1 /*
2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
5 */
6
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include "as-layout.h"
13 #include "kern_util.h"
14 #include "os.h"
15 #include "sysdep/mcontext.h"
16
17 void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
18 [SIGTRAP] = relay_signal,
19 [SIGFPE] = relay_signal,
20 [SIGILL] = relay_signal,
21 [SIGWINCH] = winch,
22 [SIGBUS] = bus_handler,
23 [SIGSEGV] = segv_handler,
24 [SIGIO] = sigio_handler,
25 [SIGVTALRM] = timer_handler };
26
sig_handler_common(int sig,mcontext_t * mc)27 static void sig_handler_common(int sig, mcontext_t *mc)
28 {
29 struct uml_pt_regs r;
30 int save_errno = errno;
31
32 r.is_user = 0;
33 if (sig == SIGSEGV) {
34 /* For segfaults, we want the data from the sigcontext. */
35 get_regs_from_mc(&r, mc);
36 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
37 }
38
39 /* enable signals if sig isn't IRQ signal */
40 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
41 unblock_signals();
42
43 (*sig_info[sig])(sig, &r);
44
45 errno = save_errno;
46 }
47
48 /*
49 * These are the asynchronous signals. SIGPROF is excluded because we want to
50 * be able to profile all of UML, not just the non-critical sections. If
51 * profiling is not thread-safe, then that is not my problem. We can disable
52 * profiling when SMP is enabled in that case.
53 */
54 #define SIGIO_BIT 0
55 #define SIGIO_MASK (1 << SIGIO_BIT)
56
57 #define SIGVTALRM_BIT 1
58 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
59
60 static int signals_enabled;
61 static unsigned int signals_pending;
62
sig_handler(int sig,mcontext_t * mc)63 void sig_handler(int sig, mcontext_t *mc)
64 {
65 int enabled;
66
67 enabled = signals_enabled;
68 if (!enabled && (sig == SIGIO)) {
69 signals_pending |= SIGIO_MASK;
70 return;
71 }
72
73 block_signals();
74
75 sig_handler_common(sig, mc);
76
77 set_signals(enabled);
78 }
79
real_alarm_handler(mcontext_t * mc)80 static void real_alarm_handler(mcontext_t *mc)
81 {
82 struct uml_pt_regs regs;
83
84 if (mc != NULL)
85 get_regs_from_mc(®s, mc);
86 regs.is_user = 0;
87 unblock_signals();
88 timer_handler(SIGVTALRM, ®s);
89 }
90
alarm_handler(int sig,mcontext_t * mc)91 void alarm_handler(int sig, mcontext_t *mc)
92 {
93 int enabled;
94
95 enabled = signals_enabled;
96 if (!signals_enabled) {
97 signals_pending |= SIGVTALRM_MASK;
98 return;
99 }
100
101 block_signals();
102
103 real_alarm_handler(mc);
104 set_signals(enabled);
105 }
106
timer_init(void)107 void timer_init(void)
108 {
109 set_handler(SIGVTALRM);
110 }
111
set_sigstack(void * sig_stack,int size)112 void set_sigstack(void *sig_stack, int size)
113 {
114 stack_t stack = ((stack_t) { .ss_flags = 0,
115 .ss_sp = (__ptr_t) sig_stack,
116 .ss_size = size - sizeof(void *) });
117
118 if (sigaltstack(&stack, NULL) != 0)
119 panic("enabling signal stack failed, errno = %d\n", errno);
120 }
121
122 static void (*handlers[_NSIG])(int sig, mcontext_t *mc) = {
123 [SIGSEGV] = sig_handler,
124 [SIGBUS] = sig_handler,
125 [SIGILL] = sig_handler,
126 [SIGFPE] = sig_handler,
127 [SIGTRAP] = sig_handler,
128
129 [SIGIO] = sig_handler,
130 [SIGWINCH] = sig_handler,
131 [SIGVTALRM] = alarm_handler
132 };
133
134
hard_handler(int sig,siginfo_t * info,void * p)135 static void hard_handler(int sig, siginfo_t *info, void *p)
136 {
137 struct ucontext *uc = p;
138 mcontext_t *mc = &uc->uc_mcontext;
139 unsigned long pending = 1UL << sig;
140
141 do {
142 int nested, bail;
143
144 /*
145 * pending comes back with one bit set for each
146 * interrupt that arrived while setting up the stack,
147 * plus a bit for this interrupt, plus the zero bit is
148 * set if this is a nested interrupt.
149 * If bail is true, then we interrupted another
150 * handler setting up the stack. In this case, we
151 * have to return, and the upper handler will deal
152 * with this interrupt.
153 */
154 bail = to_irq_stack(&pending);
155 if (bail)
156 return;
157
158 nested = pending & 1;
159 pending &= ~1;
160
161 while ((sig = ffs(pending)) != 0){
162 sig--;
163 pending &= ~(1 << sig);
164 (*handlers[sig])(sig, mc);
165 }
166
167 /*
168 * Again, pending comes back with a mask of signals
169 * that arrived while tearing down the stack. If this
170 * is non-zero, we just go back, set up the stack
171 * again, and handle the new interrupts.
172 */
173 if (!nested)
174 pending = from_irq_stack(nested);
175 } while (pending);
176 }
177
set_handler(int sig)178 void set_handler(int sig)
179 {
180 struct sigaction action;
181 int flags = SA_SIGINFO | SA_ONSTACK;
182 sigset_t sig_mask;
183
184 action.sa_sigaction = hard_handler;
185
186 /* block irq ones */
187 sigemptyset(&action.sa_mask);
188 sigaddset(&action.sa_mask, SIGVTALRM);
189 sigaddset(&action.sa_mask, SIGIO);
190 sigaddset(&action.sa_mask, SIGWINCH);
191
192 if (sig == SIGSEGV)
193 flags |= SA_NODEFER;
194
195 if (sigismember(&action.sa_mask, sig))
196 flags |= SA_RESTART; /* if it's an irq signal */
197
198 action.sa_flags = flags;
199 action.sa_restorer = NULL;
200 if (sigaction(sig, &action, NULL) < 0)
201 panic("sigaction failed - errno = %d\n", errno);
202
203 sigemptyset(&sig_mask);
204 sigaddset(&sig_mask, sig);
205 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
206 panic("sigprocmask failed - errno = %d\n", errno);
207 }
208
change_sig(int signal,int on)209 int change_sig(int signal, int on)
210 {
211 sigset_t sigset;
212
213 sigemptyset(&sigset);
214 sigaddset(&sigset, signal);
215 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
216 return -errno;
217
218 return 0;
219 }
220
block_signals(void)221 void block_signals(void)
222 {
223 signals_enabled = 0;
224 /*
225 * This must return with signals disabled, so this barrier
226 * ensures that writes are flushed out before the return.
227 * This might matter if gcc figures out how to inline this and
228 * decides to shuffle this code into the caller.
229 */
230 barrier();
231 }
232
unblock_signals(void)233 void unblock_signals(void)
234 {
235 int save_pending;
236
237 if (signals_enabled == 1)
238 return;
239
240 /*
241 * We loop because the IRQ handler returns with interrupts off. So,
242 * interrupts may have arrived and we need to re-enable them and
243 * recheck signals_pending.
244 */
245 while (1) {
246 /*
247 * Save and reset save_pending after enabling signals. This
248 * way, signals_pending won't be changed while we're reading it.
249 */
250 signals_enabled = 1;
251
252 /*
253 * Setting signals_enabled and reading signals_pending must
254 * happen in this order.
255 */
256 barrier();
257
258 save_pending = signals_pending;
259 if (save_pending == 0)
260 return;
261
262 signals_pending = 0;
263
264 /*
265 * We have pending interrupts, so disable signals, as the
266 * handlers expect them off when they are called. They will
267 * be enabled again above.
268 */
269
270 signals_enabled = 0;
271
272 /*
273 * Deal with SIGIO first because the alarm handler might
274 * schedule, leaving the pending SIGIO stranded until we come
275 * back here.
276 */
277 if (save_pending & SIGIO_MASK)
278 sig_handler_common(SIGIO, NULL);
279
280 if (save_pending & SIGVTALRM_MASK)
281 real_alarm_handler(NULL);
282 }
283 }
284
get_signals(void)285 int get_signals(void)
286 {
287 return signals_enabled;
288 }
289
set_signals(int enable)290 int set_signals(int enable)
291 {
292 int ret;
293 if (signals_enabled == enable)
294 return enable;
295
296 ret = signals_enabled;
297 if (enable)
298 unblock_signals();
299 else block_signals();
300
301 return ret;
302 }
303