1 /*
2  * Copyright (C) 2004 PathScale, Inc
3  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Licensed under the GPL
5  */
6 
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include "as-layout.h"
13 #include "kern_util.h"
14 #include "os.h"
15 #include "sysdep/mcontext.h"
16 
17 void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
18 	[SIGTRAP]	= relay_signal,
19 	[SIGFPE]	= relay_signal,
20 	[SIGILL]	= relay_signal,
21 	[SIGWINCH]	= winch,
22 	[SIGBUS]	= bus_handler,
23 	[SIGSEGV]	= segv_handler,
24 	[SIGIO]		= sigio_handler,
25 	[SIGVTALRM]	= timer_handler };
26 
sig_handler_common(int sig,mcontext_t * mc)27 static void sig_handler_common(int sig, mcontext_t *mc)
28 {
29 	struct uml_pt_regs r;
30 	int save_errno = errno;
31 
32 	r.is_user = 0;
33 	if (sig == SIGSEGV) {
34 		/* For segfaults, we want the data from the sigcontext. */
35 		get_regs_from_mc(&r, mc);
36 		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
37 	}
38 
39 	/* enable signals if sig isn't IRQ signal */
40 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
41 		unblock_signals();
42 
43 	(*sig_info[sig])(sig, &r);
44 
45 	errno = save_errno;
46 }
47 
48 /*
49  * These are the asynchronous signals.  SIGPROF is excluded because we want to
50  * be able to profile all of UML, not just the non-critical sections.  If
51  * profiling is not thread-safe, then that is not my problem.  We can disable
52  * profiling when SMP is enabled in that case.
53  */
54 #define SIGIO_BIT 0
55 #define SIGIO_MASK (1 << SIGIO_BIT)
56 
57 #define SIGVTALRM_BIT 1
58 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
59 
60 static int signals_enabled;
61 static unsigned int signals_pending;
62 
sig_handler(int sig,mcontext_t * mc)63 void sig_handler(int sig, mcontext_t *mc)
64 {
65 	int enabled;
66 
67 	enabled = signals_enabled;
68 	if (!enabled && (sig == SIGIO)) {
69 		signals_pending |= SIGIO_MASK;
70 		return;
71 	}
72 
73 	block_signals();
74 
75 	sig_handler_common(sig, mc);
76 
77 	set_signals(enabled);
78 }
79 
real_alarm_handler(mcontext_t * mc)80 static void real_alarm_handler(mcontext_t *mc)
81 {
82 	struct uml_pt_regs regs;
83 
84 	if (mc != NULL)
85 		get_regs_from_mc(&regs, mc);
86 	regs.is_user = 0;
87 	unblock_signals();
88 	timer_handler(SIGVTALRM, &regs);
89 }
90 
alarm_handler(int sig,mcontext_t * mc)91 void alarm_handler(int sig, mcontext_t *mc)
92 {
93 	int enabled;
94 
95 	enabled = signals_enabled;
96 	if (!signals_enabled) {
97 		signals_pending |= SIGVTALRM_MASK;
98 		return;
99 	}
100 
101 	block_signals();
102 
103 	real_alarm_handler(mc);
104 	set_signals(enabled);
105 }
106 
timer_init(void)107 void timer_init(void)
108 {
109 	set_handler(SIGVTALRM);
110 }
111 
set_sigstack(void * sig_stack,int size)112 void set_sigstack(void *sig_stack, int size)
113 {
114 	stack_t stack = ((stack_t) { .ss_flags	= 0,
115 				     .ss_sp	= (__ptr_t) sig_stack,
116 				     .ss_size 	= size - sizeof(void *) });
117 
118 	if (sigaltstack(&stack, NULL) != 0)
119 		panic("enabling signal stack failed, errno = %d\n", errno);
120 }
121 
122 static void (*handlers[_NSIG])(int sig, mcontext_t *mc) = {
123 	[SIGSEGV] = sig_handler,
124 	[SIGBUS] = sig_handler,
125 	[SIGILL] = sig_handler,
126 	[SIGFPE] = sig_handler,
127 	[SIGTRAP] = sig_handler,
128 
129 	[SIGIO] = sig_handler,
130 	[SIGWINCH] = sig_handler,
131 	[SIGVTALRM] = alarm_handler
132 };
133 
134 
hard_handler(int sig,siginfo_t * info,void * p)135 static void hard_handler(int sig, siginfo_t *info, void *p)
136 {
137 	struct ucontext *uc = p;
138 	mcontext_t *mc = &uc->uc_mcontext;
139 	unsigned long pending = 1UL << sig;
140 
141 	do {
142 		int nested, bail;
143 
144 		/*
145 		 * pending comes back with one bit set for each
146 		 * interrupt that arrived while setting up the stack,
147 		 * plus a bit for this interrupt, plus the zero bit is
148 		 * set if this is a nested interrupt.
149 		 * If bail is true, then we interrupted another
150 		 * handler setting up the stack.  In this case, we
151 		 * have to return, and the upper handler will deal
152 		 * with this interrupt.
153 		 */
154 		bail = to_irq_stack(&pending);
155 		if (bail)
156 			return;
157 
158 		nested = pending & 1;
159 		pending &= ~1;
160 
161 		while ((sig = ffs(pending)) != 0){
162 			sig--;
163 			pending &= ~(1 << sig);
164 			(*handlers[sig])(sig, mc);
165 		}
166 
167 		/*
168 		 * Again, pending comes back with a mask of signals
169 		 * that arrived while tearing down the stack.  If this
170 		 * is non-zero, we just go back, set up the stack
171 		 * again, and handle the new interrupts.
172 		 */
173 		if (!nested)
174 			pending = from_irq_stack(nested);
175 	} while (pending);
176 }
177 
set_handler(int sig)178 void set_handler(int sig)
179 {
180 	struct sigaction action;
181 	int flags = SA_SIGINFO | SA_ONSTACK;
182 	sigset_t sig_mask;
183 
184 	action.sa_sigaction = hard_handler;
185 
186 	/* block irq ones */
187 	sigemptyset(&action.sa_mask);
188 	sigaddset(&action.sa_mask, SIGVTALRM);
189 	sigaddset(&action.sa_mask, SIGIO);
190 	sigaddset(&action.sa_mask, SIGWINCH);
191 
192 	if (sig == SIGSEGV)
193 		flags |= SA_NODEFER;
194 
195 	if (sigismember(&action.sa_mask, sig))
196 		flags |= SA_RESTART; /* if it's an irq signal */
197 
198 	action.sa_flags = flags;
199 	action.sa_restorer = NULL;
200 	if (sigaction(sig, &action, NULL) < 0)
201 		panic("sigaction failed - errno = %d\n", errno);
202 
203 	sigemptyset(&sig_mask);
204 	sigaddset(&sig_mask, sig);
205 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
206 		panic("sigprocmask failed - errno = %d\n", errno);
207 }
208 
change_sig(int signal,int on)209 int change_sig(int signal, int on)
210 {
211 	sigset_t sigset;
212 
213 	sigemptyset(&sigset);
214 	sigaddset(&sigset, signal);
215 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
216 		return -errno;
217 
218 	return 0;
219 }
220 
block_signals(void)221 void block_signals(void)
222 {
223 	signals_enabled = 0;
224 	/*
225 	 * This must return with signals disabled, so this barrier
226 	 * ensures that writes are flushed out before the return.
227 	 * This might matter if gcc figures out how to inline this and
228 	 * decides to shuffle this code into the caller.
229 	 */
230 	barrier();
231 }
232 
unblock_signals(void)233 void unblock_signals(void)
234 {
235 	int save_pending;
236 
237 	if (signals_enabled == 1)
238 		return;
239 
240 	/*
241 	 * We loop because the IRQ handler returns with interrupts off.  So,
242 	 * interrupts may have arrived and we need to re-enable them and
243 	 * recheck signals_pending.
244 	 */
245 	while (1) {
246 		/*
247 		 * Save and reset save_pending after enabling signals.  This
248 		 * way, signals_pending won't be changed while we're reading it.
249 		 */
250 		signals_enabled = 1;
251 
252 		/*
253 		 * Setting signals_enabled and reading signals_pending must
254 		 * happen in this order.
255 		 */
256 		barrier();
257 
258 		save_pending = signals_pending;
259 		if (save_pending == 0)
260 			return;
261 
262 		signals_pending = 0;
263 
264 		/*
265 		 * We have pending interrupts, so disable signals, as the
266 		 * handlers expect them off when they are called.  They will
267 		 * be enabled again above.
268 		 */
269 
270 		signals_enabled = 0;
271 
272 		/*
273 		 * Deal with SIGIO first because the alarm handler might
274 		 * schedule, leaving the pending SIGIO stranded until we come
275 		 * back here.
276 		 */
277 		if (save_pending & SIGIO_MASK)
278 			sig_handler_common(SIGIO, NULL);
279 
280 		if (save_pending & SIGVTALRM_MASK)
281 			real_alarm_handler(NULL);
282 	}
283 }
284 
get_signals(void)285 int get_signals(void)
286 {
287 	return signals_enabled;
288 }
289 
set_signals(int enable)290 int set_signals(int enable)
291 {
292 	int ret;
293 	if (signals_enabled == enable)
294 		return enable;
295 
296 	ret = signals_enabled;
297 	if (enable)
298 		unblock_signals();
299 	else block_signals();
300 
301 	return ret;
302 }
303