1 /*
2  *	IDE I/O functions
3  *
4  *	Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25 
26 
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51 
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56 
ide_end_rq(ide_drive_t * drive,struct request * rq,int error,unsigned int nr_bytes)57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 	       unsigned int nr_bytes)
59 {
60 	/*
61 	 * decide whether to reenable DMA -- 3 is a random magic for now,
62 	 * if we DMA timeout more than 3 times, just stay in PIO
63 	 */
64 	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 	    drive->retry_pio <= 3) {
66 		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 		ide_dma_on(drive);
68 	}
69 
70 	return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73 
ide_complete_cmd(ide_drive_t * drive,struct ide_cmd * cmd,u8 stat,u8 err)74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76 	const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 	struct ide_taskfile *tf = &cmd->tf;
78 	struct request *rq = cmd->rq;
79 	u8 tf_cmd = tf->command;
80 
81 	tf->error = err;
82 	tf->status = stat;
83 
84 	if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85 		u8 data[2];
86 
87 		tp_ops->input_data(drive, cmd, data, 2);
88 
89 		cmd->tf.data  = data[0];
90 		cmd->hob.data = data[1];
91 	}
92 
93 	ide_tf_readback(drive, cmd);
94 
95 	if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 	    tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 		if (tf->lbal != 0xc4) {
98 			printk(KERN_ERR "%s: head unload failed!\n",
99 			       drive->name);
100 			ide_tf_dump(drive->name, cmd);
101 		} else
102 			drive->dev_flags |= IDE_DFLAG_PARKED;
103 	}
104 
105 	if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106 		struct ide_cmd *orig_cmd = rq->special;
107 
108 		if (cmd->tf_flags & IDE_TFLAG_DYN)
109 			kfree(orig_cmd);
110 		else
111 			memcpy(orig_cmd, cmd, sizeof(*cmd));
112 	}
113 }
114 
ide_complete_rq(ide_drive_t * drive,int error,unsigned int nr_bytes)115 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
116 {
117 	ide_hwif_t *hwif = drive->hwif;
118 	struct request *rq = hwif->rq;
119 	int rc;
120 
121 	/*
122 	 * if failfast is set on a request, override number of sectors
123 	 * and complete the whole request right now
124 	 */
125 	if (blk_noretry_request(rq) && error <= 0)
126 		nr_bytes = blk_rq_sectors(rq) << 9;
127 
128 	rc = ide_end_rq(drive, rq, error, nr_bytes);
129 	if (rc == 0)
130 		hwif->rq = NULL;
131 
132 	return rc;
133 }
134 EXPORT_SYMBOL(ide_complete_rq);
135 
ide_kill_rq(ide_drive_t * drive,struct request * rq)136 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
137 {
138 	u8 drv_req = (rq->cmd_type == REQ_TYPE_SPECIAL) && rq->rq_disk;
139 	u8 media = drive->media;
140 
141 	drive->failed_pc = NULL;
142 
143 	if ((media == ide_floppy || media == ide_tape) && drv_req) {
144 		rq->errors = 0;
145 	} else {
146 		if (media == ide_tape)
147 			rq->errors = IDE_DRV_ERROR_GENERAL;
148 		else if (rq->cmd_type != REQ_TYPE_FS && rq->errors == 0)
149 			rq->errors = -EIO;
150 	}
151 
152 	ide_complete_rq(drive, -EIO, blk_rq_bytes(rq));
153 }
154 
ide_tf_set_specify_cmd(ide_drive_t * drive,struct ide_taskfile * tf)155 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
156 {
157 	tf->nsect   = drive->sect;
158 	tf->lbal    = drive->sect;
159 	tf->lbam    = drive->cyl;
160 	tf->lbah    = drive->cyl >> 8;
161 	tf->device  = (drive->head - 1) | drive->select;
162 	tf->command = ATA_CMD_INIT_DEV_PARAMS;
163 }
164 
ide_tf_set_restore_cmd(ide_drive_t * drive,struct ide_taskfile * tf)165 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166 {
167 	tf->nsect   = drive->sect;
168 	tf->command = ATA_CMD_RESTORE;
169 }
170 
ide_tf_set_setmult_cmd(ide_drive_t * drive,struct ide_taskfile * tf)171 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
172 {
173 	tf->nsect   = drive->mult_req;
174 	tf->command = ATA_CMD_SET_MULTI;
175 }
176 
177 /**
178  *	do_special		-	issue some special commands
179  *	@drive: drive the command is for
180  *
181  *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
182  *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
183  */
184 
do_special(ide_drive_t * drive)185 static ide_startstop_t do_special(ide_drive_t *drive)
186 {
187 	struct ide_cmd cmd;
188 
189 #ifdef DEBUG
190 	printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
191 		drive->special_flags);
192 #endif
193 	if (drive->media != ide_disk) {
194 		drive->special_flags = 0;
195 		drive->mult_req = 0;
196 		return ide_stopped;
197 	}
198 
199 	memset(&cmd, 0, sizeof(cmd));
200 	cmd.protocol = ATA_PROT_NODATA;
201 
202 	if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
203 		drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
204 		ide_tf_set_specify_cmd(drive, &cmd.tf);
205 	} else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
206 		drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
207 		ide_tf_set_restore_cmd(drive, &cmd.tf);
208 	} else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
209 		drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
210 		ide_tf_set_setmult_cmd(drive, &cmd.tf);
211 	} else
212 		BUG();
213 
214 	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
215 	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
216 	cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
217 
218 	do_rw_taskfile(drive, &cmd);
219 
220 	return ide_started;
221 }
222 
ide_map_sg(ide_drive_t * drive,struct ide_cmd * cmd)223 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
224 {
225 	ide_hwif_t *hwif = drive->hwif;
226 	struct scatterlist *sg = hwif->sg_table;
227 	struct request *rq = cmd->rq;
228 
229 	cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
230 }
231 EXPORT_SYMBOL_GPL(ide_map_sg);
232 
ide_init_sg_cmd(struct ide_cmd * cmd,unsigned int nr_bytes)233 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
234 {
235 	cmd->nbytes = cmd->nleft = nr_bytes;
236 	cmd->cursg_ofs = 0;
237 	cmd->cursg = NULL;
238 }
239 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
240 
241 /**
242  *	execute_drive_command	-	issue special drive command
243  *	@drive: the drive to issue the command on
244  *	@rq: the request structure holding the command
245  *
246  *	execute_drive_cmd() issues a special drive command,  usually
247  *	initiated by ioctl() from the external hdparm program. The
248  *	command can be a drive command, drive task or taskfile
249  *	operation. Weirdly you can call it with NULL to wait for
250  *	all commands to finish. Don't do this as that is due to change
251  */
252 
execute_drive_cmd(ide_drive_t * drive,struct request * rq)253 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
254 		struct request *rq)
255 {
256 	struct ide_cmd *cmd = rq->special;
257 
258 	if (cmd) {
259 		if (cmd->protocol == ATA_PROT_PIO) {
260 			ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
261 			ide_map_sg(drive, cmd);
262 		}
263 
264 		return do_rw_taskfile(drive, cmd);
265 	}
266 
267  	/*
268  	 * NULL is actually a valid way of waiting for
269  	 * all current requests to be flushed from the queue.
270  	 */
271 #ifdef DEBUG
272  	printk("%s: DRIVE_CMD (null)\n", drive->name);
273 #endif
274 	rq->errors = 0;
275 	ide_complete_rq(drive, 0, blk_rq_bytes(rq));
276 
277  	return ide_stopped;
278 }
279 
ide_special_rq(ide_drive_t * drive,struct request * rq)280 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
281 {
282 	u8 cmd = rq->cmd[0];
283 
284 	switch (cmd) {
285 	case REQ_PARK_HEADS:
286 	case REQ_UNPARK_HEADS:
287 		return ide_do_park_unpark(drive, rq);
288 	case REQ_DEVSET_EXEC:
289 		return ide_do_devset(drive, rq);
290 	case REQ_DRIVE_RESET:
291 		return ide_do_reset(drive);
292 	default:
293 		BUG();
294 	}
295 }
296 
297 /**
298  *	start_request	-	start of I/O and command issuing for IDE
299  *
300  *	start_request() initiates handling of a new I/O request. It
301  *	accepts commands and I/O (read/write) requests.
302  *
303  *	FIXME: this function needs a rename
304  */
305 
start_request(ide_drive_t * drive,struct request * rq)306 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
307 {
308 	ide_startstop_t startstop;
309 
310 	BUG_ON(!(rq->cmd_flags & REQ_STARTED));
311 
312 #ifdef DEBUG
313 	printk("%s: start_request: current=0x%08lx\n",
314 		drive->hwif->name, (unsigned long) rq);
315 #endif
316 
317 	/* bail early if we've exceeded max_failures */
318 	if (drive->max_failures && (drive->failures > drive->max_failures)) {
319 		rq->cmd_flags |= REQ_FAILED;
320 		goto kill_rq;
321 	}
322 
323 	if (blk_pm_request(rq))
324 		ide_check_pm_state(drive, rq);
325 
326 	drive->hwif->tp_ops->dev_select(drive);
327 	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
328 			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
329 		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
330 		return startstop;
331 	}
332 
333 	if (drive->special_flags == 0) {
334 		struct ide_driver *drv;
335 
336 		/*
337 		 * We reset the drive so we need to issue a SETFEATURES.
338 		 * Do it _after_ do_special() restored device parameters.
339 		 */
340 		if (drive->current_speed == 0xff)
341 			ide_config_drive_speed(drive, drive->desired_speed);
342 
343 		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
344 			return execute_drive_cmd(drive, rq);
345 		else if (blk_pm_request(rq)) {
346 			struct request_pm_state *pm = rq->special;
347 #ifdef DEBUG_PM
348 			printk("%s: start_power_step(step: %d)\n",
349 				drive->name, pm->pm_step);
350 #endif
351 			startstop = ide_start_power_step(drive, rq);
352 			if (startstop == ide_stopped &&
353 			    pm->pm_step == IDE_PM_COMPLETED)
354 				ide_complete_pm_rq(drive, rq);
355 			return startstop;
356 		} else if (!rq->rq_disk && rq->cmd_type == REQ_TYPE_SPECIAL)
357 			/*
358 			 * TODO: Once all ULDs have been modified to
359 			 * check for specific op codes rather than
360 			 * blindly accepting any special request, the
361 			 * check for ->rq_disk above may be replaced
362 			 * by a more suitable mechanism or even
363 			 * dropped entirely.
364 			 */
365 			return ide_special_rq(drive, rq);
366 
367 		drv = *(struct ide_driver **)rq->rq_disk->private_data;
368 
369 		return drv->do_request(drive, rq, blk_rq_pos(rq));
370 	}
371 	return do_special(drive);
372 kill_rq:
373 	ide_kill_rq(drive, rq);
374 	return ide_stopped;
375 }
376 
377 /**
378  *	ide_stall_queue		-	pause an IDE device
379  *	@drive: drive to stall
380  *	@timeout: time to stall for (jiffies)
381  *
382  *	ide_stall_queue() can be used by a drive to give excess bandwidth back
383  *	to the port by sleeping for timeout jiffies.
384  */
385 
ide_stall_queue(ide_drive_t * drive,unsigned long timeout)386 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
387 {
388 	if (timeout > WAIT_WORSTCASE)
389 		timeout = WAIT_WORSTCASE;
390 	drive->sleep = timeout + jiffies;
391 	drive->dev_flags |= IDE_DFLAG_SLEEPING;
392 }
393 EXPORT_SYMBOL(ide_stall_queue);
394 
ide_lock_port(ide_hwif_t * hwif)395 static inline int ide_lock_port(ide_hwif_t *hwif)
396 {
397 	if (hwif->busy)
398 		return 1;
399 
400 	hwif->busy = 1;
401 
402 	return 0;
403 }
404 
ide_unlock_port(ide_hwif_t * hwif)405 static inline void ide_unlock_port(ide_hwif_t *hwif)
406 {
407 	hwif->busy = 0;
408 }
409 
ide_lock_host(struct ide_host * host,ide_hwif_t * hwif)410 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
411 {
412 	int rc = 0;
413 
414 	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
415 		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
416 		if (rc == 0) {
417 			if (host->get_lock)
418 				host->get_lock(ide_intr, hwif);
419 		}
420 	}
421 	return rc;
422 }
423 
ide_unlock_host(struct ide_host * host)424 static inline void ide_unlock_host(struct ide_host *host)
425 {
426 	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
427 		if (host->release_lock)
428 			host->release_lock();
429 		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
430 	}
431 }
432 
__ide_requeue_and_plug(struct request_queue * q,struct request * rq)433 static void __ide_requeue_and_plug(struct request_queue *q, struct request *rq)
434 {
435 	if (rq)
436 		blk_requeue_request(q, rq);
437 	if (rq || blk_peek_request(q)) {
438 		/* Use 3ms as that was the old plug delay */
439 		blk_delay_queue(q, 3);
440 	}
441 }
442 
ide_requeue_and_plug(ide_drive_t * drive,struct request * rq)443 void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
444 {
445 	struct request_queue *q = drive->queue;
446 	unsigned long flags;
447 
448 	spin_lock_irqsave(q->queue_lock, flags);
449 	__ide_requeue_and_plug(q, rq);
450 	spin_unlock_irqrestore(q->queue_lock, flags);
451 }
452 
453 /*
454  * Issue a new request to a device.
455  */
do_ide_request(struct request_queue * q)456 void do_ide_request(struct request_queue *q)
457 {
458 	ide_drive_t	*drive = q->queuedata;
459 	ide_hwif_t	*hwif = drive->hwif;
460 	struct ide_host *host = hwif->host;
461 	struct request	*rq = NULL;
462 	ide_startstop_t	startstop;
463 	unsigned long queue_run_ms = 3; /* old plug delay */
464 
465 	spin_unlock_irq(q->queue_lock);
466 
467 	/* HLD do_request() callback might sleep, make sure it's okay */
468 	might_sleep();
469 
470 	if (ide_lock_host(host, hwif))
471 		goto plug_device_2;
472 
473 	spin_lock_irq(&hwif->lock);
474 
475 	if (!ide_lock_port(hwif)) {
476 		ide_hwif_t *prev_port;
477 
478 		WARN_ON_ONCE(hwif->rq);
479 repeat:
480 		prev_port = hwif->host->cur_port;
481 		if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
482 		    time_after(drive->sleep, jiffies)) {
483 			unsigned long left = jiffies - drive->sleep;
484 
485 			queue_run_ms = jiffies_to_msecs(left + 1);
486 			ide_unlock_port(hwif);
487 			goto plug_device;
488 		}
489 
490 		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
491 		    hwif != prev_port) {
492 			ide_drive_t *cur_dev =
493 				prev_port ? prev_port->cur_dev : NULL;
494 
495 			/*
496 			 * set nIEN for previous port, drives in the
497 			 * quirk list may not like intr setups/cleanups
498 			 */
499 			if (cur_dev &&
500 			    (cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
501 				prev_port->tp_ops->write_devctl(prev_port,
502 								ATA_NIEN |
503 								ATA_DEVCTL_OBS);
504 
505 			hwif->host->cur_port = hwif;
506 		}
507 		hwif->cur_dev = drive;
508 		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
509 
510 		spin_unlock_irq(&hwif->lock);
511 		spin_lock_irq(q->queue_lock);
512 		/*
513 		 * we know that the queue isn't empty, but this can happen
514 		 * if the q->prep_rq_fn() decides to kill a request
515 		 */
516 		if (!rq)
517 			rq = blk_fetch_request(drive->queue);
518 
519 		spin_unlock_irq(q->queue_lock);
520 		spin_lock_irq(&hwif->lock);
521 
522 		if (!rq) {
523 			ide_unlock_port(hwif);
524 			goto out;
525 		}
526 
527 		/*
528 		 * Sanity: don't accept a request that isn't a PM request
529 		 * if we are currently power managed. This is very important as
530 		 * blk_stop_queue() doesn't prevent the blk_fetch_request()
531 		 * above to return us whatever is in the queue. Since we call
532 		 * ide_do_request() ourselves, we end up taking requests while
533 		 * the queue is blocked...
534 		 *
535 		 * We let requests forced at head of queue with ide-preempt
536 		 * though. I hope that doesn't happen too much, hopefully not
537 		 * unless the subdriver triggers such a thing in its own PM
538 		 * state machine.
539 		 */
540 		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
541 		    blk_pm_request(rq) == 0 &&
542 		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
543 			/* there should be no pending command at this point */
544 			ide_unlock_port(hwif);
545 			goto plug_device;
546 		}
547 
548 		hwif->rq = rq;
549 
550 		spin_unlock_irq(&hwif->lock);
551 		startstop = start_request(drive, rq);
552 		spin_lock_irq(&hwif->lock);
553 
554 		if (startstop == ide_stopped) {
555 			rq = hwif->rq;
556 			hwif->rq = NULL;
557 			goto repeat;
558 		}
559 	} else
560 		goto plug_device;
561 out:
562 	spin_unlock_irq(&hwif->lock);
563 	if (rq == NULL)
564 		ide_unlock_host(host);
565 	spin_lock_irq(q->queue_lock);
566 	return;
567 
568 plug_device:
569 	spin_unlock_irq(&hwif->lock);
570 	ide_unlock_host(host);
571 plug_device_2:
572 	spin_lock_irq(q->queue_lock);
573 	__ide_requeue_and_plug(q, rq);
574 }
575 
drive_is_ready(ide_drive_t * drive)576 static int drive_is_ready(ide_drive_t *drive)
577 {
578 	ide_hwif_t *hwif = drive->hwif;
579 	u8 stat = 0;
580 
581 	if (drive->waiting_for_dma)
582 		return hwif->dma_ops->dma_test_irq(drive);
583 
584 	if (hwif->io_ports.ctl_addr &&
585 	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
586 		stat = hwif->tp_ops->read_altstatus(hwif);
587 	else
588 		/* Note: this may clear a pending IRQ!! */
589 		stat = hwif->tp_ops->read_status(hwif);
590 
591 	if (stat & ATA_BUSY)
592 		/* drive busy: definitely not interrupting */
593 		return 0;
594 
595 	/* drive ready: *might* be interrupting */
596 	return 1;
597 }
598 
599 /**
600  *	ide_timer_expiry	-	handle lack of an IDE interrupt
601  *	@data: timer callback magic (hwif)
602  *
603  *	An IDE command has timed out before the expected drive return
604  *	occurred. At this point we attempt to clean up the current
605  *	mess. If the current handler includes an expiry handler then
606  *	we invoke the expiry handler, and providing it is happy the
607  *	work is done. If that fails we apply generic recovery rules
608  *	invoking the handler and checking the drive DMA status. We
609  *	have an excessively incestuous relationship with the DMA
610  *	logic that wants cleaning up.
611  */
612 
ide_timer_expiry(unsigned long data)613 void ide_timer_expiry (unsigned long data)
614 {
615 	ide_hwif_t	*hwif = (ide_hwif_t *)data;
616 	ide_drive_t	*uninitialized_var(drive);
617 	ide_handler_t	*handler;
618 	unsigned long	flags;
619 	int		wait = -1;
620 	int		plug_device = 0;
621 	struct request	*uninitialized_var(rq_in_flight);
622 
623 	spin_lock_irqsave(&hwif->lock, flags);
624 
625 	handler = hwif->handler;
626 
627 	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
628 		/*
629 		 * Either a marginal timeout occurred
630 		 * (got the interrupt just as timer expired),
631 		 * or we were "sleeping" to give other devices a chance.
632 		 * Either way, we don't really want to complain about anything.
633 		 */
634 	} else {
635 		ide_expiry_t *expiry = hwif->expiry;
636 		ide_startstop_t startstop = ide_stopped;
637 
638 		drive = hwif->cur_dev;
639 
640 		if (expiry) {
641 			wait = expiry(drive);
642 			if (wait > 0) { /* continue */
643 				/* reset timer */
644 				hwif->timer.expires = jiffies + wait;
645 				hwif->req_gen_timer = hwif->req_gen;
646 				add_timer(&hwif->timer);
647 				spin_unlock_irqrestore(&hwif->lock, flags);
648 				return;
649 			}
650 		}
651 		hwif->handler = NULL;
652 		hwif->expiry = NULL;
653 		/*
654 		 * We need to simulate a real interrupt when invoking
655 		 * the handler() function, which means we need to
656 		 * globally mask the specific IRQ:
657 		 */
658 		spin_unlock(&hwif->lock);
659 		/* disable_irq_nosync ?? */
660 		disable_irq(hwif->irq);
661 		/* local CPU only, as if we were handling an interrupt */
662 		local_irq_disable();
663 		if (hwif->polling) {
664 			startstop = handler(drive);
665 		} else if (drive_is_ready(drive)) {
666 			if (drive->waiting_for_dma)
667 				hwif->dma_ops->dma_lost_irq(drive);
668 			if (hwif->port_ops && hwif->port_ops->clear_irq)
669 				hwif->port_ops->clear_irq(drive);
670 
671 			printk(KERN_WARNING "%s: lost interrupt\n",
672 				drive->name);
673 			startstop = handler(drive);
674 		} else {
675 			if (drive->waiting_for_dma)
676 				startstop = ide_dma_timeout_retry(drive, wait);
677 			else
678 				startstop = ide_error(drive, "irq timeout",
679 					hwif->tp_ops->read_status(hwif));
680 		}
681 		spin_lock_irq(&hwif->lock);
682 		enable_irq(hwif->irq);
683 		if (startstop == ide_stopped && hwif->polling == 0) {
684 			rq_in_flight = hwif->rq;
685 			hwif->rq = NULL;
686 			ide_unlock_port(hwif);
687 			plug_device = 1;
688 		}
689 	}
690 	spin_unlock_irqrestore(&hwif->lock, flags);
691 
692 	if (plug_device) {
693 		ide_unlock_host(hwif->host);
694 		ide_requeue_and_plug(drive, rq_in_flight);
695 	}
696 }
697 
698 /**
699  *	unexpected_intr		-	handle an unexpected IDE interrupt
700  *	@irq: interrupt line
701  *	@hwif: port being processed
702  *
703  *	There's nothing really useful we can do with an unexpected interrupt,
704  *	other than reading the status register (to clear it), and logging it.
705  *	There should be no way that an irq can happen before we're ready for it,
706  *	so we needn't worry much about losing an "important" interrupt here.
707  *
708  *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
709  *	the drive enters "idle", "standby", or "sleep" mode, so if the status
710  *	looks "good", we just ignore the interrupt completely.
711  *
712  *	This routine assumes __cli() is in effect when called.
713  *
714  *	If an unexpected interrupt happens on irq15 while we are handling irq14
715  *	and if the two interfaces are "serialized" (CMD640), then it looks like
716  *	we could screw up by interfering with a new request being set up for
717  *	irq15.
718  *
719  *	In reality, this is a non-issue.  The new command is not sent unless
720  *	the drive is ready to accept one, in which case we know the drive is
721  *	not trying to interrupt us.  And ide_set_handler() is always invoked
722  *	before completing the issuance of any new drive command, so we will not
723  *	be accidentally invoked as a result of any valid command completion
724  *	interrupt.
725  */
726 
unexpected_intr(int irq,ide_hwif_t * hwif)727 static void unexpected_intr(int irq, ide_hwif_t *hwif)
728 {
729 	u8 stat = hwif->tp_ops->read_status(hwif);
730 
731 	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
732 		/* Try to not flood the console with msgs */
733 		static unsigned long last_msgtime, count;
734 		++count;
735 
736 		if (time_after(jiffies, last_msgtime + HZ)) {
737 			last_msgtime = jiffies;
738 			printk(KERN_ERR "%s: unexpected interrupt, "
739 				"status=0x%02x, count=%ld\n",
740 				hwif->name, stat, count);
741 		}
742 	}
743 }
744 
745 /**
746  *	ide_intr	-	default IDE interrupt handler
747  *	@irq: interrupt number
748  *	@dev_id: hwif
749  *	@regs: unused weirdness from the kernel irq layer
750  *
751  *	This is the default IRQ handler for the IDE layer. You should
752  *	not need to override it. If you do be aware it is subtle in
753  *	places
754  *
755  *	hwif is the interface in the group currently performing
756  *	a command. hwif->cur_dev is the drive and hwif->handler is
757  *	the IRQ handler to call. As we issue a command the handlers
758  *	step through multiple states, reassigning the handler to the
759  *	next step in the process. Unlike a smart SCSI controller IDE
760  *	expects the main processor to sequence the various transfer
761  *	stages. We also manage a poll timer to catch up with most
762  *	timeout situations. There are still a few where the handlers
763  *	don't ever decide to give up.
764  *
765  *	The handler eventually returns ide_stopped to indicate the
766  *	request completed. At this point we issue the next request
767  *	on the port and the process begins again.
768  */
769 
ide_intr(int irq,void * dev_id)770 irqreturn_t ide_intr (int irq, void *dev_id)
771 {
772 	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
773 	struct ide_host *host = hwif->host;
774 	ide_drive_t *uninitialized_var(drive);
775 	ide_handler_t *handler;
776 	unsigned long flags;
777 	ide_startstop_t startstop;
778 	irqreturn_t irq_ret = IRQ_NONE;
779 	int plug_device = 0;
780 	struct request *uninitialized_var(rq_in_flight);
781 
782 	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
783 		if (hwif != host->cur_port)
784 			goto out_early;
785 	}
786 
787 	spin_lock_irqsave(&hwif->lock, flags);
788 
789 	if (hwif->port_ops && hwif->port_ops->test_irq &&
790 	    hwif->port_ops->test_irq(hwif) == 0)
791 		goto out;
792 
793 	handler = hwif->handler;
794 
795 	if (handler == NULL || hwif->polling) {
796 		/*
797 		 * Not expecting an interrupt from this drive.
798 		 * That means this could be:
799 		 *	(1) an interrupt from another PCI device
800 		 *	sharing the same PCI INT# as us.
801 		 * or	(2) a drive just entered sleep or standby mode,
802 		 *	and is interrupting to let us know.
803 		 * or	(3) a spurious interrupt of unknown origin.
804 		 *
805 		 * For PCI, we cannot tell the difference,
806 		 * so in that case we just ignore it and hope it goes away.
807 		 */
808 		if ((host->irq_flags & IRQF_SHARED) == 0) {
809 			/*
810 			 * Probably not a shared PCI interrupt,
811 			 * so we can safely try to do something about it:
812 			 */
813 			unexpected_intr(irq, hwif);
814 		} else {
815 			/*
816 			 * Whack the status register, just in case
817 			 * we have a leftover pending IRQ.
818 			 */
819 			(void)hwif->tp_ops->read_status(hwif);
820 		}
821 		goto out;
822 	}
823 
824 	drive = hwif->cur_dev;
825 
826 	if (!drive_is_ready(drive))
827 		/*
828 		 * This happens regularly when we share a PCI IRQ with
829 		 * another device.  Unfortunately, it can also happen
830 		 * with some buggy drives that trigger the IRQ before
831 		 * their status register is up to date.  Hopefully we have
832 		 * enough advance overhead that the latter isn't a problem.
833 		 */
834 		goto out;
835 
836 	hwif->handler = NULL;
837 	hwif->expiry = NULL;
838 	hwif->req_gen++;
839 	del_timer(&hwif->timer);
840 	spin_unlock(&hwif->lock);
841 
842 	if (hwif->port_ops && hwif->port_ops->clear_irq)
843 		hwif->port_ops->clear_irq(drive);
844 
845 	if (drive->dev_flags & IDE_DFLAG_UNMASK)
846 		local_irq_enable_in_hardirq();
847 
848 	/* service this interrupt, may set handler for next interrupt */
849 	startstop = handler(drive);
850 
851 	spin_lock_irq(&hwif->lock);
852 	/*
853 	 * Note that handler() may have set things up for another
854 	 * interrupt to occur soon, but it cannot happen until
855 	 * we exit from this routine, because it will be the
856 	 * same irq as is currently being serviced here, and Linux
857 	 * won't allow another of the same (on any CPU) until we return.
858 	 */
859 	if (startstop == ide_stopped && hwif->polling == 0) {
860 		BUG_ON(hwif->handler);
861 		rq_in_flight = hwif->rq;
862 		hwif->rq = NULL;
863 		ide_unlock_port(hwif);
864 		plug_device = 1;
865 	}
866 	irq_ret = IRQ_HANDLED;
867 out:
868 	spin_unlock_irqrestore(&hwif->lock, flags);
869 out_early:
870 	if (plug_device) {
871 		ide_unlock_host(hwif->host);
872 		ide_requeue_and_plug(drive, rq_in_flight);
873 	}
874 
875 	return irq_ret;
876 }
877 EXPORT_SYMBOL_GPL(ide_intr);
878 
ide_pad_transfer(ide_drive_t * drive,int write,int len)879 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
880 {
881 	ide_hwif_t *hwif = drive->hwif;
882 	u8 buf[4] = { 0 };
883 
884 	while (len > 0) {
885 		if (write)
886 			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
887 		else
888 			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
889 		len -= 4;
890 	}
891 }
892 EXPORT_SYMBOL_GPL(ide_pad_transfer);
893