n");
921
922 ew32(TXCW, txcw);
923 ew32(CTRL, ctrl);
924 E1000_WRITE_FLUSH();
925
926 hw->txcw = txcw;
927 msleep(1);
928
929 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
930 * indication in the Device Status Register. Time-out if a link isn't
931 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
932 * less than 500 milliseconds even if the other end is doing it in SW).
933 * For internal serdes, we just assume a signal is present, then poll.
934 */
935 if (hw->media_type == e1000_media_type_internal_serdes ||
936 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
937 e_dbg("Looking for Link\n");
938 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
939 msleep(10);
940 status = er32(STATUS);
941 if (status & E1000_STATUS_LU)
942 break;
943 }
944 if (i == (LINK_UP_TIMEOUT / 10)) {
945 e_dbg("Never got a valid link from auto-neg!!!\n");
946 hw->autoneg_failed = 1;
947 /* AutoNeg failed to achieve a link, so we'll call
948 * e1000_check_for_link. This routine will force the link up if
949 * we detect a signal. This will allow us to communicate with
950 * non-autonegotiating link partners.
951 */
952 ret_val = e1000_check_for_link(hw);
953 if (ret_val) {
954 e_dbg("Error while checking for link\n");
955 return ret_val;
956 }
957 hw->autoneg_failed = 0;
958 } else {
959 hw->autoneg_failed = 0;
960 e_dbg("Valid Link Found\n");
961 }
962 } else {
963 e_dbg("No Signal Detected\n");
964 }
965 return E1000_SUCCESS;
966 }
967
968 /**
969 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
970 * @hw: Struct containing variables accessed by shared code
971 *
972 * Commits changes to PHY configuration by calling e1000_phy_reset().
973 */
e1000_copper_link_rtl_setup(struct e1000_hw * hw)974 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
975 {
976 s32 ret_val;
977
978 /* SW reset the PHY so all changes take effect */
979 ret_val = e1000_phy_reset(hw);
980 if (ret_val) {
981 e_dbg("Error Resetting the PHY\n");
982 return ret_val;
983 }
984
985 return E1000_SUCCESS;
986 }
987
gbe_dhg_phy_setup(struct e1000_hw * hw)988 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
989 {
990 s32 ret_val;
991 u32 ctrl_aux;
992
993 switch (hw->phy_type) {
994 case e1000_phy_8211:
995 ret_val = e1000_copper_link_rtl_setup(hw);
996 if (ret_val) {
997 e_dbg("e1000_copper_link_rtl_setup failed!\n");
998 return ret_val;
999 }
1000 break;
1001 case e1000_phy_8201:
1002 /* Set RMII mode */
1003 ctrl_aux = er32(CTL_AUX);
1004 ctrl_aux |= E1000_CTL_AUX_RMII;
1005 ew32(CTL_AUX, ctrl_aux);
1006 E1000_WRITE_FLUSH();
1007
1008 /* Disable the J/K bits required for receive */
1009 ctrl_aux = er32(CTL_AUX);
1010 ctrl_aux |= 0x4;
1011 ctrl_aux &= ~0x2;
1012 ew32(CTL_AUX, ctrl_aux);
1013 E1000_WRITE_FLUSH();
1014 ret_val = e1000_copper_link_rtl_setup(hw);
1015
1016 if (ret_val) {
1017 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1018 return ret_val;
1019 }
1020 break;
1021 default:
1022 e_dbg("Error Resetting the PHY\n");
1023 return E1000_ERR_PHY_TYPE;
1024 }
1025
1026 return E1000_SUCCESS;
1027 }
1028
1029 /**
1030 * e1000_copper_link_preconfig - early configuration for copper
1031 * @hw: Struct containing variables accessed by shared code
1032 *
1033 * Make sure we have a valid PHY and change PHY mode before link setup.
1034 */
e1000_copper_link_preconfig(struct e1000_hw * hw)1035 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1036 {
1037 u32 ctrl;
1038 s32 ret_val;
1039 u16 phy_data;
1040
1041 e_dbg("e1000_copper_link_preconfig");
1042
1043 ctrl = er32(CTRL);
1044 /* With 82543, we need to force speed and duplex on the MAC equal to what
1045 * the PHY speed and duplex configuration is. In addition, we need to
1046 * perform a hardware reset on the PHY to take it out of reset.
1047 */
1048 if (hw->mac_type > e1000_82543) {
1049 ctrl |= E1000_CTRL_SLU;
1050 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1051 ew32(CTRL, ctrl);
1052 } else {
1053 ctrl |=
1054 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1055 ew32(CTRL, ctrl);
1056 ret_val = e1000_phy_hw_reset(hw);
1057 if (ret_val)
1058 return ret_val;
1059 }
1060
1061 /* Make sure we have a valid PHY */
1062 ret_val = e1000_detect_gig_phy(hw);
1063 if (ret_val) {
1064 e_dbg("Error, did not detect valid phy.\n");
1065 return ret_val;
1066 }
1067 e_dbg("Phy ID = %x\n", hw->phy_id);
1068
1069 /* Set PHY to class A mode (if necessary) */
1070 ret_val = e1000_set_phy_mode(hw);
1071 if (ret_val)
1072 return ret_val;
1073
1074 if ((hw->mac_type == e1000_82545_rev_3) ||
1075 (hw->mac_type == e1000_82546_rev_3)) {
1076 ret_val =
1077 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1078 phy_data |= 0x00000008;
1079 ret_val =
1080 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1081 }
1082
1083 if (hw->mac_type <= e1000_82543 ||
1084 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1085 hw->mac_type == e1000_82541_rev_2
1086 || hw->mac_type == e1000_82547_rev_2)
1087 hw->phy_reset_disable = false;
1088
1089 return E1000_SUCCESS;
1090 }
1091
1092 /**
1093 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1094 * @hw: Struct containing variables accessed by shared code
1095 */
e1000_copper_link_igp_setup(struct e1000_hw * hw)1096 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1097 {
1098 u32 led_ctrl;
1099 s32 ret_val;
1100 u16 phy_data;
1101
1102 e_dbg("e1000_copper_link_igp_setup");
1103
1104 if (hw->phy_reset_disable)
1105 return E1000_SUCCESS;
1106
1107 ret_val = e1000_phy_reset(hw);
1108 if (ret_val) {
1109 e_dbg("Error Resetting the PHY\n");
1110 return ret_val;
1111 }
1112
1113 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1114 msleep(15);
1115 /* Configure activity LED after PHY reset */
1116 led_ctrl = er32(LEDCTL);
1117 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1118 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1119 ew32(LEDCTL, led_ctrl);
1120
1121 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1122 if (hw->phy_type == e1000_phy_igp) {
1123 /* disable lplu d3 during driver init */
1124 ret_val = e1000_set_d3_lplu_state(hw, false);
1125 if (ret_val) {
1126 e_dbg("Error Disabling LPLU D3\n");
1127 return ret_val;
1128 }
1129 }
1130
1131 /* Configure mdi-mdix settings */
1132 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1133 if (ret_val)
1134 return ret_val;
1135
1136 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1137 hw->dsp_config_state = e1000_dsp_config_disabled;
1138 /* Force MDI for earlier revs of the IGP PHY */
1139 phy_data &=
1140 ~(IGP01E1000_PSCR_AUTO_MDIX |
1141 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1142 hw->mdix = 1;
1143
1144 } else {
1145 hw->dsp_config_state = e1000_dsp_config_enabled;
1146 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1147
1148 switch (hw->mdix) {
1149 case 1:
1150 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1151 break;
1152 case 2:
1153 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1154 break;
1155 case 0:
1156 default:
1157 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1158 break;
1159 }
1160 }
1161 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1162 if (ret_val)
1163 return ret_val;
1164
1165 /* set auto-master slave resolution settings */
1166 if (hw->autoneg) {
1167 e1000_ms_type phy_ms_setting = hw->master_slave;
1168
1169 if (hw->ffe_config_state == e1000_ffe_config_active)
1170 hw->ffe_config_state = e1000_ffe_config_enabled;
1171
1172 if (hw->dsp_config_state == e1000_dsp_config_activated)
1173 hw->dsp_config_state = e1000_dsp_config_enabled;
1174
1175 /* when autonegotiation advertisement is only 1000Mbps then we
1176 * should disable SmartSpeed and enable Auto MasterSlave
1177 * resolution as hardware default. */
1178 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1179 /* Disable SmartSpeed */
1180 ret_val =
1181 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1182 &phy_data);
1183 if (ret_val)
1184 return ret_val;
1185 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1186 ret_val =
1187 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1188 phy_data);
1189 if (ret_val)
1190 return ret_val;
1191 /* Set auto Master/Slave resolution process */
1192 ret_val =
1193 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194 if (ret_val)
1195 return ret_val;
1196 phy_data &= ~CR_1000T_MS_ENABLE;
1197 ret_val =
1198 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1199 if (ret_val)
1200 return ret_val;
1201 }
1202
1203 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1204 if (ret_val)
1205 return ret_val;
1206
1207 /* load defaults for future use */
1208 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1209 ((phy_data & CR_1000T_MS_VALUE) ?
1210 e1000_ms_force_master :
1211 e1000_ms_force_slave) : e1000_ms_auto;
1212
1213 switch (phy_ms_setting) {
1214 case e1000_ms_force_master:
1215 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1216 break;
1217 case e1000_ms_force_slave:
1218 phy_data |= CR_1000T_MS_ENABLE;
1219 phy_data &= ~(CR_1000T_MS_VALUE);
1220 break;
1221 case e1000_ms_auto:
1222 phy_data &= ~CR_1000T_MS_ENABLE;
1223 default:
1224 break;
1225 }
1226 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1227 if (ret_val)
1228 return ret_val;
1229 }
1230
1231 return E1000_SUCCESS;
1232 }
1233
1234 /**
1235 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1236 * @hw: Struct containing variables accessed by shared code
1237 */
e1000_copper_link_mgp_setup(struct e1000_hw * hw)1238 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1239 {
1240 s32 ret_val;
1241 u16 phy_data;
1242
1243 e_dbg("e1000_copper_link_mgp_setup");
1244
1245 if (hw->phy_reset_disable)
1246 return E1000_SUCCESS;
1247
1248 /* Enable CRS on TX. This must be set for half-duplex operation. */
1249 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1250 if (ret_val)
1251 return ret_val;
1252
1253 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1254
1255 /* Options:
1256 * MDI/MDI-X = 0 (default)
1257 * 0 - Auto for all speeds
1258 * 1 - MDI mode
1259 * 2 - MDI-X mode
1260 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1261 */
1262 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1263
1264 switch (hw->mdix) {
1265 case 1:
1266 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1267 break;
1268 case 2:
1269 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1270 break;
1271 case 3:
1272 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1273 break;
1274 case 0:
1275 default:
1276 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1277 break;
1278 }
1279
1280 /* Options:
1281 * disable_polarity_correction = 0 (default)
1282 * Automatic Correction for Reversed Cable Polarity
1283 * 0 - Disabled
1284 * 1 - Enabled
1285 */
1286 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1287 if (hw->disable_polarity_correction == 1)
1288 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1289 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1290 if (ret_val)
1291 return ret_val;
1292
1293 if (hw->phy_revision < M88E1011_I_REV_4) {
1294 /* Force TX_CLK in the Extended PHY Specific Control Register
1295 * to 25MHz clock.
1296 */
1297 ret_val =
1298 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1299 &phy_data);
1300 if (ret_val)
1301 return ret_val;
1302
1303 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1304
1305 if ((hw->phy_revision == E1000_REVISION_2) &&
1306 (hw->phy_id == M88E1111_I_PHY_ID)) {
1307 /* Vidalia Phy, set the downshift counter to 5x */
1308 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1309 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1310 ret_val = e1000_write_phy_reg(hw,
1311 M88E1000_EXT_PHY_SPEC_CTRL,
1312 phy_data);
1313 if (ret_val)
1314 return ret_val;
1315 } else {
1316 /* Configure Master and Slave downshift values */
1317 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1318 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1319 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1320 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1321 ret_val = e1000_write_phy_reg(hw,
1322 M88E1000_EXT_PHY_SPEC_CTRL,
1323 phy_data);
1324 if (ret_val)
1325 return ret_val;
1326 }
1327 }
1328
1329 /* SW Reset the PHY so all changes take effect */
1330 ret_val = e1000_phy_reset(hw);
1331 if (ret_val) {
1332 e_dbg("Error Resetting the PHY\n");
1333 return ret_val;
1334 }
1335
1336 return E1000_SUCCESS;
1337 }
1338
1339 /**
1340 * e1000_copper_link_autoneg - setup auto-neg
1341 * @hw: Struct containing variables accessed by shared code
1342 *
1343 * Setup auto-negotiation and flow control advertisements,
1344 * and then perform auto-negotiation.
1345 */
e1000_copper_link_autoneg(struct e1000_hw * hw)1346 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1347 {
1348 s32 ret_val;
1349 u16 phy_data;
1350
1351 e_dbg("e1000_copper_link_autoneg");
1352
1353 /* Perform some bounds checking on the hw->autoneg_advertised
1354 * parameter. If this variable is zero, then set it to the default.
1355 */
1356 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1357
1358 /* If autoneg_advertised is zero, we assume it was not defaulted
1359 * by the calling code so we set to advertise full capability.
1360 */
1361 if (hw->autoneg_advertised == 0)
1362 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1363
1364 /* IFE/RTL8201N PHY only supports 10/100 */
1365 if (hw->phy_type == e1000_phy_8201)
1366 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1367
1368 e_dbg("Reconfiguring auto-neg advertisement params\n");
1369 ret_val = e1000_phy_setup_autoneg(hw);
1370 if (ret_val) {
1371 e_dbg("Error Setting up Auto-Negotiation\n");
1372 return ret_val;
1373 }
1374 e_dbg("Restarting Auto-Neg\n");
1375
1376 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1377 * the Auto Neg Restart bit in the PHY control register.
1378 */
1379 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1380 if (ret_val)
1381 return ret_val;
1382
1383 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1384 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1385 if (ret_val)
1386 return ret_val;
1387
1388 /* Does the user want to wait for Auto-Neg to complete here, or
1389 * check at a later time (for example, callback routine).
1390 */
1391 if (hw->wait_autoneg_complete) {
1392 ret_val = e1000_wait_autoneg(hw);
1393 if (ret_val) {
1394 e_dbg
1395 ("Error while waiting for autoneg to complete\n");
1396 return ret_val;
1397 }
1398 }
1399
1400 hw->get_link_status = true;
1401
1402 return E1000_SUCCESS;
1403 }
1404
1405 /**
1406 * e1000_copper_link_postconfig - post link setup
1407 * @hw: Struct containing variables accessed by shared code
1408 *
1409 * Config the MAC and the PHY after link is up.
1410 * 1) Set up the MAC to the current PHY speed/duplex
1411 * if we are on 82543. If we
1412 * are on newer silicon, we only need to configure
1413 * collision distance in the Transmit Control Register.
1414 * 2) Set up flow control on the MAC to that established with
1415 * the link partner.
1416 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1417 */
e1000_copper_link_postconfig(struct e1000_hw * hw)1418 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1419 {
1420 s32 ret_val;
1421 e_dbg("e1000_copper_link_postconfig");
1422
1423 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1424 e1000_config_collision_dist(hw);
1425 } else {
1426 ret_val = e1000_config_mac_to_phy(hw);
1427 if (ret_val) {
1428 e_dbg("Error configuring MAC to PHY settings\n");
1429 return ret_val;
1430 }
1431 }
1432 ret_val = e1000_config_fc_after_link_up(hw);
1433 if (ret_val) {
1434 e_dbg("Error Configuring Flow Control\n");
1435 return ret_val;
1436 }
1437
1438 /* Config DSP to improve Giga link quality */
1439 if (hw->phy_type == e1000_phy_igp) {
1440 ret_val = e1000_config_dsp_after_link_change(hw, true);
1441 if (ret_val) {
1442 e_dbg("Error Configuring DSP after link up\n");
1443 return ret_val;
1444 }
1445 }
1446
1447 return E1000_SUCCESS;
1448 }
1449
1450 /**
1451 * e1000_setup_copper_link - phy/speed/duplex setting
1452 * @hw: Struct containing variables accessed by shared code
1453 *
1454 * Detects which PHY is present and sets up the speed and duplex
1455 */
e1000_setup_copper_link(struct e1000_hw * hw)1456 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1457 {
1458 s32 ret_val;
1459 u16 i;
1460 u16 phy_data;
1461
1462 e_dbg("e1000_setup_copper_link");
1463
1464 /* Check if it is a valid PHY and set PHY mode if necessary. */
1465 ret_val = e1000_copper_link_preconfig(hw);
1466 if (ret_val)
1467 return ret_val;
1468
1469 if (hw->phy_type == e1000_phy_igp) {
1470 ret_val = e1000_copper_link_igp_setup(hw);
1471 if (ret_val)
1472 return ret_val;
1473 } else if (hw->phy_type == e1000_phy_m88) {
1474 ret_val = e1000_copper_link_mgp_setup(hw);
1475 if (ret_val)
1476 return ret_val;
1477 } else {
1478 ret_val = gbe_dhg_phy_setup(hw);
1479 if (ret_val) {
1480 e_dbg("gbe_dhg_phy_setup failed!\n");
1481 return ret_val;
1482 }
1483 }
1484
1485 if (hw->autoneg) {
1486 /* Setup autoneg and flow control advertisement
1487 * and perform autonegotiation */
1488 ret_val = e1000_copper_link_autoneg(hw);
1489 if (ret_val)
1490 return ret_val;
1491 } else {
1492 /* PHY will be set to 10H, 10F, 100H,or 100F
1493 * depending on value from forced_speed_duplex. */
1494 e_dbg("Forcing speed and duplex\n");
1495 ret_val = e1000_phy_force_speed_duplex(hw);
1496 if (ret_val) {
1497 e_dbg("Error Forcing Speed and Duplex\n");
1498 return ret_val;
1499 }
1500 }
1501
1502 /* Check link status. Wait up to 100 microseconds for link to become
1503 * valid.
1504 */
1505 for (i = 0; i < 10; i++) {
1506 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1507 if (ret_val)
1508 return ret_val;
1509 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1510 if (ret_val)
1511 return ret_val;
1512
1513 if (phy_data & MII_SR_LINK_STATUS) {
1514 /* Config the MAC and PHY after link is up */
1515 ret_val = e1000_copper_link_postconfig(hw);
1516 if (ret_val)
1517 return ret_val;
1518
1519 e_dbg("Valid link established!!!\n");
1520 return E1000_SUCCESS;
1521 }
1522 udelay(10);
1523 }
1524
1525 e_dbg("Unable to establish link!!!\n");
1526 return E1000_SUCCESS;
1527 }
1528
1529 /**
1530 * e1000_phy_setup_autoneg - phy settings
1531 * @hw: Struct containing variables accessed by shared code
1532 *
1533 * Configures PHY autoneg and flow control advertisement settings
1534 */
e1000_phy_setup_autoneg(struct e1000_hw * hw)1535 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1536 {
1537 s32 ret_val;
1538 u16 mii_autoneg_adv_reg;
1539 u16 mii_1000t_ctrl_reg;
1540
1541 e_dbg("e1000_phy_setup_autoneg");
1542
1543 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1544 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1545 if (ret_val)
1546 return ret_val;
1547
1548 /* Read the MII 1000Base-T Control Register (Address 9). */
1549 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1550 if (ret_val)
1551 return ret_val;
1552 else if (hw->phy_type == e1000_phy_8201)
1553 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1554
1555 /* Need to parse both autoneg_advertised and fc and set up
1556 * the appropriate PHY registers. First we will parse for
1557 * autoneg_advertised software override. Since we can advertise
1558 * a plethora of combinations, we need to check each bit
1559 * individually.
1560 */
1561
1562 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1563 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1564 * the 1000Base-T Control Register (Address 9).
1565 */
1566 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1567 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1568
1569 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1570
1571 /* Do we want to advertise 10 Mb Half Duplex? */
1572 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1573 e_dbg("Advertise 10mb Half duplex\n");
1574 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1575 }
1576
1577 /* Do we want to advertise 10 Mb Full Duplex? */
1578 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1579 e_dbg("Advertise 10mb Full duplex\n");
1580 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1581 }
1582
1583 /* Do we want to advertise 100 Mb Half Duplex? */
1584 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1585 e_dbg("Advertise 100mb Half duplex\n");
1586 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1587 }
1588
1589 /* Do we want to advertise 100 Mb Full Duplex? */
1590 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1591 e_dbg("Advertise 100mb Full duplex\n");
1592 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1593 }
1594
1595 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1596 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1597 e_dbg
1598 ("Advertise 1000mb Half duplex requested, request denied!\n");
1599 }
1600
1601 /* Do we want to advertise 1000 Mb Full Duplex? */
1602 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1603 e_dbg("Advertise 1000mb Full duplex\n");
1604 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1605 }
1606
1607 /* Check for a software override of the flow control settings, and
1608 * setup the PHY advertisement registers accordingly. If
1609 * auto-negotiation is enabled, then software will have to set the
1610 * "PAUSE" bits to the correct value in the Auto-Negotiation
1611 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1612 *
1613 * The possible values of the "fc" parameter are:
1614 * 0: Flow control is completely disabled
1615 * 1: Rx flow control is enabled (we can receive pause frames
1616 * but not send pause frames).
1617 * 2: Tx flow control is enabled (we can send pause frames
1618 * but we do not support receiving pause frames).
1619 * 3: Both Rx and TX flow control (symmetric) are enabled.
1620 * other: No software override. The flow control configuration
1621 * in the EEPROM is used.
1622 */
1623 switch (hw->fc) {
1624 case E1000_FC_NONE: /* 0 */
1625 /* Flow control (RX & TX) is completely disabled by a
1626 * software over-ride.
1627 */
1628 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1629 break;
1630 case E1000_FC_RX_PAUSE: /* 1 */
1631 /* RX Flow control is enabled, and TX Flow control is
1632 * disabled, by a software over-ride.
1633 */
1634 /* Since there really isn't a way to advertise that we are
1635 * capable of RX Pause ONLY, we will advertise that we
1636 * support both symmetric and asymmetric RX PAUSE. Later
1637 * (in e1000_config_fc_after_link_up) we will disable the
1638 *hw's ability to send PAUSE frames.
1639 */
1640 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1641 break;
1642 case E1000_FC_TX_PAUSE: /* 2 */
1643 /* TX Flow control is enabled, and RX Flow control is
1644 * disabled, by a software over-ride.
1645 */
1646 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1647 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1648 break;
1649 case E1000_FC_FULL: /* 3 */
1650 /* Flow control (both RX and TX) is enabled by a software
1651 * over-ride.
1652 */
1653 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1654 break;
1655 default:
1656 e_dbg("Flow control param set incorrectly\n");
1657 return -E1000_ERR_CONFIG;
1658 }
1659
1660 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1661 if (ret_val)
1662 return ret_val;
1663
1664 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1665
1666 if (hw->phy_type == e1000_phy_8201) {
1667 mii_1000t_ctrl_reg = 0;
1668 } else {
1669 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1670 mii_1000t_ctrl_reg);
1671 if (ret_val)
1672 return ret_val;
1673 }
1674
1675 return E1000_SUCCESS;
1676 }
1677
1678 /**
1679 * e1000_phy_force_speed_duplex - force link settings
1680 * @hw: Struct containing variables accessed by shared code
1681 *
1682 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1683 */
e1000_phy_force_speed_duplex(struct e1000_hw * hw)1684 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1685 {
1686 u32 ctrl;
1687 s32 ret_val;
1688 u16 mii_ctrl_reg;
1689 u16 mii_status_reg;
1690 u16 phy_data;
1691 u16 i;
1692
1693 e_dbg("e1000_phy_force_speed_duplex");
1694
1695 /* Turn off Flow control if we are forcing speed and duplex. */
1696 hw->fc = E1000_FC_NONE;
1697
1698 e_dbg("hw->fc = %d\n", hw->fc);
1699
1700 /* Read the Device Control Register. */
1701 ctrl = er32(CTRL);
1702
1703 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1704 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1705 ctrl &= ~(DEVICE_SPEED_MASK);
1706
1707 /* Clear the Auto Speed Detect Enable bit. */
1708 ctrl &= ~E1000_CTRL_ASDE;
1709
1710 /* Read the MII Control Register. */
1711 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1712 if (ret_val)
1713 return ret_val;
1714
1715 /* We need to disable autoneg in order to force link and duplex. */
1716
1717 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1718
1719 /* Are we forcing Full or Half Duplex? */
1720 if (hw->forced_speed_duplex == e1000_100_full ||
1721 hw->forced_speed_duplex == e1000_10_full) {
1722 /* We want to force full duplex so we SET the full duplex bits in the
1723 * Device and MII Control Registers.
1724 */
1725 ctrl |= E1000_CTRL_FD;
1726 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1727 e_dbg("Full Duplex\n");
1728 } else {
1729 /* We want to force half duplex so we CLEAR the full duplex bits in
1730 * the Device and MII Control Registers.
1731 */
1732 ctrl &= ~E1000_CTRL_FD;
1733 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1734 e_dbg("Half Duplex\n");
1735 }
1736
1737 /* Are we forcing 100Mbps??? */
1738 if (hw->forced_speed_duplex == e1000_100_full ||
1739 hw->forced_speed_duplex == e1000_100_half) {
1740 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1741 ctrl |= E1000_CTRL_SPD_100;
1742 mii_ctrl_reg |= MII_CR_SPEED_100;
1743 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1744 e_dbg("Forcing 100mb ");
1745 } else {
1746 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1747 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1748 mii_ctrl_reg |= MII_CR_SPEED_10;
1749 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1750 e_dbg("Forcing 10mb ");
1751 }
1752
1753 e1000_config_collision_dist(hw);
1754
1755 /* Write the configured values back to the Device Control Reg. */
1756 ew32(CTRL, ctrl);
1757
1758 if (hw->phy_type == e1000_phy_m88) {
1759 ret_val =
1760 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1761 if (ret_val)
1762 return ret_val;
1763
1764 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1765 * forced whenever speed are duplex are forced.
1766 */
1767 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1768 ret_val =
1769 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1770 if (ret_val)
1771 return ret_val;
1772
1773 e_dbg("M88E1000 PSCR: %x\n", phy_data);
1774
1775 /* Need to reset the PHY or these changes will be ignored */
1776 mii_ctrl_reg |= MII_CR_RESET;
1777
1778 /* Disable MDI-X support for 10/100 */
1779 } else {
1780 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1781 * forced whenever speed or duplex are forced.
1782 */
1783 ret_val =
1784 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1785 if (ret_val)
1786 return ret_val;
1787
1788 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1789 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1790
1791 ret_val =
1792 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1793 if (ret_val)
1794 return ret_val;
1795 }
1796
1797 /* Write back the modified PHY MII control register. */
1798 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1799 if (ret_val)
1800 return ret_val;
1801
1802 udelay(1);
1803
1804 /* The wait_autoneg_complete flag may be a little misleading here.
1805 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1806 * But we do want to delay for a period while forcing only so we
1807 * don't generate false No Link messages. So we will wait here
1808 * only if the user has set wait_autoneg_complete to 1, which is
1809 * the default.
1810 */
1811 if (hw->wait_autoneg_complete) {
1812 /* We will wait for autoneg to complete. */
1813 e_dbg("Waiting for forced speed/duplex link.\n");
1814 mii_status_reg = 0;
1815
1816 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1817 for (i = PHY_FORCE_TIME; i > 0; i--) {
1818 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1819 * to be set.
1820 */
1821 ret_val =
1822 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1823 if (ret_val)
1824 return ret_val;
1825
1826 ret_val =
1827 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1828 if (ret_val)
1829 return ret_val;
1830
1831 if (mii_status_reg & MII_SR_LINK_STATUS)
1832 break;
1833 msleep(100);
1834 }
1835 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1836 /* We didn't get link. Reset the DSP and wait again for link. */
1837 ret_val = e1000_phy_reset_dsp(hw);
1838 if (ret_val) {
1839 e_dbg("Error Resetting PHY DSP\n");
1840 return ret_val;
1841 }
1842 }
1843 /* This loop will early-out if the link condition has been met. */
1844 for (i = PHY_FORCE_TIME; i > 0; i--) {
1845 if (mii_status_reg & MII_SR_LINK_STATUS)
1846 break;
1847 msleep(100);
1848 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1849 * to be set.
1850 */
1851 ret_val =
1852 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1853 if (ret_val)
1854 return ret_val;
1855
1856 ret_val =
1857 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1858 if (ret_val)
1859 return ret_val;
1860 }
1861 }
1862
1863 if (hw->phy_type == e1000_phy_m88) {
1864 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1865 * Extended PHY Specific Control Register to 25MHz clock. This value
1866 * defaults back to a 2.5MHz clock when the PHY is reset.
1867 */
1868 ret_val =
1869 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1870 &phy_data);
1871 if (ret_val)
1872 return ret_val;
1873
1874 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1875 ret_val =
1876 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1877 phy_data);
1878 if (ret_val)
1879 return ret_val;
1880
1881 /* In addition, because of the s/w reset above, we need to enable CRS on
1882 * TX. This must be set for both full and half duplex operation.
1883 */
1884 ret_val =
1885 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1886 if (ret_val)
1887 return ret_val;
1888
1889 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1890 ret_val =
1891 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1892 if (ret_val)
1893 return ret_val;
1894
1895 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1896 && (!hw->autoneg)
1897 && (hw->forced_speed_duplex == e1000_10_full
1898 || hw->forced_speed_duplex == e1000_10_half)) {
1899 ret_val = e1000_polarity_reversal_workaround(hw);
1900 if (ret_val)
1901 return ret_val;
1902 }
1903 }
1904 return E1000_SUCCESS;
1905 }
1906
1907 /**
1908 * e1000_config_collision_dist - set collision distance register
1909 * @hw: Struct containing variables accessed by shared code
1910 *
1911 * Sets the collision distance in the Transmit Control register.
1912 * Link should have been established previously. Reads the speed and duplex
1913 * information from the Device Status register.
1914 */
e1000_config_collision_dist(struct e1000_hw * hw)1915 void e1000_config_collision_dist(struct e1000_hw *hw)
1916 {
1917 u32 tctl, coll_dist;
1918
1919 e_dbg("e1000_config_collision_dist");
1920
1921 if (hw->mac_type < e1000_82543)
1922 coll_dist = E1000_COLLISION_DISTANCE_82542;
1923 else
1924 coll_dist = E1000_COLLISION_DISTANCE;
1925
1926 tctl = er32(TCTL);
1927
1928 tctl &= ~E1000_TCTL_COLD;
1929 tctl |= coll_dist << E1000_COLD_SHIFT;
1930
1931 ew32(TCTL, tctl);
1932 E1000_WRITE_FLUSH();
1933 }
1934
1935 /**
1936 * e1000_config_mac_to_phy - sync phy and mac settings
1937 * @hw: Struct containing variables accessed by shared code
1938 * @mii_reg: data to write to the MII control register
1939 *
1940 * Sets MAC speed and duplex settings to reflect the those in the PHY
1941 * The contents of the PHY register containing the needed information need to
1942 * be passed in.
1943 */
e1000_config_mac_to_phy(struct e1000_hw * hw)1944 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1945 {
1946 u32 ctrl;
1947 s32 ret_val;
1948 u16 phy_data;
1949
1950 e_dbg("e1000_config_mac_to_phy");
1951
1952 /* 82544 or newer MAC, Auto Speed Detection takes care of
1953 * MAC speed/duplex configuration.*/
1954 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1955 return E1000_SUCCESS;
1956
1957 /* Read the Device Control Register and set the bits to Force Speed
1958 * and Duplex.
1959 */
1960 ctrl = er32(CTRL);
1961 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1962 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1963
1964 switch (hw->phy_type) {
1965 case e1000_phy_8201:
1966 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1967 if (ret_val)
1968 return ret_val;
1969
1970 if (phy_data & RTL_PHY_CTRL_FD)
1971 ctrl |= E1000_CTRL_FD;
1972 else
1973 ctrl &= ~E1000_CTRL_FD;
1974
1975 if (phy_data & RTL_PHY_CTRL_SPD_100)
1976 ctrl |= E1000_CTRL_SPD_100;
1977 else
1978 ctrl |= E1000_CTRL_SPD_10;
1979
1980 e1000_config_collision_dist(hw);
1981 break;
1982 default:
1983 /* Set up duplex in the Device Control and Transmit Control
1984 * registers depending on negotiated values.
1985 */
1986 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1987 &phy_data);
1988 if (ret_val)
1989 return ret_val;
1990
1991 if (phy_data & M88E1000_PSSR_DPLX)
1992 ctrl |= E1000_CTRL_FD;
1993 else
1994 ctrl &= ~E1000_CTRL_FD;
1995
1996 e1000_config_collision_dist(hw);
1997
1998 /* Set up speed in the Device Control register depending on
1999 * negotiated values.
2000 */
2001 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2002 ctrl |= E1000_CTRL_SPD_1000;
2003 else if ((phy_data & M88E1000_PSSR_SPEED) ==
2004 M88E1000_PSSR_100MBS)
2005 ctrl |= E1000_CTRL_SPD_100;
2006 }
2007
2008 /* Write the configured values back to the Device Control Reg. */
2009 ew32(CTRL, ctrl);
2010 return E1000_SUCCESS;
2011 }
2012
2013 /**
2014 * e1000_force_mac_fc - force flow control settings
2015 * @hw: Struct containing variables accessed by shared code
2016 *
2017 * Forces the MAC's flow control settings.
2018 * Sets the TFCE and RFCE bits in the device control register to reflect
2019 * the adapter settings. TFCE and RFCE need to be explicitly set by
2020 * software when a Copper PHY is used because autonegotiation is managed
2021 * by the PHY rather than the MAC. Software must also configure these
2022 * bits when link is forced on a fiber connection.
2023 */
e1000_force_mac_fc(struct e1000_hw * hw)2024 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2025 {
2026 u32 ctrl;
2027
2028 e_dbg("e1000_force_mac_fc");
2029
2030 /* Get the current configuration of the Device Control Register */
2031 ctrl = er32(CTRL);
2032
2033 /* Because we didn't get link via the internal auto-negotiation
2034 * mechanism (we either forced link or we got link via PHY
2035 * auto-neg), we have to manually enable/disable transmit an
2036 * receive flow control.
2037 *
2038 * The "Case" statement below enables/disable flow control
2039 * according to the "hw->fc" parameter.
2040 *
2041 * The possible values of the "fc" parameter are:
2042 * 0: Flow control is completely disabled
2043 * 1: Rx flow control is enabled (we can receive pause
2044 * frames but not send pause frames).
2045 * 2: Tx flow control is enabled (we can send pause frames
2046 * frames but we do not receive pause frames).
2047 * 3: Both Rx and TX flow control (symmetric) is enabled.
2048 * other: No other values should be possible at this point.
2049 */
2050
2051 switch (hw->fc) {
2052 case E1000_FC_NONE:
2053 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2054 break;
2055 case E1000_FC_RX_PAUSE:
2056 ctrl &= (~E1000_CTRL_TFCE);
2057 ctrl |= E1000_CTRL_RFCE;
2058 break;
2059 case E1000_FC_TX_PAUSE:
2060 ctrl &= (~E1000_CTRL_RFCE);
2061 ctrl |= E1000_CTRL_TFCE;
2062 break;
2063 case E1000_FC_FULL:
2064 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2065 break;
2066 default:
2067 e_dbg("Flow control param set incorrectly\n");
2068 return -E1000_ERR_CONFIG;
2069 }
2070
2071 /* Disable TX Flow Control for 82542 (rev 2.0) */
2072 if (hw->mac_type == e1000_82542_rev2_0)
2073 ctrl &= (~E1000_CTRL_TFCE);
2074
2075 ew32(CTRL, ctrl);
2076 return E1000_SUCCESS;
2077 }
2078
2079 /**
2080 * e1000_config_fc_after_link_up - configure flow control after autoneg
2081 * @hw: Struct containing variables accessed by shared code
2082 *
2083 * Configures flow control settings after link is established
2084 * Should be called immediately after a valid link has been established.
2085 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2086 * and autonegotiation is enabled, the MAC flow control settings will be set
2087 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2088 * and RFCE bits will be automatically set to the negotiated flow control mode.
2089 */
e1000_config_fc_after_link_up(struct e1000_hw * hw)2090 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2091 {
2092 s32 ret_val;
2093 u16 mii_status_reg;
2094 u16 mii_nway_adv_reg;
2095 u16 mii_nway_lp_ability_reg;
2096 u16 speed;
2097 u16 duplex;
2098
2099 e_dbg("e1000_config_fc_after_link_up");
2100
2101 /* Check for the case where we have fiber media and auto-neg failed
2102 * so we had to force link. In this case, we need to force the
2103 * configuration of the MAC to match the "fc" parameter.
2104 */
2105 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2106 || ((hw->media_type == e1000_media_type_internal_serdes)
2107 && (hw->autoneg_failed))
2108 || ((hw->media_type == e1000_media_type_copper)
2109 && (!hw->autoneg))) {
2110 ret_val = e1000_force_mac_fc(hw);
2111 if (ret_val) {
2112 e_dbg("Error forcing flow control settings\n");
2113 return ret_val;
2114 }
2115 }
2116
2117 /* Check for the case where we have copper media and auto-neg is
2118 * enabled. In this case, we need to check and see if Auto-Neg
2119 * has completed, and if so, how the PHY and link partner has
2120 * flow control configured.
2121 */
2122 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2123 /* Read the MII Status Register and check to see if AutoNeg
2124 * has completed. We read this twice because this reg has
2125 * some "sticky" (latched) bits.
2126 */
2127 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2128 if (ret_val)
2129 return ret_val;
2130 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2131 if (ret_val)
2132 return ret_val;
2133
2134 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2135 /* The AutoNeg process has completed, so we now need to
2136 * read both the Auto Negotiation Advertisement Register
2137 * (Address 4) and the Auto_Negotiation Base Page Ability
2138 * Register (Address 5) to determine how flow control was
2139 * negotiated.
2140 */
2141 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2142 &mii_nway_adv_reg);
2143 if (ret_val)
2144 return ret_val;
2145 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2146 &mii_nway_lp_ability_reg);
2147 if (ret_val)
2148 return ret_val;
2149
2150 /* Two bits in the Auto Negotiation Advertisement Register
2151 * (Address 4) and two bits in the Auto Negotiation Base
2152 * Page Ability Register (Address 5) determine flow control
2153 * for both the PHY and the link partner. The following
2154 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2155 * 1999, describes these PAUSE resolution bits and how flow
2156 * control is determined based upon these settings.
2157 * NOTE: DC = Don't Care
2158 *
2159 * LOCAL DEVICE | LINK PARTNER
2160 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2161 *-------|---------|-------|---------|--------------------
2162 * 0 | 0 | DC | DC | E1000_FC_NONE
2163 * 0 | 1 | 0 | DC | E1000_FC_NONE
2164 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2165 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2166 * 1 | 0 | 0 | DC | E1000_FC_NONE
2167 * 1 | DC | 1 | DC | E1000_FC_FULL
2168 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2169 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2170 *
2171 */
2172 /* Are both PAUSE bits set to 1? If so, this implies
2173 * Symmetric Flow Control is enabled at both ends. The
2174 * ASM_DIR bits are irrelevant per the spec.
2175 *
2176 * For Symmetric Flow Control:
2177 *
2178 * LOCAL DEVICE | LINK PARTNER
2179 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180 *-------|---------|-------|---------|--------------------
2181 * 1 | DC | 1 | DC | E1000_FC_FULL
2182 *
2183 */
2184 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2186 /* Now we need to check if the user selected RX ONLY
2187 * of pause frames. In this case, we had to advertise
2188 * FULL flow control because we could not advertise RX
2189 * ONLY. Hence, we must now check to see if we need to
2190 * turn OFF the TRANSMISSION of PAUSE frames.
2191 */
2192 if (hw->original_fc == E1000_FC_FULL) {
2193 hw->fc = E1000_FC_FULL;
2194 e_dbg("Flow Control = FULL.\n");
2195 } else {
2196 hw->fc = E1000_FC_RX_PAUSE;
2197 e_dbg
2198 ("Flow Control = RX PAUSE frames only.\n");
2199 }
2200 }
2201 /* For receiving PAUSE frames ONLY.
2202 *
2203 * LOCAL DEVICE | LINK PARTNER
2204 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2205 *-------|---------|-------|---------|--------------------
2206 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2207 *
2208 */
2209 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2210 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2211 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2212 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2213 {
2214 hw->fc = E1000_FC_TX_PAUSE;
2215 e_dbg
2216 ("Flow Control = TX PAUSE frames only.\n");
2217 }
2218 /* For transmitting PAUSE frames ONLY.
2219 *
2220 * LOCAL DEVICE | LINK PARTNER
2221 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2222 *-------|---------|-------|---------|--------------------
2223 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2224 *
2225 */
2226 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2227 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2228 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2229 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2230 {
2231 hw->fc = E1000_FC_RX_PAUSE;
2232 e_dbg
2233 ("Flow Control = RX PAUSE frames only.\n");
2234 }
2235 /* Per the IEEE spec, at this point flow control should be
2236 * disabled. However, we want to consider that we could
2237 * be connected to a legacy switch that doesn't advertise
2238 * desired flow control, but can be forced on the link
2239 * partner. So if we advertised no flow control, that is
2240 * what we will resolve to. If we advertised some kind of
2241 * receive capability (Rx Pause Only or Full Flow Control)
2242 * and the link partner advertised none, we will configure
2243 * ourselves to enable Rx Flow Control only. We can do
2244 * this safely for two reasons: If the link partner really
2245 * didn't want flow control enabled, and we enable Rx, no
2246 * harm done since we won't be receiving any PAUSE frames
2247 * anyway. If the intent on the link partner was to have
2248 * flow control enabled, then by us enabling RX only, we
2249 * can at least receive pause frames and process them.
2250 * This is a good idea because in most cases, since we are
2251 * predominantly a server NIC, more times than not we will
2252 * be asked to delay transmission of packets than asking
2253 * our link partner to pause transmission of frames.
2254 */
2255 else if ((hw->original_fc == E1000_FC_NONE ||
2256 hw->original_fc == E1000_FC_TX_PAUSE) ||
2257 hw->fc_strict_ieee) {
2258 hw->fc = E1000_FC_NONE;
2259 e_dbg("Flow Control = NONE.\n");
2260 } else {
2261 hw->fc = E1000_FC_RX_PAUSE;
2262 e_dbg
2263 ("Flow Control = RX PAUSE frames only.\n");
2264 }
2265
2266 /* Now we need to do one last check... If we auto-
2267 * negotiated to HALF DUPLEX, flow control should not be
2268 * enabled per IEEE 802.3 spec.
2269 */
2270 ret_val =
2271 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2272 if (ret_val) {
2273 e_dbg
2274 ("Error getting link speed and duplex\n");
2275 return ret_val;
2276 }
2277
2278 if (duplex == HALF_DUPLEX)
2279 hw->fc = E1000_FC_NONE;
2280
2281 /* Now we call a subroutine to actually force the MAC
2282 * controller to use the correct flow control settings.
2283 */
2284 ret_val = e1000_force_mac_fc(hw);
2285 if (ret_val) {
2286 e_dbg
2287 ("Error forcing flow control settings\n");
2288 return ret_val;
2289 }
2290 } else {
2291 e_dbg
2292 ("Copper PHY and Auto Neg has not completed.\n");
2293 }
2294 }
2295 return E1000_SUCCESS;
2296 }
2297
2298 /**
2299 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2300 * @hw: pointer to the HW structure
2301 *
2302 * Checks for link up on the hardware. If link is not up and we have
2303 * a signal, then we need to force link up.
2304 */
e1000_check_for_serdes_link_generic(struct e1000_hw * hw)2305 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2306 {
2307 u32 rxcw;
2308 u32 ctrl;
2309 u32 status;
2310 s32 ret_val = E1000_SUCCESS;
2311
2312 e_dbg("e1000_check_for_serdes_link_generic");
2313
2314 ctrl = er32(CTRL);
2315 status = er32(STATUS);
2316 rxcw = er32(RXCW);
2317
2318 /*
2319 * If we don't have link (auto-negotiation failed or link partner
2320 * cannot auto-negotiate), and our link partner is not trying to
2321 * auto-negotiate with us (we are receiving idles or data),
2322 * we need to force link up. We also need to give auto-negotiation
2323 * time to complete.
2324 */
2325 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2326 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2327 if (hw->autoneg_failed == 0) {
2328 hw->autoneg_failed = 1;
2329 goto out;
2330 }
2331 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2332
2333 /* Disable auto-negotiation in the TXCW register */
2334 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2335
2336 /* Force link-up and also force full-duplex. */
2337 ctrl = er32(CTRL);
2338 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2339 ew32(CTRL, ctrl);
2340
2341 /* Configure Flow Control after forcing link up. */
2342 ret_val = e1000_config_fc_after_link_up(hw);
2343 if (ret_val) {
2344 e_dbg("Error configuring flow control\n");
2345 goto out;
2346 }
2347 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2348 /*
2349 * If we are forcing link and we are receiving /C/ ordered
2350 * sets, re-enable auto-negotiation in the TXCW register
2351 * and disable forced link in the Device Control register
2352 * in an attempt to auto-negotiate with our link partner.
2353 */
2354 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2355 ew32(TXCW, hw->txcw);
2356 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2357
2358 hw->serdes_has_link = true;
2359 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2360 /*
2361 * If we force link for non-auto-negotiation switch, check
2362 * link status based on MAC synchronization for internal
2363 * serdes media type.
2364 */
2365 /* SYNCH bit and IV bit are sticky. */
2366 udelay(10);
2367 rxcw = er32(RXCW);
2368 if (rxcw & E1000_RXCW_SYNCH) {
2369 if (!(rxcw & E1000_RXCW_IV)) {
2370 hw->serdes_has_link = true;
2371 e_dbg("SERDES: Link up - forced.\n");
2372 }
2373 } else {
2374 hw->serdes_has_link = false;
2375 e_dbg("SERDES: Link down - force failed.\n");
2376 }
2377 }
2378
2379 if (E1000_TXCW_ANE & er32(TXCW)) {
2380 status = er32(STATUS);
2381 if (status & E1000_STATUS_LU) {
2382 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2383 udelay(10);
2384 rxcw = er32(RXCW);
2385 if (rxcw & E1000_RXCW_SYNCH) {
2386 if (!(rxcw & E1000_RXCW_IV)) {
2387 hw->serdes_has_link = true;
2388 e_dbg("SERDES: Link up - autoneg "
2389 "completed successfully.\n");
2390 } else {
2391 hw->serdes_has_link = false;
2392 e_dbg("SERDES: Link down - invalid"
2393 "codewords detected in autoneg.\n");
2394 }
2395 } else {
2396 hw->serdes_has_link = false;
2397 e_dbg("SERDES: Link down - no sync.\n");
2398 }
2399 } else {
2400 hw->serdes_has_link = false;
2401 e_dbg("SERDES: Link down - autoneg failed\n");
2402 }
2403 }
2404
2405 out:
2406 return ret_val;
2407 }
2408
2409 /**
2410 * e1000_check_for_link
2411 * @hw: Struct containing variables accessed by shared code
2412 *
2413 * Checks to see if the link status of the hardware has changed.
2414 * Called by any function that needs to check the link status of the adapter.
2415 */
e1000_check_for_link(struct e1000_hw * hw)2416 s32 e1000_check_for_link(struct e1000_hw *hw)
2417 {
2418 u32 rxcw = 0;
2419 u32 ctrl;
2420 u32 status;
2421 u32 rctl;
2422 u32 icr;
2423 u32 signal = 0;
2424 s32 ret_val;
2425 u16 phy_data;
2426
2427 e_dbg("e1000_check_for_link");
2428
2429 ctrl = er32(CTRL);
2430 status = er32(STATUS);
2431
2432 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2433 * set when the optics detect a signal. On older adapters, it will be
2434 * cleared when there is a signal. This applies to fiber media only.
2435 */
2436 if ((hw->media_type == e1000_media_type_fiber) ||
2437 (hw->media_type == e1000_media_type_internal_serdes)) {
2438 rxcw = er32(RXCW);
2439
2440 if (hw->media_type == e1000_media_type_fiber) {
2441 signal =
2442 (hw->mac_type >
2443 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2444 if (status & E1000_STATUS_LU)
2445 hw->get_link_status = false;
2446 }
2447 }
2448
2449 /* If we have a copper PHY then we only want to go out to the PHY
2450 * registers to see if Auto-Neg has completed and/or if our link
2451 * status has changed. The get_link_status flag will be set if we
2452 * receive a Link Status Change interrupt or we have Rx Sequence
2453 * Errors.
2454 */
2455 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2456 /* First we want to see if the MII Status Register reports
2457 * link. If so, then we want to get the current speed/duplex
2458 * of the PHY.
2459 * Read the register twice since the link bit is sticky.
2460 */
2461 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2462 if (ret_val)
2463 return ret_val;
2464 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2465 if (ret_val)
2466 return ret_val;
2467
2468 if (phy_data & MII_SR_LINK_STATUS) {
2469 hw->get_link_status = false;
2470 /* Check if there was DownShift, must be checked immediately after
2471 * link-up */
2472 e1000_check_downshift(hw);
2473
2474 /* If we are on 82544 or 82543 silicon and speed/duplex
2475 * are forced to 10H or 10F, then we will implement the polarity
2476 * reversal workaround. We disable interrupts first, and upon
2477 * returning, place the devices interrupt state to its previous
2478 * value except for the link status change interrupt which will
2479 * happen due to the execution of this workaround.
2480 */
2481
2482 if ((hw->mac_type == e1000_82544
2483 || hw->mac_type == e1000_82543) && (!hw->autoneg)
2484 && (hw->forced_speed_duplex == e1000_10_full
2485 || hw->forced_speed_duplex == e1000_10_half)) {
2486 ew32(IMC, 0xffffffff);
2487 ret_val =
2488 e1000_polarity_reversal_workaround(hw);
2489 icr = er32(ICR);
2490 ew32(ICS, (icr & ~E1000_ICS_LSC));
2491 ew32(IMS, IMS_ENABLE_MASK);
2492 }
2493
2494 } else {
2495 /* No link detected */
2496 e1000_config_dsp_after_link_change(hw, false);
2497 return 0;
2498 }
2499
2500 /* If we are forcing speed/duplex, then we simply return since
2501 * we have already determined whether we have link or not.
2502 */
2503 if (!hw->autoneg)
2504 return -E1000_ERR_CONFIG;
2505
2506 /* optimize the dsp settings for the igp phy */
2507 e1000_config_dsp_after_link_change(hw, true);
2508
2509 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2510 * have Si on board that is 82544 or newer, Auto
2511 * Speed Detection takes care of MAC speed/duplex
2512 * configuration. So we only need to configure Collision
2513 * Distance in the MAC. Otherwise, we need to force
2514 * speed/duplex on the MAC to the current PHY speed/duplex
2515 * settings.
2516 */
2517 if ((hw->mac_type >= e1000_82544) &&
2518 (hw->mac_type != e1000_ce4100))
2519 e1000_config_collision_dist(hw);
2520 else {
2521 ret_val = e1000_config_mac_to_phy(hw);
2522 if (ret_val) {
2523 e_dbg
2524 ("Error configuring MAC to PHY settings\n");
2525 return ret_val;
2526 }
2527 }
2528
2529 /* Configure Flow Control now that Auto-Neg has completed. First, we
2530 * need to restore the desired flow control settings because we may
2531 * have had to re-autoneg with a different link partner.
2532 */
2533 ret_val = e1000_config_fc_after_link_up(hw);
2534 if (ret_val) {
2535 e_dbg("Error configuring flow control\n");
2536 return ret_val;
2537 }
2538
2539 /* At this point we know that we are on copper and we have
2540 * auto-negotiated link. These are conditions for checking the link
2541 * partner capability register. We use the link speed to determine if
2542 * TBI compatibility needs to be turned on or off. If the link is not
2543 * at gigabit speed, then TBI compatibility is not needed. If we are
2544 * at gigabit speed, we turn on TBI compatibility.
2545 */
2546 if (hw->tbi_compatibility_en) {
2547 u16 speed, duplex;
2548 ret_val =
2549 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2550 if (ret_val) {
2551 e_dbg
2552 ("Error getting link speed and duplex\n");
2553 return ret_val;
2554 }
2555 if (speed != SPEED_1000) {
2556 /* If link speed is not set to gigabit speed, we do not need
2557 * to enable TBI compatibility.
2558 */
2559 if (hw->tbi_compatibility_on) {
2560 /* If we previously were in the mode, turn it off. */
2561 rctl = er32(RCTL);
2562 rctl &= ~E1000_RCTL_SBP;
2563 ew32(RCTL, rctl);
2564 hw->tbi_compatibility_on = false;
2565 }
2566 } else {
2567 /* If TBI compatibility is was previously off, turn it on. For
2568 * compatibility with a TBI link partner, we will store bad
2569 * packets. Some frames have an additional byte on the end and
2570 * will look like CRC errors to to the hardware.
2571 */
2572 if (!hw->tbi_compatibility_on) {
2573 hw->tbi_compatibility_on = true;
2574 rctl = er32(RCTL);
2575 rctl |= E1000_RCTL_SBP;
2576 ew32(RCTL, rctl);
2577 }
2578 }
2579 }
2580 }
2581
2582 if ((hw->media_type == e1000_media_type_fiber) ||
2583 (hw->media_type == e1000_media_type_internal_serdes))
2584 e1000_check_for_serdes_link_generic(hw);
2585
2586 return E1000_SUCCESS;
2587 }
2588
2589 /**
2590 * e1000_get_speed_and_duplex
2591 * @hw: Struct containing variables accessed by shared code
2592 * @speed: Speed of the connection
2593 * @duplex: Duplex setting of the connection
2594
2595 * Detects the current speed and duplex settings of the hardware.
2596 */
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)2597 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2598 {
2599 u32 status;
2600 s32 ret_val;
2601 u16 phy_data;
2602
2603 e_dbg("e1000_get_speed_and_duplex");
2604
2605 if (hw->mac_type >= e1000_82543) {
2606 status = er32(STATUS);
2607 if (status & E1000_STATUS_SPEED_1000) {
2608 *speed = SPEED_1000;
2609 e_dbg("1000 Mbs, ");
2610 } else if (status & E1000_STATUS_SPEED_100) {
2611 *speed = SPEED_100;
2612 e_dbg("100 Mbs, ");
2613 } else {
2614 *speed = SPEED_10;
2615 e_dbg("10 Mbs, ");
2616 }
2617
2618 if (status & E1000_STATUS_FD) {
2619 *duplex = FULL_DUPLEX;
2620 e_dbg("Full Duplex\n");
2621 } else {
2622 *duplex = HALF_DUPLEX;
2623 e_dbg(" Half Duplex\n");
2624 }
2625 } else {
2626 e_dbg("1000 Mbs, Full Duplex\n");
2627 *speed = SPEED_1000;
2628 *duplex = FULL_DUPLEX;
2629 }
2630
2631 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2632 * if it is operating at half duplex. Here we set the duplex settings to
2633 * match the duplex in the link partner's capabilities.
2634 */
2635 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2636 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2637 if (ret_val)
2638 return ret_val;
2639
2640 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2641 *duplex = HALF_DUPLEX;
2642 else {
2643 ret_val =
2644 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2645 if (ret_val)
2646 return ret_val;
2647 if ((*speed == SPEED_100
2648 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2649 || (*speed == SPEED_10
2650 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2651 *duplex = HALF_DUPLEX;
2652 }
2653 }
2654
2655 return E1000_SUCCESS;
2656 }
2657
2658 /**
2659 * e1000_wait_autoneg
2660 * @hw: Struct containing variables accessed by shared code
2661 *
2662 * Blocks until autoneg completes or times out (~4.5 seconds)
2663 */
e1000_wait_autoneg(struct e1000_hw * hw)2664 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2665 {
2666 s32 ret_val;
2667 u16 i;
2668 u16 phy_data;
2669
2670 e_dbg("e1000_wait_autoneg");
2671 e_dbg("Waiting for Auto-Neg to complete.\n");
2672
2673 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2674 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2675 /* Read the MII Status Register and wait for Auto-Neg
2676 * Complete bit to be set.
2677 */
2678 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2679 if (ret_val)
2680 return ret_val;
2681 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2682 if (ret_val)
2683 return ret_val;
2684 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2685 return E1000_SUCCESS;
2686 }
2687 msleep(100);
2688 }
2689 return E1000_SUCCESS;
2690 }
2691
2692 /**
2693 * e1000_raise_mdi_clk - Raises the Management Data Clock
2694 * @hw: Struct containing variables accessed by shared code
2695 * @ctrl: Device control register's current value
2696 */
e1000_raise_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2697 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698 {
2699 /* Raise the clock input to the Management Data Clock (by setting the MDC
2700 * bit), and then delay 10 microseconds.
2701 */
2702 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2703 E1000_WRITE_FLUSH();
2704 udelay(10);
2705 }
2706
2707 /**
2708 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2709 * @hw: Struct containing variables accessed by shared code
2710 * @ctrl: Device control register's current value
2711 */
e1000_lower_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2712 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2713 {
2714 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2715 * bit), and then delay 10 microseconds.
2716 */
2717 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2718 E1000_WRITE_FLUSH();
2719 udelay(10);
2720 }
2721
2722 /**
2723 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2724 * @hw: Struct containing variables accessed by shared code
2725 * @data: Data to send out to the PHY
2726 * @count: Number of bits to shift out
2727 *
2728 * Bits are shifted out in MSB to LSB order.
2729 */
e1000_shift_out_mdi_bits(struct e1000_hw * hw,u32 data,u16 count)2730 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2731 {
2732 u32 ctrl;
2733 u32 mask;
2734
2735 /* We need to shift "count" number of bits out to the PHY. So, the value
2736 * in the "data" parameter will be shifted out to the PHY one bit at a
2737 * time. In order to do this, "data" must be broken down into bits.
2738 */
2739 mask = 0x01;
2740 mask <<= (count - 1);
2741
2742 ctrl = er32(CTRL);
2743
2744 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2745 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2746
2747 while (mask) {
2748 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2749 * then raising and lowering the Management Data Clock. A "0" is
2750 * shifted out to the PHY by setting the MDIO bit to "0" and then
2751 * raising and lowering the clock.
2752 */
2753 if (data & mask)
2754 ctrl |= E1000_CTRL_MDIO;
2755 else
2756 ctrl &= ~E1000_CTRL_MDIO;
2757
2758 ew32(CTRL, ctrl);
2759 E1000_WRITE_FLUSH();
2760
2761 udelay(10);
2762
2763 e1000_raise_mdi_clk(hw, &ctrl);
2764 e1000_lower_mdi_clk(hw, &ctrl);
2765
2766 mask = mask >> 1;
2767 }
2768 }
2769
2770 /**
2771 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2772 * @hw: Struct containing variables accessed by shared code
2773 *
2774 * Bits are shifted in in MSB to LSB order.
2775 */
e1000_shift_in_mdi_bits(struct e1000_hw * hw)2776 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2777 {
2778 u32 ctrl;
2779 u16 data = 0;
2780 u8 i;
2781
2782 /* In order to read a register from the PHY, we need to shift in a total
2783 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2784 * to avoid contention on the MDIO pin when a read operation is performed.
2785 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2786 * by raising the input to the Management Data Clock (setting the MDC bit),
2787 * and then reading the value of the MDIO bit.
2788 */
2789 ctrl = er32(CTRL);
2790
2791 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2792 ctrl &= ~E1000_CTRL_MDIO_DIR;
2793 ctrl &= ~E1000_CTRL_MDIO;
2794
2795 ew32(CTRL, ctrl);
2796 E1000_WRITE_FLUSH();
2797
2798 /* Raise and Lower the clock before reading in the data. This accounts for
2799 * the turnaround bits. The first clock occurred when we clocked out the
2800 * last bit of the Register Address.
2801 */
2802 e1000_raise_mdi_clk(hw, &ctrl);
2803 e1000_lower_mdi_clk(hw, &ctrl);
2804
2805 for (data = 0, i = 0; i < 16; i++) {
2806 data = data << 1;
2807 e1000_raise_mdi_clk(hw, &ctrl);
2808 ctrl = er32(CTRL);
2809 /* Check to see if we shifted in a "1". */
2810 if (ctrl & E1000_CTRL_MDIO)
2811 data |= 1;
2812 e1000_lower_mdi_clk(hw, &ctrl);
2813 }
2814
2815 e1000_raise_mdi_clk(hw, &ctrl);
2816 e1000_lower_mdi_clk(hw, &ctrl);
2817
2818 return data;
2819 }
2820
2821
2822 /**
2823 * e1000_read_phy_reg - read a phy register
2824 * @hw: Struct containing variables accessed by shared code
2825 * @reg_addr: address of the PHY register to read
2826 *
2827 * Reads the value from a PHY register, if the value is on a specific non zero
2828 * page, sets the page first.
2829 */
e1000_read_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2830 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2831 {
2832 u32 ret_val;
2833
2834 e_dbg("e1000_read_phy_reg");
2835
2836 if ((hw->phy_type == e1000_phy_igp) &&
2837 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2838 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2839 (u16) reg_addr);
2840 if (ret_val)
2841 return ret_val;
2842 }
2843
2844 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2845 phy_data);
2846
2847 return ret_val;
2848 }
2849
e1000_read_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2850 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2851 u16 *phy_data)
2852 {
2853 u32 i;
2854 u32 mdic = 0;
2855 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2856
2857 e_dbg("e1000_read_phy_reg_ex");
2858
2859 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2860 e_dbg("PHY Address %d is out of range\n", reg_addr);
2861 return -E1000_ERR_PARAM;
2862 }
2863
2864 if (hw->mac_type > e1000_82543) {
2865 /* Set up Op-code, Phy Address, and register address in the MDI
2866 * Control register. The MAC will take care of interfacing with the
2867 * PHY to retrieve the desired data.
2868 */
2869 if (hw->mac_type == e1000_ce4100) {
2870 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2871 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2872 (INTEL_CE_GBE_MDIC_OP_READ) |
2873 (INTEL_CE_GBE_MDIC_GO));
2874
2875 writel(mdic, E1000_MDIO_CMD);
2876
2877 /* Poll the ready bit to see if the MDI read
2878 * completed
2879 */
2880 for (i = 0; i < 64; i++) {
2881 udelay(50);
2882 mdic = readl(E1000_MDIO_CMD);
2883 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2884 break;
2885 }
2886
2887 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2888 e_dbg("MDI Read did not complete\n");
2889 return -E1000_ERR_PHY;
2890 }
2891
2892 mdic = readl(E1000_MDIO_STS);
2893 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2894 e_dbg("MDI Read Error\n");
2895 return -E1000_ERR_PHY;
2896 }
2897 *phy_data = (u16) mdic;
2898 } else {
2899 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2900 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2901 (E1000_MDIC_OP_READ));
2902
2903 ew32(MDIC, mdic);
2904
2905 /* Poll the ready bit to see if the MDI read
2906 * completed
2907 */
2908 for (i = 0; i < 64; i++) {
2909 udelay(50);
2910 mdic = er32(MDIC);
2911 if (mdic & E1000_MDIC_READY)
2912 break;
2913 }
2914 if (!(mdic & E1000_MDIC_READY)) {
2915 e_dbg("MDI Read did not complete\n");
2916 return -E1000_ERR_PHY;
2917 }
2918 if (mdic & E1000_MDIC_ERROR) {
2919 e_dbg("MDI Error\n");
2920 return -E1000_ERR_PHY;
2921 }
2922 *phy_data = (u16) mdic;
2923 }
2924 } else {
2925 /* We must first send a preamble through the MDIO pin to signal the
2926 * beginning of an MII instruction. This is done by sending 32
2927 * consecutive "1" bits.
2928 */
2929 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2930
2931 /* Now combine the next few fields that are required for a read
2932 * operation. We use this method instead of calling the
2933 * e1000_shift_out_mdi_bits routine five different times. The format of
2934 * a MII read instruction consists of a shift out of 14 bits and is
2935 * defined as follows:
2936 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2937 * followed by a shift in of 18 bits. This first two bits shifted in
2938 * are TurnAround bits used to avoid contention on the MDIO pin when a
2939 * READ operation is performed. These two bits are thrown away
2940 * followed by a shift in of 16 bits which contains the desired data.
2941 */
2942 mdic = ((reg_addr) | (phy_addr << 5) |
2943 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2944
2945 e1000_shift_out_mdi_bits(hw, mdic, 14);
2946
2947 /* Now that we've shifted out the read command to the MII, we need to
2948 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2949 * register address.
2950 */
2951 *phy_data = e1000_shift_in_mdi_bits(hw);
2952 }
2953 return E1000_SUCCESS;
2954 }
2955
2956 /**
2957 * e1000_write_phy_reg - write a phy register
2958 *
2959 * @hw: Struct containing variables accessed by shared code
2960 * @reg_addr: address of the PHY register to write
2961 * @data: data to write to the PHY
2962
2963 * Writes a value to a PHY register
2964 */
e1000_write_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2965 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2966 {
2967 u32 ret_val;
2968
2969 e_dbg("e1000_write_phy_reg");
2970
2971 if ((hw->phy_type == e1000_phy_igp) &&
2972 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2973 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2974 (u16) reg_addr);
2975 if (ret_val)
2976 return ret_val;
2977 }
2978
2979 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2980 phy_data);
2981
2982 return ret_val;
2983 }
2984
e1000_write_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2985 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2986 u16 phy_data)
2987 {
2988 u32 i;
2989 u32 mdic = 0;
2990 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2991
2992 e_dbg("e1000_write_phy_reg_ex");
2993
2994 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2995 e_dbg("PHY Address %d is out of range\n", reg_addr);
2996 return -E1000_ERR_PARAM;
2997 }
2998
2999 if (hw->mac_type > e1000_82543) {
3000 /* Set up Op-code, Phy Address, register address, and data
3001 * intended for the PHY register in the MDI Control register.
3002 * The MAC will take care of interfacing with the PHY to send
3003 * the desired data.
3004 */
3005 if (hw->mac_type == e1000_ce4100) {
3006 mdic = (((u32) phy_data) |
3007 (reg_addr << E1000_MDIC_REG_SHIFT) |
3008 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3009 (INTEL_CE_GBE_MDIC_OP_WRITE) |
3010 (INTEL_CE_GBE_MDIC_GO));
3011
3012 writel(mdic, E1000_MDIO_CMD);
3013
3014 /* Poll the ready bit to see if the MDI read
3015 * completed
3016 */
3017 for (i = 0; i < 640; i++) {
3018 udelay(5);
3019 mdic = readl(E1000_MDIO_CMD);
3020 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3021 break;
3022 }
3023 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3024 e_dbg("MDI Write did not complete\n");
3025 return -E1000_ERR_PHY;
3026 }
3027 } else {
3028 mdic = (((u32) phy_data) |
3029 (reg_addr << E1000_MDIC_REG_SHIFT) |
3030 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3031 (E1000_MDIC_OP_WRITE));
3032
3033 ew32(MDIC, mdic);
3034
3035 /* Poll the ready bit to see if the MDI read
3036 * completed
3037 */
3038 for (i = 0; i < 641; i++) {
3039 udelay(5);
3040 mdic = er32(MDIC);
3041 if (mdic & E1000_MDIC_READY)
3042 break;
3043 }
3044 if (!(mdic & E1000_MDIC_READY)) {
3045 e_dbg("MDI Write did not complete\n");
3046 return -E1000_ERR_PHY;
3047 }
3048 }
3049 } else {
3050 /* We'll need to use the SW defined pins to shift the write command
3051 * out to the PHY. We first send a preamble to the PHY to signal the
3052 * beginning of the MII instruction. This is done by sending 32
3053 * consecutive "1" bits.
3054 */
3055 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3056
3057 /* Now combine the remaining required fields that will indicate a
3058 * write operation. We use this method instead of calling the
3059 * e1000_shift_out_mdi_bits routine for each field in the command. The
3060 * format of a MII write instruction is as follows:
3061 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3062 */
3063 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3064 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3065 mdic <<= 16;
3066 mdic |= (u32) phy_data;
3067
3068 e1000_shift_out_mdi_bits(hw, mdic, 32);
3069 }
3070
3071 return E1000_SUCCESS;
3072 }
3073
3074 /**
3075 * e1000_phy_hw_reset - reset the phy, hardware style
3076 * @hw: Struct containing variables accessed by shared code
3077 *
3078 * Returns the PHY to the power-on reset state
3079 */
e1000_phy_hw_reset(struct e1000_hw * hw)3080 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3081 {
3082 u32 ctrl, ctrl_ext;
3083 u32 led_ctrl;
3084
3085 e_dbg("e1000_phy_hw_reset");
3086
3087 e_dbg("Resetting Phy...\n");
3088
3089 if (hw->mac_type > e1000_82543) {
3090 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3091 * bit. Then, take it out of reset.
3092 * For e1000 hardware, we delay for 10ms between the assert
3093 * and deassert.
3094 */
3095 ctrl = er32(CTRL);
3096 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3097 E1000_WRITE_FLUSH();
3098
3099 msleep(10);
3100
3101 ew32(CTRL, ctrl);
3102 E1000_WRITE_FLUSH();
3103
3104 } else {
3105 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3106 * bit to put the PHY into reset. Then, take it out of reset.
3107 */
3108 ctrl_ext = er32(CTRL_EXT);
3109 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3110 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3111 ew32(CTRL_EXT, ctrl_ext);
3112 E1000_WRITE_FLUSH();
3113 msleep(10);
3114 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3115 ew32(CTRL_EXT, ctrl_ext);
3116 E1000_WRITE_FLUSH();
3117 }
3118 udelay(150);
3119
3120 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3121 /* Configure activity LED after PHY reset */
3122 led_ctrl = er32(LEDCTL);
3123 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3124 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3125 ew32(LEDCTL, led_ctrl);
3126 }
3127
3128 /* Wait for FW to finish PHY configuration. */
3129 return e1000_get_phy_cfg_done(hw);
3130 }
3131
3132 /**
3133 * e1000_phy_reset - reset the phy to commit settings
3134 * @hw: Struct containing variables accessed by shared code
3135 *
3136 * Resets the PHY
3137 * Sets bit 15 of the MII Control register
3138 */
e1000_phy_reset(struct e1000_hw * hw)3139 s32 e1000_phy_reset(struct e1000_hw *hw)
3140 {
3141 s32 ret_val;
3142 u16 phy_data;
3143
3144 e_dbg("e1000_phy_reset");
3145
3146 switch (hw->phy_type) {
3147 case e1000_phy_igp:
3148 ret_val = e1000_phy_hw_reset(hw);
3149 if (ret_val)
3150 return ret_val;
3151 break;
3152 default:
3153 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3154 if (ret_val)
3155 return ret_val;
3156
3157 phy_data |= MII_CR_RESET;
3158 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3159 if (ret_val)
3160 return ret_val;
3161
3162 udelay(1);
3163 break;
3164 }
3165
3166 if (hw->phy_type == e1000_phy_igp)
3167 e1000_phy_init_script(hw);
3168
3169 return E1000_SUCCESS;
3170 }
3171
3172 /**
3173 * e1000_detect_gig_phy - check the phy type
3174 * @hw: Struct containing variables accessed by shared code
3175 *
3176 * Probes the expected PHY address for known PHY IDs
3177 */
e1000_detect_gig_phy(struct e1000_hw * hw)3178 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3179 {
3180 s32 phy_init_status, ret_val;
3181 u16 phy_id_high, phy_id_low;
3182 bool match = false;
3183
3184 e_dbg("e1000_detect_gig_phy");
3185
3186 if (hw->phy_id != 0)
3187 return E1000_SUCCESS;
3188
3189 /* Read the PHY ID Registers to identify which PHY is onboard. */
3190 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3191 if (ret_val)
3192 return ret_val;
3193
3194 hw->phy_id = (u32) (phy_id_high << 16);
3195 udelay(20);
3196 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3197 if (ret_val)
3198 return ret_val;
3199
3200 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3201 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3202
3203 switch (hw->mac_type) {
3204 case e1000_82543:
3205 if (hw->phy_id == M88E1000_E_PHY_ID)
3206 match = true;
3207 break;
3208 case e1000_82544:
3209 if (hw->phy_id == M88E1000_I_PHY_ID)
3210 match = true;
3211 break;
3212 case e1000_82540:
3213 case e1000_82545:
3214 case e1000_82545_rev_3:
3215 case e1000_82546:
3216 case e1000_82546_rev_3:
3217 if (hw->phy_id == M88E1011_I_PHY_ID)
3218 match = true;
3219 break;
3220 case e1000_ce4100:
3221 if ((hw->phy_id == RTL8211B_PHY_ID) ||
3222 (hw->phy_id == RTL8201N_PHY_ID) ||
3223 (hw->phy_id == M88E1118_E_PHY_ID))
3224 match = true;
3225 break;
3226 case e1000_82541:
3227 case e1000_82541_rev_2:
3228 case e1000_82547:
3229 case e1000_82547_rev_2:
3230 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3231 match = true;
3232 break;
3233 default:
3234 e_dbg("Invalid MAC type %d\n", hw->mac_type);
3235 return -E1000_ERR_CONFIG;
3236 }
3237 phy_init_status = e1000_set_phy_type(hw);
3238
3239 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3240 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3241 return E1000_SUCCESS;
3242 }
3243 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3244 return -E1000_ERR_PHY;
3245 }
3246
3247 /**
3248 * e1000_phy_reset_dsp - reset DSP
3249 * @hw: Struct containing variables accessed by shared code
3250 *
3251 * Resets the PHY's DSP
3252 */
e1000_phy_reset_dsp(struct e1000_hw * hw)3253 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3254 {
3255 s32 ret_val;
3256 e_dbg("e1000_phy_reset_dsp");
3257
3258 do {
3259 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3260 if (ret_val)
3261 break;
3262 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3263 if (ret_val)
3264 break;
3265 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3266 if (ret_val)
3267 break;
3268 ret_val = E1000_SUCCESS;
3269 } while (0);
3270
3271 return ret_val;
3272 }
3273
3274 /**
3275 * e1000_phy_igp_get_info - get igp specific registers
3276 * @hw: Struct containing variables accessed by shared code
3277 * @phy_info: PHY information structure
3278 *
3279 * Get PHY information from various PHY registers for igp PHY only.
3280 */
e1000_phy_igp_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3281 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3282 struct e1000_phy_info *phy_info)
3283 {
3284 s32 ret_val;
3285 u16 phy_data, min_length, max_length, average;
3286 e1000_rev_polarity polarity;
3287
3288 e_dbg("e1000_phy_igp_get_info");
3289
3290 /* The downshift status is checked only once, after link is established,
3291 * and it stored in the hw->speed_downgraded parameter. */
3292 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3293
3294 /* IGP01E1000 does not need to support it. */
3295 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3296
3297 /* IGP01E1000 always correct polarity reversal */
3298 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3299
3300 /* Check polarity status */
3301 ret_val = e1000_check_polarity(hw, &polarity);
3302 if (ret_val)
3303 return ret_val;
3304
3305 phy_info->cable_polarity = polarity;
3306
3307 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3308 if (ret_val)
3309 return ret_val;
3310
3311 phy_info->mdix_mode =
3312 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3313 IGP01E1000_PSSR_MDIX_SHIFT);
3314
3315 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3316 IGP01E1000_PSSR_SPEED_1000MBPS) {
3317 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3318 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3319 if (ret_val)
3320 return ret_val;
3321
3322 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3323 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3324 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3325 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3326 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3327 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3328
3329 /* Get cable length */
3330 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3331 if (ret_val)
3332 return ret_val;
3333
3334 /* Translate to old method */
3335 average = (max_length + min_length) / 2;
3336
3337 if (average <= e1000_igp_cable_length_50)
3338 phy_info->cable_length = e1000_cable_length_50;
3339 else if (average <= e1000_igp_cable_length_80)
3340 phy_info->cable_length = e1000_cable_length_50_80;
3341 else if (average <= e1000_igp_cable_length_110)
3342 phy_info->cable_length = e1000_cable_length_80_110;
3343 else if (average <= e1000_igp_cable_length_140)
3344 phy_info->cable_length = e1000_cable_length_110_140;
3345 else
3346 phy_info->cable_length = e1000_cable_length_140;
3347 }
3348
3349 return E1000_SUCCESS;
3350 }
3351
3352 /**
3353 * e1000_phy_m88_get_info - get m88 specific registers
3354 * @hw: Struct containing variables accessed by shared code
3355 * @phy_info: PHY information structure
3356 *
3357 * Get PHY information from various PHY registers for m88 PHY only.
3358 */
e1000_phy_m88_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3359 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3360 struct e1000_phy_info *phy_info)
3361 {
3362 s32 ret_val;
3363 u16 phy_data;
3364 e1000_rev_polarity polarity;
3365
3366 e_dbg("e1000_phy_m88_get_info");
3367
3368 /* The downshift status is checked only once, after link is established,
3369 * and it stored in the hw->speed_downgraded parameter. */
3370 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3371
3372 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3373 if (ret_val)
3374 return ret_val;
3375
3376 phy_info->extended_10bt_distance =
3377 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3378 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3379 e1000_10bt_ext_dist_enable_lower :
3380 e1000_10bt_ext_dist_enable_normal;
3381
3382 phy_info->polarity_correction =
3383 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3384 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3385 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3386
3387 /* Check polarity status */
3388 ret_val = e1000_check_polarity(hw, &polarity);
3389 if (ret_val)
3390 return ret_val;
3391 phy_info->cable_polarity = polarity;
3392
3393 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3394 if (ret_val)
3395 return ret_val;
3396
3397 phy_info->mdix_mode =
3398 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3399 M88E1000_PSSR_MDIX_SHIFT);
3400
3401 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3402 /* Cable Length Estimation and Local/Remote Receiver Information
3403 * are only valid at 1000 Mbps.
3404 */
3405 phy_info->cable_length =
3406 (e1000_cable_length) ((phy_data &
3407 M88E1000_PSSR_CABLE_LENGTH) >>
3408 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3409
3410 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3411 if (ret_val)
3412 return ret_val;
3413
3414 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3415 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3416 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3417 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3418 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3419 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3420
3421 }
3422
3423 return E1000_SUCCESS;
3424 }
3425
3426 /**
3427 * e1000_phy_get_info - request phy info
3428 * @hw: Struct containing variables accessed by shared code
3429 * @phy_info: PHY information structure
3430 *
3431 * Get PHY information from various PHY registers
3432 */
e1000_phy_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3433 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3434 {
3435 s32 ret_val;
3436 u16 phy_data;
3437
3438 e_dbg("e1000_phy_get_info");
3439
3440 phy_info->cable_length = e1000_cable_length_undefined;
3441 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3442 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3443 phy_info->downshift = e1000_downshift_undefined;
3444 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3445 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3446 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3447 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3448
3449 if (hw->media_type != e1000_media_type_copper) {
3450 e_dbg("PHY info is only valid for copper media\n");
3451 return -E1000_ERR_CONFIG;
3452 }
3453
3454 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3455 if (ret_val)
3456 return ret_val;
3457
3458 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3459 if (ret_val)
3460 return ret_val;
3461
3462 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3463 e_dbg("PHY info is only valid if link is up\n");
3464 return -E1000_ERR_CONFIG;
3465 }
3466
3467 if (hw->phy_type == e1000_phy_igp)
3468 return e1000_phy_igp_get_info(hw, phy_info);
3469 else if ((hw->phy_type == e1000_phy_8211) ||
3470 (hw->phy_type == e1000_phy_8201))
3471 return E1000_SUCCESS;
3472 else
3473 return e1000_phy_m88_get_info(hw, phy_info);
3474 }
3475
e1000_validate_mdi_setting(struct e1000_hw * hw)3476 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3477 {
3478 e_dbg("e1000_validate_mdi_settings");
3479
3480 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3481 e_dbg("Invalid MDI setting detected\n");
3482 hw->mdix = 1;
3483 return -E1000_ERR_CONFIG;
3484 }
3485 return E1000_SUCCESS;
3486 }
3487
3488 /**
3489 * e1000_init_eeprom_params - initialize sw eeprom vars
3490 * @hw: Struct containing variables accessed by shared code
3491 *
3492 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3493 * is configured.
3494 */
e1000_init_eeprom_params(struct e1000_hw * hw)3495 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3496 {
3497 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3498 u32 eecd = er32(EECD);
3499 s32 ret_val = E1000_SUCCESS;
3500 u16 eeprom_size;
3501
3502 e_dbg("e1000_init_eeprom_params");
3503
3504 switch (hw->mac_type) {
3505 case e1000_82542_rev2_0:
3506 case e1000_82542_rev2_1:
3507 case e1000_82543:
3508 case e1000_82544:
3509 eeprom->type = e1000_eeprom_microwire;
3510 eeprom->word_size = 64;
3511 eeprom->opcode_bits = 3;
3512 eeprom->address_bits = 6;
3513 eeprom->delay_usec = 50;
3514 break;
3515 case e1000_82540:
3516 case e1000_82545:
3517 case e1000_82545_rev_3:
3518 case e1000_82546:
3519 case e1000_82546_rev_3:
3520 eeprom->type = e1000_eeprom_microwire;
3521 eeprom->opcode_bits = 3;
3522 eeprom->delay_usec = 50;
3523 if (eecd & E1000_EECD_SIZE) {
3524 eeprom->word_size = 256;
3525 eeprom->address_bits = 8;
3526 } else {
3527 eeprom->word_size = 64;
3528 eeprom->address_bits = 6;
3529 }
3530 break;
3531 case e1000_82541:
3532 case e1000_82541_rev_2:
3533 case e1000_82547:
3534 case e1000_82547_rev_2:
3535 if (eecd & E1000_EECD_TYPE) {
3536 eeprom->type = e1000_eeprom_spi;
3537 eeprom->opcode_bits = 8;
3538 eeprom->delay_usec = 1;
3539 if (eecd & E1000_EECD_ADDR_BITS) {
3540 eeprom->page_size = 32;
3541 eeprom->address_bits = 16;
3542 } else {
3543 eeprom->page_size = 8;
3544 eeprom->address_bits = 8;
3545 }
3546 } else {
3547 eeprom->type = e1000_eeprom_microwire;
3548 eeprom->opcode_bits = 3;
3549 eeprom->delay_usec = 50;
3550 if (eecd & E1000_EECD_ADDR_BITS) {
3551 eeprom->word_size = 256;
3552 eeprom->address_bits = 8;
3553 } else {
3554 eeprom->word_size = 64;
3555 eeprom->address_bits = 6;
3556 }
3557 }
3558 break;
3559 default:
3560 break;
3561 }
3562
3563 if (eeprom->type == e1000_eeprom_spi) {
3564 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3565 * 32KB (incremented by powers of 2).
3566 */
3567 /* Set to default value for initial eeprom read. */
3568 eeprom->word_size = 64;
3569 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3570 if (ret_val)
3571 return ret_val;
3572 eeprom_size =
3573 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3574 /* 256B eeprom size was not supported in earlier hardware, so we
3575 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3576 * is never the result used in the shifting logic below. */
3577 if (eeprom_size)
3578 eeprom_size++;
3579
3580 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3581 }
3582 return ret_val;
3583 }
3584
3585 /**
3586 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3587 * @hw: Struct containing variables accessed by shared code
3588 * @eecd: EECD's current value
3589 */
e1000_raise_ee_clk(struct e1000_hw * hw,u32 * eecd)3590 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3591 {
3592 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3593 * wait <delay> microseconds.
3594 */
3595 *eecd = *eecd | E1000_EECD_SK;
3596 ew32(EECD, *eecd);
3597 E1000_WRITE_FLUSH();
3598 udelay(hw->eeprom.delay_usec);
3599 }
3600
3601 /**
3602 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3603 * @hw: Struct containing variables accessed by shared code
3604 * @eecd: EECD's current value
3605 */
e1000_lower_ee_clk(struct e1000_hw * hw,u32 * eecd)3606 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3607 {
3608 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3609 * wait 50 microseconds.
3610 */
3611 *eecd = *eecd & ~E1000_EECD_SK;
3612 ew32(EECD, *eecd);
3613 E1000_WRITE_FLUSH();
3614 udelay(hw->eeprom.delay_usec);
3615 }
3616
3617 /**
3618 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3619 * @hw: Struct containing variables accessed by shared code
3620 * @data: data to send to the EEPROM
3621 * @count: number of bits to shift out
3622 */
e1000_shift_out_ee_bits(struct e1000_hw * hw,u16 data,u16 count)3623 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3624 {
3625 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3626 u32 eecd;
3627 u32 mask;
3628
3629 /* We need to shift "count" bits out to the EEPROM. So, value in the
3630 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3631 * In order to do this, "data" must be broken down into bits.
3632 */
3633 mask = 0x01 << (count - 1);
3634 eecd = er32(EECD);
3635 if (eeprom->type == e1000_eeprom_microwire) {
3636 eecd &= ~E1000_EECD_DO;
3637 } else if (eeprom->type == e1000_eeprom_spi) {
3638 eecd |= E1000_EECD_DO;
3639 }
3640 do {
3641 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3642 * and then raising and then lowering the clock (the SK bit controls
3643 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3644 * by setting "DI" to "0" and then raising and then lowering the clock.
3645 */
3646 eecd &= ~E1000_EECD_DI;
3647
3648 if (data & mask)
3649 eecd |= E1000_EECD_DI;
3650
3651 ew32(EECD, eecd);
3652 E1000_WRITE_FLUSH();
3653
3654 udelay(eeprom->delay_usec);
3655
3656 e1000_raise_ee_clk(hw, &eecd);
3657 e1000_lower_ee_clk(hw, &eecd);
3658
3659 mask = mask >> 1;
3660
3661 } while (mask);
3662
3663 /* We leave the "DI" bit set to "0" when we leave this routine. */
3664 eecd &= ~E1000_EECD_DI;
3665 ew32(EECD, eecd);
3666 }
3667
3668 /**
3669 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3670 * @hw: Struct containing variables accessed by shared code
3671 * @count: number of bits to shift in
3672 */
e1000_shift_in_ee_bits(struct e1000_hw * hw,u16 count)3673 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3674 {
3675 u32 eecd;
3676 u32 i;
3677 u16 data;
3678
3679 /* In order to read a register from the EEPROM, we need to shift 'count'
3680 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3681 * input to the EEPROM (setting the SK bit), and then reading the value of
3682 * the "DO" bit. During this "shifting in" process the "DI" bit should
3683 * always be clear.
3684 */
3685
3686 eecd = er32(EECD);
3687
3688 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3689 data = 0;
3690
3691 for (i = 0; i < count; i++) {
3692 data = data << 1;
3693 e1000_raise_ee_clk(hw, &eecd);
3694
3695 eecd = er32(EECD);
3696
3697 eecd &= ~(E1000_EECD_DI);
3698 if (eecd & E1000_EECD_DO)
3699 data |= 1;
3700
3701 e1000_lower_ee_clk(hw, &eecd);
3702 }
3703
3704 return data;
3705 }
3706
3707 /**
3708 * e1000_acquire_eeprom - Prepares EEPROM for access
3709 * @hw: Struct containing variables accessed by shared code
3710 *
3711 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3712 * function should be called before issuing a command to the EEPROM.
3713 */
e1000_acquire_eeprom(struct e1000_hw * hw)3714 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3715 {
3716 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3717 u32 eecd, i = 0;
3718
3719 e_dbg("e1000_acquire_eeprom");
3720
3721 eecd = er32(EECD);
3722
3723 /* Request EEPROM Access */
3724 if (hw->mac_type > e1000_82544) {
3725 eecd |= E1000_EECD_REQ;
3726 ew32(EECD, eecd);
3727 eecd = er32(EECD);
3728 while ((!(eecd & E1000_EECD_GNT)) &&
3729 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3730 i++;
3731 udelay(5);
3732 eecd = er32(EECD);
3733 }
3734 if (!(eecd & E1000_EECD_GNT)) {
3735 eecd &= ~E1000_EECD_REQ;
3736 ew32(EECD, eecd);
3737 e_dbg("Could not acquire EEPROM grant\n");
3738 return -E1000_ERR_EEPROM;
3739 }
3740 }
3741
3742 /* Setup EEPROM for Read/Write */
3743
3744 if (eeprom->type == e1000_eeprom_microwire) {
3745 /* Clear SK and DI */
3746 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3747 ew32(EECD, eecd);
3748
3749 /* Set CS */
3750 eecd |= E1000_EECD_CS;
3751 ew32(EECD, eecd);
3752 } else if (eeprom->type == e1000_eeprom_spi) {
3753 /* Clear SK and CS */
3754 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3755 ew32(EECD, eecd);
3756 E1000_WRITE_FLUSH();
3757 udelay(1);
3758 }
3759
3760 return E1000_SUCCESS;
3761 }
3762
3763 /**
3764 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3765 * @hw: Struct containing variables accessed by shared code
3766 */
e1000_standby_eeprom(struct e1000_hw * hw)3767 static void e1000_standby_eeprom(struct e1000_hw *hw)
3768 {
3769 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3770 u32 eecd;
3771
3772 eecd = er32(EECD);
3773
3774 if (eeprom->type == e1000_eeprom_microwire) {
3775 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3776 ew32(EECD, eecd);
3777 E1000_WRITE_FLUSH();
3778 udelay(eeprom->delay_usec);
3779
3780 /* Clock high */
3781 eecd |= E1000_EECD_SK;
3782 ew32(EECD, eecd);
3783 E1000_WRITE_FLUSH();
3784 udelay(eeprom->delay_usec);
3785
3786 /* Select EEPROM */
3787 eecd |= E1000_EECD_CS;
3788 ew32(EECD, eecd);
3789 E1000_WRITE_FLUSH();
3790 udelay(eeprom->delay_usec);
3791
3792 /* Clock low */
3793 eecd &= ~E1000_EECD_SK;
3794 ew32(EECD, eecd);
3795 E1000_WRITE_FLUSH();
3796 udelay(eeprom->delay_usec);
3797 } else if (eeprom->type == e1000_eeprom_spi) {
3798 /* Toggle CS to flush commands */
3799 eecd |= E1000_EECD_CS;
3800 ew32(EECD, eecd);
3801 E1000_WRITE_FLUSH();
3802 udelay(eeprom->delay_usec);
3803 eecd &= ~E1000_EECD_CS;
3804 ew32(EECD, eecd);
3805 E1000_WRITE_FLUSH();
3806 udelay(eeprom->delay_usec);
3807 }
3808 }
3809
3810 /**
3811 * e1000_release_eeprom - drop chip select
3812 * @hw: Struct containing variables accessed by shared code
3813 *
3814 * Terminates a command by inverting the EEPROM's chip select pin
3815 */
e1000_release_eeprom(struct e1000_hw * hw)3816 static void e1000_release_eeprom(struct e1000_hw *hw)
3817 {
3818 u32 eecd;
3819
3820 e_dbg("e1000_release_eeprom");
3821
3822 eecd = er32(EECD);
3823
3824 if (hw->eeprom.type == e1000_eeprom_spi) {
3825 eecd |= E1000_EECD_CS; /* Pull CS high */
3826 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3827
3828 ew32(EECD, eecd);
3829 E1000_WRITE_FLUSH();
3830
3831 udelay(hw->eeprom.delay_usec);
3832 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3833 /* cleanup eeprom */
3834
3835 /* CS on Microwire is active-high */
3836 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3837
3838 ew32(EECD, eecd);
3839
3840 /* Rising edge of clock */
3841 eecd |= E1000_EECD_SK;
3842 ew32(EECD, eecd);
3843 E1000_WRITE_FLUSH();
3844 udelay(hw->eeprom.delay_usec);
3845
3846 /* Falling edge of clock */
3847 eecd &= ~E1000_EECD_SK;
3848 ew32(EECD, eecd);
3849 E1000_WRITE_FLUSH();
3850 udelay(hw->eeprom.delay_usec);
3851 }
3852
3853 /* Stop requesting EEPROM access */
3854 if (hw->mac_type > e1000_82544) {
3855 eecd &= ~E1000_EECD_REQ;
3856 ew32(EECD, eecd);
3857 }
3858 }
3859
3860 /**
3861 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3862 * @hw: Struct containing variables accessed by shared code
3863 */
e1000_spi_eeprom_ready(struct e1000_hw * hw)3864 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3865 {
3866 u16 retry_count = 0;
3867 u8 spi_stat_reg;
3868
3869 e_dbg("e1000_spi_eeprom_ready");
3870
3871 /* Read "Status Register" repeatedly until the LSB is cleared. The
3872 * EEPROM will signal that the command has been completed by clearing
3873 * bit 0 of the internal status register. If it's not cleared within
3874 * 5 milliseconds, then error out.
3875 */
3876 retry_count = 0;
3877 do {
3878 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3879 hw->eeprom.opcode_bits);
3880 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3881 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3882 break;
3883
3884 udelay(5);
3885 retry_count += 5;
3886
3887 e1000_standby_eeprom(hw);
3888 } while (retry_count < EEPROM_MAX_RETRY_SPI);
3889
3890 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3891 * only 0-5mSec on 5V devices)
3892 */
3893 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3894 e_dbg("SPI EEPROM Status error\n");
3895 return -E1000_ERR_EEPROM;
3896 }
3897
3898 return E1000_SUCCESS;
3899 }
3900
3901 /**
3902 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3903 * @hw: Struct containing variables accessed by shared code
3904 * @offset: offset of word in the EEPROM to read
3905 * @data: word read from the EEPROM
3906 * @words: number of words to read
3907 */
e1000_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3908 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3909 {
3910 s32 ret;
3911 spin_lock(&e1000_eeprom_lock);
3912 ret = e1000_do_read_eeprom(hw, offset, words, data);
3913 spin_unlock(&e1000_eeprom_lock);
3914 return ret;
3915 }
3916
e1000_do_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3917 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3918 u16 *data)
3919 {
3920 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3921 u32 i = 0;
3922
3923 e_dbg("e1000_read_eeprom");
3924
3925 if (hw->mac_type == e1000_ce4100) {
3926 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3927 data);
3928 return E1000_SUCCESS;
3929 }
3930
3931 /* If eeprom is not yet detected, do so now */
3932 if (eeprom->word_size == 0)
3933 e1000_init_eeprom_params(hw);
3934
3935 /* A check for invalid values: offset too large, too many words, and not
3936 * enough words.
3937 */
3938 if ((offset >= eeprom->word_size)
3939 || (words > eeprom->word_size - offset) || (words == 0)) {
3940 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3941 "size = %d\n", offset, eeprom->word_size);
3942 return -E1000_ERR_EEPROM;
3943 }
3944
3945 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3946 * directly. In this case, we need to acquire the EEPROM so that
3947 * FW or other port software does not interrupt.
3948 */
3949 /* Prepare the EEPROM for bit-bang reading */
3950 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3951 return -E1000_ERR_EEPROM;
3952
3953 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
3954 * acquired the EEPROM at this point, so any returns should release it */
3955 if (eeprom->type == e1000_eeprom_spi) {
3956 u16 word_in;
3957 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3958
3959 if (e1000_spi_eeprom_ready(hw)) {
3960 e1000_release_eeprom(hw);
3961 return -E1000_ERR_EEPROM;
3962 }
3963
3964 e1000_standby_eeprom(hw);
3965
3966 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3967 if ((eeprom->address_bits == 8) && (offset >= 128))
3968 read_opcode |= EEPROM_A8_OPCODE_SPI;
3969
3970 /* Send the READ command (opcode + addr) */
3971 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3972 e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3973 eeprom->address_bits);
3974
3975 /* Read the data. The address of the eeprom internally increments with
3976 * each byte (spi) being read, saving on the overhead of eeprom setup
3977 * and tear-down. The address counter will roll over if reading beyond
3978 * the size of the eeprom, thus allowing the entire memory to be read
3979 * starting from any offset. */
3980 for (i = 0; i < words; i++) {
3981 word_in = e1000_shift_in_ee_bits(hw, 16);
3982 data[i] = (word_in >> 8) | (word_in << 8);
3983 }
3984 } else if (eeprom->type == e1000_eeprom_microwire) {
3985 for (i = 0; i < words; i++) {
3986 /* Send the READ command (opcode + addr) */
3987 e1000_shift_out_ee_bits(hw,
3988 EEPROM_READ_OPCODE_MICROWIRE,
3989 eeprom->opcode_bits);
3990 e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3991 eeprom->address_bits);
3992
3993 /* Read the data. For microwire, each word requires the overhead
3994 * of eeprom setup and tear-down. */
3995 data[i] = e1000_shift_in_ee_bits(hw, 16);
3996 e1000_standby_eeprom(hw);
3997 }
3998 }
3999
4000 /* End this read operation */
4001 e1000_release_eeprom(hw);
4002
4003 return E1000_SUCCESS;
4004 }
4005
4006 /**
4007 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
4008 * @hw: Struct containing variables accessed by shared code
4009 *
4010 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4011 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4012 * valid.
4013 */
e1000_validate_eeprom_checksum(struct e1000_hw * hw)4014 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4015 {
4016 u16 checksum = 0;
4017 u16 i, eeprom_data;
4018
4019 e_dbg("e1000_validate_eeprom_checksum");
4020
4021 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4022 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4023 e_dbg("EEPROM Read Error\n");
4024 return -E1000_ERR_EEPROM;
4025 }
4026 checksum += eeprom_data;
4027 }
4028
4029 #ifdef CONFIG_PARISC
4030 /* This is a signature and not a checksum on HP c8000 */
4031 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4032 return E1000_SUCCESS;
4033
4034 #endif
4035 if (checksum == (u16) EEPROM_SUM)
4036 return E1000_SUCCESS;
4037 else {
4038 e_dbg("EEPROM Checksum Invalid\n");
4039 return -E1000_ERR_EEPROM;
4040 }
4041 }
4042
4043 /**
4044 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4045 * @hw: Struct containing variables accessed by shared code
4046 *
4047 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4048 * Writes the difference to word offset 63 of the EEPROM.
4049 */
e1000_update_eeprom_checksum(struct e1000_hw * hw)4050 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4051 {
4052 u16 checksum = 0;
4053 u16 i, eeprom_data;
4054
4055 e_dbg("e1000_update_eeprom_checksum");
4056
4057 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4058 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4059 e_dbg("EEPROM Read Error\n");
4060 return -E1000_ERR_EEPROM;
4061 }
4062 checksum += eeprom_data;
4063 }
4064 checksum = (u16) EEPROM_SUM - checksum;
4065 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4066 e_dbg("EEPROM Write Error\n");
4067 return -E1000_ERR_EEPROM;
4068 }
4069 return E1000_SUCCESS;
4070 }
4071
4072 /**
4073 * e1000_write_eeprom - write words to the different EEPROM types.
4074 * @hw: Struct containing variables accessed by shared code
4075 * @offset: offset within the EEPROM to be written to
4076 * @words: number of words to write
4077 * @data: 16 bit word to be written to the EEPROM
4078 *
4079 * If e1000_update_eeprom_checksum is not called after this function, the
4080 * EEPROM will most likely contain an invalid checksum.
4081 */
e1000_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4082 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4083 {
4084 s32 ret;
4085 spin_lock(&e1000_eeprom_lock);
4086 ret = e1000_do_write_eeprom(hw, offset, words, data);
4087 spin_unlock(&e1000_eeprom_lock);
4088 return ret;
4089 }
4090
e1000_do_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4091 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4092 u16 *data)
4093 {
4094 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4095 s32 status = 0;
4096
4097 e_dbg("e1000_write_eeprom");
4098
4099 if (hw->mac_type == e1000_ce4100) {
4100 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4101 data);
4102 return E1000_SUCCESS;
4103 }
4104
4105 /* If eeprom is not yet detected, do so now */
4106 if (eeprom->word_size == 0)
4107 e1000_init_eeprom_params(hw);
4108
4109 /* A check for invalid values: offset too large, too many words, and not
4110 * enough words.
4111 */
4112 if ((offset >= eeprom->word_size)
4113 || (words > eeprom->word_size - offset) || (words == 0)) {
4114 e_dbg("\"words\" parameter out of bounds\n");
4115 return -E1000_ERR_EEPROM;
4116 }
4117
4118 /* Prepare the EEPROM for writing */
4119 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4120 return -E1000_ERR_EEPROM;
4121
4122 if (eeprom->type == e1000_eeprom_microwire) {
4123 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4124 } else {
4125 status = e1000_write_eeprom_spi(hw, offset, words, data);
4126 msleep(10);
4127 }
4128
4129 /* Done with writing */
4130 e1000_release_eeprom(hw);
4131
4132 return status;
4133 }
4134
4135 /**
4136 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4137 * @hw: Struct containing variables accessed by shared code
4138 * @offset: offset within the EEPROM to be written to
4139 * @words: number of words to write
4140 * @data: pointer to array of 8 bit words to be written to the EEPROM
4141 */
e1000_write_eeprom_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4142 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4143 u16 *data)
4144 {
4145 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4146 u16 widx = 0;
4147
4148 e_dbg("e1000_write_eeprom_spi");
4149
4150 while (widx < words) {
4151 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4152
4153 if (e1000_spi_eeprom_ready(hw))
4154 return -E1000_ERR_EEPROM;
4155
4156 e1000_standby_eeprom(hw);
4157
4158 /* Send the WRITE ENABLE command (8 bit opcode ) */
4159 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4160 eeprom->opcode_bits);
4161
4162 e1000_standby_eeprom(hw);
4163
4164 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4165 if ((eeprom->address_bits == 8) && (offset >= 128))
4166 write_opcode |= EEPROM_A8_OPCODE_SPI;
4167
4168 /* Send the Write command (8-bit opcode + addr) */
4169 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4170
4171 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4172 eeprom->address_bits);
4173
4174 /* Send the data */
4175
4176 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4177 while (widx < words) {
4178 u16 word_out = data[widx];
4179 word_out = (word_out >> 8) | (word_out << 8);
4180 e1000_shift_out_ee_bits(hw, word_out, 16);
4181 widx++;
4182
4183 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4184 * operation, while the smaller eeproms are capable of an 8-byte
4185 * PAGE WRITE operation. Break the inner loop to pass new address
4186 */
4187 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4188 e1000_standby_eeprom(hw);
4189 break;
4190 }
4191 }
4192 }
4193
4194 return E1000_SUCCESS;
4195 }
4196
4197 /**
4198 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4199 * @hw: Struct containing variables accessed by shared code
4200 * @offset: offset within the EEPROM to be written to
4201 * @words: number of words to write
4202 * @data: pointer to array of 8 bit words to be written to the EEPROM
4203 */
e1000_write_eeprom_microwire(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4204 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4205 u16 words, u16 *data)
4206 {
4207 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4208 u32 eecd;
4209 u16 words_written = 0;
4210 u16 i = 0;
4211
4212 e_dbg("e1000_write_eeprom_microwire");
4213
4214 /* Send the write enable command to the EEPROM (3-bit opcode plus
4215 * 6/8-bit dummy address beginning with 11). It's less work to include
4216 * the 11 of the dummy address as part of the opcode than it is to shift
4217 * it over the correct number of bits for the address. This puts the
4218 * EEPROM into write/erase mode.
4219 */
4220 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4221 (u16) (eeprom->opcode_bits + 2));
4222
4223 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4224
4225 /* Prepare the EEPROM */
4226 e1000_standby_eeprom(hw);
4227
4228 while (words_written < words) {
4229 /* Send the Write command (3-bit opcode + addr) */
4230 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4231 eeprom->opcode_bits);
4232
4233 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4234 eeprom->address_bits);
4235
4236 /* Send the data */
4237 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4238
4239 /* Toggle the CS line. This in effect tells the EEPROM to execute
4240 * the previous command.
4241 */
4242 e1000_standby_eeprom(hw);
4243
4244 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
4245 * signal that the command has been completed by raising the DO signal.
4246 * If DO does not go high in 10 milliseconds, then error out.
4247 */
4248 for (i = 0; i < 200; i++) {
4249 eecd = er32(EECD);
4250 if (eecd & E1000_EECD_DO)
4251 break;
4252 udelay(50);
4253 }
4254 if (i == 200) {
4255 e_dbg("EEPROM Write did not complete\n");
4256 return -E1000_ERR_EEPROM;
4257 }
4258
4259 /* Recover from write */
4260 e1000_standby_eeprom(hw);
4261
4262 words_written++;
4263 }
4264
4265 /* Send the write disable command to the EEPROM (3-bit opcode plus
4266 * 6/8-bit dummy address beginning with 10). It's less work to include
4267 * the 10 of the dummy address as part of the opcode than it is to shift
4268 * it over the correct number of bits for the address. This takes the
4269 * EEPROM out of write/erase mode.
4270 */
4271 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4272 (u16) (eeprom->opcode_bits + 2));
4273
4274 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4275
4276 return E1000_SUCCESS;
4277 }
4278
4279 /**
4280 * e1000_read_mac_addr - read the adapters MAC from eeprom
4281 * @hw: Struct containing variables accessed by shared code
4282 *
4283 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4284 * second function of dual function devices
4285 */
e1000_read_mac_addr(struct e1000_hw * hw)4286 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4287 {
4288 u16 offset;
4289 u16 eeprom_data, i;
4290
4291 e_dbg("e1000_read_mac_addr");
4292
4293 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4294 offset = i >> 1;
4295 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4296 e_dbg("EEPROM Read Error\n");
4297 return -E1000_ERR_EEPROM;
4298 }
4299 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4300 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4301 }
4302
4303 switch (hw->mac_type) {
4304 default:
4305 break;
4306 case e1000_82546:
4307 case e1000_82546_rev_3:
4308 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4309 hw->perm_mac_addr[5] ^= 0x01;
4310 break;
4311 }
4312
4313 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4314 hw->mac_addr[i] = hw->perm_mac_addr[i];
4315 return E1000_SUCCESS;
4316 }
4317
4318 /**
4319 * e1000_init_rx_addrs - Initializes receive address filters.
4320 * @hw: Struct containing variables accessed by shared code
4321 *
4322 * Places the MAC address in receive address register 0 and clears the rest
4323 * of the receive address registers. Clears the multicast table. Assumes
4324 * the receiver is in reset when the routine is called.
4325 */
e1000_init_rx_addrs(struct e1000_hw * hw)4326 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4327 {
4328 u32 i;
4329 u32 rar_num;
4330
4331 e_dbg("e1000_init_rx_addrs");
4332
4333 /* Setup the receive address. */
4334 e_dbg("Programming MAC Address into RAR[0]\n");
4335
4336 e1000_rar_set(hw, hw->mac_addr, 0);
4337
4338 rar_num = E1000_RAR_ENTRIES;
4339
4340 /* Zero out the other 15 receive addresses. */
4341 e_dbg("Clearing RAR[1-15]\n");
4342 for (i = 1; i < rar_num; i++) {
4343 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4344 E1000_WRITE_FLUSH();
4345 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4346 E1000_WRITE_FLUSH();
4347 }
4348 }
4349
4350 /**
4351 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4352 * @hw: Struct containing variables accessed by shared code
4353 * @mc_addr: the multicast address to hash
4354 */
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)4355 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4356 {
4357 u32 hash_value = 0;
4358
4359 /* The portion of the address that is used for the hash table is
4360 * determined by the mc_filter_type setting.
4361 */
4362 switch (hw->mc_filter_type) {
4363 /* [0] [1] [2] [3] [4] [5]
4364 * 01 AA 00 12 34 56
4365 * LSB MSB
4366 */
4367 case 0:
4368 /* [47:36] i.e. 0x563 for above example address */
4369 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4370 break;
4371 case 1:
4372 /* [46:35] i.e. 0xAC6 for above example address */
4373 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4374 break;
4375 case 2:
4376 /* [45:34] i.e. 0x5D8 for above example address */
4377 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4378 break;
4379 case 3:
4380 /* [43:32] i.e. 0x634 for above example address */
4381 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4382 break;
4383 }
4384
4385 hash_value &= 0xFFF;
4386 return hash_value;
4387 }
4388
4389 /**
4390 * e1000_rar_set - Puts an ethernet address into a receive address register.
4391 * @hw: Struct containing variables accessed by shared code
4392 * @addr: Address to put into receive address register
4393 * @index: Receive address register to write
4394 */
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)4395 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4396 {
4397 u32 rar_low, rar_high;
4398
4399 /* HW expects these in little endian so we reverse the byte order
4400 * from network order (big endian) to little endian
4401 */
4402 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4403 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4404 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4405
4406 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4407 * unit hang.
4408 *
4409 * Description:
4410 * If there are any Rx frames queued up or otherwise present in the HW
4411 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4412 * hang. To work around this issue, we have to disable receives and
4413 * flush out all Rx frames before we enable RSS. To do so, we modify we
4414 * redirect all Rx traffic to manageability and then reset the HW.
4415 * This flushes away Rx frames, and (since the redirections to
4416 * manageability persists across resets) keeps new ones from coming in
4417 * while we work. Then, we clear the Address Valid AV bit for all MAC
4418 * addresses and undo the re-direction to manageability.
4419 * Now, frames are coming in again, but the MAC won't accept them, so
4420 * far so good. We now proceed to initialize RSS (if necessary) and
4421 * configure the Rx unit. Last, we re-enable the AV bits and continue
4422 * on our merry way.
4423 */
4424 switch (hw->mac_type) {
4425 default:
4426 /* Indicate to hardware the Address is Valid. */
4427 rar_high |= E1000_RAH_AV;
4428 break;
4429 }
4430
4431 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4432 E1000_WRITE_FLUSH();
4433 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4434 E1000_WRITE_FLUSH();
4435 }
4436
4437 /**
4438 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4439 * @hw: Struct containing variables accessed by shared code
4440 * @offset: Offset in VLAN filer table to write
4441 * @value: Value to write into VLAN filter table
4442 */
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)4443 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4444 {
4445 u32 temp;
4446
4447 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4448 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4449 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4450 E1000_WRITE_FLUSH();
4451 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4452 E1000_WRITE_FLUSH();
4453 } else {
4454 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4455 E1000_WRITE_FLUSH();
4456 }
4457 }
4458
4459 /**
4460 * e1000_clear_vfta - Clears the VLAN filer table
4461 * @hw: Struct containing variables accessed by shared code
4462 */
e1000_clear_vfta(struct e1000_hw * hw)4463 static void e1000_clear_vfta(struct e1000_hw *hw)
4464 {
4465 u32 offset;
4466 u32 vfta_value = 0;
4467 u32 vfta_offset = 0;
4468 u32 vfta_bit_in_reg = 0;
4469
4470 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4471 /* If the offset we want to clear is the same offset of the
4472 * manageability VLAN ID, then clear all bits except that of the
4473 * manageability unit */
4474 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4475 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4476 E1000_WRITE_FLUSH();
4477 }
4478 }
4479
e1000_id_led_init(struct e1000_hw * hw)4480 static s32 e1000_id_led_init(struct e1000_hw *hw)
4481 {
4482 u32 ledctl;
4483 const u32 ledctl_mask = 0x000000FF;
4484 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4485 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4486 u16 eeprom_data, i, temp;
4487 const u16 led_mask = 0x0F;
4488
4489 e_dbg("e1000_id_led_init");
4490
4491 if (hw->mac_type < e1000_82540) {
4492 /* Nothing to do */
4493 return E1000_SUCCESS;
4494 }
4495
4496 ledctl = er32(LEDCTL);
4497 hw->ledctl_default = ledctl;
4498 hw->ledctl_mode1 = hw->ledctl_default;
4499 hw->ledctl_mode2 = hw->ledctl_default;
4500
4501 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4502 e_dbg("EEPROM Read Error\n");
4503 return -E1000_ERR_EEPROM;
4504 }
4505
4506 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4507 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4508 eeprom_data = ID_LED_DEFAULT;
4509 }
4510
4511 for (i = 0; i < 4; i++) {
4512 temp = (eeprom_data >> (i << 2)) & led_mask;
4513 switch (temp) {
4514 case ID_LED_ON1_DEF2:
4515 case ID_LED_ON1_ON2:
4516 case ID_LED_ON1_OFF2:
4517 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4518 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4519 break;
4520 case ID_LED_OFF1_DEF2:
4521 case ID_LED_OFF1_ON2:
4522 case ID_LED_OFF1_OFF2:
4523 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4524 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4525 break;
4526 default:
4527 /* Do nothing */
4528 break;
4529 }
4530 switch (temp) {
4531 case ID_LED_DEF1_ON2:
4532 case ID_LED_ON1_ON2:
4533 case ID_LED_OFF1_ON2:
4534 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4535 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4536 break;
4537 case ID_LED_DEF1_OFF2:
4538 case ID_LED_ON1_OFF2:
4539 case ID_LED_OFF1_OFF2:
4540 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4541 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4542 break;
4543 default:
4544 /* Do nothing */
4545 break;
4546 }
4547 }
4548 return E1000_SUCCESS;
4549 }
4550
4551 /**
4552 * e1000_setup_led
4553 * @hw: Struct containing variables accessed by shared code
4554 *
4555 * Prepares SW controlable LED for use and saves the current state of the LED.
4556 */
e1000_setup_led(struct e1000_hw * hw)4557 s32 e1000_setup_led(struct e1000_hw *hw)
4558 {
4559 u32 ledctl;
4560 s32 ret_val = E1000_SUCCESS;
4561
4562 e_dbg("e1000_setup_led");
4563
4564 switch (hw->mac_type) {
4565 case e1000_82542_rev2_0:
4566 case e1000_82542_rev2_1:
4567 case e1000_82543:
4568 case e1000_82544:
4569 /* No setup necessary */
4570 break;
4571 case e1000_82541:
4572 case e1000_82547:
4573 case e1000_82541_rev_2:
4574 case e1000_82547_rev_2:
4575 /* Turn off PHY Smart Power Down (if enabled) */
4576 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4577 &hw->phy_spd_default);
4578 if (ret_val)
4579 return ret_val;
4580 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4581 (u16) (hw->phy_spd_default &
4582 ~IGP01E1000_GMII_SPD));
4583 if (ret_val)
4584 return ret_val;
4585 /* Fall Through */
4586 default:
4587 if (hw->media_type == e1000_media_type_fiber) {
4588 ledctl = er32(LEDCTL);
4589 /* Save current LEDCTL settings */
4590 hw->ledctl_default = ledctl;
4591 /* Turn off LED0 */
4592 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4593 E1000_LEDCTL_LED0_BLINK |
4594 E1000_LEDCTL_LED0_MODE_MASK);
4595 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4596 E1000_LEDCTL_LED0_MODE_SHIFT);
4597 ew32(LEDCTL, ledctl);
4598 } else if (hw->media_type == e1000_media_type_copper)
4599 ew32(LEDCTL, hw->ledctl_mode1);
4600 break;
4601 }
4602
4603 return E1000_SUCCESS;
4604 }
4605
4606 /**
4607 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4608 * @hw: Struct containing variables accessed by shared code
4609 */
e1000_cleanup_led(struct e1000_hw * hw)4610 s32 e1000_cleanup_led(struct e1000_hw *hw)
4611 {
4612 s32 ret_val = E1000_SUCCESS;
4613
4614 e_dbg("e1000_cleanup_led");
4615
4616 switch (hw->mac_type) {
4617 case e1000_82542_rev2_0:
4618 case e1000_82542_rev2_1:
4619 case e1000_82543:
4620 case e1000_82544:
4621 /* No cleanup necessary */
4622 break;
4623 case e1000_82541:
4624 case e1000_82547:
4625 case e1000_82541_rev_2:
4626 case e1000_82547_rev_2:
4627 /* Turn on PHY Smart Power Down (if previously enabled) */
4628 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4629 hw->phy_spd_default);
4630 if (ret_val)
4631 return ret_val;
4632 /* Fall Through */
4633 default:
4634 /* Restore LEDCTL settings */
4635 ew32(LEDCTL, hw->ledctl_default);
4636 break;
4637 }
4638
4639 return E1000_SUCCESS;
4640 }
4641
4642 /**
4643 * e1000_led_on - Turns on the software controllable LED
4644 * @hw: Struct containing variables accessed by shared code
4645 */
e1000_led_on(struct e1000_hw * hw)4646 s32 e1000_led_on(struct e1000_hw *hw)
4647 {
4648 u32 ctrl = er32(CTRL);
4649
4650 e_dbg("e1000_led_on");
4651
4652 switch (hw->mac_type) {
4653 case e1000_82542_rev2_0:
4654 case e1000_82542_rev2_1:
4655 case e1000_82543:
4656 /* Set SW Defineable Pin 0 to turn on the LED */
4657 ctrl |= E1000_CTRL_SWDPIN0;
4658 ctrl |= E1000_CTRL_SWDPIO0;
4659 break;
4660 case e1000_82544:
4661 if (hw->media_type == e1000_media_type_fiber) {
4662 /* Set SW Defineable Pin 0 to turn on the LED */
4663 ctrl |= E1000_CTRL_SWDPIN0;
4664 ctrl |= E1000_CTRL_SWDPIO0;
4665 } else {
4666 /* Clear SW Defineable Pin 0 to turn on the LED */
4667 ctrl &= ~E1000_CTRL_SWDPIN0;
4668 ctrl |= E1000_CTRL_SWDPIO0;
4669 }
4670 break;
4671 default:
4672 if (hw->media_type == e1000_media_type_fiber) {
4673 /* Clear SW Defineable Pin 0 to turn on the LED */
4674 ctrl &= ~E1000_CTRL_SWDPIN0;
4675 ctrl |= E1000_CTRL_SWDPIO0;
4676 } else if (hw->media_type == e1000_media_type_copper) {
4677 ew32(LEDCTL, hw->ledctl_mode2);
4678 return E1000_SUCCESS;
4679 }
4680 break;
4681 }
4682
4683 ew32(CTRL, ctrl);
4684
4685 return E1000_SUCCESS;
4686 }
4687
4688 /**
4689 * e1000_led_off - Turns off the software controllable LED
4690 * @hw: Struct containing variables accessed by shared code
4691 */
e1000_led_off(struct e1000_hw * hw)4692 s32 e1000_led_off(struct e1000_hw *hw)
4693 {
4694 u32 ctrl = er32(CTRL);
4695
4696 e_dbg("e1000_led_off");
4697
4698 switch (hw->mac_type) {
4699 case e1000_82542_rev2_0:
4700 case e1000_82542_rev2_1:
4701 case e1000_82543:
4702 /* Clear SW Defineable Pin 0 to turn off the LED */
4703 ctrl &= ~E1000_CTRL_SWDPIN0;
4704 ctrl |= E1000_CTRL_SWDPIO0;
4705 break;
4706 case e1000_82544:
4707 if (hw->media_type == e1000_media_type_fiber) {
4708 /* Clear SW Defineable Pin 0 to turn off the LED */
4709 ctrl &= ~E1000_CTRL_SWDPIN0;
4710 ctrl |= E1000_CTRL_SWDPIO0;
4711 } else {
4712 /* Set SW Defineable Pin 0 to turn off the LED */
4713 ctrl |= E1000_CTRL_SWDPIN0;
4714 ctrl |= E1000_CTRL_SWDPIO0;
4715 }
4716 break;
4717 default:
4718 if (hw->media_type == e1000_media_type_fiber) {
4719 /* Set SW Defineable Pin 0 to turn off the LED */
4720 ctrl |= E1000_CTRL_SWDPIN0;
4721 ctrl |= E1000_CTRL_SWDPIO0;
4722 } else if (hw->media_type == e1000_media_type_copper) {
4723 ew32(LEDCTL, hw->ledctl_mode1);
4724 return E1000_SUCCESS;
4725 }
4726 break;
4727 }
4728
4729 ew32(CTRL, ctrl);
4730
4731 return E1000_SUCCESS;
4732 }
4733
4734 /**
4735 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4736 * @hw: Struct containing variables accessed by shared code
4737 */
e1000_clear_hw_cntrs(struct e1000_hw * hw)4738 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4739 {
4740 volatile u32 temp;
4741
4742 temp = er32(CRCERRS);
4743 temp = er32(SYMERRS);
4744 temp = er32(MPC);
4745 temp = er32(SCC);
4746 temp = er32(ECOL);
4747 temp = er32(MCC);
4748 temp = er32(LATECOL);
4749 temp = er32(COLC);
4750 temp = er32(DC);
4751 temp = er32(SEC);
4752 temp = er32(RLEC);
4753 temp = er32(XONRXC);
4754 temp = er32(XONTXC);
4755 temp = er32(XOFFRXC);
4756 temp = er32(XOFFTXC);
4757 temp = er32(FCRUC);
4758
4759 temp = er32(PRC64);
4760 temp = er32(PRC127);
4761 temp = er32(PRC255);
4762 temp = er32(PRC511);
4763 temp = er32(PRC1023);
4764 temp = er32(PRC1522);
4765
4766 temp = er32(GPRC);
4767 temp = er32(BPRC);
4768 temp = er32(MPRC);
4769 temp = er32(GPTC);
4770 temp = er32(GORCL);
4771 temp = er32(GORCH);
4772 temp = er32(GOTCL);
4773 temp = er32(GOTCH);
4774 temp = er32(RNBC);
4775 temp = er32(RUC);
4776 temp = er32(RFC);
4777 temp = er32(ROC);
4778 temp = er32(RJC);
4779 temp = er32(TORL);
4780 temp = er32(TORH);
4781 temp = er32(TOTL);
4782 temp = er32(TOTH);
4783 temp = er32(TPR);
4784 temp = er32(TPT);
4785
4786 temp = er32(PTC64);
4787 temp = er32(PTC127);
4788 temp = er32(PTC255);
4789 temp = er32(PTC511);
4790 temp = er32(PTC1023);
4791 temp = er32(PTC1522);
4792
4793 temp = er32(MPTC);
4794 temp = er32(BPTC);
4795
4796 if (hw->mac_type < e1000_82543)
4797 return;
4798
4799 temp = er32(ALGNERRC);
4800 temp = er32(RXERRC);
4801 temp = er32(TNCRS);
4802 temp = er32(CEXTERR);
4803 temp = er32(TSCTC);
4804 temp = er32(TSCTFC);
4805
4806 if (hw->mac_type <= e1000_82544)
4807 return;
4808
4809 temp = er32(MGTPRC);
4810 temp = er32(MGTPDC);
4811 temp = er32(MGTPTC);
4812 }
4813
4814 /**
4815 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4816 * @hw: Struct containing variables accessed by shared code
4817 *
4818 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4819 * hw->ifs_params_forced to true. However, you must initialize hw->
4820 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4821 * before calling this function.
4822 */
e1000_reset_adaptive(struct e1000_hw * hw)4823 void e1000_reset_adaptive(struct e1000_hw *hw)
4824 {
4825 e_dbg("e1000_reset_adaptive");
4826
4827 if (hw->adaptive_ifs) {
4828 if (!hw->ifs_params_forced) {
4829 hw->current_ifs_val = 0;
4830 hw->ifs_min_val = IFS_MIN;
4831 hw->ifs_max_val = IFS_MAX;
4832 hw->ifs_step_size = IFS_STEP;
4833 hw->ifs_ratio = IFS_RATIO;
4834 }
4835 hw->in_ifs_mode = false;
4836 ew32(AIT, 0);
4837 } else {
4838 e_dbg("Not in Adaptive IFS mode!\n");
4839 }
4840 }
4841
4842 /**
4843 * e1000_update_adaptive - update adaptive IFS
4844 * @hw: Struct containing variables accessed by shared code
4845 * @tx_packets: Number of transmits since last callback
4846 * @total_collisions: Number of collisions since last callback
4847 *
4848 * Called during the callback/watchdog routine to update IFS value based on
4849 * the ratio of transmits to collisions.
4850 */
e1000_update_adaptive(struct e1000_hw * hw)4851 void e1000_update_adaptive(struct e1000_hw *hw)
4852 {
4853 e_dbg("e1000_update_adaptive");
4854
4855 if (hw->adaptive_ifs) {
4856 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4857 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4858 hw->in_ifs_mode = true;
4859 if (hw->current_ifs_val < hw->ifs_max_val) {
4860 if (hw->current_ifs_val == 0)
4861 hw->current_ifs_val =
4862 hw->ifs_min_val;
4863 else
4864 hw->current_ifs_val +=
4865 hw->ifs_step_size;
4866 ew32(AIT, hw->current_ifs_val);
4867 }
4868 }
4869 } else {
4870 if (hw->in_ifs_mode
4871 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4872 hw->current_ifs_val = 0;
4873 hw->in_ifs_mode = false;
4874 ew32(AIT, 0);
4875 }
4876 }
4877 } else {
4878 e_dbg("Not in Adaptive IFS mode!\n");
4879 }
4880 }
4881
4882 /**
4883 * e1000_tbi_adjust_stats
4884 * @hw: Struct containing variables accessed by shared code
4885 * @frame_len: The length of the frame in question
4886 * @mac_addr: The Ethernet destination address of the frame in question
4887 *
4888 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4889 */
e1000_tbi_adjust_stats(struct e1000_hw * hw,struct e1000_hw_stats * stats,u32 frame_len,u8 * mac_addr)4890 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4891 u32 frame_len, u8 *mac_addr)
4892 {
4893 u64 carry_bit;
4894
4895 /* First adjust the frame length. */
4896 frame_len--;
4897 /* We need to adjust the statistics counters, since the hardware
4898 * counters overcount this packet as a CRC error and undercount
4899 * the packet as a good packet
4900 */
4901 /* This packet should not be counted as a CRC error. */
4902 stats->crcerrs--;
4903 /* This packet does count as a Good Packet Received. */
4904 stats->gprc++;
4905
4906 /* Adjust the Good Octets received counters */
4907 carry_bit = 0x80000000 & stats->gorcl;
4908 stats->gorcl += frame_len;
4909 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4910 * Received Count) was one before the addition,
4911 * AND it is zero after, then we lost the carry out,
4912 * need to add one to Gorch (Good Octets Received Count High).
4913 * This could be simplified if all environments supported
4914 * 64-bit integers.
4915 */
4916 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4917 stats->gorch++;
4918 /* Is this a broadcast or multicast? Check broadcast first,
4919 * since the test for a multicast frame will test positive on
4920 * a broadcast frame.
4921 */
4922 if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4923 /* Broadcast packet */
4924 stats->bprc++;
4925 else if (*mac_addr & 0x01)
4926 /* Multicast packet */
4927 stats->mprc++;
4928
4929 if (frame_len == hw->max_frame_size) {
4930 /* In this case, the hardware has overcounted the number of
4931 * oversize frames.
4932 */
4933 if (stats->roc > 0)
4934 stats->roc--;
4935 }
4936
4937 /* Adjust the bin counters when the extra byte put the frame in the
4938 * wrong bin. Remember that the frame_len was adjusted above.
4939 */
4940 if (frame_len == 64) {
4941 stats->prc64++;
4942 stats->prc127--;
4943 } else if (frame_len == 127) {
4944 stats->prc127++;
4945 stats->prc255--;
4946 } else if (frame_len == 255) {
4947 stats->prc255++;
4948 stats->prc511--;
4949 } else if (frame_len == 511) {
4950 stats->prc511++;
4951 stats->prc1023--;
4952 } else if (frame_len == 1023) {
4953 stats->prc1023++;
4954 stats->prc1522--;
4955 } else if (frame_len == 1522) {
4956 stats->prc1522++;
4957 }
4958 }
4959
4960 /**
4961 * e1000_get_bus_info
4962 * @hw: Struct containing variables accessed by shared code
4963 *
4964 * Gets the current PCI bus type, speed, and width of the hardware
4965 */
e1000_get_bus_info(struct e1000_hw * hw)4966 void e1000_get_bus_info(struct e1000_hw *hw)
4967 {
4968 u32 status;
4969
4970 switch (hw->mac_type) {
4971 case e1000_82542_rev2_0:
4972 case e1000_82542_rev2_1:
4973 hw->bus_type = e1000_bus_type_pci;
4974 hw->bus_speed = e1000_bus_speed_unknown;
4975 hw->bus_width = e1000_bus_width_unknown;
4976 break;
4977 default:
4978 status = er32(STATUS);
4979 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4980 e1000_bus_type_pcix : e1000_bus_type_pci;
4981
4982 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4983 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4984 e1000_bus_speed_66 : e1000_bus_speed_120;
4985 } else if (hw->bus_type == e1000_bus_type_pci) {
4986 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4987 e1000_bus_speed_66 : e1000_bus_speed_33;
4988 } else {
4989 switch (status & E1000_STATUS_PCIX_SPEED) {
4990 case E1000_STATUS_PCIX_SPEED_66:
4991 hw->bus_speed = e1000_bus_speed_66;
4992 break;
4993 case E1000_STATUS_PCIX_SPEED_100:
4994 hw->bus_speed = e1000_bus_speed_100;
4995 break;
4996 case E1000_STATUS_PCIX_SPEED_133:
4997 hw->bus_speed = e1000_bus_speed_133;
4998 break;
4999 default:
5000 hw->bus_speed = e1000_bus_speed_reserved;
5001 break;
5002 }
5003 }
5004 hw->bus_width = (status & E1000_STATUS_BUS64) ?
5005 e1000_bus_width_64 : e1000_bus_width_32;
5006 break;
5007 }
5008 }
5009
5010 /**
5011 * e1000_write_reg_io
5012 * @hw: Struct containing variables accessed by shared code
5013 * @offset: offset to write to
5014 * @value: value to write
5015 *
5016 * Writes a value to one of the devices registers using port I/O (as opposed to
5017 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5018 */
e1000_write_reg_io(struct e1000_hw * hw,u32 offset,u32 value)5019 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
5020 {
5021 unsigned long io_addr = hw->io_base;
5022 unsigned long io_data = hw->io_base + 4;
5023
5024 e1000_io_write(hw, io_addr, offset);
5025 e1000_io_write(hw, io_data, value);
5026 }
5027
5028 /**
5029 * e1000_get_cable_length - Estimates the cable length.
5030 * @hw: Struct containing variables accessed by shared code
5031 * @min_length: The estimated minimum length
5032 * @max_length: The estimated maximum length
5033 *
5034 * returns: - E1000_ERR_XXX
5035 * E1000_SUCCESS
5036 *
5037 * This function always returns a ranged length (minimum & maximum).
5038 * So for M88 phy's, this function interprets the one value returned from the
5039 * register to the minimum and maximum range.
5040 * For IGP phy's, the function calculates the range by the AGC registers.
5041 */
e1000_get_cable_length(struct e1000_hw * hw,u16 * min_length,u16 * max_length)5042 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5043 u16 *max_length)
5044 {
5045 s32 ret_val;
5046 u16 agc_value = 0;
5047 u16 i, phy_data;
5048 u16 cable_length;
5049
5050 e_dbg("e1000_get_cable_length");
5051
5052 *min_length = *max_length = 0;
5053
5054 /* Use old method for Phy older than IGP */
5055 if (hw->phy_type == e1000_phy_m88) {
5056
5057 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5058 &phy_data);
5059 if (ret_val)
5060 return ret_val;
5061 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5062 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5063
5064 /* Convert the enum value to ranged values */
5065 switch (cable_length) {
5066 case e1000_cable_length_50:
5067 *min_length = 0;
5068 *max_length = e1000_igp_cable_length_50;
5069 break;
5070 case e1000_cable_length_50_80:
5071 *min_length = e1000_igp_cable_length_50;
5072 *max_length = e1000_igp_cable_length_80;
5073 break;
5074 case e1000_cable_length_80_110:
5075 *min_length = e1000_igp_cable_length_80;
5076 *max_length = e1000_igp_cable_length_110;
5077 break;
5078 case e1000_cable_length_110_140:
5079 *min_length = e1000_igp_cable_length_110;
5080 *max_length = e1000_igp_cable_length_140;
5081 break;
5082 case e1000_cable_length_140:
5083 *min_length = e1000_igp_cable_length_140;
5084 *max_length = e1000_igp_cable_length_170;
5085 break;
5086 default:
5087 return -E1000_ERR_PHY;
5088 break;
5089 }
5090 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5091 u16 cur_agc_value;
5092 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5093 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5094 IGP01E1000_PHY_AGC_A,
5095 IGP01E1000_PHY_AGC_B,
5096 IGP01E1000_PHY_AGC_C,
5097 IGP01E1000_PHY_AGC_D
5098 };
5099 /* Read the AGC registers for all channels */
5100 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5101
5102 ret_val =
5103 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5104 if (ret_val)
5105 return ret_val;
5106
5107 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5108
5109 /* Value bound check. */
5110 if ((cur_agc_value >=
5111 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5112 || (cur_agc_value == 0))
5113 return -E1000_ERR_PHY;
5114
5115 agc_value += cur_agc_value;
5116
5117 /* Update minimal AGC value. */
5118 if (min_agc_value > cur_agc_value)
5119 min_agc_value = cur_agc_value;
5120 }
5121
5122 /* Remove the minimal AGC result for length < 50m */
5123 if (agc_value <
5124 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5125 agc_value -= min_agc_value;
5126
5127 /* Get the average length of the remaining 3 channels */
5128 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5129 } else {
5130 /* Get the average length of all the 4 channels. */
5131 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5132 }
5133
5134 /* Set the range of the calculated length. */
5135 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5136 IGP01E1000_AGC_RANGE) > 0) ?
5137 (e1000_igp_cable_length_table[agc_value] -
5138 IGP01E1000_AGC_RANGE) : 0;
5139 *max_length = e1000_igp_cable_length_table[agc_value] +
5140 IGP01E1000_AGC_RANGE;
5141 }
5142
5143 return E1000_SUCCESS;
5144 }
5145
5146 /**
5147 * e1000_check_polarity - Check the cable polarity
5148 * @hw: Struct containing variables accessed by shared code
5149 * @polarity: output parameter : 0 - Polarity is not reversed
5150 * 1 - Polarity is reversed.
5151 *
5152 * returns: - E1000_ERR_XXX
5153 * E1000_SUCCESS
5154 *
5155 * For phy's older than IGP, this function simply reads the polarity bit in the
5156 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5157 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5158 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5159 * IGP01E1000_PHY_PCS_INIT_REG.
5160 */
e1000_check_polarity(struct e1000_hw * hw,e1000_rev_polarity * polarity)5161 static s32 e1000_check_polarity(struct e1000_hw *hw,
5162 e1000_rev_polarity *polarity)
5163 {
5164 s32 ret_val;
5165 u16 phy_data;
5166
5167 e_dbg("e1000_check_polarity");
5168
5169 if (hw->phy_type == e1000_phy_m88) {
5170 /* return the Polarity bit in the Status register. */
5171 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5172 &phy_data);
5173 if (ret_val)
5174 return ret_val;
5175 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5176 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5177 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5178
5179 } else if (hw->phy_type == e1000_phy_igp) {
5180 /* Read the Status register to check the speed */
5181 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5182 &phy_data);
5183 if (ret_val)
5184 return ret_val;
5185
5186 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5187 * find the polarity status */
5188 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5189 IGP01E1000_PSSR_SPEED_1000MBPS) {
5190
5191 /* Read the GIG initialization PCS register (0x00B4) */
5192 ret_val =
5193 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5194 &phy_data);
5195 if (ret_val)
5196 return ret_val;
5197
5198 /* Check the polarity bits */
5199 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5200 e1000_rev_polarity_reversed :
5201 e1000_rev_polarity_normal;
5202 } else {
5203 /* For 10 Mbps, read the polarity bit in the status register. (for
5204 * 100 Mbps this bit is always 0) */
5205 *polarity =
5206 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5207 e1000_rev_polarity_reversed :
5208 e1000_rev_polarity_normal;
5209 }
5210 }
5211 return E1000_SUCCESS;
5212 }
5213
5214 /**
5215 * e1000_check_downshift - Check if Downshift occurred
5216 * @hw: Struct containing variables accessed by shared code
5217 * @downshift: output parameter : 0 - No Downshift occurred.
5218 * 1 - Downshift occurred.
5219 *
5220 * returns: - E1000_ERR_XXX
5221 * E1000_SUCCESS
5222 *
5223 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5224 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5225 * Link Health register. In IGP this bit is latched high, so the driver must
5226 * read it immediately after link is established.
5227 */
e1000_check_downshift(struct e1000_hw * hw)5228 static s32 e1000_check_downshift(struct e1000_hw *hw)
5229 {
5230 s32 ret_val;
5231 u16 phy_data;
5232
5233 e_dbg("e1000_check_downshift");
5234
5235 if (hw->phy_type == e1000_phy_igp) {
5236 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5237 &phy_data);
5238 if (ret_val)
5239 return ret_val;
5240
5241 hw->speed_downgraded =
5242 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5243 } else if (hw->phy_type == e1000_phy_m88) {
5244 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5245 &phy_data);
5246 if (ret_val)
5247 return ret_val;
5248
5249 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5250 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5251 }
5252
5253 return E1000_SUCCESS;
5254 }
5255
5256 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5257 IGP01E1000_PHY_AGC_PARAM_A,
5258 IGP01E1000_PHY_AGC_PARAM_B,
5259 IGP01E1000_PHY_AGC_PARAM_C,
5260 IGP01E1000_PHY_AGC_PARAM_D
5261 };
5262
e1000_1000Mb_check_cable_length(struct e1000_hw * hw)5263 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5264 {
5265 u16 min_length, max_length;
5266 u16 phy_data, i;
5267 s32 ret_val;
5268
5269 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5270 if (ret_val)
5271 return ret_val;
5272
5273 if (hw->dsp_config_state != e1000_dsp_config_enabled)
5274 return 0;
5275
5276 if (min_length >= e1000_igp_cable_length_50) {
5277 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5278 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5279 &phy_data);
5280 if (ret_val)
5281 return ret_val;
5282
5283 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5284
5285 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5286 phy_data);
5287 if (ret_val)
5288 return ret_val;
5289 }
5290 hw->dsp_config_state = e1000_dsp_config_activated;
5291 } else {
5292 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5293 u32 idle_errs = 0;
5294
5295 /* clear previous idle error counts */
5296 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5297 if (ret_val)
5298 return ret_val;
5299
5300 for (i = 0; i < ffe_idle_err_timeout; i++) {
5301 udelay(1000);
5302 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5303 &phy_data);
5304 if (ret_val)
5305 return ret_val;
5306
5307 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5308 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5309 hw->ffe_config_state = e1000_ffe_config_active;
5310
5311 ret_val = e1000_write_phy_reg(hw,
5312 IGP01E1000_PHY_DSP_FFE,
5313 IGP01E1000_PHY_DSP_FFE_CM_CP);
5314 if (ret_val)
5315 return ret_val;
5316 break;
5317 }
5318
5319 if (idle_errs)
5320 ffe_idle_err_timeout =
5321 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5322 }
5323 }
5324
5325 return 0;
5326 }
5327
5328 /**
5329 * e1000_config_dsp_after_link_change
5330 * @hw: Struct containing variables accessed by shared code
5331 * @link_up: was link up at the time this was called
5332 *
5333 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5334 * E1000_SUCCESS at any other case.
5335 *
5336 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5337 * gigabit link is achieved to improve link quality.
5338 */
5339
e1000_config_dsp_after_link_change(struct e1000_hw * hw,bool link_up)5340 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5341 {
5342 s32 ret_val;
5343 u16 phy_data, phy_saved_data, speed, duplex, i;
5344
5345 e_dbg("e1000_config_dsp_after_link_change");
5346
5347 if (hw->phy_type != e1000_phy_igp)
5348 return E1000_SUCCESS;
5349
5350 if (link_up) {
5351 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5352 if (ret_val) {
5353 e_dbg("Error getting link speed and duplex\n");
5354 return ret_val;
5355 }
5356
5357 if (speed == SPEED_1000) {
5358 ret_val = e1000_1000Mb_check_cable_length(hw);
5359 if (ret_val)
5360 return ret_val;
5361 }
5362 } else {
5363 if (hw->dsp_config_state == e1000_dsp_config_activated) {
5364 /* Save off the current value of register 0x2F5B to be restored at
5365 * the end of the routines. */
5366 ret_val =
5367 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5368
5369 if (ret_val)
5370 return ret_val;
5371
5372 /* Disable the PHY transmitter */
5373 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5374
5375 if (ret_val)
5376 return ret_val;
5377
5378 msleep(20);
5379
5380 ret_val = e1000_write_phy_reg(hw, 0x0000,
5381 IGP01E1000_IEEE_FORCE_GIGA);
5382 if (ret_val)
5383 return ret_val;
5384 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5385 ret_val =
5386 e1000_read_phy_reg(hw, dsp_reg_array[i],
5387 &phy_data);
5388 if (ret_val)
5389 return ret_val;
5390
5391 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5392 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5393
5394 ret_val =
5395 e1000_write_phy_reg(hw, dsp_reg_array[i],
5396 phy_data);
5397 if (ret_val)
5398 return ret_val;
5399 }
5400
5401 ret_val = e1000_write_phy_reg(hw, 0x0000,
5402 IGP01E1000_IEEE_RESTART_AUTONEG);
5403 if (ret_val)
5404 return ret_val;
5405
5406 msleep(20);
5407
5408 /* Now enable the transmitter */
5409 ret_val =
5410 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5411
5412 if (ret_val)
5413 return ret_val;
5414
5415 hw->dsp_config_state = e1000_dsp_config_enabled;
5416 }
5417
5418 if (hw->ffe_config_state == e1000_ffe_config_active) {
5419 /* Save off the current value of register 0x2F5B to be restored at
5420 * the end of the routines. */
5421 ret_val =
5422 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5423
5424 if (ret_val)
5425 return ret_val;
5426
5427 /* Disable the PHY transmitter */
5428 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5429
5430 if (ret_val)
5431 return ret_val;
5432
5433 msleep(20);
5434
5435 ret_val = e1000_write_phy_reg(hw, 0x0000,
5436 IGP01E1000_IEEE_FORCE_GIGA);
5437 if (ret_val)
5438 return ret_val;
5439 ret_val =
5440 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5441 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5442 if (ret_val)
5443 return ret_val;
5444
5445 ret_val = e1000_write_phy_reg(hw, 0x0000,
5446 IGP01E1000_IEEE_RESTART_AUTONEG);
5447 if (ret_val)
5448 return ret_val;
5449
5450 msleep(20);
5451
5452 /* Now enable the transmitter */
5453 ret_val =
5454 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5455
5456 if (ret_val)
5457 return ret_val;
5458
5459 hw->ffe_config_state = e1000_ffe_config_enabled;
5460 }
5461 }
5462 return E1000_SUCCESS;
5463 }
5464
5465 /**
5466 * e1000_set_phy_mode - Set PHY to class A mode
5467 * @hw: Struct containing variables accessed by shared code
5468 *
5469 * Assumes the following operations will follow to enable the new class mode.
5470 * 1. Do a PHY soft reset
5471 * 2. Restart auto-negotiation or force link.
5472 */
e1000_set_phy_mode(struct e1000_hw * hw)5473 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5474 {
5475 s32 ret_val;
5476 u16 eeprom_data;
5477
5478 e_dbg("e1000_set_phy_mode");
5479
5480 if ((hw->mac_type == e1000_82545_rev_3) &&
5481 (hw->media_type == e1000_media_type_copper)) {
5482 ret_val =
5483 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5484 &eeprom_data);
5485 if (ret_val) {
5486 return ret_val;
5487 }
5488
5489 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5490 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5491 ret_val =
5492 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5493 0x000B);
5494 if (ret_val)
5495 return ret_val;
5496 ret_val =
5497 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5498 0x8104);
5499 if (ret_val)
5500 return ret_val;
5501
5502 hw->phy_reset_disable = false;
5503 }
5504 }
5505
5506 return E1000_SUCCESS;
5507 }
5508
5509 /**
5510 * e1000_set_d3_lplu_state - set d3 link power state
5511 * @hw: Struct containing variables accessed by shared code
5512 * @active: true to enable lplu false to disable lplu.
5513 *
5514 * This function sets the lplu state according to the active flag. When
5515 * activating lplu this function also disables smart speed and vise versa.
5516 * lplu will not be activated unless the device autonegotiation advertisement
5517 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5518 *
5519 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5520 * E1000_SUCCESS at any other case.
5521 */
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)5522 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5523 {
5524 s32 ret_val;
5525 u16 phy_data;
5526 e_dbg("e1000_set_d3_lplu_state");
5527
5528 if (hw->phy_type != e1000_phy_igp)
5529 return E1000_SUCCESS;
5530
5531 /* During driver activity LPLU should not be used or it will attain link
5532 * from the lowest speeds starting from 10Mbps. The capability is used for
5533 * Dx transitions and states */
5534 if (hw->mac_type == e1000_82541_rev_2
5535 || hw->mac_type == e1000_82547_rev_2) {
5536 ret_val =
5537 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5538 if (ret_val)
5539 return ret_val;
5540 }
5541
5542 if (!active) {
5543 if (hw->mac_type == e1000_82541_rev_2 ||
5544 hw->mac_type == e1000_82547_rev_2) {
5545 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5546 ret_val =
5547 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5548 phy_data);
5549 if (ret_val)
5550 return ret_val;
5551 }
5552
5553 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5554 * Dx states where the power conservation is most important. During
5555 * driver activity we should enable SmartSpeed, so performance is
5556 * maintained. */
5557 if (hw->smart_speed == e1000_smart_speed_on) {
5558 ret_val =
5559 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5560 &phy_data);
5561 if (ret_val)
5562 return ret_val;
5563
5564 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5565 ret_val =
5566 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5567 phy_data);
5568 if (ret_val)
5569 return ret_val;
5570 } else if (hw->smart_speed == e1000_smart_speed_off) {
5571 ret_val =
5572 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5573 &phy_data);
5574 if (ret_val)
5575 return ret_val;
5576
5577 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5578 ret_val =
5579 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5580 phy_data);
5581 if (ret_val)
5582 return ret_val;
5583 }
5584 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5585 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5586 || (hw->autoneg_advertised ==
5587 AUTONEG_ADVERTISE_10_100_ALL)) {
5588
5589 if (hw->mac_type == e1000_82541_rev_2 ||
5590 hw->mac_type == e1000_82547_rev_2) {
5591 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5592 ret_val =
5593 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5594 phy_data);
5595 if (ret_val)
5596 return ret_val;
5597 }
5598
5599 /* When LPLU is enabled we should disable SmartSpeed */
5600 ret_val =
5601 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5602 &phy_data);
5603 if (ret_val)
5604 return ret_val;
5605
5606 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5607 ret_val =
5608 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5609 phy_data);
5610 if (ret_val)
5611 return ret_val;
5612
5613 }
5614 return E1000_SUCCESS;
5615 }
5616
5617 /**
5618 * e1000_set_vco_speed
5619 * @hw: Struct containing variables accessed by shared code
5620 *
5621 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5622 */
e1000_set_vco_speed(struct e1000_hw * hw)5623 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5624 {
5625 s32 ret_val;
5626 u16 default_page = 0;
5627 u16 phy_data;
5628
5629 e_dbg("e1000_set_vco_speed");
5630
5631 switch (hw->mac_type) {
5632 case e1000_82545_rev_3:
5633 case e1000_82546_rev_3:
5634 break;
5635 default:
5636 return E1000_SUCCESS;
5637 }
5638
5639 /* Set PHY register 30, page 5, bit 8 to 0 */
5640
5641 ret_val =
5642 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5643 if (ret_val)
5644 return ret_val;
5645
5646 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5647 if (ret_val)
5648 return ret_val;
5649
5650 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5651 if (ret_val)
5652 return ret_val;
5653
5654 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5655 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5656 if (ret_val)
5657 return ret_val;
5658
5659 /* Set PHY register 30, page 4, bit 11 to 1 */
5660
5661 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5662 if (ret_val)
5663 return ret_val;
5664
5665 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5666 if (ret_val)
5667 return ret_val;
5668
5669 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5670 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5671 if (ret_val)
5672 return ret_val;
5673
5674 ret_val =
5675 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5676 if (ret_val)
5677 return ret_val;
5678
5679 return E1000_SUCCESS;
5680 }
5681
5682
5683 /**
5684 * e1000_enable_mng_pass_thru - check for bmc pass through
5685 * @hw: Struct containing variables accessed by shared code
5686 *
5687 * Verifies the hardware needs to allow ARPs to be processed by the host
5688 * returns: - true/false
5689 */
e1000_enable_mng_pass_thru(struct e1000_hw * hw)5690 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5691 {
5692 u32 manc;
5693
5694 if (hw->asf_firmware_present) {
5695 manc = er32(MANC);
5696
5697 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5698 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5699 return false;
5700 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5701 return true;
5702 }
5703 return false;
5704 }
5705
e1000_polarity_reversal_workaround(struct e1000_hw * hw)5706 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5707 {
5708 s32 ret_val;
5709 u16 mii_status_reg;
5710 u16 i;
5711
5712 /* Polarity reversal workaround for forced 10F/10H links. */
5713
5714 /* Disable the transmitter on the PHY */
5715
5716 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5717 if (ret_val)
5718 return ret_val;
5719 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5720 if (ret_val)
5721 return ret_val;
5722
5723 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5724 if (ret_val)
5725 return ret_val;
5726
5727 /* This loop will early-out if the NO link condition has been met. */
5728 for (i = PHY_FORCE_TIME; i > 0; i--) {
5729 /* Read the MII Status Register and wait for Link Status bit
5730 * to be clear.
5731 */
5732
5733 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5734 if (ret_val)
5735 return ret_val;
5736
5737 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5738 if (ret_val)
5739 return ret_val;
5740
5741 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5742 break;
5743 msleep(100);
5744 }
5745
5746 /* Recommended delay time after link has been lost */
5747 msleep(1000);
5748
5749 /* Now we will re-enable th transmitter on the PHY */
5750
5751 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5752 if (ret_val)
5753 return ret_val;
5754 msleep(50);
5755 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5756 if (ret_val)
5757 return ret_val;
5758 msleep(50);
5759 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5760 if (ret_val)
5761 return ret_val;
5762 msleep(50);
5763 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5764 if (ret_val)
5765 return ret_val;
5766
5767 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5768 if (ret_val)
5769 return ret_val;
5770
5771 /* This loop will early-out if the link condition has been met. */
5772 for (i = PHY_FORCE_TIME; i > 0; i--) {
5773 /* Read the MII Status Register and wait for Link Status bit
5774 * to be set.
5775 */
5776
5777 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5778 if (ret_val)
5779 return ret_val;
5780
5781 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5782 if (ret_val)
5783 return ret_val;
5784
5785 if (mii_status_reg & MII_SR_LINK_STATUS)
5786 break;
5787 msleep(100);
5788 }
5789 return E1000_SUCCESS;
5790 }
5791
5792 /**
5793 * e1000_get_auto_rd_done
5794 * @hw: Struct containing variables accessed by shared code
5795 *
5796 * Check for EEPROM Auto Read bit done.
5797 * returns: - E1000_ERR_RESET if fail to reset MAC
5798 * E1000_SUCCESS at any other case.
5799 */
e1000_get_auto_rd_done(struct e1000_hw * hw)5800 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5801 {
5802 e_dbg("e1000_get_auto_rd_done");
5803 msleep(5);
5804 return E1000_SUCCESS;
5805 }
5806
5807 /**
5808 * e1000_get_phy_cfg_done
5809 * @hw: Struct containing variables accessed by shared code
5810 *
5811 * Checks if the PHY configuration is done
5812 * returns: - E1000_ERR_RESET if fail to reset MAC
5813 * E1000_SUCCESS at any other case.
5814 */
e1000_get_phy_cfg_done(struct e1000_hw * hw)5815 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5816 {
5817 e_dbg("e1000_get_phy_cfg_done");
5818 msleep(10);
5819 return E1000_SUCCESS;
5820 }
5821