1 /*P:700
2  * The pagetable code, on the other hand, still shows the scars of
3  * previous encounters.  It's functional, and as neat as it can be in the
4  * circumstances, but be wary, for these things are subtle and break easily.
5  * The Guest provides a virtual to physical mapping, but we can neither trust
6  * it nor use it: we verify and convert it here then point the CPU to the
7  * converted Guest pages when running the Guest.
8 :*/
9 
10 /* Copyright (C) Rusty Russell IBM Corporation 2006.
11  * GPL v2 and any later version */
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/types.h>
15 #include <linux/spinlock.h>
16 #include <linux/random.h>
17 #include <linux/percpu.h>
18 #include <asm/tlbflush.h>
19 #include <asm/uaccess.h>
20 #include "lg.h"
21 
22 /*M:008
23  * We hold reference to pages, which prevents them from being swapped.
24  * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
25  * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
26  * could probably consider launching Guests as non-root.
27 :*/
28 
29 /*H:300
30  * The Page Table Code
31  *
32  * We use two-level page tables for the Guest, or three-level with PAE.  If
33  * you're not entirely comfortable with virtual addresses, physical addresses
34  * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
35  * Table Handling" (with diagrams!).
36  *
37  * The Guest keeps page tables, but we maintain the actual ones here: these are
38  * called "shadow" page tables.  Which is a very Guest-centric name: these are
39  * the real page tables the CPU uses, although we keep them up to date to
40  * reflect the Guest's.  (See what I mean about weird naming?  Since when do
41  * shadows reflect anything?)
42  *
43  * Anyway, this is the most complicated part of the Host code.  There are seven
44  * parts to this:
45  *  (i) Looking up a page table entry when the Guest faults,
46  *  (ii) Making sure the Guest stack is mapped,
47  *  (iii) Setting up a page table entry when the Guest tells us one has changed,
48  *  (iv) Switching page tables,
49  *  (v) Flushing (throwing away) page tables,
50  *  (vi) Mapping the Switcher when the Guest is about to run,
51  *  (vii) Setting up the page tables initially.
52 :*/
53 
54 /*
55  * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
56  * or 512 PTE entries with PAE (2MB).
57  */
58 #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
59 
60 /*
61  * For PAE we need the PMD index as well. We use the last 2MB, so we
62  * will need the last pmd entry of the last pmd page.
63  */
64 #ifdef CONFIG_X86_PAE
65 #define SWITCHER_PMD_INDEX 	(PTRS_PER_PMD - 1)
66 #define RESERVE_MEM 		2U
67 #define CHECK_GPGD_MASK		_PAGE_PRESENT
68 #else
69 #define RESERVE_MEM 		4U
70 #define CHECK_GPGD_MASK		_PAGE_TABLE
71 #endif
72 
73 /*
74  * We actually need a separate PTE page for each CPU.  Remember that after the
75  * Switcher code itself comes two pages for each CPU, and we don't want this
76  * CPU's guest to see the pages of any other CPU.
77  */
78 static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
79 #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
80 
81 /*H:320
82  * The page table code is curly enough to need helper functions to keep it
83  * clear and clean.  The kernel itself provides many of them; one advantage
84  * of insisting that the Guest and Host use the same CONFIG_PAE setting.
85  *
86  * There are two functions which return pointers to the shadow (aka "real")
87  * page tables.
88  *
89  * spgd_addr() takes the virtual address and returns a pointer to the top-level
90  * page directory entry (PGD) for that address.  Since we keep track of several
91  * page tables, the "i" argument tells us which one we're interested in (it's
92  * usually the current one).
93  */
spgd_addr(struct lg_cpu * cpu,u32 i,unsigned long vaddr)94 static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
95 {
96 	unsigned int index = pgd_index(vaddr);
97 
98 #ifndef CONFIG_X86_PAE
99 	/* We kill any Guest trying to touch the Switcher addresses. */
100 	if (index >= SWITCHER_PGD_INDEX) {
101 		kill_guest(cpu, "attempt to access switcher pages");
102 		index = 0;
103 	}
104 #endif
105 	/* Return a pointer index'th pgd entry for the i'th page table. */
106 	return &cpu->lg->pgdirs[i].pgdir[index];
107 }
108 
109 #ifdef CONFIG_X86_PAE
110 /*
111  * This routine then takes the PGD entry given above, which contains the
112  * address of the PMD page.  It then returns a pointer to the PMD entry for the
113  * given address.
114  */
spmd_addr(struct lg_cpu * cpu,pgd_t spgd,unsigned long vaddr)115 static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
116 {
117 	unsigned int index = pmd_index(vaddr);
118 	pmd_t *page;
119 
120 	/* We kill any Guest trying to touch the Switcher addresses. */
121 	if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
122 					index >= SWITCHER_PMD_INDEX) {
123 		kill_guest(cpu, "attempt to access switcher pages");
124 		index = 0;
125 	}
126 
127 	/* You should never call this if the PGD entry wasn't valid */
128 	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
129 	page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
130 
131 	return &page[index];
132 }
133 #endif
134 
135 /*
136  * This routine then takes the page directory entry returned above, which
137  * contains the address of the page table entry (PTE) page.  It then returns a
138  * pointer to the PTE entry for the given address.
139  */
spte_addr(struct lg_cpu * cpu,pgd_t spgd,unsigned long vaddr)140 static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
141 {
142 #ifdef CONFIG_X86_PAE
143 	pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
144 	pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
145 
146 	/* You should never call this if the PMD entry wasn't valid */
147 	BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
148 #else
149 	pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
150 	/* You should never call this if the PGD entry wasn't valid */
151 	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
152 #endif
153 
154 	return &page[pte_index(vaddr)];
155 }
156 
157 /*
158  * These functions are just like the above, except they access the Guest
159  * page tables.  Hence they return a Guest address.
160  */
gpgd_addr(struct lg_cpu * cpu,unsigned long vaddr)161 static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
162 {
163 	unsigned int index = vaddr >> (PGDIR_SHIFT);
164 	return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
165 }
166 
167 #ifdef CONFIG_X86_PAE
168 /* Follow the PGD to the PMD. */
gpmd_addr(pgd_t gpgd,unsigned long vaddr)169 static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
170 {
171 	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
172 	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
173 	return gpage + pmd_index(vaddr) * sizeof(pmd_t);
174 }
175 
176 /* Follow the PMD to the PTE. */
gpte_addr(struct lg_cpu * cpu,pmd_t gpmd,unsigned long vaddr)177 static unsigned long gpte_addr(struct lg_cpu *cpu,
178 			       pmd_t gpmd, unsigned long vaddr)
179 {
180 	unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
181 
182 	BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
183 	return gpage + pte_index(vaddr) * sizeof(pte_t);
184 }
185 #else
186 /* Follow the PGD to the PTE (no mid-level for !PAE). */
gpte_addr(struct lg_cpu * cpu,pgd_t gpgd,unsigned long vaddr)187 static unsigned long gpte_addr(struct lg_cpu *cpu,
188 				pgd_t gpgd, unsigned long vaddr)
189 {
190 	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
191 
192 	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
193 	return gpage + pte_index(vaddr) * sizeof(pte_t);
194 }
195 #endif
196 /*:*/
197 
198 /*M:007
199  * get_pfn is slow: we could probably try to grab batches of pages here as
200  * an optimization (ie. pre-faulting).
201 :*/
202 
203 /*H:350
204  * This routine takes a page number given by the Guest and converts it to
205  * an actual, physical page number.  It can fail for several reasons: the
206  * virtual address might not be mapped by the Launcher, the write flag is set
207  * and the page is read-only, or the write flag was set and the page was
208  * shared so had to be copied, but we ran out of memory.
209  *
210  * This holds a reference to the page, so release_pte() is careful to put that
211  * back.
212  */
get_pfn(unsigned long virtpfn,int write)213 static unsigned long get_pfn(unsigned long virtpfn, int write)
214 {
215 	struct page *page;
216 
217 	/* gup me one page at this address please! */
218 	if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
219 		return page_to_pfn(page);
220 
221 	/* This value indicates failure. */
222 	return -1UL;
223 }
224 
225 /*H:340
226  * Converting a Guest page table entry to a shadow (ie. real) page table
227  * entry can be a little tricky.  The flags are (almost) the same, but the
228  * Guest PTE contains a virtual page number: the CPU needs the real page
229  * number.
230  */
gpte_to_spte(struct lg_cpu * cpu,pte_t gpte,int write)231 static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
232 {
233 	unsigned long pfn, base, flags;
234 
235 	/*
236 	 * The Guest sets the global flag, because it thinks that it is using
237 	 * PGE.  We only told it to use PGE so it would tell us whether it was
238 	 * flushing a kernel mapping or a userspace mapping.  We don't actually
239 	 * use the global bit, so throw it away.
240 	 */
241 	flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
242 
243 	/* The Guest's pages are offset inside the Launcher. */
244 	base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
245 
246 	/*
247 	 * We need a temporary "unsigned long" variable to hold the answer from
248 	 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
249 	 * fit in spte.pfn.  get_pfn() finds the real physical number of the
250 	 * page, given the virtual number.
251 	 */
252 	pfn = get_pfn(base + pte_pfn(gpte), write);
253 	if (pfn == -1UL) {
254 		kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
255 		/*
256 		 * When we destroy the Guest, we'll go through the shadow page
257 		 * tables and release_pte() them.  Make sure we don't think
258 		 * this one is valid!
259 		 */
260 		flags = 0;
261 	}
262 	/* Now we assemble our shadow PTE from the page number and flags. */
263 	return pfn_pte(pfn, __pgprot(flags));
264 }
265 
266 /*H:460 And to complete the chain, release_pte() looks like this: */
release_pte(pte_t pte)267 static void release_pte(pte_t pte)
268 {
269 	/*
270 	 * Remember that get_user_pages_fast() took a reference to the page, in
271 	 * get_pfn()?  We have to put it back now.
272 	 */
273 	if (pte_flags(pte) & _PAGE_PRESENT)
274 		put_page(pte_page(pte));
275 }
276 /*:*/
277 
check_gpte(struct lg_cpu * cpu,pte_t gpte)278 static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
279 {
280 	if ((pte_flags(gpte) & _PAGE_PSE) ||
281 	    pte_pfn(gpte) >= cpu->lg->pfn_limit)
282 		kill_guest(cpu, "bad page table entry");
283 }
284 
check_gpgd(struct lg_cpu * cpu,pgd_t gpgd)285 static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
286 {
287 	if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
288 	   (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
289 		kill_guest(cpu, "bad page directory entry");
290 }
291 
292 #ifdef CONFIG_X86_PAE
check_gpmd(struct lg_cpu * cpu,pmd_t gpmd)293 static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
294 {
295 	if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
296 	   (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
297 		kill_guest(cpu, "bad page middle directory entry");
298 }
299 #endif
300 
301 /*H:330
302  * (i) Looking up a page table entry when the Guest faults.
303  *
304  * We saw this call in run_guest(): when we see a page fault in the Guest, we
305  * come here.  That's because we only set up the shadow page tables lazily as
306  * they're needed, so we get page faults all the time and quietly fix them up
307  * and return to the Guest without it knowing.
308  *
309  * If we fixed up the fault (ie. we mapped the address), this routine returns
310  * true.  Otherwise, it was a real fault and we need to tell the Guest.
311  */
demand_page(struct lg_cpu * cpu,unsigned long vaddr,int errcode)312 bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
313 {
314 	pgd_t gpgd;
315 	pgd_t *spgd;
316 	unsigned long gpte_ptr;
317 	pte_t gpte;
318 	pte_t *spte;
319 
320 	/* Mid level for PAE. */
321 #ifdef CONFIG_X86_PAE
322 	pmd_t *spmd;
323 	pmd_t gpmd;
324 #endif
325 
326 	/* First step: get the top-level Guest page table entry. */
327 	if (unlikely(cpu->linear_pages)) {
328 		/* Faking up a linear mapping. */
329 		gpgd = __pgd(CHECK_GPGD_MASK);
330 	} else {
331 		gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
332 		/* Toplevel not present?  We can't map it in. */
333 		if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
334 			return false;
335 	}
336 
337 	/* Now look at the matching shadow entry. */
338 	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
339 	if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
340 		/* No shadow entry: allocate a new shadow PTE page. */
341 		unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
342 		/*
343 		 * This is not really the Guest's fault, but killing it is
344 		 * simple for this corner case.
345 		 */
346 		if (!ptepage) {
347 			kill_guest(cpu, "out of memory allocating pte page");
348 			return false;
349 		}
350 		/* We check that the Guest pgd is OK. */
351 		check_gpgd(cpu, gpgd);
352 		/*
353 		 * And we copy the flags to the shadow PGD entry.  The page
354 		 * number in the shadow PGD is the page we just allocated.
355 		 */
356 		set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
357 	}
358 
359 #ifdef CONFIG_X86_PAE
360 	if (unlikely(cpu->linear_pages)) {
361 		/* Faking up a linear mapping. */
362 		gpmd = __pmd(_PAGE_TABLE);
363 	} else {
364 		gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
365 		/* Middle level not present?  We can't map it in. */
366 		if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
367 			return false;
368 	}
369 
370 	/* Now look at the matching shadow entry. */
371 	spmd = spmd_addr(cpu, *spgd, vaddr);
372 
373 	if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
374 		/* No shadow entry: allocate a new shadow PTE page. */
375 		unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
376 
377 		/*
378 		 * This is not really the Guest's fault, but killing it is
379 		 * simple for this corner case.
380 		 */
381 		if (!ptepage) {
382 			kill_guest(cpu, "out of memory allocating pte page");
383 			return false;
384 		}
385 
386 		/* We check that the Guest pmd is OK. */
387 		check_gpmd(cpu, gpmd);
388 
389 		/*
390 		 * And we copy the flags to the shadow PMD entry.  The page
391 		 * number in the shadow PMD is the page we just allocated.
392 		 */
393 		set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
394 	}
395 
396 	/*
397 	 * OK, now we look at the lower level in the Guest page table: keep its
398 	 * address, because we might update it later.
399 	 */
400 	gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
401 #else
402 	/*
403 	 * OK, now we look at the lower level in the Guest page table: keep its
404 	 * address, because we might update it later.
405 	 */
406 	gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
407 #endif
408 
409 	if (unlikely(cpu->linear_pages)) {
410 		/* Linear?  Make up a PTE which points to same page. */
411 		gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
412 	} else {
413 		/* Read the actual PTE value. */
414 		gpte = lgread(cpu, gpte_ptr, pte_t);
415 	}
416 
417 	/* If this page isn't in the Guest page tables, we can't page it in. */
418 	if (!(pte_flags(gpte) & _PAGE_PRESENT))
419 		return false;
420 
421 	/*
422 	 * Check they're not trying to write to a page the Guest wants
423 	 * read-only (bit 2 of errcode == write).
424 	 */
425 	if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
426 		return false;
427 
428 	/* User access to a kernel-only page? (bit 3 == user access) */
429 	if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
430 		return false;
431 
432 	/*
433 	 * Check that the Guest PTE flags are OK, and the page number is below
434 	 * the pfn_limit (ie. not mapping the Launcher binary).
435 	 */
436 	check_gpte(cpu, gpte);
437 
438 	/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
439 	gpte = pte_mkyoung(gpte);
440 	if (errcode & 2)
441 		gpte = pte_mkdirty(gpte);
442 
443 	/* Get the pointer to the shadow PTE entry we're going to set. */
444 	spte = spte_addr(cpu, *spgd, vaddr);
445 
446 	/*
447 	 * If there was a valid shadow PTE entry here before, we release it.
448 	 * This can happen with a write to a previously read-only entry.
449 	 */
450 	release_pte(*spte);
451 
452 	/*
453 	 * If this is a write, we insist that the Guest page is writable (the
454 	 * final arg to gpte_to_spte()).
455 	 */
456 	if (pte_dirty(gpte))
457 		*spte = gpte_to_spte(cpu, gpte, 1);
458 	else
459 		/*
460 		 * If this is a read, don't set the "writable" bit in the page
461 		 * table entry, even if the Guest says it's writable.  That way
462 		 * we will come back here when a write does actually occur, so
463 		 * we can update the Guest's _PAGE_DIRTY flag.
464 		 */
465 		set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
466 
467 	/*
468 	 * Finally, we write the Guest PTE entry back: we've set the
469 	 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
470 	 */
471 	if (likely(!cpu->linear_pages))
472 		lgwrite(cpu, gpte_ptr, pte_t, gpte);
473 
474 	/*
475 	 * The fault is fixed, the page table is populated, the mapping
476 	 * manipulated, the result returned and the code complete.  A small
477 	 * delay and a trace of alliteration are the only indications the Guest
478 	 * has that a page fault occurred at all.
479 	 */
480 	return true;
481 }
482 
483 /*H:360
484  * (ii) Making sure the Guest stack is mapped.
485  *
486  * Remember that direct traps into the Guest need a mapped Guest kernel stack.
487  * pin_stack_pages() calls us here: we could simply call demand_page(), but as
488  * we've seen that logic is quite long, and usually the stack pages are already
489  * mapped, so it's overkill.
490  *
491  * This is a quick version which answers the question: is this virtual address
492  * mapped by the shadow page tables, and is it writable?
493  */
page_writable(struct lg_cpu * cpu,unsigned long vaddr)494 static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
495 {
496 	pgd_t *spgd;
497 	unsigned long flags;
498 
499 #ifdef CONFIG_X86_PAE
500 	pmd_t *spmd;
501 #endif
502 	/* Look at the current top level entry: is it present? */
503 	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
504 	if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
505 		return false;
506 
507 #ifdef CONFIG_X86_PAE
508 	spmd = spmd_addr(cpu, *spgd, vaddr);
509 	if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
510 		return false;
511 #endif
512 
513 	/*
514 	 * Check the flags on the pte entry itself: it must be present and
515 	 * writable.
516 	 */
517 	flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
518 
519 	return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
520 }
521 
522 /*
523  * So, when pin_stack_pages() asks us to pin a page, we check if it's already
524  * in the page tables, and if not, we call demand_page() with error code 2
525  * (meaning "write").
526  */
pin_page(struct lg_cpu * cpu,unsigned long vaddr)527 void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
528 {
529 	if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
530 		kill_guest(cpu, "bad stack page %#lx", vaddr);
531 }
532 /*:*/
533 
534 #ifdef CONFIG_X86_PAE
release_pmd(pmd_t * spmd)535 static void release_pmd(pmd_t *spmd)
536 {
537 	/* If the entry's not present, there's nothing to release. */
538 	if (pmd_flags(*spmd) & _PAGE_PRESENT) {
539 		unsigned int i;
540 		pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
541 		/* For each entry in the page, we might need to release it. */
542 		for (i = 0; i < PTRS_PER_PTE; i++)
543 			release_pte(ptepage[i]);
544 		/* Now we can free the page of PTEs */
545 		free_page((long)ptepage);
546 		/* And zero out the PMD entry so we never release it twice. */
547 		set_pmd(spmd, __pmd(0));
548 	}
549 }
550 
release_pgd(pgd_t * spgd)551 static void release_pgd(pgd_t *spgd)
552 {
553 	/* If the entry's not present, there's nothing to release. */
554 	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
555 		unsigned int i;
556 		pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
557 
558 		for (i = 0; i < PTRS_PER_PMD; i++)
559 			release_pmd(&pmdpage[i]);
560 
561 		/* Now we can free the page of PMDs */
562 		free_page((long)pmdpage);
563 		/* And zero out the PGD entry so we never release it twice. */
564 		set_pgd(spgd, __pgd(0));
565 	}
566 }
567 
568 #else /* !CONFIG_X86_PAE */
569 /*H:450
570  * If we chase down the release_pgd() code, the non-PAE version looks like
571  * this.  The PAE version is almost identical, but instead of calling
572  * release_pte it calls release_pmd(), which looks much like this.
573  */
release_pgd(pgd_t * spgd)574 static void release_pgd(pgd_t *spgd)
575 {
576 	/* If the entry's not present, there's nothing to release. */
577 	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
578 		unsigned int i;
579 		/*
580 		 * Converting the pfn to find the actual PTE page is easy: turn
581 		 * the page number into a physical address, then convert to a
582 		 * virtual address (easy for kernel pages like this one).
583 		 */
584 		pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
585 		/* For each entry in the page, we might need to release it. */
586 		for (i = 0; i < PTRS_PER_PTE; i++)
587 			release_pte(ptepage[i]);
588 		/* Now we can free the page of PTEs */
589 		free_page((long)ptepage);
590 		/* And zero out the PGD entry so we never release it twice. */
591 		*spgd = __pgd(0);
592 	}
593 }
594 #endif
595 
596 /*H:445
597  * We saw flush_user_mappings() twice: once from the flush_user_mappings()
598  * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
599  * It simply releases every PTE page from 0 up to the Guest's kernel address.
600  */
flush_user_mappings(struct lguest * lg,int idx)601 static void flush_user_mappings(struct lguest *lg, int idx)
602 {
603 	unsigned int i;
604 	/* Release every pgd entry up to the kernel's address. */
605 	for (i = 0; i < pgd_index(lg->kernel_address); i++)
606 		release_pgd(lg->pgdirs[idx].pgdir + i);
607 }
608 
609 /*H:440
610  * (v) Flushing (throwing away) page tables,
611  *
612  * The Guest has a hypercall to throw away the page tables: it's used when a
613  * large number of mappings have been changed.
614  */
guest_pagetable_flush_user(struct lg_cpu * cpu)615 void guest_pagetable_flush_user(struct lg_cpu *cpu)
616 {
617 	/* Drop the userspace part of the current page table. */
618 	flush_user_mappings(cpu->lg, cpu->cpu_pgd);
619 }
620 /*:*/
621 
622 /* We walk down the guest page tables to get a guest-physical address */
guest_pa(struct lg_cpu * cpu,unsigned long vaddr)623 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
624 {
625 	pgd_t gpgd;
626 	pte_t gpte;
627 #ifdef CONFIG_X86_PAE
628 	pmd_t gpmd;
629 #endif
630 
631 	/* Still not set up?  Just map 1:1. */
632 	if (unlikely(cpu->linear_pages))
633 		return vaddr;
634 
635 	/* First step: get the top-level Guest page table entry. */
636 	gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
637 	/* Toplevel not present?  We can't map it in. */
638 	if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
639 		kill_guest(cpu, "Bad address %#lx", vaddr);
640 		return -1UL;
641 	}
642 
643 #ifdef CONFIG_X86_PAE
644 	gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
645 	if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
646 		kill_guest(cpu, "Bad address %#lx", vaddr);
647 	gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
648 #else
649 	gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
650 #endif
651 	if (!(pte_flags(gpte) & _PAGE_PRESENT))
652 		kill_guest(cpu, "Bad address %#lx", vaddr);
653 
654 	return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
655 }
656 
657 /*
658  * We keep several page tables.  This is a simple routine to find the page
659  * table (if any) corresponding to this top-level address the Guest has given
660  * us.
661  */
find_pgdir(struct lguest * lg,unsigned long pgtable)662 static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
663 {
664 	unsigned int i;
665 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
666 		if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
667 			break;
668 	return i;
669 }
670 
671 /*H:435
672  * And this is us, creating the new page directory.  If we really do
673  * allocate a new one (and so the kernel parts are not there), we set
674  * blank_pgdir.
675  */
new_pgdir(struct lg_cpu * cpu,unsigned long gpgdir,int * blank_pgdir)676 static unsigned int new_pgdir(struct lg_cpu *cpu,
677 			      unsigned long gpgdir,
678 			      int *blank_pgdir)
679 {
680 	unsigned int next;
681 #ifdef CONFIG_X86_PAE
682 	pmd_t *pmd_table;
683 #endif
684 
685 	/*
686 	 * We pick one entry at random to throw out.  Choosing the Least
687 	 * Recently Used might be better, but this is easy.
688 	 */
689 	next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
690 	/* If it's never been allocated at all before, try now. */
691 	if (!cpu->lg->pgdirs[next].pgdir) {
692 		cpu->lg->pgdirs[next].pgdir =
693 					(pgd_t *)get_zeroed_page(GFP_KERNEL);
694 		/* If the allocation fails, just keep using the one we have */
695 		if (!cpu->lg->pgdirs[next].pgdir)
696 			next = cpu->cpu_pgd;
697 		else {
698 #ifdef CONFIG_X86_PAE
699 			/*
700 			 * In PAE mode, allocate a pmd page and populate the
701 			 * last pgd entry.
702 			 */
703 			pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
704 			if (!pmd_table) {
705 				free_page((long)cpu->lg->pgdirs[next].pgdir);
706 				set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
707 				next = cpu->cpu_pgd;
708 			} else {
709 				set_pgd(cpu->lg->pgdirs[next].pgdir +
710 					SWITCHER_PGD_INDEX,
711 					__pgd(__pa(pmd_table) | _PAGE_PRESENT));
712 				/*
713 				 * This is a blank page, so there are no kernel
714 				 * mappings: caller must map the stack!
715 				 */
716 				*blank_pgdir = 1;
717 			}
718 #else
719 			*blank_pgdir = 1;
720 #endif
721 		}
722 	}
723 	/* Record which Guest toplevel this shadows. */
724 	cpu->lg->pgdirs[next].gpgdir = gpgdir;
725 	/* Release all the non-kernel mappings. */
726 	flush_user_mappings(cpu->lg, next);
727 
728 	return next;
729 }
730 
731 /*H:470
732  * Finally, a routine which throws away everything: all PGD entries in all
733  * the shadow page tables, including the Guest's kernel mappings.  This is used
734  * when we destroy the Guest.
735  */
release_all_pagetables(struct lguest * lg)736 static void release_all_pagetables(struct lguest *lg)
737 {
738 	unsigned int i, j;
739 
740 	/* Every shadow pagetable this Guest has */
741 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
742 		if (lg->pgdirs[i].pgdir) {
743 #ifdef CONFIG_X86_PAE
744 			pgd_t *spgd;
745 			pmd_t *pmdpage;
746 			unsigned int k;
747 
748 			/* Get the last pmd page. */
749 			spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
750 			pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
751 
752 			/*
753 			 * And release the pmd entries of that pmd page,
754 			 * except for the switcher pmd.
755 			 */
756 			for (k = 0; k < SWITCHER_PMD_INDEX; k++)
757 				release_pmd(&pmdpage[k]);
758 #endif
759 			/* Every PGD entry except the Switcher at the top */
760 			for (j = 0; j < SWITCHER_PGD_INDEX; j++)
761 				release_pgd(lg->pgdirs[i].pgdir + j);
762 		}
763 }
764 
765 /*
766  * We also throw away everything when a Guest tells us it's changed a kernel
767  * mapping.  Since kernel mappings are in every page table, it's easiest to
768  * throw them all away.  This traps the Guest in amber for a while as
769  * everything faults back in, but it's rare.
770  */
guest_pagetable_clear_all(struct lg_cpu * cpu)771 void guest_pagetable_clear_all(struct lg_cpu *cpu)
772 {
773 	release_all_pagetables(cpu->lg);
774 	/* We need the Guest kernel stack mapped again. */
775 	pin_stack_pages(cpu);
776 }
777 
778 /*H:430
779  * (iv) Switching page tables
780  *
781  * Now we've seen all the page table setting and manipulation, let's see
782  * what happens when the Guest changes page tables (ie. changes the top-level
783  * pgdir).  This occurs on almost every context switch.
784  */
guest_new_pagetable(struct lg_cpu * cpu,unsigned long pgtable)785 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
786 {
787 	int newpgdir, repin = 0;
788 
789 	/*
790 	 * The very first time they call this, we're actually running without
791 	 * any page tables; we've been making it up.  Throw them away now.
792 	 */
793 	if (unlikely(cpu->linear_pages)) {
794 		release_all_pagetables(cpu->lg);
795 		cpu->linear_pages = false;
796 		/* Force allocation of a new pgdir. */
797 		newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
798 	} else {
799 		/* Look to see if we have this one already. */
800 		newpgdir = find_pgdir(cpu->lg, pgtable);
801 	}
802 
803 	/*
804 	 * If not, we allocate or mug an existing one: if it's a fresh one,
805 	 * repin gets set to 1.
806 	 */
807 	if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
808 		newpgdir = new_pgdir(cpu, pgtable, &repin);
809 	/* Change the current pgd index to the new one. */
810 	cpu->cpu_pgd = newpgdir;
811 	/* If it was completely blank, we map in the Guest kernel stack */
812 	if (repin)
813 		pin_stack_pages(cpu);
814 }
815 /*:*/
816 
817 /*M:009
818  * Since we throw away all mappings when a kernel mapping changes, our
819  * performance sucks for guests using highmem.  In fact, a guest with
820  * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
821  * usually slower than a Guest with less memory.
822  *
823  * This, of course, cannot be fixed.  It would take some kind of... well, I
824  * don't know, but the term "puissant code-fu" comes to mind.
825 :*/
826 
827 /*H:420
828  * This is the routine which actually sets the page table entry for then
829  * "idx"'th shadow page table.
830  *
831  * Normally, we can just throw out the old entry and replace it with 0: if they
832  * use it demand_page() will put the new entry in.  We need to do this anyway:
833  * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
834  * is read from, and _PAGE_DIRTY when it's written to.
835  *
836  * But Avi Kivity pointed out that most Operating Systems (Linux included) set
837  * these bits on PTEs immediately anyway.  This is done to save the CPU from
838  * having to update them, but it helps us the same way: if they set
839  * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
840  * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
841  */
do_set_pte(struct lg_cpu * cpu,int idx,unsigned long vaddr,pte_t gpte)842 static void do_set_pte(struct lg_cpu *cpu, int idx,
843 		       unsigned long vaddr, pte_t gpte)
844 {
845 	/* Look up the matching shadow page directory entry. */
846 	pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
847 #ifdef CONFIG_X86_PAE
848 	pmd_t *spmd;
849 #endif
850 
851 	/* If the top level isn't present, there's no entry to update. */
852 	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
853 #ifdef CONFIG_X86_PAE
854 		spmd = spmd_addr(cpu, *spgd, vaddr);
855 		if (pmd_flags(*spmd) & _PAGE_PRESENT) {
856 #endif
857 			/* Otherwise, start by releasing the existing entry. */
858 			pte_t *spte = spte_addr(cpu, *spgd, vaddr);
859 			release_pte(*spte);
860 
861 			/*
862 			 * If they're setting this entry as dirty or accessed,
863 			 * we might as well put that entry they've given us in
864 			 * now.  This shaves 10% off a copy-on-write
865 			 * micro-benchmark.
866 			 */
867 			if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
868 				check_gpte(cpu, gpte);
869 				set_pte(spte,
870 					gpte_to_spte(cpu, gpte,
871 						pte_flags(gpte) & _PAGE_DIRTY));
872 			} else {
873 				/*
874 				 * Otherwise kill it and we can demand_page()
875 				 * it in later.
876 				 */
877 				set_pte(spte, __pte(0));
878 			}
879 #ifdef CONFIG_X86_PAE
880 		}
881 #endif
882 	}
883 }
884 
885 /*H:410
886  * Updating a PTE entry is a little trickier.
887  *
888  * We keep track of several different page tables (the Guest uses one for each
889  * process, so it makes sense to cache at least a few).  Each of these have
890  * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
891  * all processes.  So when the page table above that address changes, we update
892  * all the page tables, not just the current one.  This is rare.
893  *
894  * The benefit is that when we have to track a new page table, we can keep all
895  * the kernel mappings.  This speeds up context switch immensely.
896  */
guest_set_pte(struct lg_cpu * cpu,unsigned long gpgdir,unsigned long vaddr,pte_t gpte)897 void guest_set_pte(struct lg_cpu *cpu,
898 		   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
899 {
900 	/*
901 	 * Kernel mappings must be changed on all top levels.  Slow, but doesn't
902 	 * happen often.
903 	 */
904 	if (vaddr >= cpu->lg->kernel_address) {
905 		unsigned int i;
906 		for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
907 			if (cpu->lg->pgdirs[i].pgdir)
908 				do_set_pte(cpu, i, vaddr, gpte);
909 	} else {
910 		/* Is this page table one we have a shadow for? */
911 		int pgdir = find_pgdir(cpu->lg, gpgdir);
912 		if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
913 			/* If so, do the update. */
914 			do_set_pte(cpu, pgdir, vaddr, gpte);
915 	}
916 }
917 
918 /*H:400
919  * (iii) Setting up a page table entry when the Guest tells us one has changed.
920  *
921  * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
922  * with the other side of page tables while we're here: what happens when the
923  * Guest asks for a page table to be updated?
924  *
925  * We already saw that demand_page() will fill in the shadow page tables when
926  * needed, so we can simply remove shadow page table entries whenever the Guest
927  * tells us they've changed.  When the Guest tries to use the new entry it will
928  * fault and demand_page() will fix it up.
929  *
930  * So with that in mind here's our code to update a (top-level) PGD entry:
931  */
guest_set_pgd(struct lguest * lg,unsigned long gpgdir,u32 idx)932 void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
933 {
934 	int pgdir;
935 
936 	if (idx >= SWITCHER_PGD_INDEX)
937 		return;
938 
939 	/* If they're talking about a page table we have a shadow for... */
940 	pgdir = find_pgdir(lg, gpgdir);
941 	if (pgdir < ARRAY_SIZE(lg->pgdirs))
942 		/* ... throw it away. */
943 		release_pgd(lg->pgdirs[pgdir].pgdir + idx);
944 }
945 
946 #ifdef CONFIG_X86_PAE
947 /* For setting a mid-level, we just throw everything away.  It's easy. */
guest_set_pmd(struct lguest * lg,unsigned long pmdp,u32 idx)948 void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
949 {
950 	guest_pagetable_clear_all(&lg->cpus[0]);
951 }
952 #endif
953 
954 /*H:500
955  * (vii) Setting up the page tables initially.
956  *
957  * When a Guest is first created, set initialize a shadow page table which
958  * we will populate on future faults.  The Guest doesn't have any actual
959  * pagetables yet, so we set linear_pages to tell demand_page() to fake it
960  * for the moment.
961  */
init_guest_pagetable(struct lguest * lg)962 int init_guest_pagetable(struct lguest *lg)
963 {
964 	struct lg_cpu *cpu = &lg->cpus[0];
965 	int allocated = 0;
966 
967 	/* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
968 	cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
969 	if (!allocated)
970 		return -ENOMEM;
971 
972 	/* We start with a linear mapping until the initialize. */
973 	cpu->linear_pages = true;
974 	return 0;
975 }
976 
977 /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
page_table_guest_data_init(struct lg_cpu * cpu)978 void page_table_guest_data_init(struct lg_cpu *cpu)
979 {
980 	/* We get the kernel address: above this is all kernel memory. */
981 	if (get_user(cpu->lg->kernel_address,
982 		&cpu->lg->lguest_data->kernel_address)
983 		/*
984 		 * We tell the Guest that it can't use the top 2 or 4 MB
985 		 * of virtual addresses used by the Switcher.
986 		 */
987 		|| put_user(RESERVE_MEM * 1024 * 1024,
988 			    &cpu->lg->lguest_data->reserve_mem)) {
989 		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
990 		return;
991 	}
992 
993 	/*
994 	 * In flush_user_mappings() we loop from 0 to
995 	 * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
996 	 * Switcher mappings, so check that now.
997 	 */
998 #ifdef CONFIG_X86_PAE
999 	if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1000 		pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1001 #else
1002 	if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
1003 #endif
1004 		kill_guest(cpu, "bad kernel address %#lx",
1005 				 cpu->lg->kernel_address);
1006 }
1007 
1008 /* When a Guest dies, our cleanup is fairly simple. */
free_guest_pagetable(struct lguest * lg)1009 void free_guest_pagetable(struct lguest *lg)
1010 {
1011 	unsigned int i;
1012 
1013 	/* Throw away all page table pages. */
1014 	release_all_pagetables(lg);
1015 	/* Now free the top levels: free_page() can handle 0 just fine. */
1016 	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1017 		free_page((long)lg->pgdirs[i].pgdir);
1018 }
1019 
1020 /*H:480
1021  * (vi) Mapping the Switcher when the Guest is about to run.
1022  *
1023  * The Switcher and the two pages for this CPU need to be visible in the
1024  * Guest (and not the pages for other CPUs).  We have the appropriate PTE pages
1025  * for each CPU already set up, we just need to hook them in now we know which
1026  * Guest is about to run on this CPU.
1027  */
map_switcher_in_guest(struct lg_cpu * cpu,struct lguest_pages * pages)1028 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1029 {
1030 	pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
1031 	pte_t regs_pte;
1032 
1033 #ifdef CONFIG_X86_PAE
1034 	pmd_t switcher_pmd;
1035 	pmd_t *pmd_table;
1036 
1037 	switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1038 			       PAGE_KERNEL_EXEC);
1039 
1040 	/* Figure out where the pmd page is, by reading the PGD, and converting
1041 	 * it to a virtual address. */
1042 	pmd_table = __va(pgd_pfn(cpu->lg->
1043 			pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1044 								<< PAGE_SHIFT);
1045 	/* Now write it into the shadow page table. */
1046 	set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1047 #else
1048 	pgd_t switcher_pgd;
1049 
1050 	/*
1051 	 * Make the last PGD entry for this Guest point to the Switcher's PTE
1052 	 * page for this CPU (with appropriate flags).
1053 	 */
1054 	switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1055 
1056 	cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1057 
1058 #endif
1059 	/*
1060 	 * We also change the Switcher PTE page.  When we're running the Guest,
1061 	 * we want the Guest's "regs" page to appear where the first Switcher
1062 	 * page for this CPU is.  This is an optimization: when the Switcher
1063 	 * saves the Guest registers, it saves them into the first page of this
1064 	 * CPU's "struct lguest_pages": if we make sure the Guest's register
1065 	 * page is already mapped there, we don't have to copy them out
1066 	 * again.
1067 	 */
1068 	regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1069 	set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1070 }
1071 /*:*/
1072 
free_switcher_pte_pages(void)1073 static void free_switcher_pte_pages(void)
1074 {
1075 	unsigned int i;
1076 
1077 	for_each_possible_cpu(i)
1078 		free_page((long)switcher_pte_page(i));
1079 }
1080 
1081 /*H:520
1082  * Setting up the Switcher PTE page for given CPU is fairly easy, given
1083  * the CPU number and the "struct page"s for the Switcher code itself.
1084  *
1085  * Currently the Switcher is less than a page long, so "pages" is always 1.
1086  */
populate_switcher_pte_page(unsigned int cpu,struct page * switcher_page[],unsigned int pages)1087 static __init void populate_switcher_pte_page(unsigned int cpu,
1088 					      struct page *switcher_page[],
1089 					      unsigned int pages)
1090 {
1091 	unsigned int i;
1092 	pte_t *pte = switcher_pte_page(cpu);
1093 
1094 	/* The first entries are easy: they map the Switcher code. */
1095 	for (i = 0; i < pages; i++) {
1096 		set_pte(&pte[i], mk_pte(switcher_page[i],
1097 				__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1098 	}
1099 
1100 	/* The only other thing we map is this CPU's pair of pages. */
1101 	i = pages + cpu*2;
1102 
1103 	/* First page (Guest registers) is writable from the Guest */
1104 	set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1105 			 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1106 
1107 	/*
1108 	 * The second page contains the "struct lguest_ro_state", and is
1109 	 * read-only.
1110 	 */
1111 	set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1112 			   __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1113 }
1114 
1115 /*
1116  * We've made it through the page table code.  Perhaps our tired brains are
1117  * still processing the details, or perhaps we're simply glad it's over.
1118  *
1119  * If nothing else, note that all this complexity in juggling shadow page tables
1120  * in sync with the Guest's page tables is for one reason: for most Guests this
1121  * page table dance determines how bad performance will be.  This is why Xen
1122  * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1123  * have implemented shadow page table support directly into hardware.
1124  *
1125  * There is just one file remaining in the Host.
1126  */
1127 
1128 /*H:510
1129  * At boot or module load time, init_pagetables() allocates and populates
1130  * the Switcher PTE page for each CPU.
1131  */
init_pagetables(struct page ** switcher_page,unsigned int pages)1132 __init int init_pagetables(struct page **switcher_page, unsigned int pages)
1133 {
1134 	unsigned int i;
1135 
1136 	for_each_possible_cpu(i) {
1137 		switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
1138 		if (!switcher_pte_page(i)) {
1139 			free_switcher_pte_pages();
1140 			return -ENOMEM;
1141 		}
1142 		populate_switcher_pte_page(i, switcher_page, pages);
1143 	}
1144 	return 0;
1145 }
1146 /*:*/
1147 
1148 /* Cleaning up simply involves freeing the PTE page for each CPU. */
free_pagetables(void)1149 void free_pagetables(void)
1150 {
1151 	free_switcher_pte_pages();
1152 }
1153