1 /*
2 * Block device elevator/IO-scheduler.
3 *
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 *
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
7 *
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
14 *
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
18 *
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
23 *
24 */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/blktrace_api.h>
35 #include <linux/hash.h>
36 #include <linux/uaccess.h>
37
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
44
45 /*
46 * Merge hash stuff.
47 */
48 static const int elv_hash_shift = 6;
49 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
50 #define ELV_HASH_FN(sec) \
51 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
52 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
53 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
54
55 /*
56 * Query io scheduler to see if the current process issuing bio may be
57 * merged with rq.
58 */
elv_iosched_allow_merge(struct request * rq,struct bio * bio)59 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
60 {
61 struct request_queue *q = rq->q;
62 struct elevator_queue *e = q->elevator;
63
64 if (e->type->ops.elevator_allow_merge_fn)
65 return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
66
67 return 1;
68 }
69
70 /*
71 * can we safely merge with this request?
72 */
elv_rq_merge_ok(struct request * rq,struct bio * bio)73 bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
74 {
75 if (!blk_rq_merge_ok(rq, bio))
76 return 0;
77
78 if (!elv_iosched_allow_merge(rq, bio))
79 return 0;
80
81 return 1;
82 }
83 EXPORT_SYMBOL(elv_rq_merge_ok);
84
elevator_find(const char * name)85 static struct elevator_type *elevator_find(const char *name)
86 {
87 struct elevator_type *e;
88
89 list_for_each_entry(e, &elv_list, list) {
90 if (!strcmp(e->elevator_name, name))
91 return e;
92 }
93
94 return NULL;
95 }
96
elevator_put(struct elevator_type * e)97 static void elevator_put(struct elevator_type *e)
98 {
99 module_put(e->elevator_owner);
100 }
101
elevator_get(const char * name)102 static struct elevator_type *elevator_get(const char *name)
103 {
104 struct elevator_type *e;
105
106 spin_lock(&elv_list_lock);
107
108 e = elevator_find(name);
109 if (!e) {
110 spin_unlock(&elv_list_lock);
111 request_module("%s-iosched", name);
112 spin_lock(&elv_list_lock);
113 e = elevator_find(name);
114 }
115
116 if (e && !try_module_get(e->elevator_owner))
117 e = NULL;
118
119 spin_unlock(&elv_list_lock);
120
121 return e;
122 }
123
elevator_init_queue(struct request_queue * q,struct elevator_queue * eq)124 static int elevator_init_queue(struct request_queue *q,
125 struct elevator_queue *eq)
126 {
127 eq->elevator_data = eq->type->ops.elevator_init_fn(q);
128 if (eq->elevator_data)
129 return 0;
130 return -ENOMEM;
131 }
132
133 static char chosen_elevator[ELV_NAME_MAX];
134
elevator_setup(char * str)135 static int __init elevator_setup(char *str)
136 {
137 /*
138 * Be backwards-compatible with previous kernels, so users
139 * won't get the wrong elevator.
140 */
141 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
142 return 1;
143 }
144
145 __setup("elevator=", elevator_setup);
146
147 static struct kobj_type elv_ktype;
148
elevator_alloc(struct request_queue * q,struct elevator_type * e)149 static struct elevator_queue *elevator_alloc(struct request_queue *q,
150 struct elevator_type *e)
151 {
152 struct elevator_queue *eq;
153 int i;
154
155 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
156 if (unlikely(!eq))
157 goto err;
158
159 eq->type = e;
160 kobject_init(&eq->kobj, &elv_ktype);
161 mutex_init(&eq->sysfs_lock);
162
163 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
164 GFP_KERNEL, q->node);
165 if (!eq->hash)
166 goto err;
167
168 for (i = 0; i < ELV_HASH_ENTRIES; i++)
169 INIT_HLIST_HEAD(&eq->hash[i]);
170
171 return eq;
172 err:
173 kfree(eq);
174 elevator_put(e);
175 return NULL;
176 }
177
elevator_release(struct kobject * kobj)178 static void elevator_release(struct kobject *kobj)
179 {
180 struct elevator_queue *e;
181
182 e = container_of(kobj, struct elevator_queue, kobj);
183 elevator_put(e->type);
184 kfree(e->hash);
185 kfree(e);
186 }
187
elevator_init(struct request_queue * q,char * name)188 int elevator_init(struct request_queue *q, char *name)
189 {
190 struct elevator_type *e = NULL;
191 struct elevator_queue *eq;
192 int err;
193
194 if (unlikely(q->elevator))
195 return 0;
196
197 INIT_LIST_HEAD(&q->queue_head);
198 q->last_merge = NULL;
199 q->end_sector = 0;
200 q->boundary_rq = NULL;
201
202 if (name) {
203 e = elevator_get(name);
204 if (!e)
205 return -EINVAL;
206 }
207
208 if (!e && *chosen_elevator) {
209 e = elevator_get(chosen_elevator);
210 if (!e)
211 printk(KERN_ERR "I/O scheduler %s not found\n",
212 chosen_elevator);
213 }
214
215 if (!e) {
216 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
217 if (!e) {
218 printk(KERN_ERR
219 "Default I/O scheduler not found. " \
220 "Using noop.\n");
221 e = elevator_get("noop");
222 }
223 }
224
225 eq = elevator_alloc(q, e);
226 if (!eq)
227 return -ENOMEM;
228
229 err = elevator_init_queue(q, eq);
230 if (err) {
231 kobject_put(&eq->kobj);
232 return err;
233 }
234
235 q->elevator = eq;
236 return 0;
237 }
238 EXPORT_SYMBOL(elevator_init);
239
elevator_exit(struct elevator_queue * e)240 void elevator_exit(struct elevator_queue *e)
241 {
242 mutex_lock(&e->sysfs_lock);
243 if (e->type->ops.elevator_exit_fn)
244 e->type->ops.elevator_exit_fn(e);
245 mutex_unlock(&e->sysfs_lock);
246
247 kobject_put(&e->kobj);
248 }
249 EXPORT_SYMBOL(elevator_exit);
250
__elv_rqhash_del(struct request * rq)251 static inline void __elv_rqhash_del(struct request *rq)
252 {
253 hlist_del_init(&rq->hash);
254 }
255
elv_rqhash_del(struct request_queue * q,struct request * rq)256 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
257 {
258 if (ELV_ON_HASH(rq))
259 __elv_rqhash_del(rq);
260 }
261
elv_rqhash_add(struct request_queue * q,struct request * rq)262 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
263 {
264 struct elevator_queue *e = q->elevator;
265
266 BUG_ON(ELV_ON_HASH(rq));
267 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
268 }
269
elv_rqhash_reposition(struct request_queue * q,struct request * rq)270 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
271 {
272 __elv_rqhash_del(rq);
273 elv_rqhash_add(q, rq);
274 }
275
elv_rqhash_find(struct request_queue * q,sector_t offset)276 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
277 {
278 struct elevator_queue *e = q->elevator;
279 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
280 struct hlist_node *entry, *next;
281 struct request *rq;
282
283 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
284 BUG_ON(!ELV_ON_HASH(rq));
285
286 if (unlikely(!rq_mergeable(rq))) {
287 __elv_rqhash_del(rq);
288 continue;
289 }
290
291 if (rq_hash_key(rq) == offset)
292 return rq;
293 }
294
295 return NULL;
296 }
297
298 /*
299 * RB-tree support functions for inserting/lookup/removal of requests
300 * in a sorted RB tree.
301 */
elv_rb_add(struct rb_root * root,struct request * rq)302 void elv_rb_add(struct rb_root *root, struct request *rq)
303 {
304 struct rb_node **p = &root->rb_node;
305 struct rb_node *parent = NULL;
306 struct request *__rq;
307
308 while (*p) {
309 parent = *p;
310 __rq = rb_entry(parent, struct request, rb_node);
311
312 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
313 p = &(*p)->rb_left;
314 else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
315 p = &(*p)->rb_right;
316 }
317
318 rb_link_node(&rq->rb_node, parent, p);
319 rb_insert_color(&rq->rb_node, root);
320 }
321 EXPORT_SYMBOL(elv_rb_add);
322
elv_rb_del(struct rb_root * root,struct request * rq)323 void elv_rb_del(struct rb_root *root, struct request *rq)
324 {
325 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
326 rb_erase(&rq->rb_node, root);
327 RB_CLEAR_NODE(&rq->rb_node);
328 }
329 EXPORT_SYMBOL(elv_rb_del);
330
elv_rb_find(struct rb_root * root,sector_t sector)331 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
332 {
333 struct rb_node *n = root->rb_node;
334 struct request *rq;
335
336 while (n) {
337 rq = rb_entry(n, struct request, rb_node);
338
339 if (sector < blk_rq_pos(rq))
340 n = n->rb_left;
341 else if (sector > blk_rq_pos(rq))
342 n = n->rb_right;
343 else
344 return rq;
345 }
346
347 return NULL;
348 }
349 EXPORT_SYMBOL(elv_rb_find);
350
351 /*
352 * Insert rq into dispatch queue of q. Queue lock must be held on
353 * entry. rq is sort instead into the dispatch queue. To be used by
354 * specific elevators.
355 */
elv_dispatch_sort(struct request_queue * q,struct request * rq)356 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
357 {
358 sector_t boundary;
359 struct list_head *entry;
360 int stop_flags;
361
362 if (q->last_merge == rq)
363 q->last_merge = NULL;
364
365 elv_rqhash_del(q, rq);
366
367 q->nr_sorted--;
368
369 boundary = q->end_sector;
370 stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
371 list_for_each_prev(entry, &q->queue_head) {
372 struct request *pos = list_entry_rq(entry);
373
374 if ((rq->cmd_flags & REQ_DISCARD) !=
375 (pos->cmd_flags & REQ_DISCARD))
376 break;
377 if (rq_data_dir(rq) != rq_data_dir(pos))
378 break;
379 if (pos->cmd_flags & stop_flags)
380 break;
381 if (blk_rq_pos(rq) >= boundary) {
382 if (blk_rq_pos(pos) < boundary)
383 continue;
384 } else {
385 if (blk_rq_pos(pos) >= boundary)
386 break;
387 }
388 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
389 break;
390 }
391
392 list_add(&rq->queuelist, entry);
393 }
394 EXPORT_SYMBOL(elv_dispatch_sort);
395
396 /*
397 * Insert rq into dispatch queue of q. Queue lock must be held on
398 * entry. rq is added to the back of the dispatch queue. To be used by
399 * specific elevators.
400 */
elv_dispatch_add_tail(struct request_queue * q,struct request * rq)401 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
402 {
403 if (q->last_merge == rq)
404 q->last_merge = NULL;
405
406 elv_rqhash_del(q, rq);
407
408 q->nr_sorted--;
409
410 q->end_sector = rq_end_sector(rq);
411 q->boundary_rq = rq;
412 list_add_tail(&rq->queuelist, &q->queue_head);
413 }
414 EXPORT_SYMBOL(elv_dispatch_add_tail);
415
elv_merge(struct request_queue * q,struct request ** req,struct bio * bio)416 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
417 {
418 struct elevator_queue *e = q->elevator;
419 struct request *__rq;
420 int ret;
421
422 /*
423 * Levels of merges:
424 * nomerges: No merges at all attempted
425 * noxmerges: Only simple one-hit cache try
426 * merges: All merge tries attempted
427 */
428 if (blk_queue_nomerges(q))
429 return ELEVATOR_NO_MERGE;
430
431 /*
432 * First try one-hit cache.
433 */
434 if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
435 ret = blk_try_merge(q->last_merge, bio);
436 if (ret != ELEVATOR_NO_MERGE) {
437 *req = q->last_merge;
438 return ret;
439 }
440 }
441
442 if (blk_queue_noxmerges(q))
443 return ELEVATOR_NO_MERGE;
444
445 /*
446 * See if our hash lookup can find a potential backmerge.
447 */
448 __rq = elv_rqhash_find(q, bio->bi_sector);
449 if (__rq && elv_rq_merge_ok(__rq, bio)) {
450 *req = __rq;
451 return ELEVATOR_BACK_MERGE;
452 }
453
454 if (e->type->ops.elevator_merge_fn)
455 return e->type->ops.elevator_merge_fn(q, req, bio);
456
457 return ELEVATOR_NO_MERGE;
458 }
459
460 /*
461 * Attempt to do an insertion back merge. Only check for the case where
462 * we can append 'rq' to an existing request, so we can throw 'rq' away
463 * afterwards.
464 *
465 * Returns true if we merged, false otherwise
466 */
elv_attempt_insert_merge(struct request_queue * q,struct request * rq)467 static bool elv_attempt_insert_merge(struct request_queue *q,
468 struct request *rq)
469 {
470 struct request *__rq;
471
472 if (blk_queue_nomerges(q))
473 return false;
474
475 /*
476 * First try one-hit cache.
477 */
478 if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
479 return true;
480
481 if (blk_queue_noxmerges(q))
482 return false;
483
484 /*
485 * See if our hash lookup can find a potential backmerge.
486 */
487 __rq = elv_rqhash_find(q, blk_rq_pos(rq));
488 if (__rq && blk_attempt_req_merge(q, __rq, rq))
489 return true;
490
491 return false;
492 }
493
elv_merged_request(struct request_queue * q,struct request * rq,int type)494 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
495 {
496 struct elevator_queue *e = q->elevator;
497
498 if (e->type->ops.elevator_merged_fn)
499 e->type->ops.elevator_merged_fn(q, rq, type);
500
501 if (type == ELEVATOR_BACK_MERGE)
502 elv_rqhash_reposition(q, rq);
503
504 q->last_merge = rq;
505 }
506
elv_merge_requests(struct request_queue * q,struct request * rq,struct request * next)507 void elv_merge_requests(struct request_queue *q, struct request *rq,
508 struct request *next)
509 {
510 struct elevator_queue *e = q->elevator;
511 const int next_sorted = next->cmd_flags & REQ_SORTED;
512
513 if (next_sorted && e->type->ops.elevator_merge_req_fn)
514 e->type->ops.elevator_merge_req_fn(q, rq, next);
515
516 elv_rqhash_reposition(q, rq);
517
518 if (next_sorted) {
519 elv_rqhash_del(q, next);
520 q->nr_sorted--;
521 }
522
523 q->last_merge = rq;
524 }
525
elv_bio_merged(struct request_queue * q,struct request * rq,struct bio * bio)526 void elv_bio_merged(struct request_queue *q, struct request *rq,
527 struct bio *bio)
528 {
529 struct elevator_queue *e = q->elevator;
530
531 if (e->type->ops.elevator_bio_merged_fn)
532 e->type->ops.elevator_bio_merged_fn(q, rq, bio);
533 }
534
elv_requeue_request(struct request_queue * q,struct request * rq)535 void elv_requeue_request(struct request_queue *q, struct request *rq)
536 {
537 /*
538 * it already went through dequeue, we need to decrement the
539 * in_flight count again
540 */
541 if (blk_account_rq(rq)) {
542 q->in_flight[rq_is_sync(rq)]--;
543 if (rq->cmd_flags & REQ_SORTED)
544 elv_deactivate_rq(q, rq);
545 }
546
547 rq->cmd_flags &= ~REQ_STARTED;
548
549 __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
550 }
551
elv_drain_elevator(struct request_queue * q)552 void elv_drain_elevator(struct request_queue *q)
553 {
554 static int printed;
555
556 lockdep_assert_held(q->queue_lock);
557
558 while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
559 ;
560 if (q->nr_sorted && printed++ < 10) {
561 printk(KERN_ERR "%s: forced dispatching is broken "
562 "(nr_sorted=%u), please report this\n",
563 q->elevator->type->elevator_name, q->nr_sorted);
564 }
565 }
566
elv_quiesce_start(struct request_queue * q)567 void elv_quiesce_start(struct request_queue *q)
568 {
569 if (!q->elevator)
570 return;
571
572 spin_lock_irq(q->queue_lock);
573 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
574 spin_unlock_irq(q->queue_lock);
575
576 blk_drain_queue(q, false);
577 }
578
elv_quiesce_end(struct request_queue * q)579 void elv_quiesce_end(struct request_queue *q)
580 {
581 spin_lock_irq(q->queue_lock);
582 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
583 spin_unlock_irq(q->queue_lock);
584 }
585
__elv_add_request(struct request_queue * q,struct request * rq,int where)586 void __elv_add_request(struct request_queue *q, struct request *rq, int where)
587 {
588 trace_block_rq_insert(q, rq);
589
590 rq->q = q;
591
592 if (rq->cmd_flags & REQ_SOFTBARRIER) {
593 /* barriers are scheduling boundary, update end_sector */
594 if (rq->cmd_type == REQ_TYPE_FS ||
595 (rq->cmd_flags & REQ_DISCARD)) {
596 q->end_sector = rq_end_sector(rq);
597 q->boundary_rq = rq;
598 }
599 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
600 (where == ELEVATOR_INSERT_SORT ||
601 where == ELEVATOR_INSERT_SORT_MERGE))
602 where = ELEVATOR_INSERT_BACK;
603
604 switch (where) {
605 case ELEVATOR_INSERT_REQUEUE:
606 case ELEVATOR_INSERT_FRONT:
607 rq->cmd_flags |= REQ_SOFTBARRIER;
608 list_add(&rq->queuelist, &q->queue_head);
609 break;
610
611 case ELEVATOR_INSERT_BACK:
612 rq->cmd_flags |= REQ_SOFTBARRIER;
613 elv_drain_elevator(q);
614 list_add_tail(&rq->queuelist, &q->queue_head);
615 /*
616 * We kick the queue here for the following reasons.
617 * - The elevator might have returned NULL previously
618 * to delay requests and returned them now. As the
619 * queue wasn't empty before this request, ll_rw_blk
620 * won't run the queue on return, resulting in hang.
621 * - Usually, back inserted requests won't be merged
622 * with anything. There's no point in delaying queue
623 * processing.
624 */
625 __blk_run_queue(q);
626 break;
627
628 case ELEVATOR_INSERT_SORT_MERGE:
629 /*
630 * If we succeed in merging this request with one in the
631 * queue already, we are done - rq has now been freed,
632 * so no need to do anything further.
633 */
634 if (elv_attempt_insert_merge(q, rq))
635 break;
636 case ELEVATOR_INSERT_SORT:
637 BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
638 !(rq->cmd_flags & REQ_DISCARD));
639 rq->cmd_flags |= REQ_SORTED;
640 q->nr_sorted++;
641 if (rq_mergeable(rq)) {
642 elv_rqhash_add(q, rq);
643 if (!q->last_merge)
644 q->last_merge = rq;
645 }
646
647 /*
648 * Some ioscheds (cfq) run q->request_fn directly, so
649 * rq cannot be accessed after calling
650 * elevator_add_req_fn.
651 */
652 q->elevator->type->ops.elevator_add_req_fn(q, rq);
653 break;
654
655 case ELEVATOR_INSERT_FLUSH:
656 rq->cmd_flags |= REQ_SOFTBARRIER;
657 blk_insert_flush(rq);
658 break;
659 default:
660 printk(KERN_ERR "%s: bad insertion point %d\n",
661 __func__, where);
662 BUG();
663 }
664 }
665 EXPORT_SYMBOL(__elv_add_request);
666
elv_add_request(struct request_queue * q,struct request * rq,int where)667 void elv_add_request(struct request_queue *q, struct request *rq, int where)
668 {
669 unsigned long flags;
670
671 spin_lock_irqsave(q->queue_lock, flags);
672 __elv_add_request(q, rq, where);
673 spin_unlock_irqrestore(q->queue_lock, flags);
674 }
675 EXPORT_SYMBOL(elv_add_request);
676
elv_latter_request(struct request_queue * q,struct request * rq)677 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
678 {
679 struct elevator_queue *e = q->elevator;
680
681 if (e->type->ops.elevator_latter_req_fn)
682 return e->type->ops.elevator_latter_req_fn(q, rq);
683 return NULL;
684 }
685
elv_former_request(struct request_queue * q,struct request * rq)686 struct request *elv_former_request(struct request_queue *q, struct request *rq)
687 {
688 struct elevator_queue *e = q->elevator;
689
690 if (e->type->ops.elevator_former_req_fn)
691 return e->type->ops.elevator_former_req_fn(q, rq);
692 return NULL;
693 }
694
elv_set_request(struct request_queue * q,struct request * rq,gfp_t gfp_mask)695 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
696 {
697 struct elevator_queue *e = q->elevator;
698
699 if (e->type->ops.elevator_set_req_fn)
700 return e->type->ops.elevator_set_req_fn(q, rq, gfp_mask);
701 return 0;
702 }
703
elv_put_request(struct request_queue * q,struct request * rq)704 void elv_put_request(struct request_queue *q, struct request *rq)
705 {
706 struct elevator_queue *e = q->elevator;
707
708 if (e->type->ops.elevator_put_req_fn)
709 e->type->ops.elevator_put_req_fn(rq);
710 }
711
elv_may_queue(struct request_queue * q,int rw)712 int elv_may_queue(struct request_queue *q, int rw)
713 {
714 struct elevator_queue *e = q->elevator;
715
716 if (e->type->ops.elevator_may_queue_fn)
717 return e->type->ops.elevator_may_queue_fn(q, rw);
718
719 return ELV_MQUEUE_MAY;
720 }
721
elv_abort_queue(struct request_queue * q)722 void elv_abort_queue(struct request_queue *q)
723 {
724 struct request *rq;
725
726 blk_abort_flushes(q);
727
728 while (!list_empty(&q->queue_head)) {
729 rq = list_entry_rq(q->queue_head.next);
730 rq->cmd_flags |= REQ_QUIET;
731 trace_block_rq_abort(q, rq);
732 /*
733 * Mark this request as started so we don't trigger
734 * any debug logic in the end I/O path.
735 */
736 blk_start_request(rq);
737 __blk_end_request_all(rq, -EIO);
738 }
739 }
740 EXPORT_SYMBOL(elv_abort_queue);
741
elv_completed_request(struct request_queue * q,struct request * rq)742 void elv_completed_request(struct request_queue *q, struct request *rq)
743 {
744 struct elevator_queue *e = q->elevator;
745
746 /*
747 * request is released from the driver, io must be done
748 */
749 if (blk_account_rq(rq)) {
750 q->in_flight[rq_is_sync(rq)]--;
751 if ((rq->cmd_flags & REQ_SORTED) &&
752 e->type->ops.elevator_completed_req_fn)
753 e->type->ops.elevator_completed_req_fn(q, rq);
754 }
755 }
756
757 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
758
759 static ssize_t
elv_attr_show(struct kobject * kobj,struct attribute * attr,char * page)760 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
761 {
762 struct elv_fs_entry *entry = to_elv(attr);
763 struct elevator_queue *e;
764 ssize_t error;
765
766 if (!entry->show)
767 return -EIO;
768
769 e = container_of(kobj, struct elevator_queue, kobj);
770 mutex_lock(&e->sysfs_lock);
771 error = e->type ? entry->show(e, page) : -ENOENT;
772 mutex_unlock(&e->sysfs_lock);
773 return error;
774 }
775
776 static ssize_t
elv_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)777 elv_attr_store(struct kobject *kobj, struct attribute *attr,
778 const char *page, size_t length)
779 {
780 struct elv_fs_entry *entry = to_elv(attr);
781 struct elevator_queue *e;
782 ssize_t error;
783
784 if (!entry->store)
785 return -EIO;
786
787 e = container_of(kobj, struct elevator_queue, kobj);
788 mutex_lock(&e->sysfs_lock);
789 error = e->type ? entry->store(e, page, length) : -ENOENT;
790 mutex_unlock(&e->sysfs_lock);
791 return error;
792 }
793
794 static const struct sysfs_ops elv_sysfs_ops = {
795 .show = elv_attr_show,
796 .store = elv_attr_store,
797 };
798
799 static struct kobj_type elv_ktype = {
800 .sysfs_ops = &elv_sysfs_ops,
801 .release = elevator_release,
802 };
803
__elv_register_queue(struct request_queue * q,struct elevator_queue * e)804 int __elv_register_queue(struct request_queue *q, struct elevator_queue *e)
805 {
806 int error;
807
808 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
809 if (!error) {
810 struct elv_fs_entry *attr = e->type->elevator_attrs;
811 if (attr) {
812 while (attr->attr.name) {
813 if (sysfs_create_file(&e->kobj, &attr->attr))
814 break;
815 attr++;
816 }
817 }
818 kobject_uevent(&e->kobj, KOBJ_ADD);
819 e->registered = 1;
820 }
821 return error;
822 }
823
elv_register_queue(struct request_queue * q)824 int elv_register_queue(struct request_queue *q)
825 {
826 return __elv_register_queue(q, q->elevator);
827 }
828 EXPORT_SYMBOL(elv_register_queue);
829
elv_unregister_queue(struct request_queue * q)830 void elv_unregister_queue(struct request_queue *q)
831 {
832 if (q) {
833 struct elevator_queue *e = q->elevator;
834
835 kobject_uevent(&e->kobj, KOBJ_REMOVE);
836 kobject_del(&e->kobj);
837 e->registered = 0;
838 }
839 }
840 EXPORT_SYMBOL(elv_unregister_queue);
841
elv_register(struct elevator_type * e)842 int elv_register(struct elevator_type *e)
843 {
844 char *def = "";
845
846 /* create icq_cache if requested */
847 if (e->icq_size) {
848 if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
849 WARN_ON(e->icq_align < __alignof__(struct io_cq)))
850 return -EINVAL;
851
852 snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
853 "%s_io_cq", e->elevator_name);
854 e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
855 e->icq_align, 0, NULL);
856 if (!e->icq_cache)
857 return -ENOMEM;
858 }
859
860 /* register, don't allow duplicate names */
861 spin_lock(&elv_list_lock);
862 if (elevator_find(e->elevator_name)) {
863 spin_unlock(&elv_list_lock);
864 if (e->icq_cache)
865 kmem_cache_destroy(e->icq_cache);
866 return -EBUSY;
867 }
868 list_add_tail(&e->list, &elv_list);
869 spin_unlock(&elv_list_lock);
870
871 /* print pretty message */
872 if (!strcmp(e->elevator_name, chosen_elevator) ||
873 (!*chosen_elevator &&
874 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
875 def = " (default)";
876
877 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
878 def);
879 return 0;
880 }
881 EXPORT_SYMBOL_GPL(elv_register);
882
elv_unregister(struct elevator_type * e)883 void elv_unregister(struct elevator_type *e)
884 {
885 /* unregister */
886 spin_lock(&elv_list_lock);
887 list_del_init(&e->list);
888 spin_unlock(&elv_list_lock);
889
890 /*
891 * Destroy icq_cache if it exists. icq's are RCU managed. Make
892 * sure all RCU operations are complete before proceeding.
893 */
894 if (e->icq_cache) {
895 rcu_barrier();
896 kmem_cache_destroy(e->icq_cache);
897 e->icq_cache = NULL;
898 }
899 }
900 EXPORT_SYMBOL_GPL(elv_unregister);
901
902 /*
903 * switch to new_e io scheduler. be careful not to introduce deadlocks -
904 * we don't free the old io scheduler, before we have allocated what we
905 * need for the new one. this way we have a chance of going back to the old
906 * one, if the new one fails init for some reason.
907 */
elevator_switch(struct request_queue * q,struct elevator_type * new_e)908 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
909 {
910 struct elevator_queue *old_elevator, *e;
911 int err;
912
913 /* allocate new elevator */
914 e = elevator_alloc(q, new_e);
915 if (!e)
916 return -ENOMEM;
917
918 err = elevator_init_queue(q, e);
919 if (err) {
920 kobject_put(&e->kobj);
921 return err;
922 }
923
924 /* turn on BYPASS and drain all requests w/ elevator private data */
925 elv_quiesce_start(q);
926
927 /* unregister old queue, register new one and kill old elevator */
928 if (q->elevator->registered) {
929 elv_unregister_queue(q);
930 err = __elv_register_queue(q, e);
931 if (err)
932 goto fail_register;
933 }
934
935 /* done, clear io_cq's, switch elevators and turn off BYPASS */
936 spin_lock_irq(q->queue_lock);
937 ioc_clear_queue(q);
938 old_elevator = q->elevator;
939 q->elevator = e;
940 spin_unlock_irq(q->queue_lock);
941
942 elevator_exit(old_elevator);
943 elv_quiesce_end(q);
944
945 blk_add_trace_msg(q, "elv switch: %s", e->type->elevator_name);
946
947 return 0;
948
949 fail_register:
950 /*
951 * switch failed, exit the new io scheduler and reattach the old
952 * one again (along with re-adding the sysfs dir)
953 */
954 elevator_exit(e);
955 elv_register_queue(q);
956 elv_quiesce_end(q);
957
958 return err;
959 }
960
961 /*
962 * Switch this queue to the given IO scheduler.
963 */
__elevator_change(struct request_queue * q,const char * name)964 static int __elevator_change(struct request_queue *q, const char *name)
965 {
966 char elevator_name[ELV_NAME_MAX];
967 struct elevator_type *e;
968
969 if (!q->elevator)
970 return -ENXIO;
971
972 strlcpy(elevator_name, name, sizeof(elevator_name));
973 e = elevator_get(strstrip(elevator_name));
974 if (!e) {
975 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
976 return -EINVAL;
977 }
978
979 if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
980 elevator_put(e);
981 return 0;
982 }
983
984 return elevator_switch(q, e);
985 }
986
elevator_change(struct request_queue * q,const char * name)987 int elevator_change(struct request_queue *q, const char *name)
988 {
989 int ret;
990
991 /* Protect q->elevator from elevator_init() */
992 mutex_lock(&q->sysfs_lock);
993 ret = __elevator_change(q, name);
994 mutex_unlock(&q->sysfs_lock);
995
996 return ret;
997 }
998 EXPORT_SYMBOL(elevator_change);
999
elv_iosched_store(struct request_queue * q,const char * name,size_t count)1000 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1001 size_t count)
1002 {
1003 int ret;
1004
1005 if (!q->elevator)
1006 return count;
1007
1008 ret = __elevator_change(q, name);
1009 if (!ret)
1010 return count;
1011
1012 printk(KERN_ERR "elevator: switch to %s failed\n", name);
1013 return ret;
1014 }
1015
elv_iosched_show(struct request_queue * q,char * name)1016 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1017 {
1018 struct elevator_queue *e = q->elevator;
1019 struct elevator_type *elv;
1020 struct elevator_type *__e;
1021 int len = 0;
1022
1023 if (!q->elevator || !blk_queue_stackable(q))
1024 return sprintf(name, "none\n");
1025
1026 elv = e->type;
1027
1028 spin_lock(&elv_list_lock);
1029 list_for_each_entry(__e, &elv_list, list) {
1030 if (!strcmp(elv->elevator_name, __e->elevator_name))
1031 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1032 else
1033 len += sprintf(name+len, "%s ", __e->elevator_name);
1034 }
1035 spin_unlock(&elv_list_lock);
1036
1037 len += sprintf(len+name, "\n");
1038 return len;
1039 }
1040
elv_rb_former_request(struct request_queue * q,struct request * rq)1041 struct request *elv_rb_former_request(struct request_queue *q,
1042 struct request *rq)
1043 {
1044 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1045
1046 if (rbprev)
1047 return rb_entry_rq(rbprev);
1048
1049 return NULL;
1050 }
1051 EXPORT_SYMBOL(elv_rb_former_request);
1052
elv_rb_latter_request(struct request_queue * q,struct request * rq)1053 struct request *elv_rb_latter_request(struct request_queue *q,
1054 struct request *rq)
1055 {
1056 struct rb_node *rbnext = rb_next(&rq->rb_node);
1057
1058 if (rbnext)
1059 return rb_entry_rq(rbnext);
1060
1061 return NULL;
1062 }
1063 EXPORT_SYMBOL(elv_rb_latter_request);
1064