1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if.h>
40 #include <linux/if_vlan.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/checksum.h>
44 #include <linux/workqueue.h>
45 #include <linux/crc32.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51
52 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
53 #define BCM_CNIC 1
54 #include "cnic_if.h"
55 #endif
56 #include "bnx2.h"
57 #include "bnx2_fw.h"
58
59 #define DRV_MODULE_NAME "bnx2"
60 #define DRV_MODULE_VERSION "2.2.1"
61 #define DRV_MODULE_RELDATE "Dec 18, 2011"
62 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
63 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
64 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
65 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
66 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
67
68 #define RUN_AT(x) (jiffies + (x))
69
70 /* Time in jiffies before concluding the transmitter is hung. */
71 #define TX_TIMEOUT (5*HZ)
72
73 static char version[] __devinitdata =
74 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
75
76 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
77 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
78 MODULE_LICENSE("GPL");
79 MODULE_VERSION(DRV_MODULE_VERSION);
80 MODULE_FIRMWARE(FW_MIPS_FILE_06);
81 MODULE_FIRMWARE(FW_RV2P_FILE_06);
82 MODULE_FIRMWARE(FW_MIPS_FILE_09);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
85
86 static int disable_msi = 0;
87
88 module_param(disable_msi, int, 0);
89 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
90
91 typedef enum {
92 BCM5706 = 0,
93 NC370T,
94 NC370I,
95 BCM5706S,
96 NC370F,
97 BCM5708,
98 BCM5708S,
99 BCM5709,
100 BCM5709S,
101 BCM5716,
102 BCM5716S,
103 } board_t;
104
105 /* indexed by board_t, above */
106 static struct {
107 char *name;
108 } board_info[] __devinitdata = {
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
120 };
121
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
123 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
124 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
132 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
141 { PCI_VENDOR_ID_BROADCOM, 0x163b,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
143 { PCI_VENDOR_ID_BROADCOM, 0x163c,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
145 { 0, }
146 };
147
148 static const struct flash_spec flash_table[] =
149 {
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
152 /* Slow EEPROM */
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
155 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
156 "EEPROM - slow"},
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
160 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
161 "Entry 0001"},
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
166 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
172 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 "Entry 0100"},
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
193 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
194 "Non-buffered flash (64kB)"},
195 /* Fast EEPROM */
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
198 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
199 "EEPROM - fast"},
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
203 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
204 "Entry 1001"},
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
209 "Entry 1010"},
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
213 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
218 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
219 "Entry 1100"},
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
223 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
224 "Entry 1101"},
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
228 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
233 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
234 "Buffered flash (256kB)"},
235 };
236
237 static const struct flash_spec flash_5709 = {
238 .flags = BNX2_NV_BUFFERED,
239 .page_bits = BCM5709_FLASH_PAGE_BITS,
240 .page_size = BCM5709_FLASH_PAGE_SIZE,
241 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
242 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
243 .name = "5709 Buffered flash (256kB)",
244 };
245
246 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
247
248 static void bnx2_init_napi(struct bnx2 *bp);
249 static void bnx2_del_napi(struct bnx2 *bp);
250
bnx2_tx_avail(struct bnx2 * bp,struct bnx2_tx_ring_info * txr)251 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
252 {
253 u32 diff;
254
255 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
256 barrier();
257
258 /* The ring uses 256 indices for 255 entries, one of them
259 * needs to be skipped.
260 */
261 diff = txr->tx_prod - txr->tx_cons;
262 if (unlikely(diff >= TX_DESC_CNT)) {
263 diff &= 0xffff;
264 if (diff == TX_DESC_CNT)
265 diff = MAX_TX_DESC_CNT;
266 }
267 return bp->tx_ring_size - diff;
268 }
269
270 static u32
bnx2_reg_rd_ind(struct bnx2 * bp,u32 offset)271 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
272 {
273 u32 val;
274
275 spin_lock_bh(&bp->indirect_lock);
276 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
277 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
278 spin_unlock_bh(&bp->indirect_lock);
279 return val;
280 }
281
282 static void
bnx2_reg_wr_ind(struct bnx2 * bp,u32 offset,u32 val)283 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
284 {
285 spin_lock_bh(&bp->indirect_lock);
286 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
287 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
288 spin_unlock_bh(&bp->indirect_lock);
289 }
290
291 static void
bnx2_shmem_wr(struct bnx2 * bp,u32 offset,u32 val)292 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
293 {
294 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
295 }
296
297 static u32
bnx2_shmem_rd(struct bnx2 * bp,u32 offset)298 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
299 {
300 return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
301 }
302
303 static void
bnx2_ctx_wr(struct bnx2 * bp,u32 cid_addr,u32 offset,u32 val)304 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
305 {
306 offset += cid_addr;
307 spin_lock_bh(&bp->indirect_lock);
308 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
309 int i;
310
311 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
312 REG_WR(bp, BNX2_CTX_CTX_CTRL,
313 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
314 for (i = 0; i < 5; i++) {
315 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
316 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
317 break;
318 udelay(5);
319 }
320 } else {
321 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
322 REG_WR(bp, BNX2_CTX_DATA, val);
323 }
324 spin_unlock_bh(&bp->indirect_lock);
325 }
326
327 #ifdef BCM_CNIC
328 static int
bnx2_drv_ctl(struct net_device * dev,struct drv_ctl_info * info)329 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
330 {
331 struct bnx2 *bp = netdev_priv(dev);
332 struct drv_ctl_io *io = &info->data.io;
333
334 switch (info->cmd) {
335 case DRV_CTL_IO_WR_CMD:
336 bnx2_reg_wr_ind(bp, io->offset, io->data);
337 break;
338 case DRV_CTL_IO_RD_CMD:
339 io->data = bnx2_reg_rd_ind(bp, io->offset);
340 break;
341 case DRV_CTL_CTX_WR_CMD:
342 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
343 break;
344 default:
345 return -EINVAL;
346 }
347 return 0;
348 }
349
bnx2_setup_cnic_irq_info(struct bnx2 * bp)350 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
351 {
352 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
353 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
354 int sb_id;
355
356 if (bp->flags & BNX2_FLAG_USING_MSIX) {
357 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
358 bnapi->cnic_present = 0;
359 sb_id = bp->irq_nvecs;
360 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
361 } else {
362 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
363 bnapi->cnic_tag = bnapi->last_status_idx;
364 bnapi->cnic_present = 1;
365 sb_id = 0;
366 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
367 }
368
369 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
370 cp->irq_arr[0].status_blk = (void *)
371 ((unsigned long) bnapi->status_blk.msi +
372 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
373 cp->irq_arr[0].status_blk_num = sb_id;
374 cp->num_irq = 1;
375 }
376
bnx2_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)377 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
378 void *data)
379 {
380 struct bnx2 *bp = netdev_priv(dev);
381 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
382
383 if (ops == NULL)
384 return -EINVAL;
385
386 if (cp->drv_state & CNIC_DRV_STATE_REGD)
387 return -EBUSY;
388
389 if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
390 return -ENODEV;
391
392 bp->cnic_data = data;
393 rcu_assign_pointer(bp->cnic_ops, ops);
394
395 cp->num_irq = 0;
396 cp->drv_state = CNIC_DRV_STATE_REGD;
397
398 bnx2_setup_cnic_irq_info(bp);
399
400 return 0;
401 }
402
bnx2_unregister_cnic(struct net_device * dev)403 static int bnx2_unregister_cnic(struct net_device *dev)
404 {
405 struct bnx2 *bp = netdev_priv(dev);
406 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
407 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
408
409 mutex_lock(&bp->cnic_lock);
410 cp->drv_state = 0;
411 bnapi->cnic_present = 0;
412 RCU_INIT_POINTER(bp->cnic_ops, NULL);
413 mutex_unlock(&bp->cnic_lock);
414 synchronize_rcu();
415 return 0;
416 }
417
bnx2_cnic_probe(struct net_device * dev)418 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
419 {
420 struct bnx2 *bp = netdev_priv(dev);
421 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
422
423 if (!cp->max_iscsi_conn)
424 return NULL;
425
426 cp->drv_owner = THIS_MODULE;
427 cp->chip_id = bp->chip_id;
428 cp->pdev = bp->pdev;
429 cp->io_base = bp->regview;
430 cp->drv_ctl = bnx2_drv_ctl;
431 cp->drv_register_cnic = bnx2_register_cnic;
432 cp->drv_unregister_cnic = bnx2_unregister_cnic;
433
434 return cp;
435 }
436 EXPORT_SYMBOL(bnx2_cnic_probe);
437
438 static void
bnx2_cnic_stop(struct bnx2 * bp)439 bnx2_cnic_stop(struct bnx2 *bp)
440 {
441 struct cnic_ops *c_ops;
442 struct cnic_ctl_info info;
443
444 mutex_lock(&bp->cnic_lock);
445 c_ops = rcu_dereference_protected(bp->cnic_ops,
446 lockdep_is_held(&bp->cnic_lock));
447 if (c_ops) {
448 info.cmd = CNIC_CTL_STOP_CMD;
449 c_ops->cnic_ctl(bp->cnic_data, &info);
450 }
451 mutex_unlock(&bp->cnic_lock);
452 }
453
454 static void
bnx2_cnic_start(struct bnx2 * bp)455 bnx2_cnic_start(struct bnx2 *bp)
456 {
457 struct cnic_ops *c_ops;
458 struct cnic_ctl_info info;
459
460 mutex_lock(&bp->cnic_lock);
461 c_ops = rcu_dereference_protected(bp->cnic_ops,
462 lockdep_is_held(&bp->cnic_lock));
463 if (c_ops) {
464 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
465 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
466
467 bnapi->cnic_tag = bnapi->last_status_idx;
468 }
469 info.cmd = CNIC_CTL_START_CMD;
470 c_ops->cnic_ctl(bp->cnic_data, &info);
471 }
472 mutex_unlock(&bp->cnic_lock);
473 }
474
475 #else
476
477 static void
bnx2_cnic_stop(struct bnx2 * bp)478 bnx2_cnic_stop(struct bnx2 *bp)
479 {
480 }
481
482 static void
bnx2_cnic_start(struct bnx2 * bp)483 bnx2_cnic_start(struct bnx2 *bp)
484 {
485 }
486
487 #endif
488
489 static int
bnx2_read_phy(struct bnx2 * bp,u32 reg,u32 * val)490 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
491 {
492 u32 val1;
493 int i, ret;
494
495 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
496 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
497 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
498
499 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
500 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
501
502 udelay(40);
503 }
504
505 val1 = (bp->phy_addr << 21) | (reg << 16) |
506 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
507 BNX2_EMAC_MDIO_COMM_START_BUSY;
508 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
509
510 for (i = 0; i < 50; i++) {
511 udelay(10);
512
513 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
514 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
515 udelay(5);
516
517 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
518 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
519
520 break;
521 }
522 }
523
524 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
525 *val = 0x0;
526 ret = -EBUSY;
527 }
528 else {
529 *val = val1;
530 ret = 0;
531 }
532
533 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
534 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
535 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
536
537 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
538 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
539
540 udelay(40);
541 }
542
543 return ret;
544 }
545
546 static int
bnx2_write_phy(struct bnx2 * bp,u32 reg,u32 val)547 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
548 {
549 u32 val1;
550 int i, ret;
551
552 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
553 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
554 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
555
556 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
557 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
558
559 udelay(40);
560 }
561
562 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
563 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
564 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
565 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
566
567 for (i = 0; i < 50; i++) {
568 udelay(10);
569
570 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
571 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
572 udelay(5);
573 break;
574 }
575 }
576
577 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
578 ret = -EBUSY;
579 else
580 ret = 0;
581
582 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
583 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
584 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
585
586 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
587 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
588
589 udelay(40);
590 }
591
592 return ret;
593 }
594
595 static void
bnx2_disable_int(struct bnx2 * bp)596 bnx2_disable_int(struct bnx2 *bp)
597 {
598 int i;
599 struct bnx2_napi *bnapi;
600
601 for (i = 0; i < bp->irq_nvecs; i++) {
602 bnapi = &bp->bnx2_napi[i];
603 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
604 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
605 }
606 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
607 }
608
609 static void
bnx2_enable_int(struct bnx2 * bp)610 bnx2_enable_int(struct bnx2 *bp)
611 {
612 int i;
613 struct bnx2_napi *bnapi;
614
615 for (i = 0; i < bp->irq_nvecs; i++) {
616 bnapi = &bp->bnx2_napi[i];
617
618 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
619 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
620 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
621 bnapi->last_status_idx);
622
623 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
624 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
625 bnapi->last_status_idx);
626 }
627 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
628 }
629
630 static void
bnx2_disable_int_sync(struct bnx2 * bp)631 bnx2_disable_int_sync(struct bnx2 *bp)
632 {
633 int i;
634
635 atomic_inc(&bp->intr_sem);
636 if (!netif_running(bp->dev))
637 return;
638
639 bnx2_disable_int(bp);
640 for (i = 0; i < bp->irq_nvecs; i++)
641 synchronize_irq(bp->irq_tbl[i].vector);
642 }
643
644 static void
bnx2_napi_disable(struct bnx2 * bp)645 bnx2_napi_disable(struct bnx2 *bp)
646 {
647 int i;
648
649 for (i = 0; i < bp->irq_nvecs; i++)
650 napi_disable(&bp->bnx2_napi[i].napi);
651 }
652
653 static void
bnx2_napi_enable(struct bnx2 * bp)654 bnx2_napi_enable(struct bnx2 *bp)
655 {
656 int i;
657
658 for (i = 0; i < bp->irq_nvecs; i++)
659 napi_enable(&bp->bnx2_napi[i].napi);
660 }
661
662 static void
bnx2_netif_stop(struct bnx2 * bp,bool stop_cnic)663 bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
664 {
665 if (stop_cnic)
666 bnx2_cnic_stop(bp);
667 if (netif_running(bp->dev)) {
668 bnx2_napi_disable(bp);
669 netif_tx_disable(bp->dev);
670 }
671 bnx2_disable_int_sync(bp);
672 netif_carrier_off(bp->dev); /* prevent tx timeout */
673 }
674
675 static void
bnx2_netif_start(struct bnx2 * bp,bool start_cnic)676 bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
677 {
678 if (atomic_dec_and_test(&bp->intr_sem)) {
679 if (netif_running(bp->dev)) {
680 netif_tx_wake_all_queues(bp->dev);
681 spin_lock_bh(&bp->phy_lock);
682 if (bp->link_up)
683 netif_carrier_on(bp->dev);
684 spin_unlock_bh(&bp->phy_lock);
685 bnx2_napi_enable(bp);
686 bnx2_enable_int(bp);
687 if (start_cnic)
688 bnx2_cnic_start(bp);
689 }
690 }
691 }
692
693 static void
bnx2_free_tx_mem(struct bnx2 * bp)694 bnx2_free_tx_mem(struct bnx2 *bp)
695 {
696 int i;
697
698 for (i = 0; i < bp->num_tx_rings; i++) {
699 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
700 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
701
702 if (txr->tx_desc_ring) {
703 dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
704 txr->tx_desc_ring,
705 txr->tx_desc_mapping);
706 txr->tx_desc_ring = NULL;
707 }
708 kfree(txr->tx_buf_ring);
709 txr->tx_buf_ring = NULL;
710 }
711 }
712
713 static void
bnx2_free_rx_mem(struct bnx2 * bp)714 bnx2_free_rx_mem(struct bnx2 *bp)
715 {
716 int i;
717
718 for (i = 0; i < bp->num_rx_rings; i++) {
719 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
720 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
721 int j;
722
723 for (j = 0; j < bp->rx_max_ring; j++) {
724 if (rxr->rx_desc_ring[j])
725 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
726 rxr->rx_desc_ring[j],
727 rxr->rx_desc_mapping[j]);
728 rxr->rx_desc_ring[j] = NULL;
729 }
730 vfree(rxr->rx_buf_ring);
731 rxr->rx_buf_ring = NULL;
732
733 for (j = 0; j < bp->rx_max_pg_ring; j++) {
734 if (rxr->rx_pg_desc_ring[j])
735 dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
736 rxr->rx_pg_desc_ring[j],
737 rxr->rx_pg_desc_mapping[j]);
738 rxr->rx_pg_desc_ring[j] = NULL;
739 }
740 vfree(rxr->rx_pg_ring);
741 rxr->rx_pg_ring = NULL;
742 }
743 }
744
745 static int
bnx2_alloc_tx_mem(struct bnx2 * bp)746 bnx2_alloc_tx_mem(struct bnx2 *bp)
747 {
748 int i;
749
750 for (i = 0; i < bp->num_tx_rings; i++) {
751 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
752 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
753
754 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
755 if (txr->tx_buf_ring == NULL)
756 return -ENOMEM;
757
758 txr->tx_desc_ring =
759 dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
760 &txr->tx_desc_mapping, GFP_KERNEL);
761 if (txr->tx_desc_ring == NULL)
762 return -ENOMEM;
763 }
764 return 0;
765 }
766
767 static int
bnx2_alloc_rx_mem(struct bnx2 * bp)768 bnx2_alloc_rx_mem(struct bnx2 *bp)
769 {
770 int i;
771
772 for (i = 0; i < bp->num_rx_rings; i++) {
773 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
774 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
775 int j;
776
777 rxr->rx_buf_ring =
778 vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
779 if (rxr->rx_buf_ring == NULL)
780 return -ENOMEM;
781
782 for (j = 0; j < bp->rx_max_ring; j++) {
783 rxr->rx_desc_ring[j] =
784 dma_alloc_coherent(&bp->pdev->dev,
785 RXBD_RING_SIZE,
786 &rxr->rx_desc_mapping[j],
787 GFP_KERNEL);
788 if (rxr->rx_desc_ring[j] == NULL)
789 return -ENOMEM;
790
791 }
792
793 if (bp->rx_pg_ring_size) {
794 rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
795 bp->rx_max_pg_ring);
796 if (rxr->rx_pg_ring == NULL)
797 return -ENOMEM;
798
799 }
800
801 for (j = 0; j < bp->rx_max_pg_ring; j++) {
802 rxr->rx_pg_desc_ring[j] =
803 dma_alloc_coherent(&bp->pdev->dev,
804 RXBD_RING_SIZE,
805 &rxr->rx_pg_desc_mapping[j],
806 GFP_KERNEL);
807 if (rxr->rx_pg_desc_ring[j] == NULL)
808 return -ENOMEM;
809
810 }
811 }
812 return 0;
813 }
814
815 static void
bnx2_free_mem(struct bnx2 * bp)816 bnx2_free_mem(struct bnx2 *bp)
817 {
818 int i;
819 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
820
821 bnx2_free_tx_mem(bp);
822 bnx2_free_rx_mem(bp);
823
824 for (i = 0; i < bp->ctx_pages; i++) {
825 if (bp->ctx_blk[i]) {
826 dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
827 bp->ctx_blk[i],
828 bp->ctx_blk_mapping[i]);
829 bp->ctx_blk[i] = NULL;
830 }
831 }
832 if (bnapi->status_blk.msi) {
833 dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
834 bnapi->status_blk.msi,
835 bp->status_blk_mapping);
836 bnapi->status_blk.msi = NULL;
837 bp->stats_blk = NULL;
838 }
839 }
840
841 static int
bnx2_alloc_mem(struct bnx2 * bp)842 bnx2_alloc_mem(struct bnx2 *bp)
843 {
844 int i, status_blk_size, err;
845 struct bnx2_napi *bnapi;
846 void *status_blk;
847
848 /* Combine status and statistics blocks into one allocation. */
849 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
850 if (bp->flags & BNX2_FLAG_MSIX_CAP)
851 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
852 BNX2_SBLK_MSIX_ALIGN_SIZE);
853 bp->status_stats_size = status_blk_size +
854 sizeof(struct statistics_block);
855
856 status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
857 &bp->status_blk_mapping, GFP_KERNEL);
858 if (status_blk == NULL)
859 goto alloc_mem_err;
860
861 memset(status_blk, 0, bp->status_stats_size);
862
863 bnapi = &bp->bnx2_napi[0];
864 bnapi->status_blk.msi = status_blk;
865 bnapi->hw_tx_cons_ptr =
866 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
867 bnapi->hw_rx_cons_ptr =
868 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
869 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
870 for (i = 1; i < bp->irq_nvecs; i++) {
871 struct status_block_msix *sblk;
872
873 bnapi = &bp->bnx2_napi[i];
874
875 sblk = (void *) (status_blk +
876 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
877 bnapi->status_blk.msix = sblk;
878 bnapi->hw_tx_cons_ptr =
879 &sblk->status_tx_quick_consumer_index;
880 bnapi->hw_rx_cons_ptr =
881 &sblk->status_rx_quick_consumer_index;
882 bnapi->int_num = i << 24;
883 }
884 }
885
886 bp->stats_blk = status_blk + status_blk_size;
887
888 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
889
890 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
891 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
892 if (bp->ctx_pages == 0)
893 bp->ctx_pages = 1;
894 for (i = 0; i < bp->ctx_pages; i++) {
895 bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
896 BCM_PAGE_SIZE,
897 &bp->ctx_blk_mapping[i],
898 GFP_KERNEL);
899 if (bp->ctx_blk[i] == NULL)
900 goto alloc_mem_err;
901 }
902 }
903
904 err = bnx2_alloc_rx_mem(bp);
905 if (err)
906 goto alloc_mem_err;
907
908 err = bnx2_alloc_tx_mem(bp);
909 if (err)
910 goto alloc_mem_err;
911
912 return 0;
913
914 alloc_mem_err:
915 bnx2_free_mem(bp);
916 return -ENOMEM;
917 }
918
919 static void
bnx2_report_fw_link(struct bnx2 * bp)920 bnx2_report_fw_link(struct bnx2 *bp)
921 {
922 u32 fw_link_status = 0;
923
924 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
925 return;
926
927 if (bp->link_up) {
928 u32 bmsr;
929
930 switch (bp->line_speed) {
931 case SPEED_10:
932 if (bp->duplex == DUPLEX_HALF)
933 fw_link_status = BNX2_LINK_STATUS_10HALF;
934 else
935 fw_link_status = BNX2_LINK_STATUS_10FULL;
936 break;
937 case SPEED_100:
938 if (bp->duplex == DUPLEX_HALF)
939 fw_link_status = BNX2_LINK_STATUS_100HALF;
940 else
941 fw_link_status = BNX2_LINK_STATUS_100FULL;
942 break;
943 case SPEED_1000:
944 if (bp->duplex == DUPLEX_HALF)
945 fw_link_status = BNX2_LINK_STATUS_1000HALF;
946 else
947 fw_link_status = BNX2_LINK_STATUS_1000FULL;
948 break;
949 case SPEED_2500:
950 if (bp->duplex == DUPLEX_HALF)
951 fw_link_status = BNX2_LINK_STATUS_2500HALF;
952 else
953 fw_link_status = BNX2_LINK_STATUS_2500FULL;
954 break;
955 }
956
957 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
958
959 if (bp->autoneg) {
960 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
961
962 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
963 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
964
965 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
966 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
967 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
968 else
969 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
970 }
971 }
972 else
973 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
974
975 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
976 }
977
978 static char *
bnx2_xceiver_str(struct bnx2 * bp)979 bnx2_xceiver_str(struct bnx2 *bp)
980 {
981 return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
982 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
983 "Copper");
984 }
985
986 static void
bnx2_report_link(struct bnx2 * bp)987 bnx2_report_link(struct bnx2 *bp)
988 {
989 if (bp->link_up) {
990 netif_carrier_on(bp->dev);
991 netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
992 bnx2_xceiver_str(bp),
993 bp->line_speed,
994 bp->duplex == DUPLEX_FULL ? "full" : "half");
995
996 if (bp->flow_ctrl) {
997 if (bp->flow_ctrl & FLOW_CTRL_RX) {
998 pr_cont(", receive ");
999 if (bp->flow_ctrl & FLOW_CTRL_TX)
1000 pr_cont("& transmit ");
1001 }
1002 else {
1003 pr_cont(", transmit ");
1004 }
1005 pr_cont("flow control ON");
1006 }
1007 pr_cont("\n");
1008 } else {
1009 netif_carrier_off(bp->dev);
1010 netdev_err(bp->dev, "NIC %s Link is Down\n",
1011 bnx2_xceiver_str(bp));
1012 }
1013
1014 bnx2_report_fw_link(bp);
1015 }
1016
1017 static void
bnx2_resolve_flow_ctrl(struct bnx2 * bp)1018 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1019 {
1020 u32 local_adv, remote_adv;
1021
1022 bp->flow_ctrl = 0;
1023 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1024 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1025
1026 if (bp->duplex == DUPLEX_FULL) {
1027 bp->flow_ctrl = bp->req_flow_ctrl;
1028 }
1029 return;
1030 }
1031
1032 if (bp->duplex != DUPLEX_FULL) {
1033 return;
1034 }
1035
1036 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1037 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1038 u32 val;
1039
1040 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1041 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1042 bp->flow_ctrl |= FLOW_CTRL_TX;
1043 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1044 bp->flow_ctrl |= FLOW_CTRL_RX;
1045 return;
1046 }
1047
1048 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1049 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1050
1051 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1052 u32 new_local_adv = 0;
1053 u32 new_remote_adv = 0;
1054
1055 if (local_adv & ADVERTISE_1000XPAUSE)
1056 new_local_adv |= ADVERTISE_PAUSE_CAP;
1057 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1058 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1059 if (remote_adv & ADVERTISE_1000XPAUSE)
1060 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1061 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1062 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1063
1064 local_adv = new_local_adv;
1065 remote_adv = new_remote_adv;
1066 }
1067
1068 /* See Table 28B-3 of 802.3ab-1999 spec. */
1069 if (local_adv & ADVERTISE_PAUSE_CAP) {
1070 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1071 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1072 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1073 }
1074 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1075 bp->flow_ctrl = FLOW_CTRL_RX;
1076 }
1077 }
1078 else {
1079 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1080 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1081 }
1082 }
1083 }
1084 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1085 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1086 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1087
1088 bp->flow_ctrl = FLOW_CTRL_TX;
1089 }
1090 }
1091 }
1092
1093 static int
bnx2_5709s_linkup(struct bnx2 * bp)1094 bnx2_5709s_linkup(struct bnx2 *bp)
1095 {
1096 u32 val, speed;
1097
1098 bp->link_up = 1;
1099
1100 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1101 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1102 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1103
1104 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1105 bp->line_speed = bp->req_line_speed;
1106 bp->duplex = bp->req_duplex;
1107 return 0;
1108 }
1109 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1110 switch (speed) {
1111 case MII_BNX2_GP_TOP_AN_SPEED_10:
1112 bp->line_speed = SPEED_10;
1113 break;
1114 case MII_BNX2_GP_TOP_AN_SPEED_100:
1115 bp->line_speed = SPEED_100;
1116 break;
1117 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1118 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1119 bp->line_speed = SPEED_1000;
1120 break;
1121 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1122 bp->line_speed = SPEED_2500;
1123 break;
1124 }
1125 if (val & MII_BNX2_GP_TOP_AN_FD)
1126 bp->duplex = DUPLEX_FULL;
1127 else
1128 bp->duplex = DUPLEX_HALF;
1129 return 0;
1130 }
1131
1132 static int
bnx2_5708s_linkup(struct bnx2 * bp)1133 bnx2_5708s_linkup(struct bnx2 *bp)
1134 {
1135 u32 val;
1136
1137 bp->link_up = 1;
1138 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1139 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1140 case BCM5708S_1000X_STAT1_SPEED_10:
1141 bp->line_speed = SPEED_10;
1142 break;
1143 case BCM5708S_1000X_STAT1_SPEED_100:
1144 bp->line_speed = SPEED_100;
1145 break;
1146 case BCM5708S_1000X_STAT1_SPEED_1G:
1147 bp->line_speed = SPEED_1000;
1148 break;
1149 case BCM5708S_1000X_STAT1_SPEED_2G5:
1150 bp->line_speed = SPEED_2500;
1151 break;
1152 }
1153 if (val & BCM5708S_1000X_STAT1_FD)
1154 bp->duplex = DUPLEX_FULL;
1155 else
1156 bp->duplex = DUPLEX_HALF;
1157
1158 return 0;
1159 }
1160
1161 static int
bnx2_5706s_linkup(struct bnx2 * bp)1162 bnx2_5706s_linkup(struct bnx2 *bp)
1163 {
1164 u32 bmcr, local_adv, remote_adv, common;
1165
1166 bp->link_up = 1;
1167 bp->line_speed = SPEED_1000;
1168
1169 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1170 if (bmcr & BMCR_FULLDPLX) {
1171 bp->duplex = DUPLEX_FULL;
1172 }
1173 else {
1174 bp->duplex = DUPLEX_HALF;
1175 }
1176
1177 if (!(bmcr & BMCR_ANENABLE)) {
1178 return 0;
1179 }
1180
1181 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1182 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1183
1184 common = local_adv & remote_adv;
1185 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1186
1187 if (common & ADVERTISE_1000XFULL) {
1188 bp->duplex = DUPLEX_FULL;
1189 }
1190 else {
1191 bp->duplex = DUPLEX_HALF;
1192 }
1193 }
1194
1195 return 0;
1196 }
1197
1198 static int
bnx2_copper_linkup(struct bnx2 * bp)1199 bnx2_copper_linkup(struct bnx2 *bp)
1200 {
1201 u32 bmcr;
1202
1203 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1204 if (bmcr & BMCR_ANENABLE) {
1205 u32 local_adv, remote_adv, common;
1206
1207 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1208 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1209
1210 common = local_adv & (remote_adv >> 2);
1211 if (common & ADVERTISE_1000FULL) {
1212 bp->line_speed = SPEED_1000;
1213 bp->duplex = DUPLEX_FULL;
1214 }
1215 else if (common & ADVERTISE_1000HALF) {
1216 bp->line_speed = SPEED_1000;
1217 bp->duplex = DUPLEX_HALF;
1218 }
1219 else {
1220 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1221 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1222
1223 common = local_adv & remote_adv;
1224 if (common & ADVERTISE_100FULL) {
1225 bp->line_speed = SPEED_100;
1226 bp->duplex = DUPLEX_FULL;
1227 }
1228 else if (common & ADVERTISE_100HALF) {
1229 bp->line_speed = SPEED_100;
1230 bp->duplex = DUPLEX_HALF;
1231 }
1232 else if (common & ADVERTISE_10FULL) {
1233 bp->line_speed = SPEED_10;
1234 bp->duplex = DUPLEX_FULL;
1235 }
1236 else if (common & ADVERTISE_10HALF) {
1237 bp->line_speed = SPEED_10;
1238 bp->duplex = DUPLEX_HALF;
1239 }
1240 else {
1241 bp->line_speed = 0;
1242 bp->link_up = 0;
1243 }
1244 }
1245 }
1246 else {
1247 if (bmcr & BMCR_SPEED100) {
1248 bp->line_speed = SPEED_100;
1249 }
1250 else {
1251 bp->line_speed = SPEED_10;
1252 }
1253 if (bmcr & BMCR_FULLDPLX) {
1254 bp->duplex = DUPLEX_FULL;
1255 }
1256 else {
1257 bp->duplex = DUPLEX_HALF;
1258 }
1259 }
1260
1261 return 0;
1262 }
1263
1264 static void
bnx2_init_rx_context(struct bnx2 * bp,u32 cid)1265 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1266 {
1267 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1268
1269 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1270 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1271 val |= 0x02 << 8;
1272
1273 if (bp->flow_ctrl & FLOW_CTRL_TX)
1274 val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
1275
1276 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1277 }
1278
1279 static void
bnx2_init_all_rx_contexts(struct bnx2 * bp)1280 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1281 {
1282 int i;
1283 u32 cid;
1284
1285 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1286 if (i == 1)
1287 cid = RX_RSS_CID;
1288 bnx2_init_rx_context(bp, cid);
1289 }
1290 }
1291
1292 static void
bnx2_set_mac_link(struct bnx2 * bp)1293 bnx2_set_mac_link(struct bnx2 *bp)
1294 {
1295 u32 val;
1296
1297 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1298 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1299 (bp->duplex == DUPLEX_HALF)) {
1300 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1301 }
1302
1303 /* Configure the EMAC mode register. */
1304 val = REG_RD(bp, BNX2_EMAC_MODE);
1305
1306 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1307 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1308 BNX2_EMAC_MODE_25G_MODE);
1309
1310 if (bp->link_up) {
1311 switch (bp->line_speed) {
1312 case SPEED_10:
1313 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1314 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1315 break;
1316 }
1317 /* fall through */
1318 case SPEED_100:
1319 val |= BNX2_EMAC_MODE_PORT_MII;
1320 break;
1321 case SPEED_2500:
1322 val |= BNX2_EMAC_MODE_25G_MODE;
1323 /* fall through */
1324 case SPEED_1000:
1325 val |= BNX2_EMAC_MODE_PORT_GMII;
1326 break;
1327 }
1328 }
1329 else {
1330 val |= BNX2_EMAC_MODE_PORT_GMII;
1331 }
1332
1333 /* Set the MAC to operate in the appropriate duplex mode. */
1334 if (bp->duplex == DUPLEX_HALF)
1335 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1336 REG_WR(bp, BNX2_EMAC_MODE, val);
1337
1338 /* Enable/disable rx PAUSE. */
1339 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1340
1341 if (bp->flow_ctrl & FLOW_CTRL_RX)
1342 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1343 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1344
1345 /* Enable/disable tx PAUSE. */
1346 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1347 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1348
1349 if (bp->flow_ctrl & FLOW_CTRL_TX)
1350 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1351 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1352
1353 /* Acknowledge the interrupt. */
1354 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1355
1356 bnx2_init_all_rx_contexts(bp);
1357 }
1358
1359 static void
bnx2_enable_bmsr1(struct bnx2 * bp)1360 bnx2_enable_bmsr1(struct bnx2 *bp)
1361 {
1362 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1363 (CHIP_NUM(bp) == CHIP_NUM_5709))
1364 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1365 MII_BNX2_BLK_ADDR_GP_STATUS);
1366 }
1367
1368 static void
bnx2_disable_bmsr1(struct bnx2 * bp)1369 bnx2_disable_bmsr1(struct bnx2 *bp)
1370 {
1371 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1372 (CHIP_NUM(bp) == CHIP_NUM_5709))
1373 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1374 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1375 }
1376
1377 static int
bnx2_test_and_enable_2g5(struct bnx2 * bp)1378 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1379 {
1380 u32 up1;
1381 int ret = 1;
1382
1383 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1384 return 0;
1385
1386 if (bp->autoneg & AUTONEG_SPEED)
1387 bp->advertising |= ADVERTISED_2500baseX_Full;
1388
1389 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1390 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1391
1392 bnx2_read_phy(bp, bp->mii_up1, &up1);
1393 if (!(up1 & BCM5708S_UP1_2G5)) {
1394 up1 |= BCM5708S_UP1_2G5;
1395 bnx2_write_phy(bp, bp->mii_up1, up1);
1396 ret = 0;
1397 }
1398
1399 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1400 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1401 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1402
1403 return ret;
1404 }
1405
1406 static int
bnx2_test_and_disable_2g5(struct bnx2 * bp)1407 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1408 {
1409 u32 up1;
1410 int ret = 0;
1411
1412 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1413 return 0;
1414
1415 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1416 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1417
1418 bnx2_read_phy(bp, bp->mii_up1, &up1);
1419 if (up1 & BCM5708S_UP1_2G5) {
1420 up1 &= ~BCM5708S_UP1_2G5;
1421 bnx2_write_phy(bp, bp->mii_up1, up1);
1422 ret = 1;
1423 }
1424
1425 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1426 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1427 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1428
1429 return ret;
1430 }
1431
1432 static void
bnx2_enable_forced_2g5(struct bnx2 * bp)1433 bnx2_enable_forced_2g5(struct bnx2 *bp)
1434 {
1435 u32 uninitialized_var(bmcr);
1436 int err;
1437
1438 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1439 return;
1440
1441 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1442 u32 val;
1443
1444 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1445 MII_BNX2_BLK_ADDR_SERDES_DIG);
1446 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1447 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1448 val |= MII_BNX2_SD_MISC1_FORCE |
1449 MII_BNX2_SD_MISC1_FORCE_2_5G;
1450 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1451 }
1452
1453 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1454 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1455 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1456
1457 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1458 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1459 if (!err)
1460 bmcr |= BCM5708S_BMCR_FORCE_2500;
1461 } else {
1462 return;
1463 }
1464
1465 if (err)
1466 return;
1467
1468 if (bp->autoneg & AUTONEG_SPEED) {
1469 bmcr &= ~BMCR_ANENABLE;
1470 if (bp->req_duplex == DUPLEX_FULL)
1471 bmcr |= BMCR_FULLDPLX;
1472 }
1473 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1474 }
1475
1476 static void
bnx2_disable_forced_2g5(struct bnx2 * bp)1477 bnx2_disable_forced_2g5(struct bnx2 *bp)
1478 {
1479 u32 uninitialized_var(bmcr);
1480 int err;
1481
1482 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1483 return;
1484
1485 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1486 u32 val;
1487
1488 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1489 MII_BNX2_BLK_ADDR_SERDES_DIG);
1490 if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
1491 val &= ~MII_BNX2_SD_MISC1_FORCE;
1492 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1493 }
1494
1495 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1496 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1497 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1498
1499 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1500 err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1501 if (!err)
1502 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1503 } else {
1504 return;
1505 }
1506
1507 if (err)
1508 return;
1509
1510 if (bp->autoneg & AUTONEG_SPEED)
1511 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1512 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1513 }
1514
1515 static void
bnx2_5706s_force_link_dn(struct bnx2 * bp,int start)1516 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1517 {
1518 u32 val;
1519
1520 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1521 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1522 if (start)
1523 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1524 else
1525 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1526 }
1527
1528 static int
bnx2_set_link(struct bnx2 * bp)1529 bnx2_set_link(struct bnx2 *bp)
1530 {
1531 u32 bmsr;
1532 u8 link_up;
1533
1534 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1535 bp->link_up = 1;
1536 return 0;
1537 }
1538
1539 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1540 return 0;
1541
1542 link_up = bp->link_up;
1543
1544 bnx2_enable_bmsr1(bp);
1545 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1546 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1547 bnx2_disable_bmsr1(bp);
1548
1549 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1550 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1551 u32 val, an_dbg;
1552
1553 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1554 bnx2_5706s_force_link_dn(bp, 0);
1555 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1556 }
1557 val = REG_RD(bp, BNX2_EMAC_STATUS);
1558
1559 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1560 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1561 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1562
1563 if ((val & BNX2_EMAC_STATUS_LINK) &&
1564 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1565 bmsr |= BMSR_LSTATUS;
1566 else
1567 bmsr &= ~BMSR_LSTATUS;
1568 }
1569
1570 if (bmsr & BMSR_LSTATUS) {
1571 bp->link_up = 1;
1572
1573 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1574 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1575 bnx2_5706s_linkup(bp);
1576 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1577 bnx2_5708s_linkup(bp);
1578 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1579 bnx2_5709s_linkup(bp);
1580 }
1581 else {
1582 bnx2_copper_linkup(bp);
1583 }
1584 bnx2_resolve_flow_ctrl(bp);
1585 }
1586 else {
1587 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1588 (bp->autoneg & AUTONEG_SPEED))
1589 bnx2_disable_forced_2g5(bp);
1590
1591 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1592 u32 bmcr;
1593
1594 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1595 bmcr |= BMCR_ANENABLE;
1596 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1597
1598 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1599 }
1600 bp->link_up = 0;
1601 }
1602
1603 if (bp->link_up != link_up) {
1604 bnx2_report_link(bp);
1605 }
1606
1607 bnx2_set_mac_link(bp);
1608
1609 return 0;
1610 }
1611
1612 static int
bnx2_reset_phy(struct bnx2 * bp)1613 bnx2_reset_phy(struct bnx2 *bp)
1614 {
1615 int i;
1616 u32 reg;
1617
1618 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1619
1620 #define PHY_RESET_MAX_WAIT 100
1621 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1622 udelay(10);
1623
1624 bnx2_read_phy(bp, bp->mii_bmcr, ®);
1625 if (!(reg & BMCR_RESET)) {
1626 udelay(20);
1627 break;
1628 }
1629 }
1630 if (i == PHY_RESET_MAX_WAIT) {
1631 return -EBUSY;
1632 }
1633 return 0;
1634 }
1635
1636 static u32
bnx2_phy_get_pause_adv(struct bnx2 * bp)1637 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1638 {
1639 u32 adv = 0;
1640
1641 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1642 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1643
1644 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1645 adv = ADVERTISE_1000XPAUSE;
1646 }
1647 else {
1648 adv = ADVERTISE_PAUSE_CAP;
1649 }
1650 }
1651 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1652 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1653 adv = ADVERTISE_1000XPSE_ASYM;
1654 }
1655 else {
1656 adv = ADVERTISE_PAUSE_ASYM;
1657 }
1658 }
1659 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1660 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1661 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1662 }
1663 else {
1664 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1665 }
1666 }
1667 return adv;
1668 }
1669
1670 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1671
1672 static int
bnx2_setup_remote_phy(struct bnx2 * bp,u8 port)1673 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1674 __releases(&bp->phy_lock)
1675 __acquires(&bp->phy_lock)
1676 {
1677 u32 speed_arg = 0, pause_adv;
1678
1679 pause_adv = bnx2_phy_get_pause_adv(bp);
1680
1681 if (bp->autoneg & AUTONEG_SPEED) {
1682 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1683 if (bp->advertising & ADVERTISED_10baseT_Half)
1684 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1685 if (bp->advertising & ADVERTISED_10baseT_Full)
1686 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1687 if (bp->advertising & ADVERTISED_100baseT_Half)
1688 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1689 if (bp->advertising & ADVERTISED_100baseT_Full)
1690 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1691 if (bp->advertising & ADVERTISED_1000baseT_Full)
1692 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1693 if (bp->advertising & ADVERTISED_2500baseX_Full)
1694 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1695 } else {
1696 if (bp->req_line_speed == SPEED_2500)
1697 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1698 else if (bp->req_line_speed == SPEED_1000)
1699 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1700 else if (bp->req_line_speed == SPEED_100) {
1701 if (bp->req_duplex == DUPLEX_FULL)
1702 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1703 else
1704 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1705 } else if (bp->req_line_speed == SPEED_10) {
1706 if (bp->req_duplex == DUPLEX_FULL)
1707 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1708 else
1709 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1710 }
1711 }
1712
1713 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1714 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1715 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1716 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1717
1718 if (port == PORT_TP)
1719 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1720 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1721
1722 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1723
1724 spin_unlock_bh(&bp->phy_lock);
1725 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1726 spin_lock_bh(&bp->phy_lock);
1727
1728 return 0;
1729 }
1730
1731 static int
bnx2_setup_serdes_phy(struct bnx2 * bp,u8 port)1732 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1733 __releases(&bp->phy_lock)
1734 __acquires(&bp->phy_lock)
1735 {
1736 u32 adv, bmcr;
1737 u32 new_adv = 0;
1738
1739 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1740 return bnx2_setup_remote_phy(bp, port);
1741
1742 if (!(bp->autoneg & AUTONEG_SPEED)) {
1743 u32 new_bmcr;
1744 int force_link_down = 0;
1745
1746 if (bp->req_line_speed == SPEED_2500) {
1747 if (!bnx2_test_and_enable_2g5(bp))
1748 force_link_down = 1;
1749 } else if (bp->req_line_speed == SPEED_1000) {
1750 if (bnx2_test_and_disable_2g5(bp))
1751 force_link_down = 1;
1752 }
1753 bnx2_read_phy(bp, bp->mii_adv, &adv);
1754 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1755
1756 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1757 new_bmcr = bmcr & ~BMCR_ANENABLE;
1758 new_bmcr |= BMCR_SPEED1000;
1759
1760 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1761 if (bp->req_line_speed == SPEED_2500)
1762 bnx2_enable_forced_2g5(bp);
1763 else if (bp->req_line_speed == SPEED_1000) {
1764 bnx2_disable_forced_2g5(bp);
1765 new_bmcr &= ~0x2000;
1766 }
1767
1768 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1769 if (bp->req_line_speed == SPEED_2500)
1770 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1771 else
1772 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1773 }
1774
1775 if (bp->req_duplex == DUPLEX_FULL) {
1776 adv |= ADVERTISE_1000XFULL;
1777 new_bmcr |= BMCR_FULLDPLX;
1778 }
1779 else {
1780 adv |= ADVERTISE_1000XHALF;
1781 new_bmcr &= ~BMCR_FULLDPLX;
1782 }
1783 if ((new_bmcr != bmcr) || (force_link_down)) {
1784 /* Force a link down visible on the other side */
1785 if (bp->link_up) {
1786 bnx2_write_phy(bp, bp->mii_adv, adv &
1787 ~(ADVERTISE_1000XFULL |
1788 ADVERTISE_1000XHALF));
1789 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1790 BMCR_ANRESTART | BMCR_ANENABLE);
1791
1792 bp->link_up = 0;
1793 netif_carrier_off(bp->dev);
1794 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1795 bnx2_report_link(bp);
1796 }
1797 bnx2_write_phy(bp, bp->mii_adv, adv);
1798 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1799 } else {
1800 bnx2_resolve_flow_ctrl(bp);
1801 bnx2_set_mac_link(bp);
1802 }
1803 return 0;
1804 }
1805
1806 bnx2_test_and_enable_2g5(bp);
1807
1808 if (bp->advertising & ADVERTISED_1000baseT_Full)
1809 new_adv |= ADVERTISE_1000XFULL;
1810
1811 new_adv |= bnx2_phy_get_pause_adv(bp);
1812
1813 bnx2_read_phy(bp, bp->mii_adv, &adv);
1814 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1815
1816 bp->serdes_an_pending = 0;
1817 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1818 /* Force a link down visible on the other side */
1819 if (bp->link_up) {
1820 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1821 spin_unlock_bh(&bp->phy_lock);
1822 msleep(20);
1823 spin_lock_bh(&bp->phy_lock);
1824 }
1825
1826 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1827 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1828 BMCR_ANENABLE);
1829 /* Speed up link-up time when the link partner
1830 * does not autonegotiate which is very common
1831 * in blade servers. Some blade servers use
1832 * IPMI for kerboard input and it's important
1833 * to minimize link disruptions. Autoneg. involves
1834 * exchanging base pages plus 3 next pages and
1835 * normally completes in about 120 msec.
1836 */
1837 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1838 bp->serdes_an_pending = 1;
1839 mod_timer(&bp->timer, jiffies + bp->current_interval);
1840 } else {
1841 bnx2_resolve_flow_ctrl(bp);
1842 bnx2_set_mac_link(bp);
1843 }
1844
1845 return 0;
1846 }
1847
1848 #define ETHTOOL_ALL_FIBRE_SPEED \
1849 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1850 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1851 (ADVERTISED_1000baseT_Full)
1852
1853 #define ETHTOOL_ALL_COPPER_SPEED \
1854 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1855 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1856 ADVERTISED_1000baseT_Full)
1857
1858 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1859 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1860
1861 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1862
1863 static void
bnx2_set_default_remote_link(struct bnx2 * bp)1864 bnx2_set_default_remote_link(struct bnx2 *bp)
1865 {
1866 u32 link;
1867
1868 if (bp->phy_port == PORT_TP)
1869 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1870 else
1871 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1872
1873 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1874 bp->req_line_speed = 0;
1875 bp->autoneg |= AUTONEG_SPEED;
1876 bp->advertising = ADVERTISED_Autoneg;
1877 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1878 bp->advertising |= ADVERTISED_10baseT_Half;
1879 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1880 bp->advertising |= ADVERTISED_10baseT_Full;
1881 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1882 bp->advertising |= ADVERTISED_100baseT_Half;
1883 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1884 bp->advertising |= ADVERTISED_100baseT_Full;
1885 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1886 bp->advertising |= ADVERTISED_1000baseT_Full;
1887 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1888 bp->advertising |= ADVERTISED_2500baseX_Full;
1889 } else {
1890 bp->autoneg = 0;
1891 bp->advertising = 0;
1892 bp->req_duplex = DUPLEX_FULL;
1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1894 bp->req_line_speed = SPEED_10;
1895 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1896 bp->req_duplex = DUPLEX_HALF;
1897 }
1898 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1899 bp->req_line_speed = SPEED_100;
1900 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1901 bp->req_duplex = DUPLEX_HALF;
1902 }
1903 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1904 bp->req_line_speed = SPEED_1000;
1905 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1906 bp->req_line_speed = SPEED_2500;
1907 }
1908 }
1909
1910 static void
bnx2_set_default_link(struct bnx2 * bp)1911 bnx2_set_default_link(struct bnx2 *bp)
1912 {
1913 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1914 bnx2_set_default_remote_link(bp);
1915 return;
1916 }
1917
1918 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1919 bp->req_line_speed = 0;
1920 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1921 u32 reg;
1922
1923 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1924
1925 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1926 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1927 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1928 bp->autoneg = 0;
1929 bp->req_line_speed = bp->line_speed = SPEED_1000;
1930 bp->req_duplex = DUPLEX_FULL;
1931 }
1932 } else
1933 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1934 }
1935
1936 static void
bnx2_send_heart_beat(struct bnx2 * bp)1937 bnx2_send_heart_beat(struct bnx2 *bp)
1938 {
1939 u32 msg;
1940 u32 addr;
1941
1942 spin_lock(&bp->indirect_lock);
1943 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1944 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1945 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1946 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1947 spin_unlock(&bp->indirect_lock);
1948 }
1949
1950 static void
bnx2_remote_phy_event(struct bnx2 * bp)1951 bnx2_remote_phy_event(struct bnx2 *bp)
1952 {
1953 u32 msg;
1954 u8 link_up = bp->link_up;
1955 u8 old_port;
1956
1957 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1958
1959 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1960 bnx2_send_heart_beat(bp);
1961
1962 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1963
1964 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1965 bp->link_up = 0;
1966 else {
1967 u32 speed;
1968
1969 bp->link_up = 1;
1970 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1971 bp->duplex = DUPLEX_FULL;
1972 switch (speed) {
1973 case BNX2_LINK_STATUS_10HALF:
1974 bp->duplex = DUPLEX_HALF;
1975 case BNX2_LINK_STATUS_10FULL:
1976 bp->line_speed = SPEED_10;
1977 break;
1978 case BNX2_LINK_STATUS_100HALF:
1979 bp->duplex = DUPLEX_HALF;
1980 case BNX2_LINK_STATUS_100BASE_T4:
1981 case BNX2_LINK_STATUS_100FULL:
1982 bp->line_speed = SPEED_100;
1983 break;
1984 case BNX2_LINK_STATUS_1000HALF:
1985 bp->duplex = DUPLEX_HALF;
1986 case BNX2_LINK_STATUS_1000FULL:
1987 bp->line_speed = SPEED_1000;
1988 break;
1989 case BNX2_LINK_STATUS_2500HALF:
1990 bp->duplex = DUPLEX_HALF;
1991 case BNX2_LINK_STATUS_2500FULL:
1992 bp->line_speed = SPEED_2500;
1993 break;
1994 default:
1995 bp->line_speed = 0;
1996 break;
1997 }
1998
1999 bp->flow_ctrl = 0;
2000 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2001 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2002 if (bp->duplex == DUPLEX_FULL)
2003 bp->flow_ctrl = bp->req_flow_ctrl;
2004 } else {
2005 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2006 bp->flow_ctrl |= FLOW_CTRL_TX;
2007 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2008 bp->flow_ctrl |= FLOW_CTRL_RX;
2009 }
2010
2011 old_port = bp->phy_port;
2012 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2013 bp->phy_port = PORT_FIBRE;
2014 else
2015 bp->phy_port = PORT_TP;
2016
2017 if (old_port != bp->phy_port)
2018 bnx2_set_default_link(bp);
2019
2020 }
2021 if (bp->link_up != link_up)
2022 bnx2_report_link(bp);
2023
2024 bnx2_set_mac_link(bp);
2025 }
2026
2027 static int
bnx2_set_remote_link(struct bnx2 * bp)2028 bnx2_set_remote_link(struct bnx2 *bp)
2029 {
2030 u32 evt_code;
2031
2032 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2033 switch (evt_code) {
2034 case BNX2_FW_EVT_CODE_LINK_EVENT:
2035 bnx2_remote_phy_event(bp);
2036 break;
2037 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2038 default:
2039 bnx2_send_heart_beat(bp);
2040 break;
2041 }
2042 return 0;
2043 }
2044
2045 static int
bnx2_setup_copper_phy(struct bnx2 * bp)2046 bnx2_setup_copper_phy(struct bnx2 *bp)
2047 __releases(&bp->phy_lock)
2048 __acquires(&bp->phy_lock)
2049 {
2050 u32 bmcr;
2051 u32 new_bmcr;
2052
2053 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2054
2055 if (bp->autoneg & AUTONEG_SPEED) {
2056 u32 adv_reg, adv1000_reg;
2057 u32 new_adv = 0;
2058 u32 new_adv1000 = 0;
2059
2060 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2061 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2062 ADVERTISE_PAUSE_ASYM);
2063
2064 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2065 adv1000_reg &= PHY_ALL_1000_SPEED;
2066
2067 new_adv = ethtool_adv_to_mii_adv_t(bp->advertising);
2068 new_adv |= ADVERTISE_CSMA;
2069 new_adv |= bnx2_phy_get_pause_adv(bp);
2070
2071 new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
2072
2073 if ((adv1000_reg != new_adv1000) ||
2074 (adv_reg != new_adv) ||
2075 ((bmcr & BMCR_ANENABLE) == 0)) {
2076
2077 bnx2_write_phy(bp, bp->mii_adv, new_adv);
2078 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
2079 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2080 BMCR_ANENABLE);
2081 }
2082 else if (bp->link_up) {
2083 /* Flow ctrl may have changed from auto to forced */
2084 /* or vice-versa. */
2085
2086 bnx2_resolve_flow_ctrl(bp);
2087 bnx2_set_mac_link(bp);
2088 }
2089 return 0;
2090 }
2091
2092 new_bmcr = 0;
2093 if (bp->req_line_speed == SPEED_100) {
2094 new_bmcr |= BMCR_SPEED100;
2095 }
2096 if (bp->req_duplex == DUPLEX_FULL) {
2097 new_bmcr |= BMCR_FULLDPLX;
2098 }
2099 if (new_bmcr != bmcr) {
2100 u32 bmsr;
2101
2102 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2103 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2104
2105 if (bmsr & BMSR_LSTATUS) {
2106 /* Force link down */
2107 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2108 spin_unlock_bh(&bp->phy_lock);
2109 msleep(50);
2110 spin_lock_bh(&bp->phy_lock);
2111
2112 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2113 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2114 }
2115
2116 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2117
2118 /* Normally, the new speed is setup after the link has
2119 * gone down and up again. In some cases, link will not go
2120 * down so we need to set up the new speed here.
2121 */
2122 if (bmsr & BMSR_LSTATUS) {
2123 bp->line_speed = bp->req_line_speed;
2124 bp->duplex = bp->req_duplex;
2125 bnx2_resolve_flow_ctrl(bp);
2126 bnx2_set_mac_link(bp);
2127 }
2128 } else {
2129 bnx2_resolve_flow_ctrl(bp);
2130 bnx2_set_mac_link(bp);
2131 }
2132 return 0;
2133 }
2134
2135 static int
bnx2_setup_phy(struct bnx2 * bp,u8 port)2136 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2137 __releases(&bp->phy_lock)
2138 __acquires(&bp->phy_lock)
2139 {
2140 if (bp->loopback == MAC_LOOPBACK)
2141 return 0;
2142
2143 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2144 return bnx2_setup_serdes_phy(bp, port);
2145 }
2146 else {
2147 return bnx2_setup_copper_phy(bp);
2148 }
2149 }
2150
2151 static int
bnx2_init_5709s_phy(struct bnx2 * bp,int reset_phy)2152 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2153 {
2154 u32 val;
2155
2156 bp->mii_bmcr = MII_BMCR + 0x10;
2157 bp->mii_bmsr = MII_BMSR + 0x10;
2158 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2159 bp->mii_adv = MII_ADVERTISE + 0x10;
2160 bp->mii_lpa = MII_LPA + 0x10;
2161 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2162
2163 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2164 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2165
2166 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2167 if (reset_phy)
2168 bnx2_reset_phy(bp);
2169
2170 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2171
2172 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2173 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2174 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2175 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2176
2177 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2178 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2179 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2180 val |= BCM5708S_UP1_2G5;
2181 else
2182 val &= ~BCM5708S_UP1_2G5;
2183 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2184
2185 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2186 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2187 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2188 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2189
2190 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2191
2192 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2193 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2194 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2195
2196 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2197
2198 return 0;
2199 }
2200
2201 static int
bnx2_init_5708s_phy(struct bnx2 * bp,int reset_phy)2202 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2203 {
2204 u32 val;
2205
2206 if (reset_phy)
2207 bnx2_reset_phy(bp);
2208
2209 bp->mii_up1 = BCM5708S_UP1;
2210
2211 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2212 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2213 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2214
2215 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2216 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2217 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2218
2219 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2220 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2221 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2222
2223 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2224 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2225 val |= BCM5708S_UP1_2G5;
2226 bnx2_write_phy(bp, BCM5708S_UP1, val);
2227 }
2228
2229 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2230 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2231 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2232 /* increase tx signal amplitude */
2233 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2234 BCM5708S_BLK_ADDR_TX_MISC);
2235 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2236 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2237 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2238 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2239 }
2240
2241 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2242 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2243
2244 if (val) {
2245 u32 is_backplane;
2246
2247 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2248 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2249 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2250 BCM5708S_BLK_ADDR_TX_MISC);
2251 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2252 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2253 BCM5708S_BLK_ADDR_DIG);
2254 }
2255 }
2256 return 0;
2257 }
2258
2259 static int
bnx2_init_5706s_phy(struct bnx2 * bp,int reset_phy)2260 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2261 {
2262 if (reset_phy)
2263 bnx2_reset_phy(bp);
2264
2265 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2266
2267 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2268 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2269
2270 if (bp->dev->mtu > 1500) {
2271 u32 val;
2272
2273 /* Set extended packet length bit */
2274 bnx2_write_phy(bp, 0x18, 0x7);
2275 bnx2_read_phy(bp, 0x18, &val);
2276 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2277
2278 bnx2_write_phy(bp, 0x1c, 0x6c00);
2279 bnx2_read_phy(bp, 0x1c, &val);
2280 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2281 }
2282 else {
2283 u32 val;
2284
2285 bnx2_write_phy(bp, 0x18, 0x7);
2286 bnx2_read_phy(bp, 0x18, &val);
2287 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2288
2289 bnx2_write_phy(bp, 0x1c, 0x6c00);
2290 bnx2_read_phy(bp, 0x1c, &val);
2291 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2292 }
2293
2294 return 0;
2295 }
2296
2297 static int
bnx2_init_copper_phy(struct bnx2 * bp,int reset_phy)2298 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2299 {
2300 u32 val;
2301
2302 if (reset_phy)
2303 bnx2_reset_phy(bp);
2304
2305 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2306 bnx2_write_phy(bp, 0x18, 0x0c00);
2307 bnx2_write_phy(bp, 0x17, 0x000a);
2308 bnx2_write_phy(bp, 0x15, 0x310b);
2309 bnx2_write_phy(bp, 0x17, 0x201f);
2310 bnx2_write_phy(bp, 0x15, 0x9506);
2311 bnx2_write_phy(bp, 0x17, 0x401f);
2312 bnx2_write_phy(bp, 0x15, 0x14e2);
2313 bnx2_write_phy(bp, 0x18, 0x0400);
2314 }
2315
2316 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2317 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2318 MII_BNX2_DSP_EXPAND_REG | 0x8);
2319 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2320 val &= ~(1 << 8);
2321 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2322 }
2323
2324 if (bp->dev->mtu > 1500) {
2325 /* Set extended packet length bit */
2326 bnx2_write_phy(bp, 0x18, 0x7);
2327 bnx2_read_phy(bp, 0x18, &val);
2328 bnx2_write_phy(bp, 0x18, val | 0x4000);
2329
2330 bnx2_read_phy(bp, 0x10, &val);
2331 bnx2_write_phy(bp, 0x10, val | 0x1);
2332 }
2333 else {
2334 bnx2_write_phy(bp, 0x18, 0x7);
2335 bnx2_read_phy(bp, 0x18, &val);
2336 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2337
2338 bnx2_read_phy(bp, 0x10, &val);
2339 bnx2_write_phy(bp, 0x10, val & ~0x1);
2340 }
2341
2342 /* ethernet@wirespeed */
2343 bnx2_write_phy(bp, 0x18, 0x7007);
2344 bnx2_read_phy(bp, 0x18, &val);
2345 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2346 return 0;
2347 }
2348
2349
2350 static int
bnx2_init_phy(struct bnx2 * bp,int reset_phy)2351 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2352 __releases(&bp->phy_lock)
2353 __acquires(&bp->phy_lock)
2354 {
2355 u32 val;
2356 int rc = 0;
2357
2358 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2359 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2360
2361 bp->mii_bmcr = MII_BMCR;
2362 bp->mii_bmsr = MII_BMSR;
2363 bp->mii_bmsr1 = MII_BMSR;
2364 bp->mii_adv = MII_ADVERTISE;
2365 bp->mii_lpa = MII_LPA;
2366
2367 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2368
2369 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2370 goto setup_phy;
2371
2372 bnx2_read_phy(bp, MII_PHYSID1, &val);
2373 bp->phy_id = val << 16;
2374 bnx2_read_phy(bp, MII_PHYSID2, &val);
2375 bp->phy_id |= val & 0xffff;
2376
2377 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2378 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2379 rc = bnx2_init_5706s_phy(bp, reset_phy);
2380 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2381 rc = bnx2_init_5708s_phy(bp, reset_phy);
2382 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2383 rc = bnx2_init_5709s_phy(bp, reset_phy);
2384 }
2385 else {
2386 rc = bnx2_init_copper_phy(bp, reset_phy);
2387 }
2388
2389 setup_phy:
2390 if (!rc)
2391 rc = bnx2_setup_phy(bp, bp->phy_port);
2392
2393 return rc;
2394 }
2395
2396 static int
bnx2_set_mac_loopback(struct bnx2 * bp)2397 bnx2_set_mac_loopback(struct bnx2 *bp)
2398 {
2399 u32 mac_mode;
2400
2401 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2402 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2403 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2404 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2405 bp->link_up = 1;
2406 return 0;
2407 }
2408
2409 static int bnx2_test_link(struct bnx2 *);
2410
2411 static int
bnx2_set_phy_loopback(struct bnx2 * bp)2412 bnx2_set_phy_loopback(struct bnx2 *bp)
2413 {
2414 u32 mac_mode;
2415 int rc, i;
2416
2417 spin_lock_bh(&bp->phy_lock);
2418 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2419 BMCR_SPEED1000);
2420 spin_unlock_bh(&bp->phy_lock);
2421 if (rc)
2422 return rc;
2423
2424 for (i = 0; i < 10; i++) {
2425 if (bnx2_test_link(bp) == 0)
2426 break;
2427 msleep(100);
2428 }
2429
2430 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2431 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2432 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2433 BNX2_EMAC_MODE_25G_MODE);
2434
2435 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2436 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2437 bp->link_up = 1;
2438 return 0;
2439 }
2440
2441 static void
bnx2_dump_mcp_state(struct bnx2 * bp)2442 bnx2_dump_mcp_state(struct bnx2 *bp)
2443 {
2444 struct net_device *dev = bp->dev;
2445 u32 mcp_p0, mcp_p1;
2446
2447 netdev_err(dev, "<--- start MCP states dump --->\n");
2448 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
2449 mcp_p0 = BNX2_MCP_STATE_P0;
2450 mcp_p1 = BNX2_MCP_STATE_P1;
2451 } else {
2452 mcp_p0 = BNX2_MCP_STATE_P0_5708;
2453 mcp_p1 = BNX2_MCP_STATE_P1_5708;
2454 }
2455 netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2456 bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
2457 netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2458 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
2459 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
2460 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
2461 netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2462 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
2463 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
2464 bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
2465 netdev_err(dev, "DEBUG: shmem states:\n");
2466 netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2467 bnx2_shmem_rd(bp, BNX2_DRV_MB),
2468 bnx2_shmem_rd(bp, BNX2_FW_MB),
2469 bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
2470 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
2471 netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2472 bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
2473 bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
2474 pr_cont(" condition[%08x]\n",
2475 bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
2476 DP_SHMEM_LINE(bp, 0x3cc);
2477 DP_SHMEM_LINE(bp, 0x3dc);
2478 DP_SHMEM_LINE(bp, 0x3ec);
2479 netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
2480 netdev_err(dev, "<--- end MCP states dump --->\n");
2481 }
2482
2483 static int
bnx2_fw_sync(struct bnx2 * bp,u32 msg_data,int ack,int silent)2484 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2485 {
2486 int i;
2487 u32 val;
2488
2489 bp->fw_wr_seq++;
2490 msg_data |= bp->fw_wr_seq;
2491
2492 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2493
2494 if (!ack)
2495 return 0;
2496
2497 /* wait for an acknowledgement. */
2498 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2499 msleep(10);
2500
2501 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2502
2503 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2504 break;
2505 }
2506 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2507 return 0;
2508
2509 /* If we timed out, inform the firmware that this is the case. */
2510 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2511 msg_data &= ~BNX2_DRV_MSG_CODE;
2512 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2513
2514 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2515 if (!silent) {
2516 pr_err("fw sync timeout, reset code = %x\n", msg_data);
2517 bnx2_dump_mcp_state(bp);
2518 }
2519
2520 return -EBUSY;
2521 }
2522
2523 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2524 return -EIO;
2525
2526 return 0;
2527 }
2528
2529 static int
bnx2_init_5709_context(struct bnx2 * bp)2530 bnx2_init_5709_context(struct bnx2 *bp)
2531 {
2532 int i, ret = 0;
2533 u32 val;
2534
2535 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2536 val |= (BCM_PAGE_BITS - 8) << 16;
2537 REG_WR(bp, BNX2_CTX_COMMAND, val);
2538 for (i = 0; i < 10; i++) {
2539 val = REG_RD(bp, BNX2_CTX_COMMAND);
2540 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2541 break;
2542 udelay(2);
2543 }
2544 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2545 return -EBUSY;
2546
2547 for (i = 0; i < bp->ctx_pages; i++) {
2548 int j;
2549
2550 if (bp->ctx_blk[i])
2551 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2552 else
2553 return -ENOMEM;
2554
2555 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2556 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2557 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2558 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2559 (u64) bp->ctx_blk_mapping[i] >> 32);
2560 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2561 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2562 for (j = 0; j < 10; j++) {
2563
2564 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2565 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2566 break;
2567 udelay(5);
2568 }
2569 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2570 ret = -EBUSY;
2571 break;
2572 }
2573 }
2574 return ret;
2575 }
2576
2577 static void
bnx2_init_context(struct bnx2 * bp)2578 bnx2_init_context(struct bnx2 *bp)
2579 {
2580 u32 vcid;
2581
2582 vcid = 96;
2583 while (vcid) {
2584 u32 vcid_addr, pcid_addr, offset;
2585 int i;
2586
2587 vcid--;
2588
2589 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2590 u32 new_vcid;
2591
2592 vcid_addr = GET_PCID_ADDR(vcid);
2593 if (vcid & 0x8) {
2594 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2595 }
2596 else {
2597 new_vcid = vcid;
2598 }
2599 pcid_addr = GET_PCID_ADDR(new_vcid);
2600 }
2601 else {
2602 vcid_addr = GET_CID_ADDR(vcid);
2603 pcid_addr = vcid_addr;
2604 }
2605
2606 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2607 vcid_addr += (i << PHY_CTX_SHIFT);
2608 pcid_addr += (i << PHY_CTX_SHIFT);
2609
2610 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2611 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2612
2613 /* Zero out the context. */
2614 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2615 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2616 }
2617 }
2618 }
2619
2620 static int
bnx2_alloc_bad_rbuf(struct bnx2 * bp)2621 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2622 {
2623 u16 *good_mbuf;
2624 u32 good_mbuf_cnt;
2625 u32 val;
2626
2627 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2628 if (good_mbuf == NULL)
2629 return -ENOMEM;
2630
2631 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2632 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2633
2634 good_mbuf_cnt = 0;
2635
2636 /* Allocate a bunch of mbufs and save the good ones in an array. */
2637 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2638 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2639 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2640 BNX2_RBUF_COMMAND_ALLOC_REQ);
2641
2642 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2643
2644 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2645
2646 /* The addresses with Bit 9 set are bad memory blocks. */
2647 if (!(val & (1 << 9))) {
2648 good_mbuf[good_mbuf_cnt] = (u16) val;
2649 good_mbuf_cnt++;
2650 }
2651
2652 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2653 }
2654
2655 /* Free the good ones back to the mbuf pool thus discarding
2656 * all the bad ones. */
2657 while (good_mbuf_cnt) {
2658 good_mbuf_cnt--;
2659
2660 val = good_mbuf[good_mbuf_cnt];
2661 val = (val << 9) | val | 1;
2662
2663 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2664 }
2665 kfree(good_mbuf);
2666 return 0;
2667 }
2668
2669 static void
bnx2_set_mac_addr(struct bnx2 * bp,u8 * mac_addr,u32 pos)2670 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2671 {
2672 u32 val;
2673
2674 val = (mac_addr[0] << 8) | mac_addr[1];
2675
2676 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2677
2678 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2679 (mac_addr[4] << 8) | mac_addr[5];
2680
2681 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2682 }
2683
2684 static inline int
bnx2_alloc_rx_page(struct bnx2 * bp,struct bnx2_rx_ring_info * rxr,u16 index,gfp_t gfp)2685 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2686 {
2687 dma_addr_t mapping;
2688 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2689 struct rx_bd *rxbd =
2690 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2691 struct page *page = alloc_page(gfp);
2692
2693 if (!page)
2694 return -ENOMEM;
2695 mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
2696 PCI_DMA_FROMDEVICE);
2697 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2698 __free_page(page);
2699 return -EIO;
2700 }
2701
2702 rx_pg->page = page;
2703 dma_unmap_addr_set(rx_pg, mapping, mapping);
2704 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2705 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2706 return 0;
2707 }
2708
2709 static void
bnx2_free_rx_page(struct bnx2 * bp,struct bnx2_rx_ring_info * rxr,u16 index)2710 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2711 {
2712 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2713 struct page *page = rx_pg->page;
2714
2715 if (!page)
2716 return;
2717
2718 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
2719 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2720
2721 __free_page(page);
2722 rx_pg->page = NULL;
2723 }
2724
2725 static inline int
bnx2_alloc_rx_data(struct bnx2 * bp,struct bnx2_rx_ring_info * rxr,u16 index,gfp_t gfp)2726 bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
2727 {
2728 u8 *data;
2729 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2730 dma_addr_t mapping;
2731 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2732
2733 data = kmalloc(bp->rx_buf_size, gfp);
2734 if (!data)
2735 return -ENOMEM;
2736
2737 mapping = dma_map_single(&bp->pdev->dev,
2738 get_l2_fhdr(data),
2739 bp->rx_buf_use_size,
2740 PCI_DMA_FROMDEVICE);
2741 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
2742 kfree(data);
2743 return -EIO;
2744 }
2745
2746 rx_buf->data = data;
2747 dma_unmap_addr_set(rx_buf, mapping, mapping);
2748
2749 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2750 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2751
2752 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2753
2754 return 0;
2755 }
2756
2757 static int
bnx2_phy_event_is_set(struct bnx2 * bp,struct bnx2_napi * bnapi,u32 event)2758 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2759 {
2760 struct status_block *sblk = bnapi->status_blk.msi;
2761 u32 new_link_state, old_link_state;
2762 int is_set = 1;
2763
2764 new_link_state = sblk->status_attn_bits & event;
2765 old_link_state = sblk->status_attn_bits_ack & event;
2766 if (new_link_state != old_link_state) {
2767 if (new_link_state)
2768 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2769 else
2770 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2771 } else
2772 is_set = 0;
2773
2774 return is_set;
2775 }
2776
2777 static void
bnx2_phy_int(struct bnx2 * bp,struct bnx2_napi * bnapi)2778 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2779 {
2780 spin_lock(&bp->phy_lock);
2781
2782 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2783 bnx2_set_link(bp);
2784 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2785 bnx2_set_remote_link(bp);
2786
2787 spin_unlock(&bp->phy_lock);
2788
2789 }
2790
2791 static inline u16
bnx2_get_hw_tx_cons(struct bnx2_napi * bnapi)2792 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2793 {
2794 u16 cons;
2795
2796 /* Tell compiler that status block fields can change. */
2797 barrier();
2798 cons = *bnapi->hw_tx_cons_ptr;
2799 barrier();
2800 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2801 cons++;
2802 return cons;
2803 }
2804
2805 static int
bnx2_tx_int(struct bnx2 * bp,struct bnx2_napi * bnapi,int budget)2806 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2807 {
2808 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2809 u16 hw_cons, sw_cons, sw_ring_cons;
2810 int tx_pkt = 0, index;
2811 unsigned int tx_bytes = 0;
2812 struct netdev_queue *txq;
2813
2814 index = (bnapi - bp->bnx2_napi);
2815 txq = netdev_get_tx_queue(bp->dev, index);
2816
2817 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2818 sw_cons = txr->tx_cons;
2819
2820 while (sw_cons != hw_cons) {
2821 struct sw_tx_bd *tx_buf;
2822 struct sk_buff *skb;
2823 int i, last;
2824
2825 sw_ring_cons = TX_RING_IDX(sw_cons);
2826
2827 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2828 skb = tx_buf->skb;
2829
2830 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2831 prefetch(&skb->end);
2832
2833 /* partial BD completions possible with TSO packets */
2834 if (tx_buf->is_gso) {
2835 u16 last_idx, last_ring_idx;
2836
2837 last_idx = sw_cons + tx_buf->nr_frags + 1;
2838 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2839 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2840 last_idx++;
2841 }
2842 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2843 break;
2844 }
2845 }
2846
2847 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
2848 skb_headlen(skb), PCI_DMA_TODEVICE);
2849
2850 tx_buf->skb = NULL;
2851 last = tx_buf->nr_frags;
2852
2853 for (i = 0; i < last; i++) {
2854 sw_cons = NEXT_TX_BD(sw_cons);
2855
2856 dma_unmap_page(&bp->pdev->dev,
2857 dma_unmap_addr(
2858 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2859 mapping),
2860 skb_frag_size(&skb_shinfo(skb)->frags[i]),
2861 PCI_DMA_TODEVICE);
2862 }
2863
2864 sw_cons = NEXT_TX_BD(sw_cons);
2865
2866 tx_bytes += skb->len;
2867 dev_kfree_skb(skb);
2868 tx_pkt++;
2869 if (tx_pkt == budget)
2870 break;
2871
2872 if (hw_cons == sw_cons)
2873 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2874 }
2875
2876 netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
2877 txr->hw_tx_cons = hw_cons;
2878 txr->tx_cons = sw_cons;
2879
2880 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2881 * before checking for netif_tx_queue_stopped(). Without the
2882 * memory barrier, there is a small possibility that bnx2_start_xmit()
2883 * will miss it and cause the queue to be stopped forever.
2884 */
2885 smp_mb();
2886
2887 if (unlikely(netif_tx_queue_stopped(txq)) &&
2888 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2889 __netif_tx_lock(txq, smp_processor_id());
2890 if ((netif_tx_queue_stopped(txq)) &&
2891 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2892 netif_tx_wake_queue(txq);
2893 __netif_tx_unlock(txq);
2894 }
2895
2896 return tx_pkt;
2897 }
2898
2899 static void
bnx2_reuse_rx_skb_pages(struct bnx2 * bp,struct bnx2_rx_ring_info * rxr,struct sk_buff * skb,int count)2900 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2901 struct sk_buff *skb, int count)
2902 {
2903 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2904 struct rx_bd *cons_bd, *prod_bd;
2905 int i;
2906 u16 hw_prod, prod;
2907 u16 cons = rxr->rx_pg_cons;
2908
2909 cons_rx_pg = &rxr->rx_pg_ring[cons];
2910
2911 /* The caller was unable to allocate a new page to replace the
2912 * last one in the frags array, so we need to recycle that page
2913 * and then free the skb.
2914 */
2915 if (skb) {
2916 struct page *page;
2917 struct skb_shared_info *shinfo;
2918
2919 shinfo = skb_shinfo(skb);
2920 shinfo->nr_frags--;
2921 page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
2922 __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
2923
2924 cons_rx_pg->page = page;
2925 dev_kfree_skb(skb);
2926 }
2927
2928 hw_prod = rxr->rx_pg_prod;
2929
2930 for (i = 0; i < count; i++) {
2931 prod = RX_PG_RING_IDX(hw_prod);
2932
2933 prod_rx_pg = &rxr->rx_pg_ring[prod];
2934 cons_rx_pg = &rxr->rx_pg_ring[cons];
2935 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2936 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2937
2938 if (prod != cons) {
2939 prod_rx_pg->page = cons_rx_pg->page;
2940 cons_rx_pg->page = NULL;
2941 dma_unmap_addr_set(prod_rx_pg, mapping,
2942 dma_unmap_addr(cons_rx_pg, mapping));
2943
2944 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2945 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2946
2947 }
2948 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2949 hw_prod = NEXT_RX_BD(hw_prod);
2950 }
2951 rxr->rx_pg_prod = hw_prod;
2952 rxr->rx_pg_cons = cons;
2953 }
2954
2955 static inline void
bnx2_reuse_rx_data(struct bnx2 * bp,struct bnx2_rx_ring_info * rxr,u8 * data,u16 cons,u16 prod)2956 bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2957 u8 *data, u16 cons, u16 prod)
2958 {
2959 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2960 struct rx_bd *cons_bd, *prod_bd;
2961
2962 cons_rx_buf = &rxr->rx_buf_ring[cons];
2963 prod_rx_buf = &rxr->rx_buf_ring[prod];
2964
2965 dma_sync_single_for_device(&bp->pdev->dev,
2966 dma_unmap_addr(cons_rx_buf, mapping),
2967 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2968
2969 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2970
2971 prod_rx_buf->data = data;
2972
2973 if (cons == prod)
2974 return;
2975
2976 dma_unmap_addr_set(prod_rx_buf, mapping,
2977 dma_unmap_addr(cons_rx_buf, mapping));
2978
2979 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2980 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2981 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2982 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2983 }
2984
2985 static struct sk_buff *
bnx2_rx_skb(struct bnx2 * bp,struct bnx2_rx_ring_info * rxr,u8 * data,unsigned int len,unsigned int hdr_len,dma_addr_t dma_addr,u32 ring_idx)2986 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
2987 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2988 u32 ring_idx)
2989 {
2990 int err;
2991 u16 prod = ring_idx & 0xffff;
2992 struct sk_buff *skb;
2993
2994 err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
2995 if (unlikely(err)) {
2996 bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
2997 error:
2998 if (hdr_len) {
2999 unsigned int raw_len = len + 4;
3000 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
3001
3002 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3003 }
3004 return NULL;
3005 }
3006
3007 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
3008 PCI_DMA_FROMDEVICE);
3009 skb = build_skb(data);
3010 if (!skb) {
3011 kfree(data);
3012 goto error;
3013 }
3014 skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
3015 if (hdr_len == 0) {
3016 skb_put(skb, len);
3017 return skb;
3018 } else {
3019 unsigned int i, frag_len, frag_size, pages;
3020 struct sw_pg *rx_pg;
3021 u16 pg_cons = rxr->rx_pg_cons;
3022 u16 pg_prod = rxr->rx_pg_prod;
3023
3024 frag_size = len + 4 - hdr_len;
3025 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
3026 skb_put(skb, hdr_len);
3027
3028 for (i = 0; i < pages; i++) {
3029 dma_addr_t mapping_old;
3030
3031 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
3032 if (unlikely(frag_len <= 4)) {
3033 unsigned int tail = 4 - frag_len;
3034
3035 rxr->rx_pg_cons = pg_cons;
3036 rxr->rx_pg_prod = pg_prod;
3037 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3038 pages - i);
3039 skb->len -= tail;
3040 if (i == 0) {
3041 skb->tail -= tail;
3042 } else {
3043 skb_frag_t *frag =
3044 &skb_shinfo(skb)->frags[i - 1];
3045 skb_frag_size_sub(frag, tail);
3046 skb->data_len -= tail;
3047 }
3048 return skb;
3049 }
3050 rx_pg = &rxr->rx_pg_ring[pg_cons];
3051
3052 /* Don't unmap yet. If we're unable to allocate a new
3053 * page, we need to recycle the page and the DMA addr.
3054 */
3055 mapping_old = dma_unmap_addr(rx_pg, mapping);
3056 if (i == pages - 1)
3057 frag_len -= 4;
3058
3059 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3060 rx_pg->page = NULL;
3061
3062 err = bnx2_alloc_rx_page(bp, rxr,
3063 RX_PG_RING_IDX(pg_prod),
3064 GFP_ATOMIC);
3065 if (unlikely(err)) {
3066 rxr->rx_pg_cons = pg_cons;
3067 rxr->rx_pg_prod = pg_prod;
3068 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3069 pages - i);
3070 return NULL;
3071 }
3072
3073 dma_unmap_page(&bp->pdev->dev, mapping_old,
3074 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3075
3076 frag_size -= frag_len;
3077 skb->data_len += frag_len;
3078 skb->truesize += PAGE_SIZE;
3079 skb->len += frag_len;
3080
3081 pg_prod = NEXT_RX_BD(pg_prod);
3082 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3083 }
3084 rxr->rx_pg_prod = pg_prod;
3085 rxr->rx_pg_cons = pg_cons;
3086 }
3087 return skb;
3088 }
3089
3090 static inline u16
bnx2_get_hw_rx_cons(struct bnx2_napi * bnapi)3091 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3092 {
3093 u16 cons;
3094
3095 /* Tell compiler that status block fields can change. */
3096 barrier();
3097 cons = *bnapi->hw_rx_cons_ptr;
3098 barrier();
3099 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3100 cons++;
3101 return cons;
3102 }
3103
3104 static int
bnx2_rx_int(struct bnx2 * bp,struct bnx2_napi * bnapi,int budget)3105 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3106 {
3107 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3108 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3109 struct l2_fhdr *rx_hdr;
3110 int rx_pkt = 0, pg_ring_used = 0;
3111
3112 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3113 sw_cons = rxr->rx_cons;
3114 sw_prod = rxr->rx_prod;
3115
3116 /* Memory barrier necessary as speculative reads of the rx
3117 * buffer can be ahead of the index in the status block
3118 */
3119 rmb();
3120 while (sw_cons != hw_cons) {
3121 unsigned int len, hdr_len;
3122 u32 status;
3123 struct sw_bd *rx_buf, *next_rx_buf;
3124 struct sk_buff *skb;
3125 dma_addr_t dma_addr;
3126 u8 *data;
3127
3128 sw_ring_cons = RX_RING_IDX(sw_cons);
3129 sw_ring_prod = RX_RING_IDX(sw_prod);
3130
3131 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3132 data = rx_buf->data;
3133 rx_buf->data = NULL;
3134
3135 rx_hdr = get_l2_fhdr(data);
3136 prefetch(rx_hdr);
3137
3138 dma_addr = dma_unmap_addr(rx_buf, mapping);
3139
3140 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
3141 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3142 PCI_DMA_FROMDEVICE);
3143
3144 next_rx_buf =
3145 &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
3146 prefetch(get_l2_fhdr(next_rx_buf->data));
3147
3148 len = rx_hdr->l2_fhdr_pkt_len;
3149 status = rx_hdr->l2_fhdr_status;
3150
3151 hdr_len = 0;
3152 if (status & L2_FHDR_STATUS_SPLIT) {
3153 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3154 pg_ring_used = 1;
3155 } else if (len > bp->rx_jumbo_thresh) {
3156 hdr_len = bp->rx_jumbo_thresh;
3157 pg_ring_used = 1;
3158 }
3159
3160 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3161 L2_FHDR_ERRORS_PHY_DECODE |
3162 L2_FHDR_ERRORS_ALIGNMENT |
3163 L2_FHDR_ERRORS_TOO_SHORT |
3164 L2_FHDR_ERRORS_GIANT_FRAME))) {
3165
3166 bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
3167 sw_ring_prod);
3168 if (pg_ring_used) {
3169 int pages;
3170
3171 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3172
3173 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3174 }
3175 goto next_rx;
3176 }
3177
3178 len -= 4;
3179
3180 if (len <= bp->rx_copy_thresh) {
3181 skb = netdev_alloc_skb(bp->dev, len + 6);
3182 if (skb == NULL) {
3183 bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
3184 sw_ring_prod);
3185 goto next_rx;
3186 }
3187
3188 /* aligned copy */
3189 memcpy(skb->data,
3190 (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
3191 len + 6);
3192 skb_reserve(skb, 6);
3193 skb_put(skb, len);
3194
3195 bnx2_reuse_rx_data(bp, rxr, data,
3196 sw_ring_cons, sw_ring_prod);
3197
3198 } else {
3199 skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
3200 (sw_ring_cons << 16) | sw_ring_prod);
3201 if (!skb)
3202 goto next_rx;
3203 }
3204 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3205 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
3206 __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
3207
3208 skb->protocol = eth_type_trans(skb, bp->dev);
3209
3210 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3211 (ntohs(skb->protocol) != 0x8100)) {
3212
3213 dev_kfree_skb(skb);
3214 goto next_rx;
3215
3216 }
3217
3218 skb_checksum_none_assert(skb);
3219 if ((bp->dev->features & NETIF_F_RXCSUM) &&
3220 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3221 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3222
3223 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3224 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3225 skb->ip_summed = CHECKSUM_UNNECESSARY;
3226 }
3227 if ((bp->dev->features & NETIF_F_RXHASH) &&
3228 ((status & L2_FHDR_STATUS_USE_RXHASH) ==
3229 L2_FHDR_STATUS_USE_RXHASH))
3230 skb->rxhash = rx_hdr->l2_fhdr_hash;
3231
3232 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3233 napi_gro_receive(&bnapi->napi, skb);
3234 rx_pkt++;
3235
3236 next_rx:
3237 sw_cons = NEXT_RX_BD(sw_cons);
3238 sw_prod = NEXT_RX_BD(sw_prod);
3239
3240 if ((rx_pkt == budget))
3241 break;
3242
3243 /* Refresh hw_cons to see if there is new work */
3244 if (sw_cons == hw_cons) {
3245 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3246 rmb();
3247 }
3248 }
3249 rxr->rx_cons = sw_cons;
3250 rxr->rx_prod = sw_prod;
3251
3252 if (pg_ring_used)
3253 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3254
3255 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3256
3257 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3258
3259 mmiowb();
3260
3261 return rx_pkt;
3262
3263 }
3264
3265 /* MSI ISR - The only difference between this and the INTx ISR
3266 * is that the MSI interrupt is always serviced.
3267 */
3268 static irqreturn_t
bnx2_msi(int irq,void * dev_instance)3269 bnx2_msi(int irq, void *dev_instance)
3270 {
3271 struct bnx2_napi *bnapi = dev_instance;
3272 struct bnx2 *bp = bnapi->bp;
3273
3274 prefetch(bnapi->status_blk.msi);
3275 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3276 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3277 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3278
3279 /* Return here if interrupt is disabled. */
3280 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3281 return IRQ_HANDLED;
3282
3283 napi_schedule(&bnapi->napi);
3284
3285 return IRQ_HANDLED;
3286 }
3287
3288 static irqreturn_t
bnx2_msi_1shot(int irq,void * dev_instance)3289 bnx2_msi_1shot(int irq, void *dev_instance)
3290 {
3291 struct bnx2_napi *bnapi = dev_instance;
3292 struct bnx2 *bp = bnapi->bp;
3293
3294 prefetch(bnapi->status_blk.msi);
3295
3296 /* Return here if interrupt is disabled. */
3297 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3298 return IRQ_HANDLED;
3299
3300 napi_schedule(&bnapi->napi);
3301
3302 return IRQ_HANDLED;
3303 }
3304
3305 static irqreturn_t
bnx2_interrupt(int irq,void * dev_instance)3306 bnx2_interrupt(int irq, void *dev_instance)
3307 {
3308 struct bnx2_napi *bnapi = dev_instance;
3309 struct bnx2 *bp = bnapi->bp;
3310 struct status_block *sblk = bnapi->status_blk.msi;
3311
3312 /* When using INTx, it is possible for the interrupt to arrive
3313 * at the CPU before the status block posted prior to the
3314 * interrupt. Reading a register will flush the status block.
3315 * When using MSI, the MSI message will always complete after
3316 * the status block write.
3317 */
3318 if ((sblk->status_idx == bnapi->last_status_idx) &&
3319 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3320 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3321 return IRQ_NONE;
3322
3323 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3324 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3325 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3326
3327 /* Read back to deassert IRQ immediately to avoid too many
3328 * spurious interrupts.
3329 */
3330 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3331
3332 /* Return here if interrupt is shared and is disabled. */
3333 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3334 return IRQ_HANDLED;
3335
3336 if (napi_schedule_prep(&bnapi->napi)) {
3337 bnapi->last_status_idx = sblk->status_idx;
3338 __napi_schedule(&bnapi->napi);
3339 }
3340
3341 return IRQ_HANDLED;
3342 }
3343
3344 static inline int
bnx2_has_fast_work(struct bnx2_napi * bnapi)3345 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3346 {
3347 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3348 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3349
3350 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3351 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3352 return 1;
3353 return 0;
3354 }
3355
3356 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3357 STATUS_ATTN_BITS_TIMER_ABORT)
3358
3359 static inline int
bnx2_has_work(struct bnx2_napi * bnapi)3360 bnx2_has_work(struct bnx2_napi *bnapi)
3361 {
3362 struct status_block *sblk = bnapi->status_blk.msi;
3363
3364 if (bnx2_has_fast_work(bnapi))
3365 return 1;
3366
3367 #ifdef BCM_CNIC
3368 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3369 return 1;
3370 #endif
3371
3372 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3373 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3374 return 1;
3375
3376 return 0;
3377 }
3378
3379 static void
bnx2_chk_missed_msi(struct bnx2 * bp)3380 bnx2_chk_missed_msi(struct bnx2 *bp)
3381 {
3382 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3383 u32 msi_ctrl;
3384
3385 if (bnx2_has_work(bnapi)) {
3386 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3387 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3388 return;
3389
3390 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3391 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3392 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3393 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3394 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3395 }
3396 }
3397
3398 bp->idle_chk_status_idx = bnapi->last_status_idx;
3399 }
3400
3401 #ifdef BCM_CNIC
bnx2_poll_cnic(struct bnx2 * bp,struct bnx2_napi * bnapi)3402 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3403 {
3404 struct cnic_ops *c_ops;
3405
3406 if (!bnapi->cnic_present)
3407 return;
3408
3409 rcu_read_lock();
3410 c_ops = rcu_dereference(bp->cnic_ops);
3411 if (c_ops)
3412 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3413 bnapi->status_blk.msi);
3414 rcu_read_unlock();
3415 }
3416 #endif
3417
bnx2_poll_link(struct bnx2 * bp,struct bnx2_napi * bnapi)3418 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3419 {
3420 struct status_block *sblk = bnapi->status_blk.msi;
3421 u32 status_attn_bits = sblk->status_attn_bits;
3422 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3423
3424 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3425 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3426
3427 bnx2_phy_int(bp, bnapi);
3428
3429 /* This is needed to take care of transient status
3430 * during link changes.
3431 */
3432 REG_WR(bp, BNX2_HC_COMMAND,
3433 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3434 REG_RD(bp, BNX2_HC_COMMAND);
3435 }
3436 }
3437
bnx2_poll_work(struct bnx2 * bp,struct bnx2_napi * bnapi,int work_done,int budget)3438 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3439 int work_done, int budget)
3440 {
3441 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3442 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3443
3444 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3445 bnx2_tx_int(bp, bnapi, 0);
3446
3447 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3448 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3449
3450 return work_done;
3451 }
3452
bnx2_poll_msix(struct napi_struct * napi,int budget)3453 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3454 {
3455 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3456 struct bnx2 *bp = bnapi->bp;
3457 int work_done = 0;
3458 struct status_block_msix *sblk = bnapi->status_blk.msix;
3459
3460 while (1) {
3461 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3462 if (unlikely(work_done >= budget))
3463 break;
3464
3465 bnapi->last_status_idx = sblk->status_idx;
3466 /* status idx must be read before checking for more work. */
3467 rmb();
3468 if (likely(!bnx2_has_fast_work(bnapi))) {
3469
3470 napi_complete(napi);
3471 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3472 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3473 bnapi->last_status_idx);
3474 break;
3475 }
3476 }
3477 return work_done;
3478 }
3479
bnx2_poll(struct napi_struct * napi,int budget)3480 static int bnx2_poll(struct napi_struct *napi, int budget)
3481 {
3482 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3483 struct bnx2 *bp = bnapi->bp;
3484 int work_done = 0;
3485 struct status_block *sblk = bnapi->status_blk.msi;
3486
3487 while (1) {
3488 bnx2_poll_link(bp, bnapi);
3489
3490 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3491
3492 #ifdef BCM_CNIC
3493 bnx2_poll_cnic(bp, bnapi);
3494 #endif
3495
3496 /* bnapi->last_status_idx is used below to tell the hw how
3497 * much work has been processed, so we must read it before
3498 * checking for more work.
3499 */
3500 bnapi->last_status_idx = sblk->status_idx;
3501
3502 if (unlikely(work_done >= budget))
3503 break;
3504
3505 rmb();
3506 if (likely(!bnx2_has_work(bnapi))) {
3507 napi_complete(napi);
3508 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3509 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3510 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3511 bnapi->last_status_idx);
3512 break;
3513 }
3514 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3515 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3516 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3517 bnapi->last_status_idx);
3518
3519 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3520 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3521 bnapi->last_status_idx);
3522 break;
3523 }
3524 }
3525
3526 return work_done;
3527 }
3528
3529 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3530 * from set_multicast.
3531 */
3532 static void
bnx2_set_rx_mode(struct net_device * dev)3533 bnx2_set_rx_mode(struct net_device *dev)
3534 {
3535 struct bnx2 *bp = netdev_priv(dev);
3536 u32 rx_mode, sort_mode;
3537 struct netdev_hw_addr *ha;
3538 int i;
3539
3540 if (!netif_running(dev))
3541 return;
3542
3543 spin_lock_bh(&bp->phy_lock);
3544
3545 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3546 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3547 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3548 if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
3549 (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3550 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3551 if (dev->flags & IFF_PROMISC) {
3552 /* Promiscuous mode. */
3553 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3554 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3555 BNX2_RPM_SORT_USER0_PROM_VLAN;
3556 }
3557 else if (dev->flags & IFF_ALLMULTI) {
3558 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3559 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3560 0xffffffff);
3561 }
3562 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3563 }
3564 else {
3565 /* Accept one or more multicast(s). */
3566 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3567 u32 regidx;
3568 u32 bit;
3569 u32 crc;
3570
3571 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3572
3573 netdev_for_each_mc_addr(ha, dev) {
3574 crc = ether_crc_le(ETH_ALEN, ha->addr);
3575 bit = crc & 0xff;
3576 regidx = (bit & 0xe0) >> 5;
3577 bit &= 0x1f;
3578 mc_filter[regidx] |= (1 << bit);
3579 }
3580
3581 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3582 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3583 mc_filter[i]);
3584 }
3585
3586 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3587 }
3588
3589 if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
3590 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3591 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3592 BNX2_RPM_SORT_USER0_PROM_VLAN;
3593 } else if (!(dev->flags & IFF_PROMISC)) {
3594 /* Add all entries into to the match filter list */
3595 i = 0;
3596 netdev_for_each_uc_addr(ha, dev) {
3597 bnx2_set_mac_addr(bp, ha->addr,
3598 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3599 sort_mode |= (1 <<
3600 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3601 i++;
3602 }
3603
3604 }
3605
3606 if (rx_mode != bp->rx_mode) {
3607 bp->rx_mode = rx_mode;
3608 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3609 }
3610
3611 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3612 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3613 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3614
3615 spin_unlock_bh(&bp->phy_lock);
3616 }
3617
3618 static int
check_fw_section(const struct firmware * fw,const struct bnx2_fw_file_section * section,u32 alignment,bool non_empty)3619 check_fw_section(const struct firmware *fw,
3620 const struct bnx2_fw_file_section *section,
3621 u32 alignment, bool non_empty)
3622 {
3623 u32 offset = be32_to_cpu(section->offset);
3624 u32 len = be32_to_cpu(section->len);
3625
3626 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3627 return -EINVAL;
3628 if ((non_empty && len == 0) || len > fw->size - offset ||
3629 len & (alignment - 1))
3630 return -EINVAL;
3631 return 0;
3632 }
3633
3634 static int
check_mips_fw_entry(const struct firmware * fw,const struct bnx2_mips_fw_file_entry * entry)3635 check_mips_fw_entry(const struct firmware *fw,
3636 const struct bnx2_mips_fw_file_entry *entry)
3637 {
3638 if (check_fw_section(fw, &entry->text, 4, true) ||
3639 check_fw_section(fw, &entry->data, 4, false) ||
3640 check_fw_section(fw, &entry->rodata, 4, false))
3641 return -EINVAL;
3642 return 0;
3643 }
3644
bnx2_release_firmware(struct bnx2 * bp)3645 static void bnx2_release_firmware(struct bnx2 *bp)
3646 {
3647 if (bp->rv2p_firmware) {
3648 release_firmware(bp->mips_firmware);
3649 release_firmware(bp->rv2p_firmware);
3650 bp->rv2p_firmware = NULL;
3651 }
3652 }
3653
bnx2_request_uncached_firmware(struct bnx2 * bp)3654 static int bnx2_request_uncached_firmware(struct bnx2 *bp)
3655 {
3656 const char *mips_fw_file, *rv2p_fw_file;
3657 const struct bnx2_mips_fw_file *mips_fw;
3658 const struct bnx2_rv2p_fw_file *rv2p_fw;
3659 int rc;
3660
3661 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3662 mips_fw_file = FW_MIPS_FILE_09;
3663 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3664 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3665 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3666 else
3667 rv2p_fw_file = FW_RV2P_FILE_09;
3668 } else {
3669 mips_fw_file = FW_MIPS_FILE_06;
3670 rv2p_fw_file = FW_RV2P_FILE_06;
3671 }
3672
3673 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3674 if (rc) {
3675 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
3676 goto out;
3677 }
3678
3679 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3680 if (rc) {
3681 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
3682 goto err_release_mips_firmware;
3683 }
3684 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3685 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3686 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3687 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3688 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3689 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3690 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3691 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3692 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
3693 rc = -EINVAL;
3694 goto err_release_firmware;
3695 }
3696 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3697 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3698 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3699 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
3700 rc = -EINVAL;
3701 goto err_release_firmware;
3702 }
3703 out:
3704 return rc;
3705
3706 err_release_firmware:
3707 release_firmware(bp->rv2p_firmware);
3708 bp->rv2p_firmware = NULL;
3709 err_release_mips_firmware:
3710 release_firmware(bp->mips_firmware);
3711 goto out;
3712 }
3713
bnx2_request_firmware(struct bnx2 * bp)3714 static int bnx2_request_firmware(struct bnx2 *bp)
3715 {
3716 return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
3717 }
3718
3719 static u32
rv2p_fw_fixup(u32 rv2p_proc,int idx,u32 loc,u32 rv2p_code)3720 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3721 {
3722 switch (idx) {
3723 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3724 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3725 rv2p_code |= RV2P_BD_PAGE_SIZE;
3726 break;
3727 }
3728 return rv2p_code;
3729 }
3730
3731 static int
load_rv2p_fw(struct bnx2 * bp,u32 rv2p_proc,const struct bnx2_rv2p_fw_file_entry * fw_entry)3732 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3733 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3734 {
3735 u32 rv2p_code_len, file_offset;
3736 __be32 *rv2p_code;
3737 int i;
3738 u32 val, cmd, addr;
3739
3740 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3741 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3742
3743 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3744
3745 if (rv2p_proc == RV2P_PROC1) {
3746 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3747 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3748 } else {
3749 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3750 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3751 }
3752
3753 for (i = 0; i < rv2p_code_len; i += 8) {
3754 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3755 rv2p_code++;
3756 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3757 rv2p_code++;
3758
3759 val = (i / 8) | cmd;
3760 REG_WR(bp, addr, val);
3761 }
3762
3763 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3764 for (i = 0; i < 8; i++) {
3765 u32 loc, code;
3766
3767 loc = be32_to_cpu(fw_entry->fixup[i]);
3768 if (loc && ((loc * 4) < rv2p_code_len)) {
3769 code = be32_to_cpu(*(rv2p_code + loc - 1));
3770 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3771 code = be32_to_cpu(*(rv2p_code + loc));
3772 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3773 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3774
3775 val = (loc / 2) | cmd;
3776 REG_WR(bp, addr, val);
3777 }
3778 }
3779
3780 /* Reset the processor, un-stall is done later. */
3781 if (rv2p_proc == RV2P_PROC1) {
3782 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3783 }
3784 else {
3785 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3786 }
3787
3788 return 0;
3789 }
3790
3791 static int
load_cpu_fw(struct bnx2 * bp,const struct cpu_reg * cpu_reg,const struct bnx2_mips_fw_file_entry * fw_entry)3792 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3793 const struct bnx2_mips_fw_file_entry *fw_entry)
3794 {
3795 u32 addr, len, file_offset;
3796 __be32 *data;
3797 u32 offset;
3798 u32 val;
3799
3800 /* Halt the CPU. */
3801 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3802 val |= cpu_reg->mode_value_halt;
3803 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3804 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3805
3806 /* Load the Text area. */
3807 addr = be32_to_cpu(fw_entry->text.addr);
3808 len = be32_to_cpu(fw_entry->text.len);
3809 file_offset = be32_to_cpu(fw_entry->text.offset);
3810 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3811
3812 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3813 if (len) {
3814 int j;
3815
3816 for (j = 0; j < (len / 4); j++, offset += 4)
3817 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3818 }
3819
3820 /* Load the Data area. */
3821 addr = be32_to_cpu(fw_entry->data.addr);
3822 len = be32_to_cpu(fw_entry->data.len);
3823 file_offset = be32_to_cpu(fw_entry->data.offset);
3824 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3825
3826 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3827 if (len) {
3828 int j;
3829
3830 for (j = 0; j < (len / 4); j++, offset += 4)
3831 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3832 }
3833
3834 /* Load the Read-Only area. */
3835 addr = be32_to_cpu(fw_entry->rodata.addr);
3836 len = be32_to_cpu(fw_entry->rodata.len);
3837 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3838 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3839
3840 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3841 if (len) {
3842 int j;
3843
3844 for (j = 0; j < (len / 4); j++, offset += 4)
3845 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3846 }
3847
3848 /* Clear the pre-fetch instruction. */
3849 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3850
3851 val = be32_to_cpu(fw_entry->start_addr);
3852 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3853
3854 /* Start the CPU. */
3855 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3856 val &= ~cpu_reg->mode_value_halt;
3857 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3858 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3859
3860 return 0;
3861 }
3862
3863 static int
bnx2_init_cpus(struct bnx2 * bp)3864 bnx2_init_cpus(struct bnx2 *bp)
3865 {
3866 const struct bnx2_mips_fw_file *mips_fw =
3867 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3868 const struct bnx2_rv2p_fw_file *rv2p_fw =
3869 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3870 int rc;
3871
3872 /* Initialize the RV2P processor. */
3873 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3874 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3875
3876 /* Initialize the RX Processor. */
3877 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3878 if (rc)
3879 goto init_cpu_err;
3880
3881 /* Initialize the TX Processor. */
3882 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3883 if (rc)
3884 goto init_cpu_err;
3885
3886 /* Initialize the TX Patch-up Processor. */
3887 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3888 if (rc)
3889 goto init_cpu_err;
3890
3891 /* Initialize the Completion Processor. */
3892 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3893 if (rc)
3894 goto init_cpu_err;
3895
3896 /* Initialize the Command Processor. */
3897 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3898
3899 init_cpu_err:
3900 return rc;
3901 }
3902
3903 static int
bnx2_set_power_state(struct bnx2 * bp,pci_power_t state)3904 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3905 {
3906 u16 pmcsr;
3907
3908 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3909
3910 switch (state) {
3911 case PCI_D0: {
3912 u32 val;
3913
3914 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3915 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3916 PCI_PM_CTRL_PME_STATUS);
3917
3918 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3919 /* delay required during transition out of D3hot */
3920 msleep(20);
3921
3922 val = REG_RD(bp, BNX2_EMAC_MODE);
3923 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3924 val &= ~BNX2_EMAC_MODE_MPKT;
3925 REG_WR(bp, BNX2_EMAC_MODE, val);
3926
3927 val = REG_RD(bp, BNX2_RPM_CONFIG);
3928 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3929 REG_WR(bp, BNX2_RPM_CONFIG, val);
3930 break;
3931 }
3932 case PCI_D3hot: {
3933 int i;
3934 u32 val, wol_msg;
3935
3936 if (bp->wol) {
3937 u32 advertising;
3938 u8 autoneg;
3939
3940 autoneg = bp->autoneg;
3941 advertising = bp->advertising;
3942
3943 if (bp->phy_port == PORT_TP) {
3944 bp->autoneg = AUTONEG_SPEED;
3945 bp->advertising = ADVERTISED_10baseT_Half |
3946 ADVERTISED_10baseT_Full |
3947 ADVERTISED_100baseT_Half |
3948 ADVERTISED_100baseT_Full |
3949 ADVERTISED_Autoneg;
3950 }
3951
3952 spin_lock_bh(&bp->phy_lock);
3953 bnx2_setup_phy(bp, bp->phy_port);
3954 spin_unlock_bh(&bp->phy_lock);
3955
3956 bp->autoneg = autoneg;
3957 bp->advertising = advertising;
3958
3959 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3960
3961 val = REG_RD(bp, BNX2_EMAC_MODE);
3962
3963 /* Enable port mode. */
3964 val &= ~BNX2_EMAC_MODE_PORT;
3965 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3966 BNX2_EMAC_MODE_ACPI_RCVD |
3967 BNX2_EMAC_MODE_MPKT;
3968 if (bp->phy_port == PORT_TP)
3969 val |= BNX2_EMAC_MODE_PORT_MII;
3970 else {
3971 val |= BNX2_EMAC_MODE_PORT_GMII;
3972 if (bp->line_speed == SPEED_2500)
3973 val |= BNX2_EMAC_MODE_25G_MODE;
3974 }
3975
3976 REG_WR(bp, BNX2_EMAC_MODE, val);
3977
3978 /* receive all multicast */
3979 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3980 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3981 0xffffffff);
3982 }
3983 REG_WR(bp, BNX2_EMAC_RX_MODE,
3984 BNX2_EMAC_RX_MODE_SORT_MODE);
3985
3986 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3987 BNX2_RPM_SORT_USER0_MC_EN;
3988 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3989 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3990 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3991 BNX2_RPM_SORT_USER0_ENA);
3992
3993 /* Need to enable EMAC and RPM for WOL. */
3994 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3995 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3996 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3997 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3998
3999 val = REG_RD(bp, BNX2_RPM_CONFIG);
4000 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
4001 REG_WR(bp, BNX2_RPM_CONFIG, val);
4002
4003 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
4004 }
4005 else {
4006 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
4007 }
4008
4009 if (!(bp->flags & BNX2_FLAG_NO_WOL))
4010 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
4011 1, 0);
4012
4013 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4014 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4015 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
4016
4017 if (bp->wol)
4018 pmcsr |= 3;
4019 }
4020 else {
4021 pmcsr |= 3;
4022 }
4023 if (bp->wol) {
4024 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
4025 }
4026 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
4027 pmcsr);
4028
4029 /* No more memory access after this point until
4030 * device is brought back to D0.
4031 */
4032 udelay(50);
4033 break;
4034 }
4035 default:
4036 return -EINVAL;
4037 }
4038 return 0;
4039 }
4040
4041 static int
bnx2_acquire_nvram_lock(struct bnx2 * bp)4042 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4043 {
4044 u32 val;
4045 int j;
4046
4047 /* Request access to the flash interface. */
4048 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4049 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4050 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4051 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4052 break;
4053
4054 udelay(5);
4055 }
4056
4057 if (j >= NVRAM_TIMEOUT_COUNT)
4058 return -EBUSY;
4059
4060 return 0;
4061 }
4062
4063 static int
bnx2_release_nvram_lock(struct bnx2 * bp)4064 bnx2_release_nvram_lock(struct bnx2 *bp)
4065 {
4066 int j;
4067 u32 val;
4068
4069 /* Relinquish nvram interface. */
4070 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4071
4072 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4073 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4074 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4075 break;
4076
4077 udelay(5);
4078 }
4079
4080 if (j >= NVRAM_TIMEOUT_COUNT)
4081 return -EBUSY;
4082
4083 return 0;
4084 }
4085
4086
4087 static int
bnx2_enable_nvram_write(struct bnx2 * bp)4088 bnx2_enable_nvram_write(struct bnx2 *bp)
4089 {
4090 u32 val;
4091
4092 val = REG_RD(bp, BNX2_MISC_CFG);
4093 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4094
4095 if (bp->flash_info->flags & BNX2_NV_WREN) {
4096 int j;
4097
4098 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4099 REG_WR(bp, BNX2_NVM_COMMAND,
4100 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4101
4102 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4103 udelay(5);
4104
4105 val = REG_RD(bp, BNX2_NVM_COMMAND);
4106 if (val & BNX2_NVM_COMMAND_DONE)
4107 break;
4108 }
4109
4110 if (j >= NVRAM_TIMEOUT_COUNT)
4111 return -EBUSY;
4112 }
4113 return 0;
4114 }
4115
4116 static void
bnx2_disable_nvram_write(struct bnx2 * bp)4117 bnx2_disable_nvram_write(struct bnx2 *bp)
4118 {
4119 u32 val;
4120
4121 val = REG_RD(bp, BNX2_MISC_CFG);
4122 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4123 }
4124
4125
4126 static void
bnx2_enable_nvram_access(struct bnx2 * bp)4127 bnx2_enable_nvram_access(struct bnx2 *bp)
4128 {
4129 u32 val;
4130
4131 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4132 /* Enable both bits, even on read. */
4133 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4134 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4135 }
4136
4137 static void
bnx2_disable_nvram_access(struct bnx2 * bp)4138 bnx2_disable_nvram_access(struct bnx2 *bp)
4139 {
4140 u32 val;
4141
4142 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4143 /* Disable both bits, even after read. */
4144 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4145 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4146 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4147 }
4148
4149 static int
bnx2_nvram_erase_page(struct bnx2 * bp,u32 offset)4150 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4151 {
4152 u32 cmd;
4153 int j;
4154
4155 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4156 /* Buffered flash, no erase needed */
4157 return 0;
4158
4159 /* Build an erase command */
4160 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4161 BNX2_NVM_COMMAND_DOIT;
4162
4163 /* Need to clear DONE bit separately. */
4164 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4165
4166 /* Address of the NVRAM to read from. */
4167 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4168
4169 /* Issue an erase command. */
4170 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4171
4172 /* Wait for completion. */
4173 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4174 u32 val;
4175
4176 udelay(5);
4177
4178 val = REG_RD(bp, BNX2_NVM_COMMAND);
4179 if (val & BNX2_NVM_COMMAND_DONE)
4180 break;
4181 }
4182
4183 if (j >= NVRAM_TIMEOUT_COUNT)
4184 return -EBUSY;
4185
4186 return 0;
4187 }
4188
4189 static int
bnx2_nvram_read_dword(struct bnx2 * bp,u32 offset,u8 * ret_val,u32 cmd_flags)4190 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4191 {
4192 u32 cmd;
4193 int j;
4194
4195 /* Build the command word. */
4196 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4197
4198 /* Calculate an offset of a buffered flash, not needed for 5709. */
4199 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4200 offset = ((offset / bp->flash_info->page_size) <<
4201 bp->flash_info->page_bits) +
4202 (offset % bp->flash_info->page_size);
4203 }
4204
4205 /* Need to clear DONE bit separately. */
4206 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4207
4208 /* Address of the NVRAM to read from. */
4209 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4210
4211 /* Issue a read command. */
4212 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4213
4214 /* Wait for completion. */
4215 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4216 u32 val;
4217
4218 udelay(5);
4219
4220 val = REG_RD(bp, BNX2_NVM_COMMAND);
4221 if (val & BNX2_NVM_COMMAND_DONE) {
4222 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4223 memcpy(ret_val, &v, 4);
4224 break;
4225 }
4226 }
4227 if (j >= NVRAM_TIMEOUT_COUNT)
4228 return -EBUSY;
4229
4230 return 0;
4231 }
4232
4233
4234 static int
bnx2_nvram_write_dword(struct bnx2 * bp,u32 offset,u8 * val,u32 cmd_flags)4235 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4236 {
4237 u32 cmd;
4238 __be32 val32;
4239 int j;
4240
4241 /* Build the command word. */
4242 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4243
4244 /* Calculate an offset of a buffered flash, not needed for 5709. */
4245 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4246 offset = ((offset / bp->flash_info->page_size) <<
4247 bp->flash_info->page_bits) +
4248 (offset % bp->flash_info->page_size);
4249 }
4250
4251 /* Need to clear DONE bit separately. */
4252 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4253
4254 memcpy(&val32, val, 4);
4255
4256 /* Write the data. */
4257 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4258
4259 /* Address of the NVRAM to write to. */
4260 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4261
4262 /* Issue the write command. */
4263 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4264
4265 /* Wait for completion. */
4266 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4267 udelay(5);
4268
4269 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4270 break;
4271 }
4272 if (j >= NVRAM_TIMEOUT_COUNT)
4273 return -EBUSY;
4274
4275 return 0;
4276 }
4277
4278 static int
bnx2_init_nvram(struct bnx2 * bp)4279 bnx2_init_nvram(struct bnx2 *bp)
4280 {
4281 u32 val;
4282 int j, entry_count, rc = 0;
4283 const struct flash_spec *flash;
4284
4285 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4286 bp->flash_info = &flash_5709;
4287 goto get_flash_size;
4288 }
4289
4290 /* Determine the selected interface. */
4291 val = REG_RD(bp, BNX2_NVM_CFG1);
4292
4293 entry_count = ARRAY_SIZE(flash_table);
4294
4295 if (val & 0x40000000) {
4296
4297 /* Flash interface has been reconfigured */
4298 for (j = 0, flash = &flash_table[0]; j < entry_count;
4299 j++, flash++) {
4300 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4301 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4302 bp->flash_info = flash;
4303 break;
4304 }
4305 }
4306 }
4307 else {
4308 u32 mask;
4309 /* Not yet been reconfigured */
4310
4311 if (val & (1 << 23))
4312 mask = FLASH_BACKUP_STRAP_MASK;
4313 else
4314 mask = FLASH_STRAP_MASK;
4315
4316 for (j = 0, flash = &flash_table[0]; j < entry_count;
4317 j++, flash++) {
4318
4319 if ((val & mask) == (flash->strapping & mask)) {
4320 bp->flash_info = flash;
4321
4322 /* Request access to the flash interface. */
4323 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4324 return rc;
4325
4326 /* Enable access to flash interface */
4327 bnx2_enable_nvram_access(bp);
4328
4329 /* Reconfigure the flash interface */
4330 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4331 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4332 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4333 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4334
4335 /* Disable access to flash interface */
4336 bnx2_disable_nvram_access(bp);
4337 bnx2_release_nvram_lock(bp);
4338
4339 break;
4340 }
4341 }
4342 } /* if (val & 0x40000000) */
4343
4344 if (j == entry_count) {
4345 bp->flash_info = NULL;
4346 pr_alert("Unknown flash/EEPROM type\n");
4347 return -ENODEV;
4348 }
4349
4350 get_flash_size:
4351 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4352 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4353 if (val)
4354 bp->flash_size = val;
4355 else
4356 bp->flash_size = bp->flash_info->total_size;
4357
4358 return rc;
4359 }
4360
4361 static int
bnx2_nvram_read(struct bnx2 * bp,u32 offset,u8 * ret_buf,int buf_size)4362 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4363 int buf_size)
4364 {
4365 int rc = 0;
4366 u32 cmd_flags, offset32, len32, extra;
4367
4368 if (buf_size == 0)
4369 return 0;
4370
4371 /* Request access to the flash interface. */
4372 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4373 return rc;
4374
4375 /* Enable access to flash interface */
4376 bnx2_enable_nvram_access(bp);
4377
4378 len32 = buf_size;
4379 offset32 = offset;
4380 extra = 0;
4381
4382 cmd_flags = 0;
4383
4384 if (offset32 & 3) {
4385 u8 buf[4];
4386 u32 pre_len;
4387
4388 offset32 &= ~3;
4389 pre_len = 4 - (offset & 3);
4390
4391 if (pre_len >= len32) {
4392 pre_len = len32;
4393 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4394 BNX2_NVM_COMMAND_LAST;
4395 }
4396 else {
4397 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4398 }
4399
4400 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4401
4402 if (rc)
4403 return rc;
4404
4405 memcpy(ret_buf, buf + (offset & 3), pre_len);
4406
4407 offset32 += 4;
4408 ret_buf += pre_len;
4409 len32 -= pre_len;
4410 }
4411 if (len32 & 3) {
4412 extra = 4 - (len32 & 3);
4413 len32 = (len32 + 4) & ~3;
4414 }
4415
4416 if (len32 == 4) {
4417 u8 buf[4];
4418
4419 if (cmd_flags)
4420 cmd_flags = BNX2_NVM_COMMAND_LAST;
4421 else
4422 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4423 BNX2_NVM_COMMAND_LAST;
4424
4425 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4426
4427 memcpy(ret_buf, buf, 4 - extra);
4428 }
4429 else if (len32 > 0) {
4430 u8 buf[4];
4431
4432 /* Read the first word. */
4433 if (cmd_flags)
4434 cmd_flags = 0;
4435 else
4436 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4437
4438 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4439
4440 /* Advance to the next dword. */
4441 offset32 += 4;
4442 ret_buf += 4;
4443 len32 -= 4;
4444
4445 while (len32 > 4 && rc == 0) {
4446 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4447
4448 /* Advance to the next dword. */
4449 offset32 += 4;
4450 ret_buf += 4;
4451 len32 -= 4;
4452 }
4453
4454 if (rc)
4455 return rc;
4456
4457 cmd_flags = BNX2_NVM_COMMAND_LAST;
4458 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4459
4460 memcpy(ret_buf, buf, 4 - extra);
4461 }
4462
4463 /* Disable access to flash interface */
4464 bnx2_disable_nvram_access(bp);
4465
4466 bnx2_release_nvram_lock(bp);
4467
4468 return rc;
4469 }
4470
4471 static int
bnx2_nvram_write(struct bnx2 * bp,u32 offset,u8 * data_buf,int buf_size)4472 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4473 int buf_size)
4474 {
4475 u32 written, offset32, len32;
4476 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4477 int rc = 0;
4478 int align_start, align_end;
4479
4480 buf = data_buf;
4481 offset32 = offset;
4482 len32 = buf_size;
4483 align_start = align_end = 0;
4484
4485 if ((align_start = (offset32 & 3))) {
4486 offset32 &= ~3;
4487 len32 += align_start;
4488 if (len32 < 4)
4489 len32 = 4;
4490 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4491 return rc;
4492 }
4493
4494 if (len32 & 3) {
4495 align_end = 4 - (len32 & 3);
4496 len32 += align_end;
4497 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4498 return rc;
4499 }
4500
4501 if (align_start || align_end) {
4502 align_buf = kmalloc(len32, GFP_KERNEL);
4503 if (align_buf == NULL)
4504 return -ENOMEM;
4505 if (align_start) {
4506 memcpy(align_buf, start, 4);
4507 }
4508 if (align_end) {
4509 memcpy(align_buf + len32 - 4, end, 4);
4510 }
4511 memcpy(align_buf + align_start, data_buf, buf_size);
4512 buf = align_buf;
4513 }
4514
4515 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4516 flash_buffer = kmalloc(264, GFP_KERNEL);
4517 if (flash_buffer == NULL) {
4518 rc = -ENOMEM;
4519 goto nvram_write_end;
4520 }
4521 }
4522
4523 written = 0;
4524 while ((written < len32) && (rc == 0)) {
4525 u32 page_start, page_end, data_start, data_end;
4526 u32 addr, cmd_flags;
4527 int i;
4528
4529 /* Find the page_start addr */
4530 page_start = offset32 + written;
4531 page_start -= (page_start % bp->flash_info->page_size);
4532 /* Find the page_end addr */
4533 page_end = page_start + bp->flash_info->page_size;
4534 /* Find the data_start addr */
4535 data_start = (written == 0) ? offset32 : page_start;
4536 /* Find the data_end addr */
4537 data_end = (page_end > offset32 + len32) ?
4538 (offset32 + len32) : page_end;
4539
4540 /* Request access to the flash interface. */
4541 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4542 goto nvram_write_end;
4543
4544 /* Enable access to flash interface */
4545 bnx2_enable_nvram_access(bp);
4546
4547 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4548 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4549 int j;
4550
4551 /* Read the whole page into the buffer
4552 * (non-buffer flash only) */
4553 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4554 if (j == (bp->flash_info->page_size - 4)) {
4555 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4556 }
4557 rc = bnx2_nvram_read_dword(bp,
4558 page_start + j,
4559 &flash_buffer[j],
4560 cmd_flags);
4561
4562 if (rc)
4563 goto nvram_write_end;
4564
4565 cmd_flags = 0;
4566 }
4567 }
4568
4569 /* Enable writes to flash interface (unlock write-protect) */
4570 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4571 goto nvram_write_end;
4572
4573 /* Loop to write back the buffer data from page_start to
4574 * data_start */
4575 i = 0;
4576 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4577 /* Erase the page */
4578 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4579 goto nvram_write_end;
4580
4581 /* Re-enable the write again for the actual write */
4582 bnx2_enable_nvram_write(bp);
4583
4584 for (addr = page_start; addr < data_start;
4585 addr += 4, i += 4) {
4586
4587 rc = bnx2_nvram_write_dword(bp, addr,
4588 &flash_buffer[i], cmd_flags);
4589
4590 if (rc != 0)
4591 goto nvram_write_end;
4592
4593 cmd_flags = 0;
4594 }
4595 }
4596
4597 /* Loop to write the new data from data_start to data_end */
4598 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4599 if ((addr == page_end - 4) ||
4600 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4601 (addr == data_end - 4))) {
4602
4603 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4604 }
4605 rc = bnx2_nvram_write_dword(bp, addr, buf,
4606 cmd_flags);
4607
4608 if (rc != 0)
4609 goto nvram_write_end;
4610
4611 cmd_flags = 0;
4612 buf += 4;
4613 }
4614
4615 /* Loop to write back the buffer data from data_end
4616 * to page_end */
4617 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4618 for (addr = data_end; addr < page_end;
4619 addr += 4, i += 4) {
4620
4621 if (addr == page_end-4) {
4622 cmd_flags = BNX2_NVM_COMMAND_LAST;
4623 }
4624 rc = bnx2_nvram_write_dword(bp, addr,
4625 &flash_buffer[i], cmd_flags);
4626
4627 if (rc != 0)
4628 goto nvram_write_end;
4629
4630 cmd_flags = 0;
4631 }
4632 }
4633
4634 /* Disable writes to flash interface (lock write-protect) */
4635 bnx2_disable_nvram_write(bp);
4636
4637 /* Disable access to flash interface */
4638 bnx2_disable_nvram_access(bp);
4639 bnx2_release_nvram_lock(bp);
4640
4641 /* Increment written */
4642 written += data_end - data_start;
4643 }
4644
4645 nvram_write_end:
4646 kfree(flash_buffer);
4647 kfree(align_buf);
4648 return rc;
4649 }
4650
4651 static void
bnx2_init_fw_cap(struct bnx2 * bp)4652 bnx2_init_fw_cap(struct bnx2 *bp)
4653 {
4654 u32 val, sig = 0;
4655
4656 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4657 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4658
4659 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4660 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4661
4662 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4663 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4664 return;
4665
4666 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4667 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4668 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4669 }
4670
4671 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4672 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4673 u32 link;
4674
4675 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4676
4677 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4678 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4679 bp->phy_port = PORT_FIBRE;
4680 else
4681 bp->phy_port = PORT_TP;
4682
4683 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4684 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4685 }
4686
4687 if (netif_running(bp->dev) && sig)
4688 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4689 }
4690
4691 static void
bnx2_setup_msix_tbl(struct bnx2 * bp)4692 bnx2_setup_msix_tbl(struct bnx2 *bp)
4693 {
4694 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4695
4696 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4697 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4698 }
4699
4700 static int
bnx2_reset_chip(struct bnx2 * bp,u32 reset_code)4701 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4702 {
4703 u32 val;
4704 int i, rc = 0;
4705 u8 old_port;
4706
4707 /* Wait for the current PCI transaction to complete before
4708 * issuing a reset. */
4709 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
4710 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
4711 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4712 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4713 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4714 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4715 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4716 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4717 udelay(5);
4718 } else { /* 5709 */
4719 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4720 val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4721 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4722 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4723
4724 for (i = 0; i < 100; i++) {
4725 msleep(1);
4726 val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
4727 if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
4728 break;
4729 }
4730 }
4731
4732 /* Wait for the firmware to tell us it is ok to issue a reset. */
4733 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4734
4735 /* Deposit a driver reset signature so the firmware knows that
4736 * this is a soft reset. */
4737 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4738 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4739
4740 /* Do a dummy read to force the chip to complete all current transaction
4741 * before we issue a reset. */
4742 val = REG_RD(bp, BNX2_MISC_ID);
4743
4744 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4745 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4746 REG_RD(bp, BNX2_MISC_COMMAND);
4747 udelay(5);
4748
4749 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4750 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4751
4752 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4753
4754 } else {
4755 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4756 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4757 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4758
4759 /* Chip reset. */
4760 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4761
4762 /* Reading back any register after chip reset will hang the
4763 * bus on 5706 A0 and A1. The msleep below provides plenty
4764 * of margin for write posting.
4765 */
4766 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4767 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4768 msleep(20);
4769
4770 /* Reset takes approximate 30 usec */
4771 for (i = 0; i < 10; i++) {
4772 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4773 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4774 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4775 break;
4776 udelay(10);
4777 }
4778
4779 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4780 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4781 pr_err("Chip reset did not complete\n");
4782 return -EBUSY;
4783 }
4784 }
4785
4786 /* Make sure byte swapping is properly configured. */
4787 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4788 if (val != 0x01020304) {
4789 pr_err("Chip not in correct endian mode\n");
4790 return -ENODEV;
4791 }
4792
4793 /* Wait for the firmware to finish its initialization. */
4794 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4795 if (rc)
4796 return rc;
4797
4798 spin_lock_bh(&bp->phy_lock);
4799 old_port = bp->phy_port;
4800 bnx2_init_fw_cap(bp);
4801 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4802 old_port != bp->phy_port)
4803 bnx2_set_default_remote_link(bp);
4804 spin_unlock_bh(&bp->phy_lock);
4805
4806 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4807 /* Adjust the voltage regular to two steps lower. The default
4808 * of this register is 0x0000000e. */
4809 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4810
4811 /* Remove bad rbuf memory from the free pool. */
4812 rc = bnx2_alloc_bad_rbuf(bp);
4813 }
4814
4815 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4816 bnx2_setup_msix_tbl(bp);
4817 /* Prevent MSIX table reads and write from timing out */
4818 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4819 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4820 }
4821
4822 return rc;
4823 }
4824
4825 static int
bnx2_init_chip(struct bnx2 * bp)4826 bnx2_init_chip(struct bnx2 *bp)
4827 {
4828 u32 val, mtu;
4829 int rc, i;
4830
4831 /* Make sure the interrupt is not active. */
4832 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4833
4834 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4835 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4836 #ifdef __BIG_ENDIAN
4837 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4838 #endif
4839 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4840 DMA_READ_CHANS << 12 |
4841 DMA_WRITE_CHANS << 16;
4842
4843 val |= (0x2 << 20) | (1 << 11);
4844
4845 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4846 val |= (1 << 23);
4847
4848 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4849 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4850 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4851
4852 REG_WR(bp, BNX2_DMA_CONFIG, val);
4853
4854 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4855 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4856 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4857 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4858 }
4859
4860 if (bp->flags & BNX2_FLAG_PCIX) {
4861 u16 val16;
4862
4863 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4864 &val16);
4865 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4866 val16 & ~PCI_X_CMD_ERO);
4867 }
4868
4869 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4870 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4871 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4872 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4873
4874 /* Initialize context mapping and zero out the quick contexts. The
4875 * context block must have already been enabled. */
4876 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4877 rc = bnx2_init_5709_context(bp);
4878 if (rc)
4879 return rc;
4880 } else
4881 bnx2_init_context(bp);
4882
4883 if ((rc = bnx2_init_cpus(bp)) != 0)
4884 return rc;
4885
4886 bnx2_init_nvram(bp);
4887
4888 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4889
4890 val = REG_RD(bp, BNX2_MQ_CONFIG);
4891 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4892 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4893 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4894 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4895 if (CHIP_REV(bp) == CHIP_REV_Ax)
4896 val |= BNX2_MQ_CONFIG_HALT_DIS;
4897 }
4898
4899 REG_WR(bp, BNX2_MQ_CONFIG, val);
4900
4901 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4902 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4903 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4904
4905 val = (BCM_PAGE_BITS - 8) << 24;
4906 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4907
4908 /* Configure page size. */
4909 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4910 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4911 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4912 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4913
4914 val = bp->mac_addr[0] +
4915 (bp->mac_addr[1] << 8) +
4916 (bp->mac_addr[2] << 16) +
4917 bp->mac_addr[3] +
4918 (bp->mac_addr[4] << 8) +
4919 (bp->mac_addr[5] << 16);
4920 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4921
4922 /* Program the MTU. Also include 4 bytes for CRC32. */
4923 mtu = bp->dev->mtu;
4924 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4925 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4926 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4927 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4928
4929 if (mtu < 1500)
4930 mtu = 1500;
4931
4932 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4933 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4934 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4935
4936 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4937 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4938 bp->bnx2_napi[i].last_status_idx = 0;
4939
4940 bp->idle_chk_status_idx = 0xffff;
4941
4942 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4943
4944 /* Set up how to generate a link change interrupt. */
4945 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4946
4947 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4948 (u64) bp->status_blk_mapping & 0xffffffff);
4949 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4950
4951 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4952 (u64) bp->stats_blk_mapping & 0xffffffff);
4953 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4954 (u64) bp->stats_blk_mapping >> 32);
4955
4956 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4957 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4958
4959 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4960 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4961
4962 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4963 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4964
4965 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4966
4967 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4968
4969 REG_WR(bp, BNX2_HC_COM_TICKS,
4970 (bp->com_ticks_int << 16) | bp->com_ticks);
4971
4972 REG_WR(bp, BNX2_HC_CMD_TICKS,
4973 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4974
4975 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4976 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4977 else
4978 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4979 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4980
4981 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4982 val = BNX2_HC_CONFIG_COLLECT_STATS;
4983 else {
4984 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4985 BNX2_HC_CONFIG_COLLECT_STATS;
4986 }
4987
4988 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4989 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4990 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4991
4992 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4993 }
4994
4995 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4996 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4997
4998 REG_WR(bp, BNX2_HC_CONFIG, val);
4999
5000 if (bp->rx_ticks < 25)
5001 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
5002 else
5003 bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
5004
5005 for (i = 1; i < bp->irq_nvecs; i++) {
5006 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
5007 BNX2_HC_SB_CONFIG_1;
5008
5009 REG_WR(bp, base,
5010 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
5011 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
5012 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
5013
5014 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
5015 (bp->tx_quick_cons_trip_int << 16) |
5016 bp->tx_quick_cons_trip);
5017
5018 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
5019 (bp->tx_ticks_int << 16) | bp->tx_ticks);
5020
5021 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
5022 (bp->rx_quick_cons_trip_int << 16) |
5023 bp->rx_quick_cons_trip);
5024
5025 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
5026 (bp->rx_ticks_int << 16) | bp->rx_ticks);
5027 }
5028
5029 /* Clear internal stats counters. */
5030 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
5031
5032 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
5033
5034 /* Initialize the receive filter. */
5035 bnx2_set_rx_mode(bp->dev);
5036
5037 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5038 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
5039 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
5040 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
5041 }
5042 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
5043 1, 0);
5044
5045 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
5046 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
5047
5048 udelay(20);
5049
5050 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
5051
5052 return rc;
5053 }
5054
5055 static void
bnx2_clear_ring_states(struct bnx2 * bp)5056 bnx2_clear_ring_states(struct bnx2 *bp)
5057 {
5058 struct bnx2_napi *bnapi;
5059 struct bnx2_tx_ring_info *txr;
5060 struct bnx2_rx_ring_info *rxr;
5061 int i;
5062
5063 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5064 bnapi = &bp->bnx2_napi[i];
5065 txr = &bnapi->tx_ring;
5066 rxr = &bnapi->rx_ring;
5067
5068 txr->tx_cons = 0;
5069 txr->hw_tx_cons = 0;
5070 rxr->rx_prod_bseq = 0;
5071 rxr->rx_prod = 0;
5072 rxr->rx_cons = 0;
5073 rxr->rx_pg_prod = 0;
5074 rxr->rx_pg_cons = 0;
5075 }
5076 }
5077
5078 static void
bnx2_init_tx_context(struct bnx2 * bp,u32 cid,struct bnx2_tx_ring_info * txr)5079 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5080 {
5081 u32 val, offset0, offset1, offset2, offset3;
5082 u32 cid_addr = GET_CID_ADDR(cid);
5083
5084 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5085 offset0 = BNX2_L2CTX_TYPE_XI;
5086 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5087 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5088 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5089 } else {
5090 offset0 = BNX2_L2CTX_TYPE;
5091 offset1 = BNX2_L2CTX_CMD_TYPE;
5092 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5093 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5094 }
5095 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5096 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5097
5098 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5099 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5100
5101 val = (u64) txr->tx_desc_mapping >> 32;
5102 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5103
5104 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5105 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5106 }
5107
5108 static void
bnx2_init_tx_ring(struct bnx2 * bp,int ring_num)5109 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5110 {
5111 struct tx_bd *txbd;
5112 u32 cid = TX_CID;
5113 struct bnx2_napi *bnapi;
5114 struct bnx2_tx_ring_info *txr;
5115
5116 bnapi = &bp->bnx2_napi[ring_num];
5117 txr = &bnapi->tx_ring;
5118
5119 if (ring_num == 0)
5120 cid = TX_CID;
5121 else
5122 cid = TX_TSS_CID + ring_num - 1;
5123
5124 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5125
5126 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5127
5128 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5129 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5130
5131 txr->tx_prod = 0;
5132 txr->tx_prod_bseq = 0;
5133
5134 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5135 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5136
5137 bnx2_init_tx_context(bp, cid, txr);
5138 }
5139
5140 static void
bnx2_init_rxbd_rings(struct rx_bd * rx_ring[],dma_addr_t dma[],u32 buf_size,int num_rings)5141 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5142 int num_rings)
5143 {
5144 int i;
5145 struct rx_bd *rxbd;
5146
5147 for (i = 0; i < num_rings; i++) {
5148 int j;
5149
5150 rxbd = &rx_ring[i][0];
5151 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5152 rxbd->rx_bd_len = buf_size;
5153 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5154 }
5155 if (i == (num_rings - 1))
5156 j = 0;
5157 else
5158 j = i + 1;
5159 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5160 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5161 }
5162 }
5163
5164 static void
bnx2_init_rx_ring(struct bnx2 * bp,int ring_num)5165 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5166 {
5167 int i;
5168 u16 prod, ring_prod;
5169 u32 cid, rx_cid_addr, val;
5170 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5171 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5172
5173 if (ring_num == 0)
5174 cid = RX_CID;
5175 else
5176 cid = RX_RSS_CID + ring_num - 1;
5177
5178 rx_cid_addr = GET_CID_ADDR(cid);
5179
5180 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5181 bp->rx_buf_use_size, bp->rx_max_ring);
5182
5183 bnx2_init_rx_context(bp, cid);
5184
5185 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5186 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5187 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5188 }
5189
5190 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5191 if (bp->rx_pg_ring_size) {
5192 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5193 rxr->rx_pg_desc_mapping,
5194 PAGE_SIZE, bp->rx_max_pg_ring);
5195 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5196 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5197 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5198 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5199
5200 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5201 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5202
5203 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5204 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5205
5206 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5207 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5208 }
5209
5210 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5211 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5212
5213 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5214 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5215
5216 ring_prod = prod = rxr->rx_pg_prod;
5217 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5218 if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5219 netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
5220 ring_num, i, bp->rx_pg_ring_size);
5221 break;
5222 }
5223 prod = NEXT_RX_BD(prod);
5224 ring_prod = RX_PG_RING_IDX(prod);
5225 }
5226 rxr->rx_pg_prod = prod;
5227
5228 ring_prod = prod = rxr->rx_prod;
5229 for (i = 0; i < bp->rx_ring_size; i++) {
5230 if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
5231 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
5232 ring_num, i, bp->rx_ring_size);
5233 break;
5234 }
5235 prod = NEXT_RX_BD(prod);
5236 ring_prod = RX_RING_IDX(prod);
5237 }
5238 rxr->rx_prod = prod;
5239
5240 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5241 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5242 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5243
5244 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5245 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5246
5247 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5248 }
5249
5250 static void
bnx2_init_all_rings(struct bnx2 * bp)5251 bnx2_init_all_rings(struct bnx2 *bp)
5252 {
5253 int i;
5254 u32 val;
5255
5256 bnx2_clear_ring_states(bp);
5257
5258 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5259 for (i = 0; i < bp->num_tx_rings; i++)
5260 bnx2_init_tx_ring(bp, i);
5261
5262 if (bp->num_tx_rings > 1)
5263 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5264 (TX_TSS_CID << 7));
5265
5266 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5267 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5268
5269 for (i = 0; i < bp->num_rx_rings; i++)
5270 bnx2_init_rx_ring(bp, i);
5271
5272 if (bp->num_rx_rings > 1) {
5273 u32 tbl_32 = 0;
5274
5275 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5276 int shift = (i % 8) << 2;
5277
5278 tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
5279 if ((i % 8) == 7) {
5280 REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
5281 REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
5282 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
5283 BNX2_RLUP_RSS_COMMAND_WRITE |
5284 BNX2_RLUP_RSS_COMMAND_HASH_MASK);
5285 tbl_32 = 0;
5286 }
5287 }
5288
5289 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5290 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5291
5292 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5293
5294 }
5295 }
5296
bnx2_find_max_ring(u32 ring_size,u32 max_size)5297 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5298 {
5299 u32 max, num_rings = 1;
5300
5301 while (ring_size > MAX_RX_DESC_CNT) {
5302 ring_size -= MAX_RX_DESC_CNT;
5303 num_rings++;
5304 }
5305 /* round to next power of 2 */
5306 max = max_size;
5307 while ((max & num_rings) == 0)
5308 max >>= 1;
5309
5310 if (num_rings != max)
5311 max <<= 1;
5312
5313 return max;
5314 }
5315
5316 static void
bnx2_set_rx_ring_size(struct bnx2 * bp,u32 size)5317 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5318 {
5319 u32 rx_size, rx_space, jumbo_size;
5320
5321 /* 8 for CRC and VLAN */
5322 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5323
5324 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5325 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5326
5327 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5328 bp->rx_pg_ring_size = 0;
5329 bp->rx_max_pg_ring = 0;
5330 bp->rx_max_pg_ring_idx = 0;
5331 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5332 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5333
5334 jumbo_size = size * pages;
5335 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5336 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5337
5338 bp->rx_pg_ring_size = jumbo_size;
5339 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5340 MAX_RX_PG_RINGS);
5341 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5342 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5343 bp->rx_copy_thresh = 0;
5344 }
5345
5346 bp->rx_buf_use_size = rx_size;
5347 /* hw alignment + build_skb() overhead*/
5348 bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
5349 NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5350 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5351 bp->rx_ring_size = size;
5352 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5353 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5354 }
5355
5356 static void
bnx2_free_tx_skbs(struct bnx2 * bp)5357 bnx2_free_tx_skbs(struct bnx2 *bp)
5358 {
5359 int i;
5360
5361 for (i = 0; i < bp->num_tx_rings; i++) {
5362 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5363 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5364 int j;
5365
5366 if (txr->tx_buf_ring == NULL)
5367 continue;
5368
5369 for (j = 0; j < TX_DESC_CNT; ) {
5370 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5371 struct sk_buff *skb = tx_buf->skb;
5372 int k, last;
5373
5374 if (skb == NULL) {
5375 j = NEXT_TX_BD(j);
5376 continue;
5377 }
5378
5379 dma_unmap_single(&bp->pdev->dev,
5380 dma_unmap_addr(tx_buf, mapping),
5381 skb_headlen(skb),
5382 PCI_DMA_TODEVICE);
5383
5384 tx_buf->skb = NULL;
5385
5386 last = tx_buf->nr_frags;
5387 j = NEXT_TX_BD(j);
5388 for (k = 0; k < last; k++, j = NEXT_TX_BD(j)) {
5389 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5390 dma_unmap_page(&bp->pdev->dev,
5391 dma_unmap_addr(tx_buf, mapping),
5392 skb_frag_size(&skb_shinfo(skb)->frags[k]),
5393 PCI_DMA_TODEVICE);
5394 }
5395 dev_kfree_skb(skb);
5396 }
5397 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
5398 }
5399 }
5400
5401 static void
bnx2_free_rx_skbs(struct bnx2 * bp)5402 bnx2_free_rx_skbs(struct bnx2 *bp)
5403 {
5404 int i;
5405
5406 for (i = 0; i < bp->num_rx_rings; i++) {
5407 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5408 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5409 int j;
5410
5411 if (rxr->rx_buf_ring == NULL)
5412 return;
5413
5414 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5415 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5416 u8 *data = rx_buf->data;
5417
5418 if (data == NULL)
5419 continue;
5420
5421 dma_unmap_single(&bp->pdev->dev,
5422 dma_unmap_addr(rx_buf, mapping),
5423 bp->rx_buf_use_size,
5424 PCI_DMA_FROMDEVICE);
5425
5426 rx_buf->data = NULL;
5427
5428 kfree(data);
5429 }
5430 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5431 bnx2_free_rx_page(bp, rxr, j);
5432 }
5433 }
5434
5435 static void
bnx2_free_skbs(struct bnx2 * bp)5436 bnx2_free_skbs(struct bnx2 *bp)
5437 {
5438 bnx2_free_tx_skbs(bp);
5439 bnx2_free_rx_skbs(bp);
5440 }
5441
5442 static int
bnx2_reset_nic(struct bnx2 * bp,u32 reset_code)5443 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5444 {
5445 int rc;
5446
5447 rc = bnx2_reset_chip(bp, reset_code);
5448 bnx2_free_skbs(bp);
5449 if (rc)
5450 return rc;
5451
5452 if ((rc = bnx2_init_chip(bp)) != 0)
5453 return rc;
5454
5455 bnx2_init_all_rings(bp);
5456 return 0;
5457 }
5458
5459 static int
bnx2_init_nic(struct bnx2 * bp,int reset_phy)5460 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5461 {
5462 int rc;
5463
5464 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5465 return rc;
5466
5467 spin_lock_bh(&bp->phy_lock);
5468 bnx2_init_phy(bp, reset_phy);
5469 bnx2_set_link(bp);
5470 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5471 bnx2_remote_phy_event(bp);
5472 spin_unlock_bh(&bp->phy_lock);
5473 return 0;
5474 }
5475
5476 static int
bnx2_shutdown_chip(struct bnx2 * bp)5477 bnx2_shutdown_chip(struct bnx2 *bp)
5478 {
5479 u32 reset_code;
5480
5481 if (bp->flags & BNX2_FLAG_NO_WOL)
5482 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5483 else if (bp->wol)
5484 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5485 else
5486 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5487
5488 return bnx2_reset_chip(bp, reset_code);
5489 }
5490
5491 static int
bnx2_test_registers(struct bnx2 * bp)5492 bnx2_test_registers(struct bnx2 *bp)
5493 {
5494 int ret;
5495 int i, is_5709;
5496 static const struct {
5497 u16 offset;
5498 u16 flags;
5499 #define BNX2_FL_NOT_5709 1
5500 u32 rw_mask;
5501 u32 ro_mask;
5502 } reg_tbl[] = {
5503 { 0x006c, 0, 0x00000000, 0x0000003f },
5504 { 0x0090, 0, 0xffffffff, 0x00000000 },
5505 { 0x0094, 0, 0x00000000, 0x00000000 },
5506
5507 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5508 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5509 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5510 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5511 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5512 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5513 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5514 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5515 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5516
5517 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5518 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5519 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5520 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5521 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5522 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5523
5524 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5525 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5526 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5527
5528 { 0x1000, 0, 0x00000000, 0x00000001 },
5529 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5530
5531 { 0x1408, 0, 0x01c00800, 0x00000000 },
5532 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5533 { 0x14a8, 0, 0x00000000, 0x000001ff },
5534 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5535 { 0x14b0, 0, 0x00000002, 0x00000001 },
5536 { 0x14b8, 0, 0x00000000, 0x00000000 },
5537 { 0x14c0, 0, 0x00000000, 0x00000009 },
5538 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5539 { 0x14cc, 0, 0x00000000, 0x00000001 },
5540 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5541
5542 { 0x1800, 0, 0x00000000, 0x00000001 },
5543 { 0x1804, 0, 0x00000000, 0x00000003 },
5544
5545 { 0x2800, 0, 0x00000000, 0x00000001 },
5546 { 0x2804, 0, 0x00000000, 0x00003f01 },
5547 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5548 { 0x2810, 0, 0xffff0000, 0x00000000 },
5549 { 0x2814, 0, 0xffff0000, 0x00000000 },
5550 { 0x2818, 0, 0xffff0000, 0x00000000 },
5551 { 0x281c, 0, 0xffff0000, 0x00000000 },
5552 { 0x2834, 0, 0xffffffff, 0x00000000 },
5553 { 0x2840, 0, 0x00000000, 0xffffffff },
5554 { 0x2844, 0, 0x00000000, 0xffffffff },
5555 { 0x2848, 0, 0xffffffff, 0x00000000 },
5556 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5557
5558 { 0x2c00, 0, 0x00000000, 0x00000011 },
5559 { 0x2c04, 0, 0x00000000, 0x00030007 },
5560
5561 { 0x3c00, 0, 0x00000000, 0x00000001 },
5562 { 0x3c04, 0, 0x00000000, 0x00070000 },
5563 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5564 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5565 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5566 { 0x3c14, 0, 0x00000000, 0xffffffff },
5567 { 0x3c18, 0, 0x00000000, 0xffffffff },
5568 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5569 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5570
5571 { 0x5004, 0, 0x00000000, 0x0000007f },
5572 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5573
5574 { 0x5c00, 0, 0x00000000, 0x00000001 },
5575 { 0x5c04, 0, 0x00000000, 0x0003000f },
5576 { 0x5c08, 0, 0x00000003, 0x00000000 },
5577 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5578 { 0x5c10, 0, 0x00000000, 0xffffffff },
5579 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5580 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5581 { 0x5c88, 0, 0x00000000, 0x00077373 },
5582 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5583
5584 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5585 { 0x680c, 0, 0xffffffff, 0x00000000 },
5586 { 0x6810, 0, 0xffffffff, 0x00000000 },
5587 { 0x6814, 0, 0xffffffff, 0x00000000 },
5588 { 0x6818, 0, 0xffffffff, 0x00000000 },
5589 { 0x681c, 0, 0xffffffff, 0x00000000 },
5590 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5591 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5592 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5593 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5594 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5595 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5596 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5597 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5598 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5599 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5600 { 0x684c, 0, 0xffffffff, 0x00000000 },
5601 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5602 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5603 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5604 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5605 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5606 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5607
5608 { 0xffff, 0, 0x00000000, 0x00000000 },
5609 };
5610
5611 ret = 0;
5612 is_5709 = 0;
5613 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5614 is_5709 = 1;
5615
5616 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5617 u32 offset, rw_mask, ro_mask, save_val, val;
5618 u16 flags = reg_tbl[i].flags;
5619
5620 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5621 continue;
5622
5623 offset = (u32) reg_tbl[i].offset;
5624 rw_mask = reg_tbl[i].rw_mask;
5625 ro_mask = reg_tbl[i].ro_mask;
5626
5627 save_val = readl(bp->regview + offset);
5628
5629 writel(0, bp->regview + offset);
5630
5631 val = readl(bp->regview + offset);
5632 if ((val & rw_mask) != 0) {
5633 goto reg_test_err;
5634 }
5635
5636 if ((val & ro_mask) != (save_val & ro_mask)) {
5637 goto reg_test_err;
5638 }
5639
5640 writel(0xffffffff, bp->regview + offset);
5641
5642 val = readl(bp->regview + offset);
5643 if ((val & rw_mask) != rw_mask) {
5644 goto reg_test_err;
5645 }
5646
5647 if ((val & ro_mask) != (save_val & ro_mask)) {
5648 goto reg_test_err;
5649 }
5650
5651 writel(save_val, bp->regview + offset);
5652 continue;
5653
5654 reg_test_err:
5655 writel(save_val, bp->regview + offset);
5656 ret = -ENODEV;
5657 break;
5658 }
5659 return ret;
5660 }
5661
5662 static int
bnx2_do_mem_test(struct bnx2 * bp,u32 start,u32 size)5663 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5664 {
5665 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5666 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5667 int i;
5668
5669 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5670 u32 offset;
5671
5672 for (offset = 0; offset < size; offset += 4) {
5673
5674 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5675
5676 if (bnx2_reg_rd_ind(bp, start + offset) !=
5677 test_pattern[i]) {
5678 return -ENODEV;
5679 }
5680 }
5681 }
5682 return 0;
5683 }
5684
5685 static int
bnx2_test_memory(struct bnx2 * bp)5686 bnx2_test_memory(struct bnx2 *bp)
5687 {
5688 int ret = 0;
5689 int i;
5690 static struct mem_entry {
5691 u32 offset;
5692 u32 len;
5693 } mem_tbl_5706[] = {
5694 { 0x60000, 0x4000 },
5695 { 0xa0000, 0x3000 },
5696 { 0xe0000, 0x4000 },
5697 { 0x120000, 0x4000 },
5698 { 0x1a0000, 0x4000 },
5699 { 0x160000, 0x4000 },
5700 { 0xffffffff, 0 },
5701 },
5702 mem_tbl_5709[] = {
5703 { 0x60000, 0x4000 },
5704 { 0xa0000, 0x3000 },
5705 { 0xe0000, 0x4000 },
5706 { 0x120000, 0x4000 },
5707 { 0x1a0000, 0x4000 },
5708 { 0xffffffff, 0 },
5709 };
5710 struct mem_entry *mem_tbl;
5711
5712 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5713 mem_tbl = mem_tbl_5709;
5714 else
5715 mem_tbl = mem_tbl_5706;
5716
5717 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5718 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5719 mem_tbl[i].len)) != 0) {
5720 return ret;
5721 }
5722 }
5723
5724 return ret;
5725 }
5726
5727 #define BNX2_MAC_LOOPBACK 0
5728 #define BNX2_PHY_LOOPBACK 1
5729
5730 static int
bnx2_run_loopback(struct bnx2 * bp,int loopback_mode)5731 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5732 {
5733 unsigned int pkt_size, num_pkts, i;
5734 struct sk_buff *skb;
5735 u8 *data;
5736 unsigned char *packet;
5737 u16 rx_start_idx, rx_idx;
5738 dma_addr_t map;
5739 struct tx_bd *txbd;
5740 struct sw_bd *rx_buf;
5741 struct l2_fhdr *rx_hdr;
5742 int ret = -ENODEV;
5743 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5744 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5745 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5746
5747 tx_napi = bnapi;
5748
5749 txr = &tx_napi->tx_ring;
5750 rxr = &bnapi->rx_ring;
5751 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5752 bp->loopback = MAC_LOOPBACK;
5753 bnx2_set_mac_loopback(bp);
5754 }
5755 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5756 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5757 return 0;
5758
5759 bp->loopback = PHY_LOOPBACK;
5760 bnx2_set_phy_loopback(bp);
5761 }
5762 else
5763 return -EINVAL;
5764
5765 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5766 skb = netdev_alloc_skb(bp->dev, pkt_size);
5767 if (!skb)
5768 return -ENOMEM;
5769 packet = skb_put(skb, pkt_size);
5770 memcpy(packet, bp->dev->dev_addr, 6);
5771 memset(packet + 6, 0x0, 8);
5772 for (i = 14; i < pkt_size; i++)
5773 packet[i] = (unsigned char) (i & 0xff);
5774
5775 map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
5776 PCI_DMA_TODEVICE);
5777 if (dma_mapping_error(&bp->pdev->dev, map)) {
5778 dev_kfree_skb(skb);
5779 return -EIO;
5780 }
5781
5782 REG_WR(bp, BNX2_HC_COMMAND,
5783 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5784
5785 REG_RD(bp, BNX2_HC_COMMAND);
5786
5787 udelay(5);
5788 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5789
5790 num_pkts = 0;
5791
5792 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5793
5794 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5795 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5796 txbd->tx_bd_mss_nbytes = pkt_size;
5797 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5798
5799 num_pkts++;
5800 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5801 txr->tx_prod_bseq += pkt_size;
5802
5803 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5804 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5805
5806 udelay(100);
5807
5808 REG_WR(bp, BNX2_HC_COMMAND,
5809 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5810
5811 REG_RD(bp, BNX2_HC_COMMAND);
5812
5813 udelay(5);
5814
5815 dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
5816 dev_kfree_skb(skb);
5817
5818 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5819 goto loopback_test_done;
5820
5821 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5822 if (rx_idx != rx_start_idx + num_pkts) {
5823 goto loopback_test_done;
5824 }
5825
5826 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5827 data = rx_buf->data;
5828
5829 rx_hdr = get_l2_fhdr(data);
5830 data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
5831
5832 dma_sync_single_for_cpu(&bp->pdev->dev,
5833 dma_unmap_addr(rx_buf, mapping),
5834 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
5835
5836 if (rx_hdr->l2_fhdr_status &
5837 (L2_FHDR_ERRORS_BAD_CRC |
5838 L2_FHDR_ERRORS_PHY_DECODE |
5839 L2_FHDR_ERRORS_ALIGNMENT |
5840 L2_FHDR_ERRORS_TOO_SHORT |
5841 L2_FHDR_ERRORS_GIANT_FRAME)) {
5842
5843 goto loopback_test_done;
5844 }
5845
5846 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5847 goto loopback_test_done;
5848 }
5849
5850 for (i = 14; i < pkt_size; i++) {
5851 if (*(data + i) != (unsigned char) (i & 0xff)) {
5852 goto loopback_test_done;
5853 }
5854 }
5855
5856 ret = 0;
5857
5858 loopback_test_done:
5859 bp->loopback = 0;
5860 return ret;
5861 }
5862
5863 #define BNX2_MAC_LOOPBACK_FAILED 1
5864 #define BNX2_PHY_LOOPBACK_FAILED 2
5865 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5866 BNX2_PHY_LOOPBACK_FAILED)
5867
5868 static int
bnx2_test_loopback(struct bnx2 * bp)5869 bnx2_test_loopback(struct bnx2 *bp)
5870 {
5871 int rc = 0;
5872
5873 if (!netif_running(bp->dev))
5874 return BNX2_LOOPBACK_FAILED;
5875
5876 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5877 spin_lock_bh(&bp->phy_lock);
5878 bnx2_init_phy(bp, 1);
5879 spin_unlock_bh(&bp->phy_lock);
5880 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5881 rc |= BNX2_MAC_LOOPBACK_FAILED;
5882 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5883 rc |= BNX2_PHY_LOOPBACK_FAILED;
5884 return rc;
5885 }
5886
5887 #define NVRAM_SIZE 0x200
5888 #define CRC32_RESIDUAL 0xdebb20e3
5889
5890 static int
bnx2_test_nvram(struct bnx2 * bp)5891 bnx2_test_nvram(struct bnx2 *bp)
5892 {
5893 __be32 buf[NVRAM_SIZE / 4];
5894 u8 *data = (u8 *) buf;
5895 int rc = 0;
5896 u32 magic, csum;
5897
5898 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5899 goto test_nvram_done;
5900
5901 magic = be32_to_cpu(buf[0]);
5902 if (magic != 0x669955aa) {
5903 rc = -ENODEV;
5904 goto test_nvram_done;
5905 }
5906
5907 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5908 goto test_nvram_done;
5909
5910 csum = ether_crc_le(0x100, data);
5911 if (csum != CRC32_RESIDUAL) {
5912 rc = -ENODEV;
5913 goto test_nvram_done;
5914 }
5915
5916 csum = ether_crc_le(0x100, data + 0x100);
5917 if (csum != CRC32_RESIDUAL) {
5918 rc = -ENODEV;
5919 }
5920
5921 test_nvram_done:
5922 return rc;
5923 }
5924
5925 static int
bnx2_test_link(struct bnx2 * bp)5926 bnx2_test_link(struct bnx2 *bp)
5927 {
5928 u32 bmsr;
5929
5930 if (!netif_running(bp->dev))
5931 return -ENODEV;
5932
5933 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5934 if (bp->link_up)
5935 return 0;
5936 return -ENODEV;
5937 }
5938 spin_lock_bh(&bp->phy_lock);
5939 bnx2_enable_bmsr1(bp);
5940 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5941 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5942 bnx2_disable_bmsr1(bp);
5943 spin_unlock_bh(&bp->phy_lock);
5944
5945 if (bmsr & BMSR_LSTATUS) {
5946 return 0;
5947 }
5948 return -ENODEV;
5949 }
5950
5951 static int
bnx2_test_intr(struct bnx2 * bp)5952 bnx2_test_intr(struct bnx2 *bp)
5953 {
5954 int i;
5955 u16 status_idx;
5956
5957 if (!netif_running(bp->dev))
5958 return -ENODEV;
5959
5960 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5961
5962 /* This register is not touched during run-time. */
5963 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5964 REG_RD(bp, BNX2_HC_COMMAND);
5965
5966 for (i = 0; i < 10; i++) {
5967 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5968 status_idx) {
5969
5970 break;
5971 }
5972
5973 msleep_interruptible(10);
5974 }
5975 if (i < 10)
5976 return 0;
5977
5978 return -ENODEV;
5979 }
5980
5981 /* Determining link for parallel detection. */
5982 static int
bnx2_5706_serdes_has_link(struct bnx2 * bp)5983 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5984 {
5985 u32 mode_ctl, an_dbg, exp;
5986
5987 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5988 return 0;
5989
5990 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5991 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5992
5993 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5994 return 0;
5995
5996 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5997 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5998 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5999
6000 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
6001 return 0;
6002
6003 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
6004 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
6005 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
6006
6007 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
6008 return 0;
6009
6010 return 1;
6011 }
6012
6013 static void
bnx2_5706_serdes_timer(struct bnx2 * bp)6014 bnx2_5706_serdes_timer(struct bnx2 *bp)
6015 {
6016 int check_link = 1;
6017
6018 spin_lock(&bp->phy_lock);
6019 if (bp->serdes_an_pending) {
6020 bp->serdes_an_pending--;
6021 check_link = 0;
6022 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6023 u32 bmcr;
6024
6025 bp->current_interval = BNX2_TIMER_INTERVAL;
6026
6027 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6028
6029 if (bmcr & BMCR_ANENABLE) {
6030 if (bnx2_5706_serdes_has_link(bp)) {
6031 bmcr &= ~BMCR_ANENABLE;
6032 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
6033 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6034 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
6035 }
6036 }
6037 }
6038 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
6039 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
6040 u32 phy2;
6041
6042 bnx2_write_phy(bp, 0x17, 0x0f01);
6043 bnx2_read_phy(bp, 0x15, &phy2);
6044 if (phy2 & 0x20) {
6045 u32 bmcr;
6046
6047 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6048 bmcr |= BMCR_ANENABLE;
6049 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
6050
6051 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
6052 }
6053 } else
6054 bp->current_interval = BNX2_TIMER_INTERVAL;
6055
6056 if (check_link) {
6057 u32 val;
6058
6059 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
6060 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6061 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
6062
6063 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
6064 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
6065 bnx2_5706s_force_link_dn(bp, 1);
6066 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
6067 } else
6068 bnx2_set_link(bp);
6069 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6070 bnx2_set_link(bp);
6071 }
6072 spin_unlock(&bp->phy_lock);
6073 }
6074
6075 static void
bnx2_5708_serdes_timer(struct bnx2 * bp)6076 bnx2_5708_serdes_timer(struct bnx2 *bp)
6077 {
6078 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6079 return;
6080
6081 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6082 bp->serdes_an_pending = 0;
6083 return;
6084 }
6085
6086 spin_lock(&bp->phy_lock);
6087 if (bp->serdes_an_pending)
6088 bp->serdes_an_pending--;
6089 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6090 u32 bmcr;
6091
6092 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6093 if (bmcr & BMCR_ANENABLE) {
6094 bnx2_enable_forced_2g5(bp);
6095 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6096 } else {
6097 bnx2_disable_forced_2g5(bp);
6098 bp->serdes_an_pending = 2;
6099 bp->current_interval = BNX2_TIMER_INTERVAL;
6100 }
6101
6102 } else
6103 bp->current_interval = BNX2_TIMER_INTERVAL;
6104
6105 spin_unlock(&bp->phy_lock);
6106 }
6107
6108 static void
bnx2_timer(unsigned long data)6109 bnx2_timer(unsigned long data)
6110 {
6111 struct bnx2 *bp = (struct bnx2 *) data;
6112
6113 if (!netif_running(bp->dev))
6114 return;
6115
6116 if (atomic_read(&bp->intr_sem) != 0)
6117 goto bnx2_restart_timer;
6118
6119 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6120 BNX2_FLAG_USING_MSI)
6121 bnx2_chk_missed_msi(bp);
6122
6123 bnx2_send_heart_beat(bp);
6124
6125 bp->stats_blk->stat_FwRxDrop =
6126 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6127
6128 /* workaround occasional corrupted counters */
6129 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6130 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6131 BNX2_HC_COMMAND_STATS_NOW);
6132
6133 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6134 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6135 bnx2_5706_serdes_timer(bp);
6136 else
6137 bnx2_5708_serdes_timer(bp);
6138 }
6139
6140 bnx2_restart_timer:
6141 mod_timer(&bp->timer, jiffies + bp->current_interval);
6142 }
6143
6144 static int
bnx2_request_irq(struct bnx2 * bp)6145 bnx2_request_irq(struct bnx2 *bp)
6146 {
6147 unsigned long flags;
6148 struct bnx2_irq *irq;
6149 int rc = 0, i;
6150
6151 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6152 flags = 0;
6153 else
6154 flags = IRQF_SHARED;
6155
6156 for (i = 0; i < bp->irq_nvecs; i++) {
6157 irq = &bp->irq_tbl[i];
6158 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6159 &bp->bnx2_napi[i]);
6160 if (rc)
6161 break;
6162 irq->requested = 1;
6163 }
6164 return rc;
6165 }
6166
6167 static void
__bnx2_free_irq(struct bnx2 * bp)6168 __bnx2_free_irq(struct bnx2 *bp)
6169 {
6170 struct bnx2_irq *irq;
6171 int i;
6172
6173 for (i = 0; i < bp->irq_nvecs; i++) {
6174 irq = &bp->irq_tbl[i];
6175 if (irq->requested)
6176 free_irq(irq->vector, &bp->bnx2_napi[i]);
6177 irq->requested = 0;
6178 }
6179 }
6180
6181 static void
bnx2_free_irq(struct bnx2 * bp)6182 bnx2_free_irq(struct bnx2 *bp)
6183 {
6184
6185 __bnx2_free_irq(bp);
6186 if (bp->flags & BNX2_FLAG_USING_MSI)
6187 pci_disable_msi(bp->pdev);
6188 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6189 pci_disable_msix(bp->pdev);
6190
6191 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6192 }
6193
6194 static void
bnx2_enable_msix(struct bnx2 * bp,int msix_vecs)6195 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6196 {
6197 int i, total_vecs, rc;
6198 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6199 struct net_device *dev = bp->dev;
6200 const int len = sizeof(bp->irq_tbl[0].name);
6201
6202 bnx2_setup_msix_tbl(bp);
6203 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6204 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6205 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6206
6207 /* Need to flush the previous three writes to ensure MSI-X
6208 * is setup properly */
6209 REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
6210
6211 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6212 msix_ent[i].entry = i;
6213 msix_ent[i].vector = 0;
6214 }
6215
6216 total_vecs = msix_vecs;
6217 #ifdef BCM_CNIC
6218 total_vecs++;
6219 #endif
6220 rc = -ENOSPC;
6221 while (total_vecs >= BNX2_MIN_MSIX_VEC) {
6222 rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
6223 if (rc <= 0)
6224 break;
6225 if (rc > 0)
6226 total_vecs = rc;
6227 }
6228
6229 if (rc != 0)
6230 return;
6231
6232 msix_vecs = total_vecs;
6233 #ifdef BCM_CNIC
6234 msix_vecs--;
6235 #endif
6236 bp->irq_nvecs = msix_vecs;
6237 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6238 for (i = 0; i < total_vecs; i++) {
6239 bp->irq_tbl[i].vector = msix_ent[i].vector;
6240 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6241 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6242 }
6243 }
6244
6245 static int
bnx2_setup_int_mode(struct bnx2 * bp,int dis_msi)6246 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6247 {
6248 int cpus = num_online_cpus();
6249 int msix_vecs;
6250
6251 if (!bp->num_req_rx_rings)
6252 msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
6253 else if (!bp->num_req_tx_rings)
6254 msix_vecs = max(cpus, bp->num_req_rx_rings);
6255 else
6256 msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
6257
6258 msix_vecs = min(msix_vecs, RX_MAX_RINGS);
6259
6260 bp->irq_tbl[0].handler = bnx2_interrupt;
6261 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6262 bp->irq_nvecs = 1;
6263 bp->irq_tbl[0].vector = bp->pdev->irq;
6264
6265 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
6266 bnx2_enable_msix(bp, msix_vecs);
6267
6268 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6269 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6270 if (pci_enable_msi(bp->pdev) == 0) {
6271 bp->flags |= BNX2_FLAG_USING_MSI;
6272 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6273 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6274 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6275 } else
6276 bp->irq_tbl[0].handler = bnx2_msi;
6277
6278 bp->irq_tbl[0].vector = bp->pdev->irq;
6279 }
6280 }
6281
6282 if (!bp->num_req_tx_rings)
6283 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6284 else
6285 bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
6286
6287 if (!bp->num_req_rx_rings)
6288 bp->num_rx_rings = bp->irq_nvecs;
6289 else
6290 bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
6291
6292 netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
6293
6294 return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
6295 }
6296
6297 /* Called with rtnl_lock */
6298 static int
bnx2_open(struct net_device * dev)6299 bnx2_open(struct net_device *dev)
6300 {
6301 struct bnx2 *bp = netdev_priv(dev);
6302 int rc;
6303
6304 rc = bnx2_request_firmware(bp);
6305 if (rc < 0)
6306 goto out;
6307
6308 netif_carrier_off(dev);
6309
6310 bnx2_set_power_state(bp, PCI_D0);
6311 bnx2_disable_int(bp);
6312
6313 rc = bnx2_setup_int_mode(bp, disable_msi);
6314 if (rc)
6315 goto open_err;
6316 bnx2_init_napi(bp);
6317 bnx2_napi_enable(bp);
6318 rc = bnx2_alloc_mem(bp);
6319 if (rc)
6320 goto open_err;
6321
6322 rc = bnx2_request_irq(bp);
6323 if (rc)
6324 goto open_err;
6325
6326 rc = bnx2_init_nic(bp, 1);
6327 if (rc)
6328 goto open_err;
6329
6330 mod_timer(&bp->timer, jiffies + bp->current_interval);
6331
6332 atomic_set(&bp->intr_sem, 0);
6333
6334 memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
6335
6336 bnx2_enable_int(bp);
6337
6338 if (bp->flags & BNX2_FLAG_USING_MSI) {
6339 /* Test MSI to make sure it is working
6340 * If MSI test fails, go back to INTx mode
6341 */
6342 if (bnx2_test_intr(bp) != 0) {
6343 netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6344
6345 bnx2_disable_int(bp);
6346 bnx2_free_irq(bp);
6347
6348 bnx2_setup_int_mode(bp, 1);
6349
6350 rc = bnx2_init_nic(bp, 0);
6351
6352 if (!rc)
6353 rc = bnx2_request_irq(bp);
6354
6355 if (rc) {
6356 del_timer_sync(&bp->timer);
6357 goto open_err;
6358 }
6359 bnx2_enable_int(bp);
6360 }
6361 }
6362 if (bp->flags & BNX2_FLAG_USING_MSI)
6363 netdev_info(dev, "using MSI\n");
6364 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6365 netdev_info(dev, "using MSIX\n");
6366
6367 netif_tx_start_all_queues(dev);
6368 out:
6369 return rc;
6370
6371 open_err:
6372 bnx2_napi_disable(bp);
6373 bnx2_free_skbs(bp);
6374 bnx2_free_irq(bp);
6375 bnx2_free_mem(bp);
6376 bnx2_del_napi(bp);
6377 bnx2_release_firmware(bp);
6378 goto out;
6379 }
6380
6381 static void
bnx2_reset_task(struct work_struct * work)6382 bnx2_reset_task(struct work_struct *work)
6383 {
6384 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6385 int rc;
6386
6387 rtnl_lock();
6388 if (!netif_running(bp->dev)) {
6389 rtnl_unlock();
6390 return;
6391 }
6392
6393 bnx2_netif_stop(bp, true);
6394
6395 rc = bnx2_init_nic(bp, 1);
6396 if (rc) {
6397 netdev_err(bp->dev, "failed to reset NIC, closing\n");
6398 bnx2_napi_enable(bp);
6399 dev_close(bp->dev);
6400 rtnl_unlock();
6401 return;
6402 }
6403
6404 atomic_set(&bp->intr_sem, 1);
6405 bnx2_netif_start(bp, true);
6406 rtnl_unlock();
6407 }
6408
6409 static void
bnx2_dump_state(struct bnx2 * bp)6410 bnx2_dump_state(struct bnx2 *bp)
6411 {
6412 struct net_device *dev = bp->dev;
6413 u32 val1, val2;
6414
6415 pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
6416 netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6417 atomic_read(&bp->intr_sem), val1);
6418 pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
6419 pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
6420 netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
6421 netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6422 REG_RD(bp, BNX2_EMAC_TX_STATUS),
6423 REG_RD(bp, BNX2_EMAC_RX_STATUS));
6424 netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6425 REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
6426 netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6427 REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
6428 if (bp->flags & BNX2_FLAG_USING_MSIX)
6429 netdev_err(dev, "DEBUG: PBA[%08x]\n",
6430 REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
6431 }
6432
6433 static void
bnx2_tx_timeout(struct net_device * dev)6434 bnx2_tx_timeout(struct net_device *dev)
6435 {
6436 struct bnx2 *bp = netdev_priv(dev);
6437
6438 bnx2_dump_state(bp);
6439 bnx2_dump_mcp_state(bp);
6440
6441 /* This allows the netif to be shutdown gracefully before resetting */
6442 schedule_work(&bp->reset_task);
6443 }
6444
6445 /* Called with netif_tx_lock.
6446 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6447 * netif_wake_queue().
6448 */
6449 static netdev_tx_t
bnx2_start_xmit(struct sk_buff * skb,struct net_device * dev)6450 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6451 {
6452 struct bnx2 *bp = netdev_priv(dev);
6453 dma_addr_t mapping;
6454 struct tx_bd *txbd;
6455 struct sw_tx_bd *tx_buf;
6456 u32 len, vlan_tag_flags, last_frag, mss;
6457 u16 prod, ring_prod;
6458 int i;
6459 struct bnx2_napi *bnapi;
6460 struct bnx2_tx_ring_info *txr;
6461 struct netdev_queue *txq;
6462
6463 /* Determine which tx ring we will be placed on */
6464 i = skb_get_queue_mapping(skb);
6465 bnapi = &bp->bnx2_napi[i];
6466 txr = &bnapi->tx_ring;
6467 txq = netdev_get_tx_queue(dev, i);
6468
6469 if (unlikely(bnx2_tx_avail(bp, txr) <
6470 (skb_shinfo(skb)->nr_frags + 1))) {
6471 netif_tx_stop_queue(txq);
6472 netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
6473
6474 return NETDEV_TX_BUSY;
6475 }
6476 len = skb_headlen(skb);
6477 prod = txr->tx_prod;
6478 ring_prod = TX_RING_IDX(prod);
6479
6480 vlan_tag_flags = 0;
6481 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6482 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6483 }
6484
6485 if (vlan_tx_tag_present(skb)) {
6486 vlan_tag_flags |=
6487 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6488 }
6489
6490 if ((mss = skb_shinfo(skb)->gso_size)) {
6491 u32 tcp_opt_len;
6492 struct iphdr *iph;
6493
6494 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6495
6496 tcp_opt_len = tcp_optlen(skb);
6497
6498 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6499 u32 tcp_off = skb_transport_offset(skb) -
6500 sizeof(struct ipv6hdr) - ETH_HLEN;
6501
6502 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6503 TX_BD_FLAGS_SW_FLAGS;
6504 if (likely(tcp_off == 0))
6505 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6506 else {
6507 tcp_off >>= 3;
6508 vlan_tag_flags |= ((tcp_off & 0x3) <<
6509 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6510 ((tcp_off & 0x10) <<
6511 TX_BD_FLAGS_TCP6_OFF4_SHL);
6512 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6513 }
6514 } else {
6515 iph = ip_hdr(skb);
6516 if (tcp_opt_len || (iph->ihl > 5)) {
6517 vlan_tag_flags |= ((iph->ihl - 5) +
6518 (tcp_opt_len >> 2)) << 8;
6519 }
6520 }
6521 } else
6522 mss = 0;
6523
6524 mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
6525 if (dma_mapping_error(&bp->pdev->dev, mapping)) {
6526 dev_kfree_skb(skb);
6527 return NETDEV_TX_OK;
6528 }
6529
6530 tx_buf = &txr->tx_buf_ring[ring_prod];
6531 tx_buf->skb = skb;
6532 dma_unmap_addr_set(tx_buf, mapping, mapping);
6533
6534 txbd = &txr->tx_desc_ring[ring_prod];
6535
6536 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6537 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6538 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6539 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6540
6541 last_frag = skb_shinfo(skb)->nr_frags;
6542 tx_buf->nr_frags = last_frag;
6543 tx_buf->is_gso = skb_is_gso(skb);
6544
6545 for (i = 0; i < last_frag; i++) {
6546 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6547
6548 prod = NEXT_TX_BD(prod);
6549 ring_prod = TX_RING_IDX(prod);
6550 txbd = &txr->tx_desc_ring[ring_prod];
6551
6552 len = skb_frag_size(frag);
6553 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
6554 DMA_TO_DEVICE);
6555 if (dma_mapping_error(&bp->pdev->dev, mapping))
6556 goto dma_error;
6557 dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6558 mapping);
6559
6560 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6561 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6562 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6563 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6564
6565 }
6566 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6567
6568 /* Sync BD data before updating TX mailbox */
6569 wmb();
6570
6571 netdev_tx_sent_queue(txq, skb->len);
6572
6573 prod = NEXT_TX_BD(prod);
6574 txr->tx_prod_bseq += skb->len;
6575
6576 REG_WR16(bp, txr->tx_bidx_addr, prod);
6577 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6578
6579 mmiowb();
6580
6581 txr->tx_prod = prod;
6582
6583 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6584 netif_tx_stop_queue(txq);
6585
6586 /* netif_tx_stop_queue() must be done before checking
6587 * tx index in bnx2_tx_avail() below, because in
6588 * bnx2_tx_int(), we update tx index before checking for
6589 * netif_tx_queue_stopped().
6590 */
6591 smp_mb();
6592 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6593 netif_tx_wake_queue(txq);
6594 }
6595
6596 return NETDEV_TX_OK;
6597 dma_error:
6598 /* save value of frag that failed */
6599 last_frag = i;
6600
6601 /* start back at beginning and unmap skb */
6602 prod = txr->tx_prod;
6603 ring_prod = TX_RING_IDX(prod);
6604 tx_buf = &txr->tx_buf_ring[ring_prod];
6605 tx_buf->skb = NULL;
6606 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6607 skb_headlen(skb), PCI_DMA_TODEVICE);
6608
6609 /* unmap remaining mapped pages */
6610 for (i = 0; i < last_frag; i++) {
6611 prod = NEXT_TX_BD(prod);
6612 ring_prod = TX_RING_IDX(prod);
6613 tx_buf = &txr->tx_buf_ring[ring_prod];
6614 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
6615 skb_frag_size(&skb_shinfo(skb)->frags[i]),
6616 PCI_DMA_TODEVICE);
6617 }
6618
6619 dev_kfree_skb(skb);
6620 return NETDEV_TX_OK;
6621 }
6622
6623 /* Called with rtnl_lock */
6624 static int
bnx2_close(struct net_device * dev)6625 bnx2_close(struct net_device *dev)
6626 {
6627 struct bnx2 *bp = netdev_priv(dev);
6628
6629 bnx2_disable_int_sync(bp);
6630 bnx2_napi_disable(bp);
6631 del_timer_sync(&bp->timer);
6632 bnx2_shutdown_chip(bp);
6633 bnx2_free_irq(bp);
6634 bnx2_free_skbs(bp);
6635 bnx2_free_mem(bp);
6636 bnx2_del_napi(bp);
6637 bp->link_up = 0;
6638 netif_carrier_off(bp->dev);
6639 bnx2_set_power_state(bp, PCI_D3hot);
6640 return 0;
6641 }
6642
6643 static void
bnx2_save_stats(struct bnx2 * bp)6644 bnx2_save_stats(struct bnx2 *bp)
6645 {
6646 u32 *hw_stats = (u32 *) bp->stats_blk;
6647 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
6648 int i;
6649
6650 /* The 1st 10 counters are 64-bit counters */
6651 for (i = 0; i < 20; i += 2) {
6652 u32 hi;
6653 u64 lo;
6654
6655 hi = temp_stats[i] + hw_stats[i];
6656 lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
6657 if (lo > 0xffffffff)
6658 hi++;
6659 temp_stats[i] = hi;
6660 temp_stats[i + 1] = lo & 0xffffffff;
6661 }
6662
6663 for ( ; i < sizeof(struct statistics_block) / 4; i++)
6664 temp_stats[i] += hw_stats[i];
6665 }
6666
6667 #define GET_64BIT_NET_STATS64(ctr) \
6668 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6669
6670 #define GET_64BIT_NET_STATS(ctr) \
6671 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6672 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6673
6674 #define GET_32BIT_NET_STATS(ctr) \
6675 (unsigned long) (bp->stats_blk->ctr + \
6676 bp->temp_stats_blk->ctr)
6677
6678 static struct rtnl_link_stats64 *
bnx2_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * net_stats)6679 bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
6680 {
6681 struct bnx2 *bp = netdev_priv(dev);
6682
6683 if (bp->stats_blk == NULL)
6684 return net_stats;
6685
6686 net_stats->rx_packets =
6687 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
6688 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
6689 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
6690
6691 net_stats->tx_packets =
6692 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
6693 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
6694 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
6695
6696 net_stats->rx_bytes =
6697 GET_64BIT_NET_STATS(stat_IfHCInOctets);
6698
6699 net_stats->tx_bytes =
6700 GET_64BIT_NET_STATS(stat_IfHCOutOctets);
6701
6702 net_stats->multicast =
6703 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
6704
6705 net_stats->collisions =
6706 GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
6707
6708 net_stats->rx_length_errors =
6709 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
6710 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
6711
6712 net_stats->rx_over_errors =
6713 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6714 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
6715
6716 net_stats->rx_frame_errors =
6717 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
6718
6719 net_stats->rx_crc_errors =
6720 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
6721
6722 net_stats->rx_errors = net_stats->rx_length_errors +
6723 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6724 net_stats->rx_crc_errors;
6725
6726 net_stats->tx_aborted_errors =
6727 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
6728 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
6729
6730 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6731 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6732 net_stats->tx_carrier_errors = 0;
6733 else {
6734 net_stats->tx_carrier_errors =
6735 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
6736 }
6737
6738 net_stats->tx_errors =
6739 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
6740 net_stats->tx_aborted_errors +
6741 net_stats->tx_carrier_errors;
6742
6743 net_stats->rx_missed_errors =
6744 GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
6745 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
6746 GET_32BIT_NET_STATS(stat_FwRxDrop);
6747
6748 return net_stats;
6749 }
6750
6751 /* All ethtool functions called with rtnl_lock */
6752
6753 static int
bnx2_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)6754 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6755 {
6756 struct bnx2 *bp = netdev_priv(dev);
6757 int support_serdes = 0, support_copper = 0;
6758
6759 cmd->supported = SUPPORTED_Autoneg;
6760 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6761 support_serdes = 1;
6762 support_copper = 1;
6763 } else if (bp->phy_port == PORT_FIBRE)
6764 support_serdes = 1;
6765 else
6766 support_copper = 1;
6767
6768 if (support_serdes) {
6769 cmd->supported |= SUPPORTED_1000baseT_Full |
6770 SUPPORTED_FIBRE;
6771 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6772 cmd->supported |= SUPPORTED_2500baseX_Full;
6773
6774 }
6775 if (support_copper) {
6776 cmd->supported |= SUPPORTED_10baseT_Half |
6777 SUPPORTED_10baseT_Full |
6778 SUPPORTED_100baseT_Half |
6779 SUPPORTED_100baseT_Full |
6780 SUPPORTED_1000baseT_Full |
6781 SUPPORTED_TP;
6782
6783 }
6784
6785 spin_lock_bh(&bp->phy_lock);
6786 cmd->port = bp->phy_port;
6787 cmd->advertising = bp->advertising;
6788
6789 if (bp->autoneg & AUTONEG_SPEED) {
6790 cmd->autoneg = AUTONEG_ENABLE;
6791 } else {
6792 cmd->autoneg = AUTONEG_DISABLE;
6793 }
6794
6795 if (netif_carrier_ok(dev)) {
6796 ethtool_cmd_speed_set(cmd, bp->line_speed);
6797 cmd->duplex = bp->duplex;
6798 }
6799 else {
6800 ethtool_cmd_speed_set(cmd, -1);
6801 cmd->duplex = -1;
6802 }
6803 spin_unlock_bh(&bp->phy_lock);
6804
6805 cmd->transceiver = XCVR_INTERNAL;
6806 cmd->phy_address = bp->phy_addr;
6807
6808 return 0;
6809 }
6810
6811 static int
bnx2_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)6812 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6813 {
6814 struct bnx2 *bp = netdev_priv(dev);
6815 u8 autoneg = bp->autoneg;
6816 u8 req_duplex = bp->req_duplex;
6817 u16 req_line_speed = bp->req_line_speed;
6818 u32 advertising = bp->advertising;
6819 int err = -EINVAL;
6820
6821 spin_lock_bh(&bp->phy_lock);
6822
6823 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6824 goto err_out_unlock;
6825
6826 if (cmd->port != bp->phy_port &&
6827 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6828 goto err_out_unlock;
6829
6830 /* If device is down, we can store the settings only if the user
6831 * is setting the currently active port.
6832 */
6833 if (!netif_running(dev) && cmd->port != bp->phy_port)
6834 goto err_out_unlock;
6835
6836 if (cmd->autoneg == AUTONEG_ENABLE) {
6837 autoneg |= AUTONEG_SPEED;
6838
6839 advertising = cmd->advertising;
6840 if (cmd->port == PORT_TP) {
6841 advertising &= ETHTOOL_ALL_COPPER_SPEED;
6842 if (!advertising)
6843 advertising = ETHTOOL_ALL_COPPER_SPEED;
6844 } else {
6845 advertising &= ETHTOOL_ALL_FIBRE_SPEED;
6846 if (!advertising)
6847 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6848 }
6849 advertising |= ADVERTISED_Autoneg;
6850 }
6851 else {
6852 u32 speed = ethtool_cmd_speed(cmd);
6853 if (cmd->port == PORT_FIBRE) {
6854 if ((speed != SPEED_1000 &&
6855 speed != SPEED_2500) ||
6856 (cmd->duplex != DUPLEX_FULL))
6857 goto err_out_unlock;
6858
6859 if (speed == SPEED_2500 &&
6860 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6861 goto err_out_unlock;
6862 } else if (speed == SPEED_1000 || speed == SPEED_2500)
6863 goto err_out_unlock;
6864
6865 autoneg &= ~AUTONEG_SPEED;
6866 req_line_speed = speed;
6867 req_duplex = cmd->duplex;
6868 advertising = 0;
6869 }
6870
6871 bp->autoneg = autoneg;
6872 bp->advertising = advertising;
6873 bp->req_line_speed = req_line_speed;
6874 bp->req_duplex = req_duplex;
6875
6876 err = 0;
6877 /* If device is down, the new settings will be picked up when it is
6878 * brought up.
6879 */
6880 if (netif_running(dev))
6881 err = bnx2_setup_phy(bp, cmd->port);
6882
6883 err_out_unlock:
6884 spin_unlock_bh(&bp->phy_lock);
6885
6886 return err;
6887 }
6888
6889 static void
bnx2_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)6890 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6891 {
6892 struct bnx2 *bp = netdev_priv(dev);
6893
6894 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
6895 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
6896 strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
6897 strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
6898 }
6899
6900 #define BNX2_REGDUMP_LEN (32 * 1024)
6901
6902 static int
bnx2_get_regs_len(struct net_device * dev)6903 bnx2_get_regs_len(struct net_device *dev)
6904 {
6905 return BNX2_REGDUMP_LEN;
6906 }
6907
6908 static void
bnx2_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * _p)6909 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6910 {
6911 u32 *p = _p, i, offset;
6912 u8 *orig_p = _p;
6913 struct bnx2 *bp = netdev_priv(dev);
6914 static const u32 reg_boundaries[] = {
6915 0x0000, 0x0098, 0x0400, 0x045c,
6916 0x0800, 0x0880, 0x0c00, 0x0c10,
6917 0x0c30, 0x0d08, 0x1000, 0x101c,
6918 0x1040, 0x1048, 0x1080, 0x10a4,
6919 0x1400, 0x1490, 0x1498, 0x14f0,
6920 0x1500, 0x155c, 0x1580, 0x15dc,
6921 0x1600, 0x1658, 0x1680, 0x16d8,
6922 0x1800, 0x1820, 0x1840, 0x1854,
6923 0x1880, 0x1894, 0x1900, 0x1984,
6924 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6925 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6926 0x2000, 0x2030, 0x23c0, 0x2400,
6927 0x2800, 0x2820, 0x2830, 0x2850,
6928 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6929 0x3c00, 0x3c94, 0x4000, 0x4010,
6930 0x4080, 0x4090, 0x43c0, 0x4458,
6931 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6932 0x4fc0, 0x5010, 0x53c0, 0x5444,
6933 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6934 0x5fc0, 0x6000, 0x6400, 0x6428,
6935 0x6800, 0x6848, 0x684c, 0x6860,
6936 0x6888, 0x6910, 0x8000
6937 };
6938
6939 regs->version = 0;
6940
6941 memset(p, 0, BNX2_REGDUMP_LEN);
6942
6943 if (!netif_running(bp->dev))
6944 return;
6945
6946 i = 0;
6947 offset = reg_boundaries[0];
6948 p += offset;
6949 while (offset < BNX2_REGDUMP_LEN) {
6950 *p++ = REG_RD(bp, offset);
6951 offset += 4;
6952 if (offset == reg_boundaries[i + 1]) {
6953 offset = reg_boundaries[i + 2];
6954 p = (u32 *) (orig_p + offset);
6955 i += 2;
6956 }
6957 }
6958 }
6959
6960 static void
bnx2_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)6961 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6962 {
6963 struct bnx2 *bp = netdev_priv(dev);
6964
6965 if (bp->flags & BNX2_FLAG_NO_WOL) {
6966 wol->supported = 0;
6967 wol->wolopts = 0;
6968 }
6969 else {
6970 wol->supported = WAKE_MAGIC;
6971 if (bp->wol)
6972 wol->wolopts = WAKE_MAGIC;
6973 else
6974 wol->wolopts = 0;
6975 }
6976 memset(&wol->sopass, 0, sizeof(wol->sopass));
6977 }
6978
6979 static int
bnx2_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)6980 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6981 {
6982 struct bnx2 *bp = netdev_priv(dev);
6983
6984 if (wol->wolopts & ~WAKE_MAGIC)
6985 return -EINVAL;
6986
6987 if (wol->wolopts & WAKE_MAGIC) {
6988 if (bp->flags & BNX2_FLAG_NO_WOL)
6989 return -EINVAL;
6990
6991 bp->wol = 1;
6992 }
6993 else {
6994 bp->wol = 0;
6995 }
6996 return 0;
6997 }
6998
6999 static int
bnx2_nway_reset(struct net_device * dev)7000 bnx2_nway_reset(struct net_device *dev)
7001 {
7002 struct bnx2 *bp = netdev_priv(dev);
7003 u32 bmcr;
7004
7005 if (!netif_running(dev))
7006 return -EAGAIN;
7007
7008 if (!(bp->autoneg & AUTONEG_SPEED)) {
7009 return -EINVAL;
7010 }
7011
7012 spin_lock_bh(&bp->phy_lock);
7013
7014 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
7015 int rc;
7016
7017 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
7018 spin_unlock_bh(&bp->phy_lock);
7019 return rc;
7020 }
7021
7022 /* Force a link down visible on the other side */
7023 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7024 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
7025 spin_unlock_bh(&bp->phy_lock);
7026
7027 msleep(20);
7028
7029 spin_lock_bh(&bp->phy_lock);
7030
7031 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
7032 bp->serdes_an_pending = 1;
7033 mod_timer(&bp->timer, jiffies + bp->current_interval);
7034 }
7035
7036 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
7037 bmcr &= ~BMCR_LOOPBACK;
7038 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
7039
7040 spin_unlock_bh(&bp->phy_lock);
7041
7042 return 0;
7043 }
7044
7045 static u32
bnx2_get_link(struct net_device * dev)7046 bnx2_get_link(struct net_device *dev)
7047 {
7048 struct bnx2 *bp = netdev_priv(dev);
7049
7050 return bp->link_up;
7051 }
7052
7053 static int
bnx2_get_eeprom_len(struct net_device * dev)7054 bnx2_get_eeprom_len(struct net_device *dev)
7055 {
7056 struct bnx2 *bp = netdev_priv(dev);
7057
7058 if (bp->flash_info == NULL)
7059 return 0;
7060
7061 return (int) bp->flash_size;
7062 }
7063
7064 static int
bnx2_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * eebuf)7065 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7066 u8 *eebuf)
7067 {
7068 struct bnx2 *bp = netdev_priv(dev);
7069 int rc;
7070
7071 if (!netif_running(dev))
7072 return -EAGAIN;
7073
7074 /* parameters already validated in ethtool_get_eeprom */
7075
7076 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
7077
7078 return rc;
7079 }
7080
7081 static int
bnx2_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * eebuf)7082 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
7083 u8 *eebuf)
7084 {
7085 struct bnx2 *bp = netdev_priv(dev);
7086 int rc;
7087
7088 if (!netif_running(dev))
7089 return -EAGAIN;
7090
7091 /* parameters already validated in ethtool_set_eeprom */
7092
7093 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
7094
7095 return rc;
7096 }
7097
7098 static int
bnx2_get_coalesce(struct net_device * dev,struct ethtool_coalesce * coal)7099 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7100 {
7101 struct bnx2 *bp = netdev_priv(dev);
7102
7103 memset(coal, 0, sizeof(struct ethtool_coalesce));
7104
7105 coal->rx_coalesce_usecs = bp->rx_ticks;
7106 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
7107 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
7108 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
7109
7110 coal->tx_coalesce_usecs = bp->tx_ticks;
7111 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
7112 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
7113 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
7114
7115 coal->stats_block_coalesce_usecs = bp->stats_ticks;
7116
7117 return 0;
7118 }
7119
7120 static int
bnx2_set_coalesce(struct net_device * dev,struct ethtool_coalesce * coal)7121 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
7122 {
7123 struct bnx2 *bp = netdev_priv(dev);
7124
7125 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
7126 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
7127
7128 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
7129 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
7130
7131 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
7132 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
7133
7134 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
7135 if (bp->rx_quick_cons_trip_int > 0xff)
7136 bp->rx_quick_cons_trip_int = 0xff;
7137
7138 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
7139 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
7140
7141 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
7142 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7143
7144 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7145 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7146
7147 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7148 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7149 0xff;
7150
7151 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7152 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7153 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7154 bp->stats_ticks = USEC_PER_SEC;
7155 }
7156 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7157 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7158 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7159
7160 if (netif_running(bp->dev)) {
7161 bnx2_netif_stop(bp, true);
7162 bnx2_init_nic(bp, 0);
7163 bnx2_netif_start(bp, true);
7164 }
7165
7166 return 0;
7167 }
7168
7169 static void
bnx2_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)7170 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7171 {
7172 struct bnx2 *bp = netdev_priv(dev);
7173
7174 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7175 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7176
7177 ering->rx_pending = bp->rx_ring_size;
7178 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7179
7180 ering->tx_max_pending = MAX_TX_DESC_CNT;
7181 ering->tx_pending = bp->tx_ring_size;
7182 }
7183
7184 static int
bnx2_change_ring_size(struct bnx2 * bp,u32 rx,u32 tx,bool reset_irq)7185 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
7186 {
7187 if (netif_running(bp->dev)) {
7188 /* Reset will erase chipset stats; save them */
7189 bnx2_save_stats(bp);
7190
7191 bnx2_netif_stop(bp, true);
7192 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7193 if (reset_irq) {
7194 bnx2_free_irq(bp);
7195 bnx2_del_napi(bp);
7196 } else {
7197 __bnx2_free_irq(bp);
7198 }
7199 bnx2_free_skbs(bp);
7200 bnx2_free_mem(bp);
7201 }
7202
7203 bnx2_set_rx_ring_size(bp, rx);
7204 bp->tx_ring_size = tx;
7205
7206 if (netif_running(bp->dev)) {
7207 int rc = 0;
7208
7209 if (reset_irq) {
7210 rc = bnx2_setup_int_mode(bp, disable_msi);
7211 bnx2_init_napi(bp);
7212 }
7213
7214 if (!rc)
7215 rc = bnx2_alloc_mem(bp);
7216
7217 if (!rc)
7218 rc = bnx2_request_irq(bp);
7219
7220 if (!rc)
7221 rc = bnx2_init_nic(bp, 0);
7222
7223 if (rc) {
7224 bnx2_napi_enable(bp);
7225 dev_close(bp->dev);
7226 return rc;
7227 }
7228 #ifdef BCM_CNIC
7229 mutex_lock(&bp->cnic_lock);
7230 /* Let cnic know about the new status block. */
7231 if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
7232 bnx2_setup_cnic_irq_info(bp);
7233 mutex_unlock(&bp->cnic_lock);
7234 #endif
7235 bnx2_netif_start(bp, true);
7236 }
7237 return 0;
7238 }
7239
7240 static int
bnx2_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)7241 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7242 {
7243 struct bnx2 *bp = netdev_priv(dev);
7244 int rc;
7245
7246 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7247 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7248 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7249
7250 return -EINVAL;
7251 }
7252 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
7253 false);
7254 return rc;
7255 }
7256
7257 static void
bnx2_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)7258 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7259 {
7260 struct bnx2 *bp = netdev_priv(dev);
7261
7262 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7263 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7264 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7265 }
7266
7267 static int
bnx2_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)7268 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7269 {
7270 struct bnx2 *bp = netdev_priv(dev);
7271
7272 bp->req_flow_ctrl = 0;
7273 if (epause->rx_pause)
7274 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7275 if (epause->tx_pause)
7276 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7277
7278 if (epause->autoneg) {
7279 bp->autoneg |= AUTONEG_FLOW_CTRL;
7280 }
7281 else {
7282 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7283 }
7284
7285 if (netif_running(dev)) {
7286 spin_lock_bh(&bp->phy_lock);
7287 bnx2_setup_phy(bp, bp->phy_port);
7288 spin_unlock_bh(&bp->phy_lock);
7289 }
7290
7291 return 0;
7292 }
7293
7294 static struct {
7295 char string[ETH_GSTRING_LEN];
7296 } bnx2_stats_str_arr[] = {
7297 { "rx_bytes" },
7298 { "rx_error_bytes" },
7299 { "tx_bytes" },
7300 { "tx_error_bytes" },
7301 { "rx_ucast_packets" },
7302 { "rx_mcast_packets" },
7303 { "rx_bcast_packets" },
7304 { "tx_ucast_packets" },
7305 { "tx_mcast_packets" },
7306 { "tx_bcast_packets" },
7307 { "tx_mac_errors" },
7308 { "tx_carrier_errors" },
7309 { "rx_crc_errors" },
7310 { "rx_align_errors" },
7311 { "tx_single_collisions" },
7312 { "tx_multi_collisions" },
7313 { "tx_deferred" },
7314 { "tx_excess_collisions" },
7315 { "tx_late_collisions" },
7316 { "tx_total_collisions" },
7317 { "rx_fragments" },
7318 { "rx_jabbers" },
7319 { "rx_undersize_packets" },
7320 { "rx_oversize_packets" },
7321 { "rx_64_byte_packets" },
7322 { "rx_65_to_127_byte_packets" },
7323 { "rx_128_to_255_byte_packets" },
7324 { "rx_256_to_511_byte_packets" },
7325 { "rx_512_to_1023_byte_packets" },
7326 { "rx_1024_to_1522_byte_packets" },
7327 { "rx_1523_to_9022_byte_packets" },
7328 { "tx_64_byte_packets" },
7329 { "tx_65_to_127_byte_packets" },
7330 { "tx_128_to_255_byte_packets" },
7331 { "tx_256_to_511_byte_packets" },
7332 { "tx_512_to_1023_byte_packets" },
7333 { "tx_1024_to_1522_byte_packets" },
7334 { "tx_1523_to_9022_byte_packets" },
7335 { "rx_xon_frames" },
7336 { "rx_xoff_frames" },
7337 { "tx_xon_frames" },
7338 { "tx_xoff_frames" },
7339 { "rx_mac_ctrl_frames" },
7340 { "rx_filtered_packets" },
7341 { "rx_ftq_discards" },
7342 { "rx_discards" },
7343 { "rx_fw_discards" },
7344 };
7345
7346 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7347 sizeof(bnx2_stats_str_arr[0]))
7348
7349 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7350
7351 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7352 STATS_OFFSET32(stat_IfHCInOctets_hi),
7353 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7354 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7355 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7356 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7357 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7358 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7359 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7360 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7361 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7362 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7363 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7364 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7365 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7366 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7367 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7368 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7369 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7370 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7371 STATS_OFFSET32(stat_EtherStatsCollisions),
7372 STATS_OFFSET32(stat_EtherStatsFragments),
7373 STATS_OFFSET32(stat_EtherStatsJabbers),
7374 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7375 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7376 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7377 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7378 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7379 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7380 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7381 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7382 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7383 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7384 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7385 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7386 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7387 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7388 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7389 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7390 STATS_OFFSET32(stat_XonPauseFramesReceived),
7391 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7392 STATS_OFFSET32(stat_OutXonSent),
7393 STATS_OFFSET32(stat_OutXoffSent),
7394 STATS_OFFSET32(stat_MacControlFramesReceived),
7395 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7396 STATS_OFFSET32(stat_IfInFTQDiscards),
7397 STATS_OFFSET32(stat_IfInMBUFDiscards),
7398 STATS_OFFSET32(stat_FwRxDrop),
7399 };
7400
7401 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7402 * skipped because of errata.
7403 */
7404 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7405 8,0,8,8,8,8,8,8,8,8,
7406 4,0,4,4,4,4,4,4,4,4,
7407 4,4,4,4,4,4,4,4,4,4,
7408 4,4,4,4,4,4,4,4,4,4,
7409 4,4,4,4,4,4,4,
7410 };
7411
7412 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7413 8,0,8,8,8,8,8,8,8,8,
7414 4,4,4,4,4,4,4,4,4,4,
7415 4,4,4,4,4,4,4,4,4,4,
7416 4,4,4,4,4,4,4,4,4,4,
7417 4,4,4,4,4,4,4,
7418 };
7419
7420 #define BNX2_NUM_TESTS 6
7421
7422 static struct {
7423 char string[ETH_GSTRING_LEN];
7424 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7425 { "register_test (offline)" },
7426 { "memory_test (offline)" },
7427 { "loopback_test (offline)" },
7428 { "nvram_test (online)" },
7429 { "interrupt_test (online)" },
7430 { "link_test (online)" },
7431 };
7432
7433 static int
bnx2_get_sset_count(struct net_device * dev,int sset)7434 bnx2_get_sset_count(struct net_device *dev, int sset)
7435 {
7436 switch (sset) {
7437 case ETH_SS_TEST:
7438 return BNX2_NUM_TESTS;
7439 case ETH_SS_STATS:
7440 return BNX2_NUM_STATS;
7441 default:
7442 return -EOPNOTSUPP;
7443 }
7444 }
7445
7446 static void
bnx2_self_test(struct net_device * dev,struct ethtool_test * etest,u64 * buf)7447 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7448 {
7449 struct bnx2 *bp = netdev_priv(dev);
7450
7451 bnx2_set_power_state(bp, PCI_D0);
7452
7453 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7454 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7455 int i;
7456
7457 bnx2_netif_stop(bp, true);
7458 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7459 bnx2_free_skbs(bp);
7460
7461 if (bnx2_test_registers(bp) != 0) {
7462 buf[0] = 1;
7463 etest->flags |= ETH_TEST_FL_FAILED;
7464 }
7465 if (bnx2_test_memory(bp) != 0) {
7466 buf[1] = 1;
7467 etest->flags |= ETH_TEST_FL_FAILED;
7468 }
7469 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7470 etest->flags |= ETH_TEST_FL_FAILED;
7471
7472 if (!netif_running(bp->dev))
7473 bnx2_shutdown_chip(bp);
7474 else {
7475 bnx2_init_nic(bp, 1);
7476 bnx2_netif_start(bp, true);
7477 }
7478
7479 /* wait for link up */
7480 for (i = 0; i < 7; i++) {
7481 if (bp->link_up)
7482 break;
7483 msleep_interruptible(1000);
7484 }
7485 }
7486
7487 if (bnx2_test_nvram(bp) != 0) {
7488 buf[3] = 1;
7489 etest->flags |= ETH_TEST_FL_FAILED;
7490 }
7491 if (bnx2_test_intr(bp) != 0) {
7492 buf[4] = 1;
7493 etest->flags |= ETH_TEST_FL_FAILED;
7494 }
7495
7496 if (bnx2_test_link(bp) != 0) {
7497 buf[5] = 1;
7498 etest->flags |= ETH_TEST_FL_FAILED;
7499
7500 }
7501 if (!netif_running(bp->dev))
7502 bnx2_set_power_state(bp, PCI_D3hot);
7503 }
7504
7505 static void
bnx2_get_strings(struct net_device * dev,u32 stringset,u8 * buf)7506 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7507 {
7508 switch (stringset) {
7509 case ETH_SS_STATS:
7510 memcpy(buf, bnx2_stats_str_arr,
7511 sizeof(bnx2_stats_str_arr));
7512 break;
7513 case ETH_SS_TEST:
7514 memcpy(buf, bnx2_tests_str_arr,
7515 sizeof(bnx2_tests_str_arr));
7516 break;
7517 }
7518 }
7519
7520 static void
bnx2_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * buf)7521 bnx2_get_ethtool_stats(struct net_device *dev,
7522 struct ethtool_stats *stats, u64 *buf)
7523 {
7524 struct bnx2 *bp = netdev_priv(dev);
7525 int i;
7526 u32 *hw_stats = (u32 *) bp->stats_blk;
7527 u32 *temp_stats = (u32 *) bp->temp_stats_blk;
7528 u8 *stats_len_arr = NULL;
7529
7530 if (hw_stats == NULL) {
7531 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7532 return;
7533 }
7534
7535 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7536 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7537 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7538 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7539 stats_len_arr = bnx2_5706_stats_len_arr;
7540 else
7541 stats_len_arr = bnx2_5708_stats_len_arr;
7542
7543 for (i = 0; i < BNX2_NUM_STATS; i++) {
7544 unsigned long offset;
7545
7546 if (stats_len_arr[i] == 0) {
7547 /* skip this counter */
7548 buf[i] = 0;
7549 continue;
7550 }
7551
7552 offset = bnx2_stats_offset_arr[i];
7553 if (stats_len_arr[i] == 4) {
7554 /* 4-byte counter */
7555 buf[i] = (u64) *(hw_stats + offset) +
7556 *(temp_stats + offset);
7557 continue;
7558 }
7559 /* 8-byte counter */
7560 buf[i] = (((u64) *(hw_stats + offset)) << 32) +
7561 *(hw_stats + offset + 1) +
7562 (((u64) *(temp_stats + offset)) << 32) +
7563 *(temp_stats + offset + 1);
7564 }
7565 }
7566
7567 static int
bnx2_set_phys_id(struct net_device * dev,enum ethtool_phys_id_state state)7568 bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
7569 {
7570 struct bnx2 *bp = netdev_priv(dev);
7571
7572 switch (state) {
7573 case ETHTOOL_ID_ACTIVE:
7574 bnx2_set_power_state(bp, PCI_D0);
7575
7576 bp->leds_save = REG_RD(bp, BNX2_MISC_CFG);
7577 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7578 return 1; /* cycle on/off once per second */
7579
7580 case ETHTOOL_ID_ON:
7581 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7582 BNX2_EMAC_LED_1000MB_OVERRIDE |
7583 BNX2_EMAC_LED_100MB_OVERRIDE |
7584 BNX2_EMAC_LED_10MB_OVERRIDE |
7585 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7586 BNX2_EMAC_LED_TRAFFIC);
7587 break;
7588
7589 case ETHTOOL_ID_OFF:
7590 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7591 break;
7592
7593 case ETHTOOL_ID_INACTIVE:
7594 REG_WR(bp, BNX2_EMAC_LED, 0);
7595 REG_WR(bp, BNX2_MISC_CFG, bp->leds_save);
7596
7597 if (!netif_running(dev))
7598 bnx2_set_power_state(bp, PCI_D3hot);
7599 break;
7600 }
7601
7602 return 0;
7603 }
7604
7605 static netdev_features_t
bnx2_fix_features(struct net_device * dev,netdev_features_t features)7606 bnx2_fix_features(struct net_device *dev, netdev_features_t features)
7607 {
7608 struct bnx2 *bp = netdev_priv(dev);
7609
7610 if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
7611 features |= NETIF_F_HW_VLAN_RX;
7612
7613 return features;
7614 }
7615
7616 static int
bnx2_set_features(struct net_device * dev,netdev_features_t features)7617 bnx2_set_features(struct net_device *dev, netdev_features_t features)
7618 {
7619 struct bnx2 *bp = netdev_priv(dev);
7620
7621 /* TSO with VLAN tag won't work with current firmware */
7622 if (features & NETIF_F_HW_VLAN_TX)
7623 dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
7624 else
7625 dev->vlan_features &= ~NETIF_F_ALL_TSO;
7626
7627 if ((!!(features & NETIF_F_HW_VLAN_RX) !=
7628 !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
7629 netif_running(dev)) {
7630 bnx2_netif_stop(bp, false);
7631 dev->features = features;
7632 bnx2_set_rx_mode(dev);
7633 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
7634 bnx2_netif_start(bp, false);
7635 return 1;
7636 }
7637
7638 return 0;
7639 }
7640
bnx2_get_channels(struct net_device * dev,struct ethtool_channels * channels)7641 static void bnx2_get_channels(struct net_device *dev,
7642 struct ethtool_channels *channels)
7643 {
7644 struct bnx2 *bp = netdev_priv(dev);
7645 u32 max_rx_rings = 1;
7646 u32 max_tx_rings = 1;
7647
7648 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
7649 max_rx_rings = RX_MAX_RINGS;
7650 max_tx_rings = TX_MAX_RINGS;
7651 }
7652
7653 channels->max_rx = max_rx_rings;
7654 channels->max_tx = max_tx_rings;
7655 channels->max_other = 0;
7656 channels->max_combined = 0;
7657 channels->rx_count = bp->num_rx_rings;
7658 channels->tx_count = bp->num_tx_rings;
7659 channels->other_count = 0;
7660 channels->combined_count = 0;
7661 }
7662
bnx2_set_channels(struct net_device * dev,struct ethtool_channels * channels)7663 static int bnx2_set_channels(struct net_device *dev,
7664 struct ethtool_channels *channels)
7665 {
7666 struct bnx2 *bp = netdev_priv(dev);
7667 u32 max_rx_rings = 1;
7668 u32 max_tx_rings = 1;
7669 int rc = 0;
7670
7671 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
7672 max_rx_rings = RX_MAX_RINGS;
7673 max_tx_rings = TX_MAX_RINGS;
7674 }
7675 if (channels->rx_count > max_rx_rings ||
7676 channels->tx_count > max_tx_rings)
7677 return -EINVAL;
7678
7679 bp->num_req_rx_rings = channels->rx_count;
7680 bp->num_req_tx_rings = channels->tx_count;
7681
7682 if (netif_running(dev))
7683 rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
7684 bp->tx_ring_size, true);
7685
7686 return rc;
7687 }
7688
7689 static const struct ethtool_ops bnx2_ethtool_ops = {
7690 .get_settings = bnx2_get_settings,
7691 .set_settings = bnx2_set_settings,
7692 .get_drvinfo = bnx2_get_drvinfo,
7693 .get_regs_len = bnx2_get_regs_len,
7694 .get_regs = bnx2_get_regs,
7695 .get_wol = bnx2_get_wol,
7696 .set_wol = bnx2_set_wol,
7697 .nway_reset = bnx2_nway_reset,
7698 .get_link = bnx2_get_link,
7699 .get_eeprom_len = bnx2_get_eeprom_len,
7700 .get_eeprom = bnx2_get_eeprom,
7701 .set_eeprom = bnx2_set_eeprom,
7702 .get_coalesce = bnx2_get_coalesce,
7703 .set_coalesce = bnx2_set_coalesce,
7704 .get_ringparam = bnx2_get_ringparam,
7705 .set_ringparam = bnx2_set_ringparam,
7706 .get_pauseparam = bnx2_get_pauseparam,
7707 .set_pauseparam = bnx2_set_pauseparam,
7708 .self_test = bnx2_self_test,
7709 .get_strings = bnx2_get_strings,
7710 .set_phys_id = bnx2_set_phys_id,
7711 .get_ethtool_stats = bnx2_get_ethtool_stats,
7712 .get_sset_count = bnx2_get_sset_count,
7713 .get_channels = bnx2_get_channels,
7714 .set_channels = bnx2_set_channels,
7715 };
7716
7717 /* Called with rtnl_lock */
7718 static int
bnx2_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)7719 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7720 {
7721 struct mii_ioctl_data *data = if_mii(ifr);
7722 struct bnx2 *bp = netdev_priv(dev);
7723 int err;
7724
7725 switch(cmd) {
7726 case SIOCGMIIPHY:
7727 data->phy_id = bp->phy_addr;
7728
7729 /* fallthru */
7730 case SIOCGMIIREG: {
7731 u32 mii_regval;
7732
7733 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7734 return -EOPNOTSUPP;
7735
7736 if (!netif_running(dev))
7737 return -EAGAIN;
7738
7739 spin_lock_bh(&bp->phy_lock);
7740 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7741 spin_unlock_bh(&bp->phy_lock);
7742
7743 data->val_out = mii_regval;
7744
7745 return err;
7746 }
7747
7748 case SIOCSMIIREG:
7749 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7750 return -EOPNOTSUPP;
7751
7752 if (!netif_running(dev))
7753 return -EAGAIN;
7754
7755 spin_lock_bh(&bp->phy_lock);
7756 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7757 spin_unlock_bh(&bp->phy_lock);
7758
7759 return err;
7760
7761 default:
7762 /* do nothing */
7763 break;
7764 }
7765 return -EOPNOTSUPP;
7766 }
7767
7768 /* Called with rtnl_lock */
7769 static int
bnx2_change_mac_addr(struct net_device * dev,void * p)7770 bnx2_change_mac_addr(struct net_device *dev, void *p)
7771 {
7772 struct sockaddr *addr = p;
7773 struct bnx2 *bp = netdev_priv(dev);
7774
7775 if (!is_valid_ether_addr(addr->sa_data))
7776 return -EADDRNOTAVAIL;
7777
7778 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7779 if (netif_running(dev))
7780 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7781
7782 return 0;
7783 }
7784
7785 /* Called with rtnl_lock */
7786 static int
bnx2_change_mtu(struct net_device * dev,int new_mtu)7787 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7788 {
7789 struct bnx2 *bp = netdev_priv(dev);
7790
7791 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7792 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7793 return -EINVAL;
7794
7795 dev->mtu = new_mtu;
7796 return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
7797 false);
7798 }
7799
7800 #ifdef CONFIG_NET_POLL_CONTROLLER
7801 static void
poll_bnx2(struct net_device * dev)7802 poll_bnx2(struct net_device *dev)
7803 {
7804 struct bnx2 *bp = netdev_priv(dev);
7805 int i;
7806
7807 for (i = 0; i < bp->irq_nvecs; i++) {
7808 struct bnx2_irq *irq = &bp->irq_tbl[i];
7809
7810 disable_irq(irq->vector);
7811 irq->handler(irq->vector, &bp->bnx2_napi[i]);
7812 enable_irq(irq->vector);
7813 }
7814 }
7815 #endif
7816
7817 static void __devinit
bnx2_get_5709_media(struct bnx2 * bp)7818 bnx2_get_5709_media(struct bnx2 *bp)
7819 {
7820 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7821 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7822 u32 strap;
7823
7824 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7825 return;
7826 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7827 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7828 return;
7829 }
7830
7831 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7832 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7833 else
7834 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7835
7836 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7837 switch (strap) {
7838 case 0x4:
7839 case 0x5:
7840 case 0x6:
7841 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7842 return;
7843 }
7844 } else {
7845 switch (strap) {
7846 case 0x1:
7847 case 0x2:
7848 case 0x4:
7849 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7850 return;
7851 }
7852 }
7853 }
7854
7855 static void __devinit
bnx2_get_pci_speed(struct bnx2 * bp)7856 bnx2_get_pci_speed(struct bnx2 *bp)
7857 {
7858 u32 reg;
7859
7860 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7861 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7862 u32 clkreg;
7863
7864 bp->flags |= BNX2_FLAG_PCIX;
7865
7866 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7867
7868 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7869 switch (clkreg) {
7870 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7871 bp->bus_speed_mhz = 133;
7872 break;
7873
7874 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7875 bp->bus_speed_mhz = 100;
7876 break;
7877
7878 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7879 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7880 bp->bus_speed_mhz = 66;
7881 break;
7882
7883 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7884 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7885 bp->bus_speed_mhz = 50;
7886 break;
7887
7888 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7889 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7890 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7891 bp->bus_speed_mhz = 33;
7892 break;
7893 }
7894 }
7895 else {
7896 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7897 bp->bus_speed_mhz = 66;
7898 else
7899 bp->bus_speed_mhz = 33;
7900 }
7901
7902 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7903 bp->flags |= BNX2_FLAG_PCI_32BIT;
7904
7905 }
7906
7907 static void __devinit
bnx2_read_vpd_fw_ver(struct bnx2 * bp)7908 bnx2_read_vpd_fw_ver(struct bnx2 *bp)
7909 {
7910 int rc, i, j;
7911 u8 *data;
7912 unsigned int block_end, rosize, len;
7913
7914 #define BNX2_VPD_NVRAM_OFFSET 0x300
7915 #define BNX2_VPD_LEN 128
7916 #define BNX2_MAX_VER_SLEN 30
7917
7918 data = kmalloc(256, GFP_KERNEL);
7919 if (!data)
7920 return;
7921
7922 rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
7923 BNX2_VPD_LEN);
7924 if (rc)
7925 goto vpd_done;
7926
7927 for (i = 0; i < BNX2_VPD_LEN; i += 4) {
7928 data[i] = data[i + BNX2_VPD_LEN + 3];
7929 data[i + 1] = data[i + BNX2_VPD_LEN + 2];
7930 data[i + 2] = data[i + BNX2_VPD_LEN + 1];
7931 data[i + 3] = data[i + BNX2_VPD_LEN];
7932 }
7933
7934 i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
7935 if (i < 0)
7936 goto vpd_done;
7937
7938 rosize = pci_vpd_lrdt_size(&data[i]);
7939 i += PCI_VPD_LRDT_TAG_SIZE;
7940 block_end = i + rosize;
7941
7942 if (block_end > BNX2_VPD_LEN)
7943 goto vpd_done;
7944
7945 j = pci_vpd_find_info_keyword(data, i, rosize,
7946 PCI_VPD_RO_KEYWORD_MFR_ID);
7947 if (j < 0)
7948 goto vpd_done;
7949
7950 len = pci_vpd_info_field_size(&data[j]);
7951
7952 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7953 if (j + len > block_end || len != 4 ||
7954 memcmp(&data[j], "1028", 4))
7955 goto vpd_done;
7956
7957 j = pci_vpd_find_info_keyword(data, i, rosize,
7958 PCI_VPD_RO_KEYWORD_VENDOR0);
7959 if (j < 0)
7960 goto vpd_done;
7961
7962 len = pci_vpd_info_field_size(&data[j]);
7963
7964 j += PCI_VPD_INFO_FLD_HDR_SIZE;
7965 if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
7966 goto vpd_done;
7967
7968 memcpy(bp->fw_version, &data[j], len);
7969 bp->fw_version[len] = ' ';
7970
7971 vpd_done:
7972 kfree(data);
7973 }
7974
7975 static int __devinit
bnx2_init_board(struct pci_dev * pdev,struct net_device * dev)7976 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7977 {
7978 struct bnx2 *bp;
7979 unsigned long mem_len;
7980 int rc, i, j;
7981 u32 reg;
7982 u64 dma_mask, persist_dma_mask;
7983 int err;
7984
7985 SET_NETDEV_DEV(dev, &pdev->dev);
7986 bp = netdev_priv(dev);
7987
7988 bp->flags = 0;
7989 bp->phy_flags = 0;
7990
7991 bp->temp_stats_blk =
7992 kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
7993
7994 if (bp->temp_stats_blk == NULL) {
7995 rc = -ENOMEM;
7996 goto err_out;
7997 }
7998
7999 /* enable device (incl. PCI PM wakeup), and bus-mastering */
8000 rc = pci_enable_device(pdev);
8001 if (rc) {
8002 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
8003 goto err_out;
8004 }
8005
8006 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
8007 dev_err(&pdev->dev,
8008 "Cannot find PCI device base address, aborting\n");
8009 rc = -ENODEV;
8010 goto err_out_disable;
8011 }
8012
8013 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
8014 if (rc) {
8015 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
8016 goto err_out_disable;
8017 }
8018
8019 pci_set_master(pdev);
8020
8021 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
8022 if (bp->pm_cap == 0) {
8023 dev_err(&pdev->dev,
8024 "Cannot find power management capability, aborting\n");
8025 rc = -EIO;
8026 goto err_out_release;
8027 }
8028
8029 bp->dev = dev;
8030 bp->pdev = pdev;
8031
8032 spin_lock_init(&bp->phy_lock);
8033 spin_lock_init(&bp->indirect_lock);
8034 #ifdef BCM_CNIC
8035 mutex_init(&bp->cnic_lock);
8036 #endif
8037 INIT_WORK(&bp->reset_task, bnx2_reset_task);
8038
8039 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
8040 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
8041 dev->mem_end = dev->mem_start + mem_len;
8042 dev->irq = pdev->irq;
8043
8044 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
8045
8046 if (!bp->regview) {
8047 dev_err(&pdev->dev, "Cannot map register space, aborting\n");
8048 rc = -ENOMEM;
8049 goto err_out_release;
8050 }
8051
8052 bnx2_set_power_state(bp, PCI_D0);
8053
8054 /* Configure byte swap and enable write to the reg_window registers.
8055 * Rely on CPU to do target byte swapping on big endian systems
8056 * The chip's target access swapping will not swap all accesses
8057 */
8058 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
8059 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
8060 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
8061
8062 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
8063
8064 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8065 if (!pci_is_pcie(pdev)) {
8066 dev_err(&pdev->dev, "Not PCIE, aborting\n");
8067 rc = -EIO;
8068 goto err_out_unmap;
8069 }
8070 bp->flags |= BNX2_FLAG_PCIE;
8071 if (CHIP_REV(bp) == CHIP_REV_Ax)
8072 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
8073
8074 /* AER (Advanced Error Reporting) hooks */
8075 err = pci_enable_pcie_error_reporting(pdev);
8076 if (!err)
8077 bp->flags |= BNX2_FLAG_AER_ENABLED;
8078
8079 } else {
8080 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
8081 if (bp->pcix_cap == 0) {
8082 dev_err(&pdev->dev,
8083 "Cannot find PCIX capability, aborting\n");
8084 rc = -EIO;
8085 goto err_out_unmap;
8086 }
8087 bp->flags |= BNX2_FLAG_BROKEN_STATS;
8088 }
8089
8090 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
8091 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
8092 bp->flags |= BNX2_FLAG_MSIX_CAP;
8093 }
8094
8095 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
8096 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
8097 bp->flags |= BNX2_FLAG_MSI_CAP;
8098 }
8099
8100 /* 5708 cannot support DMA addresses > 40-bit. */
8101 if (CHIP_NUM(bp) == CHIP_NUM_5708)
8102 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
8103 else
8104 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
8105
8106 /* Configure DMA attributes. */
8107 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
8108 dev->features |= NETIF_F_HIGHDMA;
8109 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
8110 if (rc) {
8111 dev_err(&pdev->dev,
8112 "pci_set_consistent_dma_mask failed, aborting\n");
8113 goto err_out_unmap;
8114 }
8115 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
8116 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
8117 goto err_out_unmap;
8118 }
8119
8120 if (!(bp->flags & BNX2_FLAG_PCIE))
8121 bnx2_get_pci_speed(bp);
8122
8123 /* 5706A0 may falsely detect SERR and PERR. */
8124 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8125 reg = REG_RD(bp, PCI_COMMAND);
8126 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
8127 REG_WR(bp, PCI_COMMAND, reg);
8128 }
8129 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
8130 !(bp->flags & BNX2_FLAG_PCIX)) {
8131
8132 dev_err(&pdev->dev,
8133 "5706 A1 can only be used in a PCIX bus, aborting\n");
8134 goto err_out_unmap;
8135 }
8136
8137 bnx2_init_nvram(bp);
8138
8139 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
8140
8141 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
8142 BNX2_SHM_HDR_SIGNATURE_SIG) {
8143 u32 off = PCI_FUNC(pdev->devfn) << 2;
8144
8145 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
8146 } else
8147 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
8148
8149 /* Get the permanent MAC address. First we need to make sure the
8150 * firmware is actually running.
8151 */
8152 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
8153
8154 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
8155 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
8156 dev_err(&pdev->dev, "Firmware not running, aborting\n");
8157 rc = -ENODEV;
8158 goto err_out_unmap;
8159 }
8160
8161 bnx2_read_vpd_fw_ver(bp);
8162
8163 j = strlen(bp->fw_version);
8164 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
8165 for (i = 0; i < 3 && j < 24; i++) {
8166 u8 num, k, skip0;
8167
8168 if (i == 0) {
8169 bp->fw_version[j++] = 'b';
8170 bp->fw_version[j++] = 'c';
8171 bp->fw_version[j++] = ' ';
8172 }
8173 num = (u8) (reg >> (24 - (i * 8)));
8174 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
8175 if (num >= k || !skip0 || k == 1) {
8176 bp->fw_version[j++] = (num / k) + '0';
8177 skip0 = 0;
8178 }
8179 }
8180 if (i != 2)
8181 bp->fw_version[j++] = '.';
8182 }
8183 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
8184 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
8185 bp->wol = 1;
8186
8187 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
8188 bp->flags |= BNX2_FLAG_ASF_ENABLE;
8189
8190 for (i = 0; i < 30; i++) {
8191 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8192 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
8193 break;
8194 msleep(10);
8195 }
8196 }
8197 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
8198 reg &= BNX2_CONDITION_MFW_RUN_MASK;
8199 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
8200 reg != BNX2_CONDITION_MFW_RUN_NONE) {
8201 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
8202
8203 if (j < 32)
8204 bp->fw_version[j++] = ' ';
8205 for (i = 0; i < 3 && j < 28; i++) {
8206 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
8207 reg = be32_to_cpu(reg);
8208 memcpy(&bp->fw_version[j], ®, 4);
8209 j += 4;
8210 }
8211 }
8212
8213 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
8214 bp->mac_addr[0] = (u8) (reg >> 8);
8215 bp->mac_addr[1] = (u8) reg;
8216
8217 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
8218 bp->mac_addr[2] = (u8) (reg >> 24);
8219 bp->mac_addr[3] = (u8) (reg >> 16);
8220 bp->mac_addr[4] = (u8) (reg >> 8);
8221 bp->mac_addr[5] = (u8) reg;
8222
8223 bp->tx_ring_size = MAX_TX_DESC_CNT;
8224 bnx2_set_rx_ring_size(bp, 255);
8225
8226 bp->tx_quick_cons_trip_int = 2;
8227 bp->tx_quick_cons_trip = 20;
8228 bp->tx_ticks_int = 18;
8229 bp->tx_ticks = 80;
8230
8231 bp->rx_quick_cons_trip_int = 2;
8232 bp->rx_quick_cons_trip = 12;
8233 bp->rx_ticks_int = 18;
8234 bp->rx_ticks = 18;
8235
8236 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
8237
8238 bp->current_interval = BNX2_TIMER_INTERVAL;
8239
8240 bp->phy_addr = 1;
8241
8242 /* Disable WOL support if we are running on a SERDES chip. */
8243 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8244 bnx2_get_5709_media(bp);
8245 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
8246 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
8247
8248 bp->phy_port = PORT_TP;
8249 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
8250 bp->phy_port = PORT_FIBRE;
8251 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
8252 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
8253 bp->flags |= BNX2_FLAG_NO_WOL;
8254 bp->wol = 0;
8255 }
8256 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
8257 /* Don't do parallel detect on this board because of
8258 * some board problems. The link will not go down
8259 * if we do parallel detect.
8260 */
8261 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
8262 pdev->subsystem_device == 0x310c)
8263 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
8264 } else {
8265 bp->phy_addr = 2;
8266 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
8267 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
8268 }
8269 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
8270 CHIP_NUM(bp) == CHIP_NUM_5708)
8271 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
8272 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
8273 (CHIP_REV(bp) == CHIP_REV_Ax ||
8274 CHIP_REV(bp) == CHIP_REV_Bx))
8275 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
8276
8277 bnx2_init_fw_cap(bp);
8278
8279 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
8280 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
8281 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
8282 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
8283 bp->flags |= BNX2_FLAG_NO_WOL;
8284 bp->wol = 0;
8285 }
8286
8287 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
8288 bp->tx_quick_cons_trip_int =
8289 bp->tx_quick_cons_trip;
8290 bp->tx_ticks_int = bp->tx_ticks;
8291 bp->rx_quick_cons_trip_int =
8292 bp->rx_quick_cons_trip;
8293 bp->rx_ticks_int = bp->rx_ticks;
8294 bp->comp_prod_trip_int = bp->comp_prod_trip;
8295 bp->com_ticks_int = bp->com_ticks;
8296 bp->cmd_ticks_int = bp->cmd_ticks;
8297 }
8298
8299 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8300 *
8301 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8302 * with byte enables disabled on the unused 32-bit word. This is legal
8303 * but causes problems on the AMD 8132 which will eventually stop
8304 * responding after a while.
8305 *
8306 * AMD believes this incompatibility is unique to the 5706, and
8307 * prefers to locally disable MSI rather than globally disabling it.
8308 */
8309 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8310 struct pci_dev *amd_8132 = NULL;
8311
8312 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8313 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8314 amd_8132))) {
8315
8316 if (amd_8132->revision >= 0x10 &&
8317 amd_8132->revision <= 0x13) {
8318 disable_msi = 1;
8319 pci_dev_put(amd_8132);
8320 break;
8321 }
8322 }
8323 }
8324
8325 bnx2_set_default_link(bp);
8326 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8327
8328 init_timer(&bp->timer);
8329 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8330 bp->timer.data = (unsigned long) bp;
8331 bp->timer.function = bnx2_timer;
8332
8333 #ifdef BCM_CNIC
8334 if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
8335 bp->cnic_eth_dev.max_iscsi_conn =
8336 (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
8337 BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
8338 #endif
8339 pci_save_state(pdev);
8340
8341 return 0;
8342
8343 err_out_unmap:
8344 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8345 pci_disable_pcie_error_reporting(pdev);
8346 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8347 }
8348
8349 if (bp->regview) {
8350 iounmap(bp->regview);
8351 bp->regview = NULL;
8352 }
8353
8354 err_out_release:
8355 pci_release_regions(pdev);
8356
8357 err_out_disable:
8358 pci_disable_device(pdev);
8359 pci_set_drvdata(pdev, NULL);
8360
8361 err_out:
8362 return rc;
8363 }
8364
8365 static char * __devinit
bnx2_bus_string(struct bnx2 * bp,char * str)8366 bnx2_bus_string(struct bnx2 *bp, char *str)
8367 {
8368 char *s = str;
8369
8370 if (bp->flags & BNX2_FLAG_PCIE) {
8371 s += sprintf(s, "PCI Express");
8372 } else {
8373 s += sprintf(s, "PCI");
8374 if (bp->flags & BNX2_FLAG_PCIX)
8375 s += sprintf(s, "-X");
8376 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8377 s += sprintf(s, " 32-bit");
8378 else
8379 s += sprintf(s, " 64-bit");
8380 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8381 }
8382 return str;
8383 }
8384
8385 static void
bnx2_del_napi(struct bnx2 * bp)8386 bnx2_del_napi(struct bnx2 *bp)
8387 {
8388 int i;
8389
8390 for (i = 0; i < bp->irq_nvecs; i++)
8391 netif_napi_del(&bp->bnx2_napi[i].napi);
8392 }
8393
8394 static void
bnx2_init_napi(struct bnx2 * bp)8395 bnx2_init_napi(struct bnx2 *bp)
8396 {
8397 int i;
8398
8399 for (i = 0; i < bp->irq_nvecs; i++) {
8400 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8401 int (*poll)(struct napi_struct *, int);
8402
8403 if (i == 0)
8404 poll = bnx2_poll;
8405 else
8406 poll = bnx2_poll_msix;
8407
8408 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8409 bnapi->bp = bp;
8410 }
8411 }
8412
8413 static const struct net_device_ops bnx2_netdev_ops = {
8414 .ndo_open = bnx2_open,
8415 .ndo_start_xmit = bnx2_start_xmit,
8416 .ndo_stop = bnx2_close,
8417 .ndo_get_stats64 = bnx2_get_stats64,
8418 .ndo_set_rx_mode = bnx2_set_rx_mode,
8419 .ndo_do_ioctl = bnx2_ioctl,
8420 .ndo_validate_addr = eth_validate_addr,
8421 .ndo_set_mac_address = bnx2_change_mac_addr,
8422 .ndo_change_mtu = bnx2_change_mtu,
8423 .ndo_fix_features = bnx2_fix_features,
8424 .ndo_set_features = bnx2_set_features,
8425 .ndo_tx_timeout = bnx2_tx_timeout,
8426 #ifdef CONFIG_NET_POLL_CONTROLLER
8427 .ndo_poll_controller = poll_bnx2,
8428 #endif
8429 };
8430
8431 static int __devinit
bnx2_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)8432 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8433 {
8434 static int version_printed = 0;
8435 struct net_device *dev = NULL;
8436 struct bnx2 *bp;
8437 int rc;
8438 char str[40];
8439
8440 if (version_printed++ == 0)
8441 pr_info("%s", version);
8442
8443 /* dev zeroed in init_etherdev */
8444 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8445
8446 if (!dev)
8447 return -ENOMEM;
8448
8449 rc = bnx2_init_board(pdev, dev);
8450 if (rc < 0) {
8451 free_netdev(dev);
8452 return rc;
8453 }
8454
8455 dev->netdev_ops = &bnx2_netdev_ops;
8456 dev->watchdog_timeo = TX_TIMEOUT;
8457 dev->ethtool_ops = &bnx2_ethtool_ops;
8458
8459 bp = netdev_priv(dev);
8460
8461 pci_set_drvdata(pdev, dev);
8462
8463 memcpy(dev->dev_addr, bp->mac_addr, 6);
8464 memcpy(dev->perm_addr, bp->mac_addr, 6);
8465
8466 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
8467 NETIF_F_TSO | NETIF_F_TSO_ECN |
8468 NETIF_F_RXHASH | NETIF_F_RXCSUM;
8469
8470 if (CHIP_NUM(bp) == CHIP_NUM_5709)
8471 dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
8472
8473 dev->vlan_features = dev->hw_features;
8474 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8475 dev->features |= dev->hw_features;
8476 dev->priv_flags |= IFF_UNICAST_FLT;
8477
8478 if ((rc = register_netdev(dev))) {
8479 dev_err(&pdev->dev, "Cannot register net device\n");
8480 goto error;
8481 }
8482
8483 netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8484 board_info[ent->driver_data].name,
8485 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8486 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8487 bnx2_bus_string(bp, str),
8488 dev->base_addr,
8489 bp->pdev->irq, dev->dev_addr);
8490
8491 return 0;
8492
8493 error:
8494 if (bp->regview)
8495 iounmap(bp->regview);
8496 pci_release_regions(pdev);
8497 pci_disable_device(pdev);
8498 pci_set_drvdata(pdev, NULL);
8499 free_netdev(dev);
8500 return rc;
8501 }
8502
8503 static void __devexit
bnx2_remove_one(struct pci_dev * pdev)8504 bnx2_remove_one(struct pci_dev *pdev)
8505 {
8506 struct net_device *dev = pci_get_drvdata(pdev);
8507 struct bnx2 *bp = netdev_priv(dev);
8508
8509 unregister_netdev(dev);
8510
8511 del_timer_sync(&bp->timer);
8512 cancel_work_sync(&bp->reset_task);
8513
8514 if (bp->regview)
8515 iounmap(bp->regview);
8516
8517 kfree(bp->temp_stats_blk);
8518
8519 if (bp->flags & BNX2_FLAG_AER_ENABLED) {
8520 pci_disable_pcie_error_reporting(pdev);
8521 bp->flags &= ~BNX2_FLAG_AER_ENABLED;
8522 }
8523
8524 bnx2_release_firmware(bp);
8525
8526 free_netdev(dev);
8527
8528 pci_release_regions(pdev);
8529 pci_disable_device(pdev);
8530 pci_set_drvdata(pdev, NULL);
8531 }
8532
8533 static int
bnx2_suspend(struct pci_dev * pdev,pm_message_t state)8534 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8535 {
8536 struct net_device *dev = pci_get_drvdata(pdev);
8537 struct bnx2 *bp = netdev_priv(dev);
8538
8539 /* PCI register 4 needs to be saved whether netif_running() or not.
8540 * MSI address and data need to be saved if using MSI and
8541 * netif_running().
8542 */
8543 pci_save_state(pdev);
8544 if (!netif_running(dev))
8545 return 0;
8546
8547 cancel_work_sync(&bp->reset_task);
8548 bnx2_netif_stop(bp, true);
8549 netif_device_detach(dev);
8550 del_timer_sync(&bp->timer);
8551 bnx2_shutdown_chip(bp);
8552 bnx2_free_skbs(bp);
8553 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8554 return 0;
8555 }
8556
8557 static int
bnx2_resume(struct pci_dev * pdev)8558 bnx2_resume(struct pci_dev *pdev)
8559 {
8560 struct net_device *dev = pci_get_drvdata(pdev);
8561 struct bnx2 *bp = netdev_priv(dev);
8562
8563 pci_restore_state(pdev);
8564 if (!netif_running(dev))
8565 return 0;
8566
8567 bnx2_set_power_state(bp, PCI_D0);
8568 netif_device_attach(dev);
8569 bnx2_init_nic(bp, 1);
8570 bnx2_netif_start(bp, true);
8571 return 0;
8572 }
8573
8574 /**
8575 * bnx2_io_error_detected - called when PCI error is detected
8576 * @pdev: Pointer to PCI device
8577 * @state: The current pci connection state
8578 *
8579 * This function is called after a PCI bus error affecting
8580 * this device has been detected.
8581 */
bnx2_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)8582 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8583 pci_channel_state_t state)
8584 {
8585 struct net_device *dev = pci_get_drvdata(pdev);
8586 struct bnx2 *bp = netdev_priv(dev);
8587
8588 rtnl_lock();
8589 netif_device_detach(dev);
8590
8591 if (state == pci_channel_io_perm_failure) {
8592 rtnl_unlock();
8593 return PCI_ERS_RESULT_DISCONNECT;
8594 }
8595
8596 if (netif_running(dev)) {
8597 bnx2_netif_stop(bp, true);
8598 del_timer_sync(&bp->timer);
8599 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8600 }
8601
8602 pci_disable_device(pdev);
8603 rtnl_unlock();
8604
8605 /* Request a slot slot reset. */
8606 return PCI_ERS_RESULT_NEED_RESET;
8607 }
8608
8609 /**
8610 * bnx2_io_slot_reset - called after the pci bus has been reset.
8611 * @pdev: Pointer to PCI device
8612 *
8613 * Restart the card from scratch, as if from a cold-boot.
8614 */
bnx2_io_slot_reset(struct pci_dev * pdev)8615 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8616 {
8617 struct net_device *dev = pci_get_drvdata(pdev);
8618 struct bnx2 *bp = netdev_priv(dev);
8619 pci_ers_result_t result;
8620 int err;
8621
8622 rtnl_lock();
8623 if (pci_enable_device(pdev)) {
8624 dev_err(&pdev->dev,
8625 "Cannot re-enable PCI device after reset\n");
8626 result = PCI_ERS_RESULT_DISCONNECT;
8627 } else {
8628 pci_set_master(pdev);
8629 pci_restore_state(pdev);
8630 pci_save_state(pdev);
8631
8632 if (netif_running(dev)) {
8633 bnx2_set_power_state(bp, PCI_D0);
8634 bnx2_init_nic(bp, 1);
8635 }
8636 result = PCI_ERS_RESULT_RECOVERED;
8637 }
8638 rtnl_unlock();
8639
8640 if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
8641 return result;
8642
8643 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8644 if (err) {
8645 dev_err(&pdev->dev,
8646 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8647 err); /* non-fatal, continue */
8648 }
8649
8650 return result;
8651 }
8652
8653 /**
8654 * bnx2_io_resume - called when traffic can start flowing again.
8655 * @pdev: Pointer to PCI device
8656 *
8657 * This callback is called when the error recovery driver tells us that
8658 * its OK to resume normal operation.
8659 */
bnx2_io_resume(struct pci_dev * pdev)8660 static void bnx2_io_resume(struct pci_dev *pdev)
8661 {
8662 struct net_device *dev = pci_get_drvdata(pdev);
8663 struct bnx2 *bp = netdev_priv(dev);
8664
8665 rtnl_lock();
8666 if (netif_running(dev))
8667 bnx2_netif_start(bp, true);
8668
8669 netif_device_attach(dev);
8670 rtnl_unlock();
8671 }
8672
8673 static struct pci_error_handlers bnx2_err_handler = {
8674 .error_detected = bnx2_io_error_detected,
8675 .slot_reset = bnx2_io_slot_reset,
8676 .resume = bnx2_io_resume,
8677 };
8678
8679 static struct pci_driver bnx2_pci_driver = {
8680 .name = DRV_MODULE_NAME,
8681 .id_table = bnx2_pci_tbl,
8682 .probe = bnx2_init_one,
8683 .remove = __devexit_p(bnx2_remove_one),
8684 .suspend = bnx2_suspend,
8685 .resume = bnx2_resume,
8686 .err_handler = &bnx2_err_handler,
8687 };
8688
bnx2_init(void)8689 static int __init bnx2_init(void)
8690 {
8691 return pci_register_driver(&bnx2_pci_driver);
8692 }
8693
bnx2_cleanup(void)8694 static void __exit bnx2_cleanup(void)
8695 {
8696 pci_unregister_driver(&bnx2_pci_driver);
8697 }
8698
8699 module_init(bnx2_init);
8700 module_exit(bnx2_cleanup);
8701
8702
8703
8704