1 /*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/mii.h>
24 #include <linux/crc32.h>
25
26 #include "atl1e.h"
27
28 /*
29 * check_eeprom_exist
30 * return 0 if eeprom exist
31 */
atl1e_check_eeprom_exist(struct atl1e_hw * hw)32 int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
33 {
34 u32 value;
35
36 value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
37 if (value & SPI_FLASH_CTRL_EN_VPD) {
38 value &= ~SPI_FLASH_CTRL_EN_VPD;
39 AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
40 }
41 value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
42 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
43 }
44
atl1e_hw_set_mac_addr(struct atl1e_hw * hw)45 void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
46 {
47 u32 value;
48 /*
49 * 00-0B-6A-F6-00-DC
50 * 0: 6AF600DC 1: 000B
51 * low dword
52 */
53 value = (((u32)hw->mac_addr[2]) << 24) |
54 (((u32)hw->mac_addr[3]) << 16) |
55 (((u32)hw->mac_addr[4]) << 8) |
56 (((u32)hw->mac_addr[5])) ;
57 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
58 /* hight dword */
59 value = (((u32)hw->mac_addr[0]) << 8) |
60 (((u32)hw->mac_addr[1])) ;
61 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
62 }
63
64 /*
65 * atl1e_get_permanent_address
66 * return 0 if get valid mac address,
67 */
atl1e_get_permanent_address(struct atl1e_hw * hw)68 static int atl1e_get_permanent_address(struct atl1e_hw *hw)
69 {
70 u32 addr[2];
71 u32 i;
72 u32 twsi_ctrl_data;
73 u8 eth_addr[ETH_ALEN];
74
75 if (is_valid_ether_addr(hw->perm_mac_addr))
76 return 0;
77
78 /* init */
79 addr[0] = addr[1] = 0;
80
81 if (!atl1e_check_eeprom_exist(hw)) {
82 /* eeprom exist */
83 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
84 twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
85 AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
86 for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
87 msleep(10);
88 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
89 if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
90 break;
91 }
92 if (i >= AT_TWSI_EEPROM_TIMEOUT)
93 return AT_ERR_TIMEOUT;
94 }
95
96 /* maybe MAC-address is from BIOS */
97 addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
98 addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
99 *(u32 *) ð_addr[2] = swab32(addr[0]);
100 *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]);
101
102 if (is_valid_ether_addr(eth_addr)) {
103 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
104 return 0;
105 }
106
107 return AT_ERR_EEPROM;
108 }
109
atl1e_write_eeprom(struct atl1e_hw * hw,u32 offset,u32 value)110 bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
111 {
112 return true;
113 }
114
atl1e_read_eeprom(struct atl1e_hw * hw,u32 offset,u32 * p_value)115 bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
116 {
117 int i;
118 u32 control;
119
120 if (offset & 3)
121 return false; /* address do not align */
122
123 AT_WRITE_REG(hw, REG_VPD_DATA, 0);
124 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
125 AT_WRITE_REG(hw, REG_VPD_CAP, control);
126
127 for (i = 0; i < 10; i++) {
128 msleep(2);
129 control = AT_READ_REG(hw, REG_VPD_CAP);
130 if (control & VPD_CAP_VPD_FLAG)
131 break;
132 }
133 if (control & VPD_CAP_VPD_FLAG) {
134 *p_value = AT_READ_REG(hw, REG_VPD_DATA);
135 return true;
136 }
137 return false; /* timeout */
138 }
139
atl1e_force_ps(struct atl1e_hw * hw)140 void atl1e_force_ps(struct atl1e_hw *hw)
141 {
142 AT_WRITE_REGW(hw, REG_GPHY_CTRL,
143 GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
144 }
145
146 /*
147 * Reads the adapter's MAC address from the EEPROM
148 *
149 * hw - Struct containing variables accessed by shared code
150 */
atl1e_read_mac_addr(struct atl1e_hw * hw)151 int atl1e_read_mac_addr(struct atl1e_hw *hw)
152 {
153 int err = 0;
154
155 err = atl1e_get_permanent_address(hw);
156 if (err)
157 return AT_ERR_EEPROM;
158 memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
159 return 0;
160 }
161
162 /*
163 * atl1e_hash_mc_addr
164 * purpose
165 * set hash value for a multicast address
166 */
atl1e_hash_mc_addr(struct atl1e_hw * hw,u8 * mc_addr)167 u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
168 {
169 u32 crc32;
170 u32 value = 0;
171 int i;
172
173 crc32 = ether_crc_le(6, mc_addr);
174 for (i = 0; i < 32; i++)
175 value |= (((crc32 >> i) & 1) << (31 - i));
176
177 return value;
178 }
179
180 /*
181 * Sets the bit in the multicast table corresponding to the hash value.
182 * hw - Struct containing variables accessed by shared code
183 * hash_value - Multicast address hash value
184 */
atl1e_hash_set(struct atl1e_hw * hw,u32 hash_value)185 void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
186 {
187 u32 hash_bit, hash_reg;
188 u32 mta;
189
190 /*
191 * The HASH Table is a register array of 2 32-bit registers.
192 * It is treated like an array of 64 bits. We want to set
193 * bit BitArray[hash_value]. So we figure out what register
194 * the bit is in, read it, OR in the new bit, then write
195 * back the new value. The register is determined by the
196 * upper 7 bits of the hash value and the bit within that
197 * register are determined by the lower 5 bits of the value.
198 */
199 hash_reg = (hash_value >> 31) & 0x1;
200 hash_bit = (hash_value >> 26) & 0x1F;
201
202 mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
203
204 mta |= (1 << hash_bit);
205
206 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
207 }
208 /*
209 * Reads the value from a PHY register
210 * hw - Struct containing variables accessed by shared code
211 * reg_addr - address of the PHY register to read
212 */
atl1e_read_phy_reg(struct atl1e_hw * hw,u16 reg_addr,u16 * phy_data)213 int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
214 {
215 u32 val;
216 int i;
217
218 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
219 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
220 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
221
222 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
223
224 wmb();
225
226 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
227 udelay(2);
228 val = AT_READ_REG(hw, REG_MDIO_CTRL);
229 if (!(val & (MDIO_START | MDIO_BUSY)))
230 break;
231 wmb();
232 }
233 if (!(val & (MDIO_START | MDIO_BUSY))) {
234 *phy_data = (u16)val;
235 return 0;
236 }
237
238 return AT_ERR_PHY;
239 }
240
241 /*
242 * Writes a value to a PHY register
243 * hw - Struct containing variables accessed by shared code
244 * reg_addr - address of the PHY register to write
245 * data - data to write to the PHY
246 */
atl1e_write_phy_reg(struct atl1e_hw * hw,u32 reg_addr,u16 phy_data)247 int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
248 {
249 int i;
250 u32 val;
251
252 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
253 (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
254 MDIO_SUP_PREAMBLE |
255 MDIO_START |
256 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
257
258 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
259 wmb();
260
261 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
262 udelay(2);
263 val = AT_READ_REG(hw, REG_MDIO_CTRL);
264 if (!(val & (MDIO_START | MDIO_BUSY)))
265 break;
266 wmb();
267 }
268
269 if (!(val & (MDIO_START | MDIO_BUSY)))
270 return 0;
271
272 return AT_ERR_PHY;
273 }
274
275 /*
276 * atl1e_init_pcie - init PCIE module
277 */
atl1e_init_pcie(struct atl1e_hw * hw)278 static void atl1e_init_pcie(struct atl1e_hw *hw)
279 {
280 u32 value;
281 /* comment 2lines below to save more power when sususpend
282 value = LTSSM_TEST_MODE_DEF;
283 AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
284 */
285
286 /* pcie flow control mode change */
287 value = AT_READ_REG(hw, 0x1008);
288 value |= 0x8000;
289 AT_WRITE_REG(hw, 0x1008, value);
290 }
291 /*
292 * Configures PHY autoneg and flow control advertisement settings
293 *
294 * hw - Struct containing variables accessed by shared code
295 */
atl1e_phy_setup_autoneg_adv(struct atl1e_hw * hw)296 static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
297 {
298 s32 ret_val;
299 u16 mii_autoneg_adv_reg;
300 u16 mii_1000t_ctrl_reg;
301
302 if (0 != hw->mii_autoneg_adv_reg)
303 return 0;
304 /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
305 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
306 mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
307
308 /*
309 * Need to parse autoneg_advertised and set up
310 * the appropriate PHY registers. First we will parse for
311 * autoneg_advertised software override. Since we can advertise
312 * a plethora of combinations, we need to check each bit
313 * individually.
314 */
315
316 /*
317 * First we clear all the 10/100 mb speed bits in the Auto-Neg
318 * Advertisement Register (Address 4) and the 1000 mb speed bits in
319 * the 1000Base-T control Register (Address 9).
320 */
321 mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
322 mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK;
323
324 /*
325 * Need to parse MediaType and setup the
326 * appropriate PHY registers.
327 */
328 switch (hw->media_type) {
329 case MEDIA_TYPE_AUTO_SENSOR:
330 mii_autoneg_adv_reg |= ADVERTISE_ALL;
331 hw->autoneg_advertised = ADVERTISE_ALL;
332 if (hw->nic_type == athr_l1e) {
333 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
334 hw->autoneg_advertised |= ADVERTISE_1000_FULL;
335 }
336 break;
337
338 case MEDIA_TYPE_100M_FULL:
339 mii_autoneg_adv_reg |= ADVERTISE_100FULL;
340 hw->autoneg_advertised = ADVERTISE_100_FULL;
341 break;
342
343 case MEDIA_TYPE_100M_HALF:
344 mii_autoneg_adv_reg |= ADVERTISE_100_HALF;
345 hw->autoneg_advertised = ADVERTISE_100_HALF;
346 break;
347
348 case MEDIA_TYPE_10M_FULL:
349 mii_autoneg_adv_reg |= ADVERTISE_10_FULL;
350 hw->autoneg_advertised = ADVERTISE_10_FULL;
351 break;
352
353 default:
354 mii_autoneg_adv_reg |= ADVERTISE_10_HALF;
355 hw->autoneg_advertised = ADVERTISE_10_HALF;
356 break;
357 }
358
359 /* flow control fixed to enable all */
360 mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
361
362 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
363 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
364
365 ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
366 if (ret_val)
367 return ret_val;
368
369 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
370 ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
371 mii_1000t_ctrl_reg);
372 if (ret_val)
373 return ret_val;
374 }
375
376 return 0;
377 }
378
379
380 /*
381 * Resets the PHY and make all config validate
382 *
383 * hw - Struct containing variables accessed by shared code
384 *
385 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
386 */
atl1e_phy_commit(struct atl1e_hw * hw)387 int atl1e_phy_commit(struct atl1e_hw *hw)
388 {
389 struct atl1e_adapter *adapter = hw->adapter;
390 int ret_val;
391 u16 phy_data;
392
393 phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
394
395 ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
396 if (ret_val) {
397 u32 val;
398 int i;
399 /**************************************
400 * pcie serdes link may be down !
401 **************************************/
402 for (i = 0; i < 25; i++) {
403 msleep(1);
404 val = AT_READ_REG(hw, REG_MDIO_CTRL);
405 if (!(val & (MDIO_START | MDIO_BUSY)))
406 break;
407 }
408
409 if (0 != (val & (MDIO_START | MDIO_BUSY))) {
410 netdev_err(adapter->netdev,
411 "pcie linkdown at least for 25ms\n");
412 return ret_val;
413 }
414
415 netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
416 }
417 return 0;
418 }
419
atl1e_phy_init(struct atl1e_hw * hw)420 int atl1e_phy_init(struct atl1e_hw *hw)
421 {
422 struct atl1e_adapter *adapter = hw->adapter;
423 s32 ret_val;
424 u16 phy_val;
425
426 if (hw->phy_configured) {
427 if (hw->re_autoneg) {
428 hw->re_autoneg = false;
429 return atl1e_restart_autoneg(hw);
430 }
431 return 0;
432 }
433
434 /* RESET GPHY Core */
435 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
436 msleep(2);
437 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
438 GPHY_CTRL_EXT_RESET);
439 msleep(2);
440
441 /* patches */
442 /* p1. eable hibernation mode */
443 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
444 if (ret_val)
445 return ret_val;
446 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
447 if (ret_val)
448 return ret_val;
449 /* p2. set Class A/B for all modes */
450 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
451 if (ret_val)
452 return ret_val;
453 phy_val = 0x02ef;
454 /* remove Class AB */
455 /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
456 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
457 if (ret_val)
458 return ret_val;
459 /* p3. 10B ??? */
460 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
461 if (ret_val)
462 return ret_val;
463 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
464 if (ret_val)
465 return ret_val;
466 /* p4. 1000T power */
467 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
468 if (ret_val)
469 return ret_val;
470 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
471 if (ret_val)
472 return ret_val;
473
474 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
475 if (ret_val)
476 return ret_val;
477 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
478 if (ret_val)
479 return ret_val;
480
481 msleep(1);
482
483 /*Enable PHY LinkChange Interrupt */
484 ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
485 if (ret_val) {
486 netdev_err(adapter->netdev,
487 "Error enable PHY linkChange Interrupt\n");
488 return ret_val;
489 }
490 /* setup AutoNeg parameters */
491 ret_val = atl1e_phy_setup_autoneg_adv(hw);
492 if (ret_val) {
493 netdev_err(adapter->netdev,
494 "Error Setting up Auto-Negotiation\n");
495 return ret_val;
496 }
497 /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
498 netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
499 ret_val = atl1e_phy_commit(hw);
500 if (ret_val) {
501 netdev_err(adapter->netdev, "Error resetting the phy\n");
502 return ret_val;
503 }
504
505 hw->phy_configured = true;
506
507 return 0;
508 }
509
510 /*
511 * Reset the transmit and receive units; mask and clear all interrupts.
512 * hw - Struct containing variables accessed by shared code
513 * return : 0 or idle status (if error)
514 */
atl1e_reset_hw(struct atl1e_hw * hw)515 int atl1e_reset_hw(struct atl1e_hw *hw)
516 {
517 struct atl1e_adapter *adapter = hw->adapter;
518 struct pci_dev *pdev = adapter->pdev;
519
520 u32 idle_status_data = 0;
521 u16 pci_cfg_cmd_word = 0;
522 int timeout = 0;
523
524 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
525 pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
526 if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
527 CMD_MEMORY_SPACE | CMD_BUS_MASTER))
528 != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
529 pci_cfg_cmd_word |= (CMD_IO_SPACE |
530 CMD_MEMORY_SPACE | CMD_BUS_MASTER);
531 pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
532 }
533
534 /*
535 * Issue Soft Reset to the MAC. This will reset the chip's
536 * transmit, receive, DMA. It will not effect
537 * the current PCI configuration. The global reset bit is self-
538 * clearing, and should clear within a microsecond.
539 */
540 AT_WRITE_REG(hw, REG_MASTER_CTRL,
541 MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
542 wmb();
543 msleep(1);
544
545 /* Wait at least 10ms for All module to be Idle */
546 for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
547 idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
548 if (idle_status_data == 0)
549 break;
550 msleep(1);
551 cpu_relax();
552 }
553
554 if (timeout >= AT_HW_MAX_IDLE_DELAY) {
555 netdev_err(adapter->netdev,
556 "MAC state machine can't be idle since disabled for 10ms second\n");
557 return AT_ERR_TIMEOUT;
558 }
559
560 return 0;
561 }
562
563
564 /*
565 * Performs basic configuration of the adapter.
566 *
567 * hw - Struct containing variables accessed by shared code
568 * Assumes that the controller has previously been reset and is in a
569 * post-reset uninitialized state. Initializes multicast table,
570 * and Calls routines to setup link
571 * Leaves the transmit and receive units disabled and uninitialized.
572 */
atl1e_init_hw(struct atl1e_hw * hw)573 int atl1e_init_hw(struct atl1e_hw *hw)
574 {
575 s32 ret_val = 0;
576
577 atl1e_init_pcie(hw);
578
579 /* Zero out the Multicast HASH table */
580 /* clear the old settings from the multicast hash table */
581 AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
582 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
583
584 ret_val = atl1e_phy_init(hw);
585
586 return ret_val;
587 }
588
589 /*
590 * Detects the current speed and duplex settings of the hardware.
591 *
592 * hw - Struct containing variables accessed by shared code
593 * speed - Speed of the connection
594 * duplex - Duplex setting of the connection
595 */
atl1e_get_speed_and_duplex(struct atl1e_hw * hw,u16 * speed,u16 * duplex)596 int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
597 {
598 int err;
599 u16 phy_data;
600
601 /* Read PHY Specific Status Register (17) */
602 err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
603 if (err)
604 return err;
605
606 if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
607 return AT_ERR_PHY_RES;
608
609 switch (phy_data & MII_AT001_PSSR_SPEED) {
610 case MII_AT001_PSSR_1000MBS:
611 *speed = SPEED_1000;
612 break;
613 case MII_AT001_PSSR_100MBS:
614 *speed = SPEED_100;
615 break;
616 case MII_AT001_PSSR_10MBS:
617 *speed = SPEED_10;
618 break;
619 default:
620 return AT_ERR_PHY_SPEED;
621 break;
622 }
623
624 if (phy_data & MII_AT001_PSSR_DPLX)
625 *duplex = FULL_DUPLEX;
626 else
627 *duplex = HALF_DUPLEX;
628
629 return 0;
630 }
631
atl1e_restart_autoneg(struct atl1e_hw * hw)632 int atl1e_restart_autoneg(struct atl1e_hw *hw)
633 {
634 int err = 0;
635
636 err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
637 if (err)
638 return err;
639
640 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
641 err = atl1e_write_phy_reg(hw, MII_CTRL1000,
642 hw->mii_1000t_ctrl_reg);
643 if (err)
644 return err;
645 }
646
647 err = atl1e_write_phy_reg(hw, MII_BMCR,
648 BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
649 return err;
650 }
651
652