1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55
56 #include "coalesced_mmio.h"
57 #include "async_pf.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69 */
70
71 DEFINE_RAW_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83 struct dentry *kvm_debugfs_dir;
84
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91
92 bool kvm_rebooting;
93 EXPORT_SYMBOL_GPL(kvm_rebooting);
94
95 static bool largepages_enabled = true;
96
97 static struct page *hwpoison_page;
98 static pfn_t hwpoison_pfn;
99
100 static struct page *fault_page;
101 static pfn_t fault_pfn;
102
kvm_is_mmio_pfn(pfn_t pfn)103 inline int kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
vcpu_load(struct kvm_vcpu * vcpu)134 void vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 mutex_lock(&vcpu->mutex);
139 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
140 /* The thread running this VCPU changed. */
141 struct pid *oldpid = vcpu->pid;
142 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
143 rcu_assign_pointer(vcpu->pid, newpid);
144 synchronize_rcu();
145 put_pid(oldpid);
146 }
147 cpu = get_cpu();
148 preempt_notifier_register(&vcpu->preempt_notifier);
149 kvm_arch_vcpu_load(vcpu, cpu);
150 put_cpu();
151 }
152
vcpu_put(struct kvm_vcpu * vcpu)153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160 }
161
ack_flush(void * _completed)162 static void ack_flush(void *_completed)
163 {
164 }
165
make_all_cpus_request(struct kvm * kvm,unsigned int req)166 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
167 {
168 int i, cpu, me;
169 cpumask_var_t cpus;
170 bool called = true;
171 struct kvm_vcpu *vcpu;
172
173 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
174
175 me = get_cpu();
176 kvm_for_each_vcpu(i, vcpu, kvm) {
177 kvm_make_request(req, vcpu);
178 cpu = vcpu->cpu;
179
180 /* Set ->requests bit before we read ->mode */
181 smp_mb();
182
183 if (cpus != NULL && cpu != -1 && cpu != me &&
184 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
185 cpumask_set_cpu(cpu, cpus);
186 }
187 if (unlikely(cpus == NULL))
188 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
189 else if (!cpumask_empty(cpus))
190 smp_call_function_many(cpus, ack_flush, NULL, 1);
191 else
192 called = false;
193 put_cpu();
194 free_cpumask_var(cpus);
195 return called;
196 }
197
kvm_flush_remote_tlbs(struct kvm * kvm)198 void kvm_flush_remote_tlbs(struct kvm *kvm)
199 {
200 int dirty_count = kvm->tlbs_dirty;
201
202 smp_mb();
203 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
204 ++kvm->stat.remote_tlb_flush;
205 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
206 }
207
kvm_reload_remote_mmus(struct kvm * kvm)208 void kvm_reload_remote_mmus(struct kvm *kvm)
209 {
210 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
211 }
212
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 struct page *page;
216 int r;
217
218 mutex_init(&vcpu->mutex);
219 vcpu->cpu = -1;
220 vcpu->kvm = kvm;
221 vcpu->vcpu_id = id;
222 vcpu->pid = NULL;
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
225
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
230 }
231 vcpu->run = page_address(page);
232
233 r = kvm_arch_vcpu_init(vcpu);
234 if (r < 0)
235 goto fail_free_run;
236 return 0;
237
238 fail_free_run:
239 free_page((unsigned long)vcpu->run);
240 fail:
241 return r;
242 }
243 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
244
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)245 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
246 {
247 put_pid(vcpu->pid);
248 kvm_arch_vcpu_uninit(vcpu);
249 free_page((unsigned long)vcpu->run);
250 }
251 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
252
253 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)254 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
255 {
256 return container_of(mn, struct kvm, mmu_notifier);
257 }
258
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)259 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
260 struct mm_struct *mm,
261 unsigned long address)
262 {
263 struct kvm *kvm = mmu_notifier_to_kvm(mn);
264 int need_tlb_flush, idx;
265
266 /*
267 * When ->invalidate_page runs, the linux pte has been zapped
268 * already but the page is still allocated until
269 * ->invalidate_page returns. So if we increase the sequence
270 * here the kvm page fault will notice if the spte can't be
271 * established because the page is going to be freed. If
272 * instead the kvm page fault establishes the spte before
273 * ->invalidate_page runs, kvm_unmap_hva will release it
274 * before returning.
275 *
276 * The sequence increase only need to be seen at spin_unlock
277 * time, and not at spin_lock time.
278 *
279 * Increasing the sequence after the spin_unlock would be
280 * unsafe because the kvm page fault could then establish the
281 * pte after kvm_unmap_hva returned, without noticing the page
282 * is going to be freed.
283 */
284 idx = srcu_read_lock(&kvm->srcu);
285 spin_lock(&kvm->mmu_lock);
286 kvm->mmu_notifier_seq++;
287 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
288 spin_unlock(&kvm->mmu_lock);
289 srcu_read_unlock(&kvm->srcu, idx);
290
291 /* we've to flush the tlb before the pages can be freed */
292 if (need_tlb_flush)
293 kvm_flush_remote_tlbs(kvm);
294
295 }
296
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)297 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
298 struct mm_struct *mm,
299 unsigned long address,
300 pte_t pte)
301 {
302 struct kvm *kvm = mmu_notifier_to_kvm(mn);
303 int idx;
304
305 idx = srcu_read_lock(&kvm->srcu);
306 spin_lock(&kvm->mmu_lock);
307 kvm->mmu_notifier_seq++;
308 kvm_set_spte_hva(kvm, address, pte);
309 spin_unlock(&kvm->mmu_lock);
310 srcu_read_unlock(&kvm->srcu, idx);
311 }
312
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)313 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
314 struct mm_struct *mm,
315 unsigned long start,
316 unsigned long end)
317 {
318 struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 int need_tlb_flush = 0, idx;
320
321 idx = srcu_read_lock(&kvm->srcu);
322 spin_lock(&kvm->mmu_lock);
323 /*
324 * The count increase must become visible at unlock time as no
325 * spte can be established without taking the mmu_lock and
326 * count is also read inside the mmu_lock critical section.
327 */
328 kvm->mmu_notifier_count++;
329 for (; start < end; start += PAGE_SIZE)
330 need_tlb_flush |= kvm_unmap_hva(kvm, start);
331 need_tlb_flush |= kvm->tlbs_dirty;
332 spin_unlock(&kvm->mmu_lock);
333 srcu_read_unlock(&kvm->srcu, idx);
334
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338 }
339
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
341 struct mm_struct *mm,
342 unsigned long start,
343 unsigned long end)
344 {
345 struct kvm *kvm = mmu_notifier_to_kvm(mn);
346
347 spin_lock(&kvm->mmu_lock);
348 /*
349 * This sequence increase will notify the kvm page fault that
350 * the page that is going to be mapped in the spte could have
351 * been freed.
352 */
353 kvm->mmu_notifier_seq++;
354 /*
355 * The above sequence increase must be visible before the
356 * below count decrease but both values are read by the kvm
357 * page fault under mmu_lock spinlock so we don't need to add
358 * a smb_wmb() here in between the two.
359 */
360 kvm->mmu_notifier_count--;
361 spin_unlock(&kvm->mmu_lock);
362
363 BUG_ON(kvm->mmu_notifier_count < 0);
364 }
365
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long address)
369 {
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 int young, idx;
372
373 idx = srcu_read_lock(&kvm->srcu);
374 spin_lock(&kvm->mmu_lock);
375 young = kvm_age_hva(kvm, address);
376 spin_unlock(&kvm->mmu_lock);
377 srcu_read_unlock(&kvm->srcu, idx);
378
379 if (young)
380 kvm_flush_remote_tlbs(kvm);
381
382 return young;
383 }
384
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 struct mm_struct *mm,
387 unsigned long address)
388 {
389 struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 int young, idx;
391
392 idx = srcu_read_lock(&kvm->srcu);
393 spin_lock(&kvm->mmu_lock);
394 young = kvm_test_age_hva(kvm, address);
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
397
398 return young;
399 }
400
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 struct mm_struct *mm)
403 {
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 int idx;
406
407 idx = srcu_read_lock(&kvm->srcu);
408 kvm_arch_flush_shadow(kvm);
409 srcu_read_unlock(&kvm->srcu, idx);
410 }
411
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 .invalidate_page = kvm_mmu_notifier_invalidate_page,
414 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
415 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
416 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
417 .test_young = kvm_mmu_notifier_test_young,
418 .change_pte = kvm_mmu_notifier_change_pte,
419 .release = kvm_mmu_notifier_release,
420 };
421
kvm_init_mmu_notifier(struct kvm * kvm)422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427
428 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429
kvm_init_mmu_notifier(struct kvm * kvm)430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 return 0;
433 }
434
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436
kvm_create_vm(void)437 static struct kvm *kvm_create_vm(void)
438 {
439 int r, i;
440 struct kvm *kvm = kvm_arch_alloc_vm();
441
442 if (!kvm)
443 return ERR_PTR(-ENOMEM);
444
445 r = kvm_arch_init_vm(kvm);
446 if (r)
447 goto out_err_nodisable;
448
449 r = hardware_enable_all();
450 if (r)
451 goto out_err_nodisable;
452
453 #ifdef CONFIG_HAVE_KVM_IRQCHIP
454 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
455 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
456 #endif
457
458 r = -ENOMEM;
459 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
460 if (!kvm->memslots)
461 goto out_err_nosrcu;
462 if (init_srcu_struct(&kvm->srcu))
463 goto out_err_nosrcu;
464 for (i = 0; i < KVM_NR_BUSES; i++) {
465 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
466 GFP_KERNEL);
467 if (!kvm->buses[i])
468 goto out_err;
469 }
470
471 r = kvm_init_mmu_notifier(kvm);
472 if (r)
473 goto out_err;
474
475 kvm->mm = current->mm;
476 atomic_inc(&kvm->mm->mm_count);
477 spin_lock_init(&kvm->mmu_lock);
478 kvm_eventfd_init(kvm);
479 mutex_init(&kvm->lock);
480 mutex_init(&kvm->irq_lock);
481 mutex_init(&kvm->slots_lock);
482 atomic_set(&kvm->users_count, 1);
483 raw_spin_lock(&kvm_lock);
484 list_add(&kvm->vm_list, &vm_list);
485 raw_spin_unlock(&kvm_lock);
486
487 return kvm;
488
489 out_err:
490 cleanup_srcu_struct(&kvm->srcu);
491 out_err_nosrcu:
492 hardware_disable_all();
493 out_err_nodisable:
494 for (i = 0; i < KVM_NR_BUSES; i++)
495 kfree(kvm->buses[i]);
496 kfree(kvm->memslots);
497 kvm_arch_free_vm(kvm);
498 return ERR_PTR(r);
499 }
500
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)501 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
502 {
503 if (!memslot->dirty_bitmap)
504 return;
505
506 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
507 vfree(memslot->dirty_bitmap_head);
508 else
509 kfree(memslot->dirty_bitmap_head);
510
511 memslot->dirty_bitmap = NULL;
512 memslot->dirty_bitmap_head = NULL;
513 }
514
515 /*
516 * Free any memory in @free but not in @dont.
517 */
kvm_free_physmem_slot(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)518 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
519 struct kvm_memory_slot *dont)
520 {
521 int i;
522
523 if (!dont || free->rmap != dont->rmap)
524 vfree(free->rmap);
525
526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 kvm_destroy_dirty_bitmap(free);
528
529
530 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
531 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
532 vfree(free->lpage_info[i]);
533 free->lpage_info[i] = NULL;
534 }
535 }
536
537 free->npages = 0;
538 free->rmap = NULL;
539 }
540
kvm_free_physmem(struct kvm * kvm)541 void kvm_free_physmem(struct kvm *kvm)
542 {
543 int i;
544 struct kvm_memslots *slots = kvm->memslots;
545
546 for (i = 0; i < slots->nmemslots; ++i)
547 kvm_free_physmem_slot(&slots->memslots[i], NULL);
548
549 kfree(kvm->memslots);
550 }
551
kvm_destroy_vm(struct kvm * kvm)552 static void kvm_destroy_vm(struct kvm *kvm)
553 {
554 int i;
555 struct mm_struct *mm = kvm->mm;
556
557 kvm_arch_sync_events(kvm);
558 raw_spin_lock(&kvm_lock);
559 list_del(&kvm->vm_list);
560 raw_spin_unlock(&kvm_lock);
561 kvm_free_irq_routing(kvm);
562 for (i = 0; i < KVM_NR_BUSES; i++)
563 kvm_io_bus_destroy(kvm->buses[i]);
564 kvm_coalesced_mmio_free(kvm);
565 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
566 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
567 #else
568 kvm_arch_flush_shadow(kvm);
569 #endif
570 kvm_arch_destroy_vm(kvm);
571 kvm_free_physmem(kvm);
572 cleanup_srcu_struct(&kvm->srcu);
573 kvm_arch_free_vm(kvm);
574 hardware_disable_all();
575 mmdrop(mm);
576 }
577
kvm_get_kvm(struct kvm * kvm)578 void kvm_get_kvm(struct kvm *kvm)
579 {
580 atomic_inc(&kvm->users_count);
581 }
582 EXPORT_SYMBOL_GPL(kvm_get_kvm);
583
kvm_put_kvm(struct kvm * kvm)584 void kvm_put_kvm(struct kvm *kvm)
585 {
586 if (atomic_dec_and_test(&kvm->users_count))
587 kvm_destroy_vm(kvm);
588 }
589 EXPORT_SYMBOL_GPL(kvm_put_kvm);
590
591
kvm_vm_release(struct inode * inode,struct file * filp)592 static int kvm_vm_release(struct inode *inode, struct file *filp)
593 {
594 struct kvm *kvm = filp->private_data;
595
596 kvm_irqfd_release(kvm);
597
598 kvm_put_kvm(kvm);
599 return 0;
600 }
601
602 #ifndef CONFIG_S390
603 /*
604 * Allocation size is twice as large as the actual dirty bitmap size.
605 * This makes it possible to do double buffering: see x86's
606 * kvm_vm_ioctl_get_dirty_log().
607 */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)608 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
609 {
610 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
611
612 if (dirty_bytes > PAGE_SIZE)
613 memslot->dirty_bitmap = vzalloc(dirty_bytes);
614 else
615 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
616
617 if (!memslot->dirty_bitmap)
618 return -ENOMEM;
619
620 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
621 return 0;
622 }
623 #endif /* !CONFIG_S390 */
624
625 /*
626 * Allocate some memory and give it an address in the guest physical address
627 * space.
628 *
629 * Discontiguous memory is allowed, mostly for framebuffers.
630 *
631 * Must be called holding mmap_sem for write.
632 */
__kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)633 int __kvm_set_memory_region(struct kvm *kvm,
634 struct kvm_userspace_memory_region *mem,
635 int user_alloc)
636 {
637 int r;
638 gfn_t base_gfn;
639 unsigned long npages;
640 unsigned long i;
641 struct kvm_memory_slot *memslot;
642 struct kvm_memory_slot old, new;
643 struct kvm_memslots *slots, *old_memslots;
644
645 r = -EINVAL;
646 /* General sanity checks */
647 if (mem->memory_size & (PAGE_SIZE - 1))
648 goto out;
649 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
650 goto out;
651 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
652 goto out;
653 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
654 goto out;
655 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
656 goto out;
657
658 memslot = &kvm->memslots->memslots[mem->slot];
659 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
660 npages = mem->memory_size >> PAGE_SHIFT;
661
662 r = -EINVAL;
663 if (npages > KVM_MEM_MAX_NR_PAGES)
664 goto out;
665
666 if (!npages)
667 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
668
669 new = old = *memslot;
670
671 new.id = mem->slot;
672 new.base_gfn = base_gfn;
673 new.npages = npages;
674 new.flags = mem->flags;
675
676 /* Disallow changing a memory slot's size. */
677 r = -EINVAL;
678 if (npages && old.npages && npages != old.npages)
679 goto out_free;
680
681 /* Check for overlaps */
682 r = -EEXIST;
683 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
684 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
685
686 if (s == memslot || !s->npages)
687 continue;
688 if (!((base_gfn + npages <= s->base_gfn) ||
689 (base_gfn >= s->base_gfn + s->npages)))
690 goto out_free;
691 }
692
693 /* Free page dirty bitmap if unneeded */
694 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
695 new.dirty_bitmap = NULL;
696
697 r = -ENOMEM;
698
699 /* Allocate if a slot is being created */
700 #ifndef CONFIG_S390
701 if (npages && !new.rmap) {
702 new.rmap = vzalloc(npages * sizeof(*new.rmap));
703
704 if (!new.rmap)
705 goto out_free;
706
707 new.user_alloc = user_alloc;
708 new.userspace_addr = mem->userspace_addr;
709 }
710 if (!npages)
711 goto skip_lpage;
712
713 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
714 unsigned long ugfn;
715 unsigned long j;
716 int lpages;
717 int level = i + 2;
718
719 /* Avoid unused variable warning if no large pages */
720 (void)level;
721
722 if (new.lpage_info[i])
723 continue;
724
725 lpages = 1 + ((base_gfn + npages - 1)
726 >> KVM_HPAGE_GFN_SHIFT(level));
727 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
728
729 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
730
731 if (!new.lpage_info[i])
732 goto out_free;
733
734 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
735 new.lpage_info[i][0].write_count = 1;
736 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
737 new.lpage_info[i][lpages - 1].write_count = 1;
738 ugfn = new.userspace_addr >> PAGE_SHIFT;
739 /*
740 * If the gfn and userspace address are not aligned wrt each
741 * other, or if explicitly asked to, disable large page
742 * support for this slot
743 */
744 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
745 !largepages_enabled)
746 for (j = 0; j < lpages; ++j)
747 new.lpage_info[i][j].write_count = 1;
748 }
749
750 skip_lpage:
751
752 /* Allocate page dirty bitmap if needed */
753 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
754 if (kvm_create_dirty_bitmap(&new) < 0)
755 goto out_free;
756 /* destroy any largepage mappings for dirty tracking */
757 }
758 #else /* not defined CONFIG_S390 */
759 new.user_alloc = user_alloc;
760 if (user_alloc)
761 new.userspace_addr = mem->userspace_addr;
762 #endif /* not defined CONFIG_S390 */
763
764 if (!npages) {
765 r = -ENOMEM;
766 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
767 if (!slots)
768 goto out_free;
769 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
770 if (mem->slot >= slots->nmemslots)
771 slots->nmemslots = mem->slot + 1;
772 slots->generation++;
773 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
774
775 old_memslots = kvm->memslots;
776 rcu_assign_pointer(kvm->memslots, slots);
777 synchronize_srcu_expedited(&kvm->srcu);
778 /* From this point no new shadow pages pointing to a deleted
779 * memslot will be created.
780 *
781 * validation of sp->gfn happens in:
782 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
783 * - kvm_is_visible_gfn (mmu_check_roots)
784 */
785 kvm_arch_flush_shadow(kvm);
786 kfree(old_memslots);
787 }
788
789 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
790 if (r)
791 goto out_free;
792
793 /* map the pages in iommu page table */
794 if (npages) {
795 r = kvm_iommu_map_pages(kvm, &new);
796 if (r)
797 goto out_free;
798 }
799
800 r = -ENOMEM;
801 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
802 if (!slots)
803 goto out_free;
804 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
805 if (mem->slot >= slots->nmemslots)
806 slots->nmemslots = mem->slot + 1;
807 slots->generation++;
808
809 /* actual memory is freed via old in kvm_free_physmem_slot below */
810 if (!npages) {
811 new.rmap = NULL;
812 new.dirty_bitmap = NULL;
813 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
814 new.lpage_info[i] = NULL;
815 }
816
817 slots->memslots[mem->slot] = new;
818 old_memslots = kvm->memslots;
819 rcu_assign_pointer(kvm->memslots, slots);
820 synchronize_srcu_expedited(&kvm->srcu);
821
822 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
823
824 kvm_free_physmem_slot(&old, &new);
825 kfree(old_memslots);
826
827 return 0;
828
829 out_free:
830 kvm_free_physmem_slot(&new, &old);
831 out:
832 return r;
833
834 }
835 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
836
kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)837 int kvm_set_memory_region(struct kvm *kvm,
838 struct kvm_userspace_memory_region *mem,
839 int user_alloc)
840 {
841 int r;
842
843 mutex_lock(&kvm->slots_lock);
844 r = __kvm_set_memory_region(kvm, mem, user_alloc);
845 mutex_unlock(&kvm->slots_lock);
846 return r;
847 }
848 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
849
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)850 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
851 struct
852 kvm_userspace_memory_region *mem,
853 int user_alloc)
854 {
855 if (mem->slot >= KVM_MEMORY_SLOTS)
856 return -EINVAL;
857 return kvm_set_memory_region(kvm, mem, user_alloc);
858 }
859
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)860 int kvm_get_dirty_log(struct kvm *kvm,
861 struct kvm_dirty_log *log, int *is_dirty)
862 {
863 struct kvm_memory_slot *memslot;
864 int r, i;
865 unsigned long n;
866 unsigned long any = 0;
867
868 r = -EINVAL;
869 if (log->slot >= KVM_MEMORY_SLOTS)
870 goto out;
871
872 memslot = &kvm->memslots->memslots[log->slot];
873 r = -ENOENT;
874 if (!memslot->dirty_bitmap)
875 goto out;
876
877 n = kvm_dirty_bitmap_bytes(memslot);
878
879 for (i = 0; !any && i < n/sizeof(long); ++i)
880 any = memslot->dirty_bitmap[i];
881
882 r = -EFAULT;
883 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
884 goto out;
885
886 if (any)
887 *is_dirty = 1;
888
889 r = 0;
890 out:
891 return r;
892 }
893
kvm_disable_largepages(void)894 void kvm_disable_largepages(void)
895 {
896 largepages_enabled = false;
897 }
898 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
899
is_error_page(struct page * page)900 int is_error_page(struct page *page)
901 {
902 return page == bad_page || page == hwpoison_page || page == fault_page;
903 }
904 EXPORT_SYMBOL_GPL(is_error_page);
905
is_error_pfn(pfn_t pfn)906 int is_error_pfn(pfn_t pfn)
907 {
908 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
909 }
910 EXPORT_SYMBOL_GPL(is_error_pfn);
911
is_hwpoison_pfn(pfn_t pfn)912 int is_hwpoison_pfn(pfn_t pfn)
913 {
914 return pfn == hwpoison_pfn;
915 }
916 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
917
is_fault_pfn(pfn_t pfn)918 int is_fault_pfn(pfn_t pfn)
919 {
920 return pfn == fault_pfn;
921 }
922 EXPORT_SYMBOL_GPL(is_fault_pfn);
923
bad_hva(void)924 static inline unsigned long bad_hva(void)
925 {
926 return PAGE_OFFSET;
927 }
928
kvm_is_error_hva(unsigned long addr)929 int kvm_is_error_hva(unsigned long addr)
930 {
931 return addr == bad_hva();
932 }
933 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
934
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)935 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
936 gfn_t gfn)
937 {
938 int i;
939
940 for (i = 0; i < slots->nmemslots; ++i) {
941 struct kvm_memory_slot *memslot = &slots->memslots[i];
942
943 if (gfn >= memslot->base_gfn
944 && gfn < memslot->base_gfn + memslot->npages)
945 return memslot;
946 }
947 return NULL;
948 }
949
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)950 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
951 {
952 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
953 }
954 EXPORT_SYMBOL_GPL(gfn_to_memslot);
955
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)956 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
957 {
958 int i;
959 struct kvm_memslots *slots = kvm_memslots(kvm);
960
961 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
962 struct kvm_memory_slot *memslot = &slots->memslots[i];
963
964 if (memslot->flags & KVM_MEMSLOT_INVALID)
965 continue;
966
967 if (gfn >= memslot->base_gfn
968 && gfn < memslot->base_gfn + memslot->npages)
969 return 1;
970 }
971 return 0;
972 }
973 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
974
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)975 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
976 {
977 struct vm_area_struct *vma;
978 unsigned long addr, size;
979
980 size = PAGE_SIZE;
981
982 addr = gfn_to_hva(kvm, gfn);
983 if (kvm_is_error_hva(addr))
984 return PAGE_SIZE;
985
986 down_read(¤t->mm->mmap_sem);
987 vma = find_vma(current->mm, addr);
988 if (!vma)
989 goto out;
990
991 size = vma_kernel_pagesize(vma);
992
993 out:
994 up_read(¤t->mm->mmap_sem);
995
996 return size;
997 }
998
memslot_id(struct kvm * kvm,gfn_t gfn)999 int memslot_id(struct kvm *kvm, gfn_t gfn)
1000 {
1001 int i;
1002 struct kvm_memslots *slots = kvm_memslots(kvm);
1003 struct kvm_memory_slot *memslot = NULL;
1004
1005 for (i = 0; i < slots->nmemslots; ++i) {
1006 memslot = &slots->memslots[i];
1007
1008 if (gfn >= memslot->base_gfn
1009 && gfn < memslot->base_gfn + memslot->npages)
1010 break;
1011 }
1012
1013 return memslot - slots->memslots;
1014 }
1015
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1016 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1017 gfn_t *nr_pages)
1018 {
1019 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1020 return bad_hva();
1021
1022 if (nr_pages)
1023 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1024
1025 return gfn_to_hva_memslot(slot, gfn);
1026 }
1027
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1028 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1029 {
1030 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1031 }
1032 EXPORT_SYMBOL_GPL(gfn_to_hva);
1033
get_fault_pfn(void)1034 static pfn_t get_fault_pfn(void)
1035 {
1036 get_page(fault_page);
1037 return fault_pfn;
1038 }
1039
get_user_page_nowait(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int write,struct page ** page)1040 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1041 unsigned long start, int write, struct page **page)
1042 {
1043 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1044
1045 if (write)
1046 flags |= FOLL_WRITE;
1047
1048 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1049 }
1050
check_user_page_hwpoison(unsigned long addr)1051 static inline int check_user_page_hwpoison(unsigned long addr)
1052 {
1053 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1054
1055 rc = __get_user_pages(current, current->mm, addr, 1,
1056 flags, NULL, NULL, NULL);
1057 return rc == -EHWPOISON;
1058 }
1059
hva_to_pfn(struct kvm * kvm,unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1060 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1061 bool *async, bool write_fault, bool *writable)
1062 {
1063 struct page *page[1];
1064 int npages = 0;
1065 pfn_t pfn;
1066
1067 /* we can do it either atomically or asynchronously, not both */
1068 BUG_ON(atomic && async);
1069
1070 BUG_ON(!write_fault && !writable);
1071
1072 if (writable)
1073 *writable = true;
1074
1075 if (atomic || async)
1076 npages = __get_user_pages_fast(addr, 1, 1, page);
1077
1078 if (unlikely(npages != 1) && !atomic) {
1079 might_sleep();
1080
1081 if (writable)
1082 *writable = write_fault;
1083
1084 if (async) {
1085 down_read(¤t->mm->mmap_sem);
1086 npages = get_user_page_nowait(current, current->mm,
1087 addr, write_fault, page);
1088 up_read(¤t->mm->mmap_sem);
1089 } else
1090 npages = get_user_pages_fast(addr, 1, write_fault,
1091 page);
1092
1093 /* map read fault as writable if possible */
1094 if (unlikely(!write_fault) && npages == 1) {
1095 struct page *wpage[1];
1096
1097 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1098 if (npages == 1) {
1099 *writable = true;
1100 put_page(page[0]);
1101 page[0] = wpage[0];
1102 }
1103 npages = 1;
1104 }
1105 }
1106
1107 if (unlikely(npages != 1)) {
1108 struct vm_area_struct *vma;
1109
1110 if (atomic)
1111 return get_fault_pfn();
1112
1113 down_read(¤t->mm->mmap_sem);
1114 if (npages == -EHWPOISON ||
1115 (!async && check_user_page_hwpoison(addr))) {
1116 up_read(¤t->mm->mmap_sem);
1117 get_page(hwpoison_page);
1118 return page_to_pfn(hwpoison_page);
1119 }
1120
1121 vma = find_vma_intersection(current->mm, addr, addr+1);
1122
1123 if (vma == NULL)
1124 pfn = get_fault_pfn();
1125 else if ((vma->vm_flags & VM_PFNMAP)) {
1126 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1127 vma->vm_pgoff;
1128 BUG_ON(!kvm_is_mmio_pfn(pfn));
1129 } else {
1130 if (async && (vma->vm_flags & VM_WRITE))
1131 *async = true;
1132 pfn = get_fault_pfn();
1133 }
1134 up_read(¤t->mm->mmap_sem);
1135 } else
1136 pfn = page_to_pfn(page[0]);
1137
1138 return pfn;
1139 }
1140
hva_to_pfn_atomic(struct kvm * kvm,unsigned long addr)1141 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1142 {
1143 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1144 }
1145 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1146
__gfn_to_pfn(struct kvm * kvm,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1147 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1148 bool write_fault, bool *writable)
1149 {
1150 unsigned long addr;
1151
1152 if (async)
1153 *async = false;
1154
1155 addr = gfn_to_hva(kvm, gfn);
1156 if (kvm_is_error_hva(addr)) {
1157 get_page(bad_page);
1158 return page_to_pfn(bad_page);
1159 }
1160
1161 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1162 }
1163
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1164 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1165 {
1166 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1167 }
1168 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1169
gfn_to_pfn_async(struct kvm * kvm,gfn_t gfn,bool * async,bool write_fault,bool * writable)1170 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1171 bool write_fault, bool *writable)
1172 {
1173 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1174 }
1175 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1176
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1177 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1178 {
1179 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1180 }
1181 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1182
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1183 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1184 bool *writable)
1185 {
1186 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1187 }
1188 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1189
gfn_to_pfn_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn)1190 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1191 struct kvm_memory_slot *slot, gfn_t gfn)
1192 {
1193 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1194 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1195 }
1196
gfn_to_page_many_atomic(struct kvm * kvm,gfn_t gfn,struct page ** pages,int nr_pages)1197 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1198 int nr_pages)
1199 {
1200 unsigned long addr;
1201 gfn_t entry;
1202
1203 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1204 if (kvm_is_error_hva(addr))
1205 return -1;
1206
1207 if (entry < nr_pages)
1208 return 0;
1209
1210 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1211 }
1212 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1213
gfn_to_page(struct kvm * kvm,gfn_t gfn)1214 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1215 {
1216 pfn_t pfn;
1217
1218 pfn = gfn_to_pfn(kvm, gfn);
1219 if (!kvm_is_mmio_pfn(pfn))
1220 return pfn_to_page(pfn);
1221
1222 WARN_ON(kvm_is_mmio_pfn(pfn));
1223
1224 get_page(bad_page);
1225 return bad_page;
1226 }
1227
1228 EXPORT_SYMBOL_GPL(gfn_to_page);
1229
kvm_release_page_clean(struct page * page)1230 void kvm_release_page_clean(struct page *page)
1231 {
1232 kvm_release_pfn_clean(page_to_pfn(page));
1233 }
1234 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1235
kvm_release_pfn_clean(pfn_t pfn)1236 void kvm_release_pfn_clean(pfn_t pfn)
1237 {
1238 if (!kvm_is_mmio_pfn(pfn))
1239 put_page(pfn_to_page(pfn));
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1242
kvm_release_page_dirty(struct page * page)1243 void kvm_release_page_dirty(struct page *page)
1244 {
1245 kvm_release_pfn_dirty(page_to_pfn(page));
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1248
kvm_release_pfn_dirty(pfn_t pfn)1249 void kvm_release_pfn_dirty(pfn_t pfn)
1250 {
1251 kvm_set_pfn_dirty(pfn);
1252 kvm_release_pfn_clean(pfn);
1253 }
1254 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1255
kvm_set_page_dirty(struct page * page)1256 void kvm_set_page_dirty(struct page *page)
1257 {
1258 kvm_set_pfn_dirty(page_to_pfn(page));
1259 }
1260 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1261
kvm_set_pfn_dirty(pfn_t pfn)1262 void kvm_set_pfn_dirty(pfn_t pfn)
1263 {
1264 if (!kvm_is_mmio_pfn(pfn)) {
1265 struct page *page = pfn_to_page(pfn);
1266 if (!PageReserved(page))
1267 SetPageDirty(page);
1268 }
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1271
kvm_set_pfn_accessed(pfn_t pfn)1272 void kvm_set_pfn_accessed(pfn_t pfn)
1273 {
1274 if (!kvm_is_mmio_pfn(pfn))
1275 mark_page_accessed(pfn_to_page(pfn));
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1278
kvm_get_pfn(pfn_t pfn)1279 void kvm_get_pfn(pfn_t pfn)
1280 {
1281 if (!kvm_is_mmio_pfn(pfn))
1282 get_page(pfn_to_page(pfn));
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1285
next_segment(unsigned long len,int offset)1286 static int next_segment(unsigned long len, int offset)
1287 {
1288 if (len > PAGE_SIZE - offset)
1289 return PAGE_SIZE - offset;
1290 else
1291 return len;
1292 }
1293
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1294 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1295 int len)
1296 {
1297 int r;
1298 unsigned long addr;
1299
1300 addr = gfn_to_hva(kvm, gfn);
1301 if (kvm_is_error_hva(addr))
1302 return -EFAULT;
1303 r = copy_from_user(data, (void __user *)addr + offset, len);
1304 if (r)
1305 return -EFAULT;
1306 return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1309
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1310 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1311 {
1312 gfn_t gfn = gpa >> PAGE_SHIFT;
1313 int seg;
1314 int offset = offset_in_page(gpa);
1315 int ret;
1316
1317 while ((seg = next_segment(len, offset)) != 0) {
1318 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1319 if (ret < 0)
1320 return ret;
1321 offset = 0;
1322 len -= seg;
1323 data += seg;
1324 ++gfn;
1325 }
1326 return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_read_guest);
1329
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1330 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1331 unsigned long len)
1332 {
1333 int r;
1334 unsigned long addr;
1335 gfn_t gfn = gpa >> PAGE_SHIFT;
1336 int offset = offset_in_page(gpa);
1337
1338 addr = gfn_to_hva(kvm, gfn);
1339 if (kvm_is_error_hva(addr))
1340 return -EFAULT;
1341 pagefault_disable();
1342 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1343 pagefault_enable();
1344 if (r)
1345 return -EFAULT;
1346 return 0;
1347 }
1348 EXPORT_SYMBOL(kvm_read_guest_atomic);
1349
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1350 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1351 int offset, int len)
1352 {
1353 int r;
1354 unsigned long addr;
1355
1356 addr = gfn_to_hva(kvm, gfn);
1357 if (kvm_is_error_hva(addr))
1358 return -EFAULT;
1359 r = copy_to_user((void __user *)addr + offset, data, len);
1360 if (r)
1361 return -EFAULT;
1362 mark_page_dirty(kvm, gfn);
1363 return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1366
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1367 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1368 unsigned long len)
1369 {
1370 gfn_t gfn = gpa >> PAGE_SHIFT;
1371 int seg;
1372 int offset = offset_in_page(gpa);
1373 int ret;
1374
1375 while ((seg = next_segment(len, offset)) != 0) {
1376 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1377 if (ret < 0)
1378 return ret;
1379 offset = 0;
1380 len -= seg;
1381 data += seg;
1382 ++gfn;
1383 }
1384 return 0;
1385 }
1386
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa)1387 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1388 gpa_t gpa)
1389 {
1390 struct kvm_memslots *slots = kvm_memslots(kvm);
1391 int offset = offset_in_page(gpa);
1392 gfn_t gfn = gpa >> PAGE_SHIFT;
1393
1394 ghc->gpa = gpa;
1395 ghc->generation = slots->generation;
1396 ghc->memslot = __gfn_to_memslot(slots, gfn);
1397 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1398 if (!kvm_is_error_hva(ghc->hva))
1399 ghc->hva += offset;
1400 else
1401 return -EFAULT;
1402
1403 return 0;
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1406
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1407 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1408 void *data, unsigned long len)
1409 {
1410 struct kvm_memslots *slots = kvm_memslots(kvm);
1411 int r;
1412
1413 if (slots->generation != ghc->generation)
1414 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1415
1416 if (kvm_is_error_hva(ghc->hva))
1417 return -EFAULT;
1418
1419 r = copy_to_user((void __user *)ghc->hva, data, len);
1420 if (r)
1421 return -EFAULT;
1422 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1423
1424 return 0;
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1427
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)1428 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1429 {
1430 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1431 offset, len);
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1434
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)1435 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1436 {
1437 gfn_t gfn = gpa >> PAGE_SHIFT;
1438 int seg;
1439 int offset = offset_in_page(gpa);
1440 int ret;
1441
1442 while ((seg = next_segment(len, offset)) != 0) {
1443 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1444 if (ret < 0)
1445 return ret;
1446 offset = 0;
1447 len -= seg;
1448 ++gfn;
1449 }
1450 return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1453
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)1454 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1455 gfn_t gfn)
1456 {
1457 if (memslot && memslot->dirty_bitmap) {
1458 unsigned long rel_gfn = gfn - memslot->base_gfn;
1459
1460 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1461 }
1462 }
1463
mark_page_dirty(struct kvm * kvm,gfn_t gfn)1464 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1465 {
1466 struct kvm_memory_slot *memslot;
1467
1468 memslot = gfn_to_memslot(kvm, gfn);
1469 mark_page_dirty_in_slot(kvm, memslot, gfn);
1470 }
1471
1472 /*
1473 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1474 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)1475 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1476 {
1477 DEFINE_WAIT(wait);
1478
1479 for (;;) {
1480 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1481
1482 if (kvm_arch_vcpu_runnable(vcpu)) {
1483 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1484 break;
1485 }
1486 if (kvm_cpu_has_pending_timer(vcpu))
1487 break;
1488 if (signal_pending(current))
1489 break;
1490
1491 schedule();
1492 }
1493
1494 finish_wait(&vcpu->wq, &wait);
1495 }
1496
kvm_resched(struct kvm_vcpu * vcpu)1497 void kvm_resched(struct kvm_vcpu *vcpu)
1498 {
1499 if (!need_resched())
1500 return;
1501 cond_resched();
1502 }
1503 EXPORT_SYMBOL_GPL(kvm_resched);
1504
kvm_vcpu_on_spin(struct kvm_vcpu * me)1505 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1506 {
1507 struct kvm *kvm = me->kvm;
1508 struct kvm_vcpu *vcpu;
1509 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1510 int yielded = 0;
1511 int pass;
1512 int i;
1513
1514 /*
1515 * We boost the priority of a VCPU that is runnable but not
1516 * currently running, because it got preempted by something
1517 * else and called schedule in __vcpu_run. Hopefully that
1518 * VCPU is holding the lock that we need and will release it.
1519 * We approximate round-robin by starting at the last boosted VCPU.
1520 */
1521 for (pass = 0; pass < 2 && !yielded; pass++) {
1522 kvm_for_each_vcpu(i, vcpu, kvm) {
1523 struct task_struct *task = NULL;
1524 struct pid *pid;
1525 if (!pass && i < last_boosted_vcpu) {
1526 i = last_boosted_vcpu;
1527 continue;
1528 } else if (pass && i > last_boosted_vcpu)
1529 break;
1530 if (vcpu == me)
1531 continue;
1532 if (waitqueue_active(&vcpu->wq))
1533 continue;
1534 rcu_read_lock();
1535 pid = rcu_dereference(vcpu->pid);
1536 if (pid)
1537 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1538 rcu_read_unlock();
1539 if (!task)
1540 continue;
1541 if (task->flags & PF_VCPU) {
1542 put_task_struct(task);
1543 continue;
1544 }
1545 if (yield_to(task, 1)) {
1546 put_task_struct(task);
1547 kvm->last_boosted_vcpu = i;
1548 yielded = 1;
1549 break;
1550 }
1551 put_task_struct(task);
1552 }
1553 }
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1556
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1557 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1558 {
1559 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1560 struct page *page;
1561
1562 if (vmf->pgoff == 0)
1563 page = virt_to_page(vcpu->run);
1564 #ifdef CONFIG_X86
1565 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1566 page = virt_to_page(vcpu->arch.pio_data);
1567 #endif
1568 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1569 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1570 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1571 #endif
1572 else
1573 return VM_FAULT_SIGBUS;
1574 get_page(page);
1575 vmf->page = page;
1576 return 0;
1577 }
1578
1579 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1580 .fault = kvm_vcpu_fault,
1581 };
1582
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)1583 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1584 {
1585 vma->vm_ops = &kvm_vcpu_vm_ops;
1586 return 0;
1587 }
1588
kvm_vcpu_release(struct inode * inode,struct file * filp)1589 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1590 {
1591 struct kvm_vcpu *vcpu = filp->private_data;
1592
1593 kvm_put_kvm(vcpu->kvm);
1594 return 0;
1595 }
1596
1597 static struct file_operations kvm_vcpu_fops = {
1598 .release = kvm_vcpu_release,
1599 .unlocked_ioctl = kvm_vcpu_ioctl,
1600 .compat_ioctl = kvm_vcpu_ioctl,
1601 .mmap = kvm_vcpu_mmap,
1602 .llseek = noop_llseek,
1603 };
1604
1605 /*
1606 * Allocates an inode for the vcpu.
1607 */
create_vcpu_fd(struct kvm_vcpu * vcpu)1608 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1609 {
1610 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1611 }
1612
1613 /*
1614 * Creates some virtual cpus. Good luck creating more than one.
1615 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)1616 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1617 {
1618 int r;
1619 struct kvm_vcpu *vcpu, *v;
1620
1621 vcpu = kvm_arch_vcpu_create(kvm, id);
1622 if (IS_ERR(vcpu))
1623 return PTR_ERR(vcpu);
1624
1625 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1626
1627 r = kvm_arch_vcpu_setup(vcpu);
1628 if (r)
1629 return r;
1630
1631 mutex_lock(&kvm->lock);
1632 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1633 r = -EINVAL;
1634 goto vcpu_destroy;
1635 }
1636
1637 kvm_for_each_vcpu(r, v, kvm)
1638 if (v->vcpu_id == id) {
1639 r = -EEXIST;
1640 goto vcpu_destroy;
1641 }
1642
1643 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1644
1645 /* Now it's all set up, let userspace reach it */
1646 kvm_get_kvm(kvm);
1647 r = create_vcpu_fd(vcpu);
1648 if (r < 0) {
1649 kvm_put_kvm(kvm);
1650 goto vcpu_destroy;
1651 }
1652
1653 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1654 smp_wmb();
1655 atomic_inc(&kvm->online_vcpus);
1656
1657 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1658 if (kvm->bsp_vcpu_id == id)
1659 kvm->bsp_vcpu = vcpu;
1660 #endif
1661 mutex_unlock(&kvm->lock);
1662 return r;
1663
1664 vcpu_destroy:
1665 mutex_unlock(&kvm->lock);
1666 kvm_arch_vcpu_destroy(vcpu);
1667 return r;
1668 }
1669
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)1670 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1671 {
1672 if (sigset) {
1673 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1674 vcpu->sigset_active = 1;
1675 vcpu->sigset = *sigset;
1676 } else
1677 vcpu->sigset_active = 0;
1678 return 0;
1679 }
1680
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1681 static long kvm_vcpu_ioctl(struct file *filp,
1682 unsigned int ioctl, unsigned long arg)
1683 {
1684 struct kvm_vcpu *vcpu = filp->private_data;
1685 void __user *argp = (void __user *)arg;
1686 int r;
1687 struct kvm_fpu *fpu = NULL;
1688 struct kvm_sregs *kvm_sregs = NULL;
1689
1690 if (vcpu->kvm->mm != current->mm)
1691 return -EIO;
1692
1693 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1694 /*
1695 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1696 * so vcpu_load() would break it.
1697 */
1698 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1699 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1700 #endif
1701
1702
1703 vcpu_load(vcpu);
1704 switch (ioctl) {
1705 case KVM_RUN:
1706 r = -EINVAL;
1707 if (arg)
1708 goto out;
1709 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1710 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1711 break;
1712 case KVM_GET_REGS: {
1713 struct kvm_regs *kvm_regs;
1714
1715 r = -ENOMEM;
1716 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1717 if (!kvm_regs)
1718 goto out;
1719 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1720 if (r)
1721 goto out_free1;
1722 r = -EFAULT;
1723 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1724 goto out_free1;
1725 r = 0;
1726 out_free1:
1727 kfree(kvm_regs);
1728 break;
1729 }
1730 case KVM_SET_REGS: {
1731 struct kvm_regs *kvm_regs;
1732
1733 r = -ENOMEM;
1734 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1735 if (!kvm_regs)
1736 goto out;
1737 r = -EFAULT;
1738 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1739 goto out_free2;
1740 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1741 if (r)
1742 goto out_free2;
1743 r = 0;
1744 out_free2:
1745 kfree(kvm_regs);
1746 break;
1747 }
1748 case KVM_GET_SREGS: {
1749 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1750 r = -ENOMEM;
1751 if (!kvm_sregs)
1752 goto out;
1753 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1754 if (r)
1755 goto out;
1756 r = -EFAULT;
1757 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1758 goto out;
1759 r = 0;
1760 break;
1761 }
1762 case KVM_SET_SREGS: {
1763 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1764 r = -ENOMEM;
1765 if (!kvm_sregs)
1766 goto out;
1767 r = -EFAULT;
1768 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1769 goto out;
1770 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1771 if (r)
1772 goto out;
1773 r = 0;
1774 break;
1775 }
1776 case KVM_GET_MP_STATE: {
1777 struct kvm_mp_state mp_state;
1778
1779 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1780 if (r)
1781 goto out;
1782 r = -EFAULT;
1783 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1784 goto out;
1785 r = 0;
1786 break;
1787 }
1788 case KVM_SET_MP_STATE: {
1789 struct kvm_mp_state mp_state;
1790
1791 r = -EFAULT;
1792 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1793 goto out;
1794 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1795 if (r)
1796 goto out;
1797 r = 0;
1798 break;
1799 }
1800 case KVM_TRANSLATE: {
1801 struct kvm_translation tr;
1802
1803 r = -EFAULT;
1804 if (copy_from_user(&tr, argp, sizeof tr))
1805 goto out;
1806 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1807 if (r)
1808 goto out;
1809 r = -EFAULT;
1810 if (copy_to_user(argp, &tr, sizeof tr))
1811 goto out;
1812 r = 0;
1813 break;
1814 }
1815 case KVM_SET_GUEST_DEBUG: {
1816 struct kvm_guest_debug dbg;
1817
1818 r = -EFAULT;
1819 if (copy_from_user(&dbg, argp, sizeof dbg))
1820 goto out;
1821 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1822 if (r)
1823 goto out;
1824 r = 0;
1825 break;
1826 }
1827 case KVM_SET_SIGNAL_MASK: {
1828 struct kvm_signal_mask __user *sigmask_arg = argp;
1829 struct kvm_signal_mask kvm_sigmask;
1830 sigset_t sigset, *p;
1831
1832 p = NULL;
1833 if (argp) {
1834 r = -EFAULT;
1835 if (copy_from_user(&kvm_sigmask, argp,
1836 sizeof kvm_sigmask))
1837 goto out;
1838 r = -EINVAL;
1839 if (kvm_sigmask.len != sizeof sigset)
1840 goto out;
1841 r = -EFAULT;
1842 if (copy_from_user(&sigset, sigmask_arg->sigset,
1843 sizeof sigset))
1844 goto out;
1845 p = &sigset;
1846 }
1847 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1848 break;
1849 }
1850 case KVM_GET_FPU: {
1851 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1852 r = -ENOMEM;
1853 if (!fpu)
1854 goto out;
1855 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1856 if (r)
1857 goto out;
1858 r = -EFAULT;
1859 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1860 goto out;
1861 r = 0;
1862 break;
1863 }
1864 case KVM_SET_FPU: {
1865 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1866 r = -ENOMEM;
1867 if (!fpu)
1868 goto out;
1869 r = -EFAULT;
1870 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1871 goto out;
1872 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1873 if (r)
1874 goto out;
1875 r = 0;
1876 break;
1877 }
1878 default:
1879 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1880 }
1881 out:
1882 vcpu_put(vcpu);
1883 kfree(fpu);
1884 kfree(kvm_sregs);
1885 return r;
1886 }
1887
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1888 static long kvm_vm_ioctl(struct file *filp,
1889 unsigned int ioctl, unsigned long arg)
1890 {
1891 struct kvm *kvm = filp->private_data;
1892 void __user *argp = (void __user *)arg;
1893 int r;
1894
1895 if (kvm->mm != current->mm)
1896 return -EIO;
1897 switch (ioctl) {
1898 case KVM_CREATE_VCPU:
1899 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1900 if (r < 0)
1901 goto out;
1902 break;
1903 case KVM_SET_USER_MEMORY_REGION: {
1904 struct kvm_userspace_memory_region kvm_userspace_mem;
1905
1906 r = -EFAULT;
1907 if (copy_from_user(&kvm_userspace_mem, argp,
1908 sizeof kvm_userspace_mem))
1909 goto out;
1910
1911 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1912 if (r)
1913 goto out;
1914 break;
1915 }
1916 case KVM_GET_DIRTY_LOG: {
1917 struct kvm_dirty_log log;
1918
1919 r = -EFAULT;
1920 if (copy_from_user(&log, argp, sizeof log))
1921 goto out;
1922 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1923 if (r)
1924 goto out;
1925 break;
1926 }
1927 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1928 case KVM_REGISTER_COALESCED_MMIO: {
1929 struct kvm_coalesced_mmio_zone zone;
1930 r = -EFAULT;
1931 if (copy_from_user(&zone, argp, sizeof zone))
1932 goto out;
1933 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1934 if (r)
1935 goto out;
1936 r = 0;
1937 break;
1938 }
1939 case KVM_UNREGISTER_COALESCED_MMIO: {
1940 struct kvm_coalesced_mmio_zone zone;
1941 r = -EFAULT;
1942 if (copy_from_user(&zone, argp, sizeof zone))
1943 goto out;
1944 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1945 if (r)
1946 goto out;
1947 r = 0;
1948 break;
1949 }
1950 #endif
1951 case KVM_IRQFD: {
1952 struct kvm_irqfd data;
1953
1954 r = -EFAULT;
1955 if (copy_from_user(&data, argp, sizeof data))
1956 goto out;
1957 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1958 break;
1959 }
1960 case KVM_IOEVENTFD: {
1961 struct kvm_ioeventfd data;
1962
1963 r = -EFAULT;
1964 if (copy_from_user(&data, argp, sizeof data))
1965 goto out;
1966 r = kvm_ioeventfd(kvm, &data);
1967 break;
1968 }
1969 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1970 case KVM_SET_BOOT_CPU_ID:
1971 r = 0;
1972 mutex_lock(&kvm->lock);
1973 if (atomic_read(&kvm->online_vcpus) != 0)
1974 r = -EBUSY;
1975 else
1976 kvm->bsp_vcpu_id = arg;
1977 mutex_unlock(&kvm->lock);
1978 break;
1979 #endif
1980 default:
1981 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1982 if (r == -ENOTTY)
1983 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1984 }
1985 out:
1986 return r;
1987 }
1988
1989 #ifdef CONFIG_COMPAT
1990 struct compat_kvm_dirty_log {
1991 __u32 slot;
1992 __u32 padding1;
1993 union {
1994 compat_uptr_t dirty_bitmap; /* one bit per page */
1995 __u64 padding2;
1996 };
1997 };
1998
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1999 static long kvm_vm_compat_ioctl(struct file *filp,
2000 unsigned int ioctl, unsigned long arg)
2001 {
2002 struct kvm *kvm = filp->private_data;
2003 int r;
2004
2005 if (kvm->mm != current->mm)
2006 return -EIO;
2007 switch (ioctl) {
2008 case KVM_GET_DIRTY_LOG: {
2009 struct compat_kvm_dirty_log compat_log;
2010 struct kvm_dirty_log log;
2011
2012 r = -EFAULT;
2013 if (copy_from_user(&compat_log, (void __user *)arg,
2014 sizeof(compat_log)))
2015 goto out;
2016 log.slot = compat_log.slot;
2017 log.padding1 = compat_log.padding1;
2018 log.padding2 = compat_log.padding2;
2019 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2020
2021 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2022 if (r)
2023 goto out;
2024 break;
2025 }
2026 default:
2027 r = kvm_vm_ioctl(filp, ioctl, arg);
2028 }
2029
2030 out:
2031 return r;
2032 }
2033 #endif
2034
kvm_vm_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2035 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2036 {
2037 struct page *page[1];
2038 unsigned long addr;
2039 int npages;
2040 gfn_t gfn = vmf->pgoff;
2041 struct kvm *kvm = vma->vm_file->private_data;
2042
2043 addr = gfn_to_hva(kvm, gfn);
2044 if (kvm_is_error_hva(addr))
2045 return VM_FAULT_SIGBUS;
2046
2047 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2048 NULL);
2049 if (unlikely(npages != 1))
2050 return VM_FAULT_SIGBUS;
2051
2052 vmf->page = page[0];
2053 return 0;
2054 }
2055
2056 static const struct vm_operations_struct kvm_vm_vm_ops = {
2057 .fault = kvm_vm_fault,
2058 };
2059
kvm_vm_mmap(struct file * file,struct vm_area_struct * vma)2060 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2061 {
2062 vma->vm_ops = &kvm_vm_vm_ops;
2063 return 0;
2064 }
2065
2066 static struct file_operations kvm_vm_fops = {
2067 .release = kvm_vm_release,
2068 .unlocked_ioctl = kvm_vm_ioctl,
2069 #ifdef CONFIG_COMPAT
2070 .compat_ioctl = kvm_vm_compat_ioctl,
2071 #endif
2072 .mmap = kvm_vm_mmap,
2073 .llseek = noop_llseek,
2074 };
2075
kvm_dev_ioctl_create_vm(void)2076 static int kvm_dev_ioctl_create_vm(void)
2077 {
2078 int r;
2079 struct kvm *kvm;
2080
2081 kvm = kvm_create_vm();
2082 if (IS_ERR(kvm))
2083 return PTR_ERR(kvm);
2084 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2085 r = kvm_coalesced_mmio_init(kvm);
2086 if (r < 0) {
2087 kvm_put_kvm(kvm);
2088 return r;
2089 }
2090 #endif
2091 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2092 if (r < 0)
2093 kvm_put_kvm(kvm);
2094
2095 return r;
2096 }
2097
kvm_dev_ioctl_check_extension_generic(long arg)2098 static long kvm_dev_ioctl_check_extension_generic(long arg)
2099 {
2100 switch (arg) {
2101 case KVM_CAP_USER_MEMORY:
2102 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2103 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2104 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2105 case KVM_CAP_SET_BOOT_CPU_ID:
2106 #endif
2107 case KVM_CAP_INTERNAL_ERROR_DATA:
2108 return 1;
2109 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2110 case KVM_CAP_IRQ_ROUTING:
2111 return KVM_MAX_IRQ_ROUTES;
2112 #endif
2113 default:
2114 break;
2115 }
2116 return kvm_dev_ioctl_check_extension(arg);
2117 }
2118
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2119 static long kvm_dev_ioctl(struct file *filp,
2120 unsigned int ioctl, unsigned long arg)
2121 {
2122 long r = -EINVAL;
2123
2124 switch (ioctl) {
2125 case KVM_GET_API_VERSION:
2126 r = -EINVAL;
2127 if (arg)
2128 goto out;
2129 r = KVM_API_VERSION;
2130 break;
2131 case KVM_CREATE_VM:
2132 r = -EINVAL;
2133 if (arg)
2134 goto out;
2135 r = kvm_dev_ioctl_create_vm();
2136 break;
2137 case KVM_CHECK_EXTENSION:
2138 r = kvm_dev_ioctl_check_extension_generic(arg);
2139 break;
2140 case KVM_GET_VCPU_MMAP_SIZE:
2141 r = -EINVAL;
2142 if (arg)
2143 goto out;
2144 r = PAGE_SIZE; /* struct kvm_run */
2145 #ifdef CONFIG_X86
2146 r += PAGE_SIZE; /* pio data page */
2147 #endif
2148 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2149 r += PAGE_SIZE; /* coalesced mmio ring page */
2150 #endif
2151 break;
2152 case KVM_TRACE_ENABLE:
2153 case KVM_TRACE_PAUSE:
2154 case KVM_TRACE_DISABLE:
2155 r = -EOPNOTSUPP;
2156 break;
2157 default:
2158 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2159 }
2160 out:
2161 return r;
2162 }
2163
2164 static struct file_operations kvm_chardev_ops = {
2165 .unlocked_ioctl = kvm_dev_ioctl,
2166 .compat_ioctl = kvm_dev_ioctl,
2167 .llseek = noop_llseek,
2168 };
2169
2170 static struct miscdevice kvm_dev = {
2171 KVM_MINOR,
2172 "kvm",
2173 &kvm_chardev_ops,
2174 };
2175
hardware_enable_nolock(void * junk)2176 static void hardware_enable_nolock(void *junk)
2177 {
2178 int cpu = raw_smp_processor_id();
2179 int r;
2180
2181 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2182 return;
2183
2184 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2185
2186 r = kvm_arch_hardware_enable(NULL);
2187
2188 if (r) {
2189 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2190 atomic_inc(&hardware_enable_failed);
2191 printk(KERN_INFO "kvm: enabling virtualization on "
2192 "CPU%d failed\n", cpu);
2193 }
2194 }
2195
hardware_enable(void * junk)2196 static void hardware_enable(void *junk)
2197 {
2198 raw_spin_lock(&kvm_lock);
2199 hardware_enable_nolock(junk);
2200 raw_spin_unlock(&kvm_lock);
2201 }
2202
hardware_disable_nolock(void * junk)2203 static void hardware_disable_nolock(void *junk)
2204 {
2205 int cpu = raw_smp_processor_id();
2206
2207 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2208 return;
2209 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2210 kvm_arch_hardware_disable(NULL);
2211 }
2212
hardware_disable(void * junk)2213 static void hardware_disable(void *junk)
2214 {
2215 raw_spin_lock(&kvm_lock);
2216 hardware_disable_nolock(junk);
2217 raw_spin_unlock(&kvm_lock);
2218 }
2219
hardware_disable_all_nolock(void)2220 static void hardware_disable_all_nolock(void)
2221 {
2222 BUG_ON(!kvm_usage_count);
2223
2224 kvm_usage_count--;
2225 if (!kvm_usage_count)
2226 on_each_cpu(hardware_disable_nolock, NULL, 1);
2227 }
2228
hardware_disable_all(void)2229 static void hardware_disable_all(void)
2230 {
2231 raw_spin_lock(&kvm_lock);
2232 hardware_disable_all_nolock();
2233 raw_spin_unlock(&kvm_lock);
2234 }
2235
hardware_enable_all(void)2236 static int hardware_enable_all(void)
2237 {
2238 int r = 0;
2239
2240 raw_spin_lock(&kvm_lock);
2241
2242 kvm_usage_count++;
2243 if (kvm_usage_count == 1) {
2244 atomic_set(&hardware_enable_failed, 0);
2245 on_each_cpu(hardware_enable_nolock, NULL, 1);
2246
2247 if (atomic_read(&hardware_enable_failed)) {
2248 hardware_disable_all_nolock();
2249 r = -EBUSY;
2250 }
2251 }
2252
2253 raw_spin_unlock(&kvm_lock);
2254
2255 return r;
2256 }
2257
kvm_cpu_hotplug(struct notifier_block * notifier,unsigned long val,void * v)2258 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2259 void *v)
2260 {
2261 int cpu = (long)v;
2262
2263 if (!kvm_usage_count)
2264 return NOTIFY_OK;
2265
2266 val &= ~CPU_TASKS_FROZEN;
2267 switch (val) {
2268 case CPU_DYING:
2269 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2270 cpu);
2271 hardware_disable(NULL);
2272 break;
2273 case CPU_STARTING:
2274 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2275 cpu);
2276 hardware_enable(NULL);
2277 break;
2278 }
2279 return NOTIFY_OK;
2280 }
2281
2282
kvm_spurious_fault(void)2283 asmlinkage void kvm_spurious_fault(void)
2284 {
2285 /* Fault while not rebooting. We want the trace. */
2286 BUG();
2287 }
2288 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2289
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)2290 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2291 void *v)
2292 {
2293 /*
2294 * Some (well, at least mine) BIOSes hang on reboot if
2295 * in vmx root mode.
2296 *
2297 * And Intel TXT required VMX off for all cpu when system shutdown.
2298 */
2299 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2300 kvm_rebooting = true;
2301 on_each_cpu(hardware_disable_nolock, NULL, 1);
2302 return NOTIFY_OK;
2303 }
2304
2305 static struct notifier_block kvm_reboot_notifier = {
2306 .notifier_call = kvm_reboot,
2307 .priority = 0,
2308 };
2309
kvm_io_bus_destroy(struct kvm_io_bus * bus)2310 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2311 {
2312 int i;
2313
2314 for (i = 0; i < bus->dev_count; i++) {
2315 struct kvm_io_device *pos = bus->devs[i];
2316
2317 kvm_iodevice_destructor(pos);
2318 }
2319 kfree(bus);
2320 }
2321
2322 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)2323 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2324 int len, const void *val)
2325 {
2326 int i;
2327 struct kvm_io_bus *bus;
2328
2329 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2330 for (i = 0; i < bus->dev_count; i++)
2331 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2332 return 0;
2333 return -EOPNOTSUPP;
2334 }
2335
2336 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)2337 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2338 int len, void *val)
2339 {
2340 int i;
2341 struct kvm_io_bus *bus;
2342
2343 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2344 for (i = 0; i < bus->dev_count; i++)
2345 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2346 return 0;
2347 return -EOPNOTSUPP;
2348 }
2349
2350 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)2351 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2352 struct kvm_io_device *dev)
2353 {
2354 struct kvm_io_bus *new_bus, *bus;
2355
2356 bus = kvm->buses[bus_idx];
2357 if (bus->dev_count > NR_IOBUS_DEVS-1)
2358 return -ENOSPC;
2359
2360 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2361 if (!new_bus)
2362 return -ENOMEM;
2363 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2364 new_bus->devs[new_bus->dev_count++] = dev;
2365 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2366 synchronize_srcu_expedited(&kvm->srcu);
2367 kfree(bus);
2368
2369 return 0;
2370 }
2371
2372 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)2373 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2374 struct kvm_io_device *dev)
2375 {
2376 int i, r;
2377 struct kvm_io_bus *new_bus, *bus;
2378
2379 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2380 if (!new_bus)
2381 return -ENOMEM;
2382
2383 bus = kvm->buses[bus_idx];
2384 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2385
2386 r = -ENOENT;
2387 for (i = 0; i < new_bus->dev_count; i++)
2388 if (new_bus->devs[i] == dev) {
2389 r = 0;
2390 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2391 break;
2392 }
2393
2394 if (r) {
2395 kfree(new_bus);
2396 return r;
2397 }
2398
2399 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2400 synchronize_srcu_expedited(&kvm->srcu);
2401 kfree(bus);
2402 return r;
2403 }
2404
2405 static struct notifier_block kvm_cpu_notifier = {
2406 .notifier_call = kvm_cpu_hotplug,
2407 };
2408
vm_stat_get(void * _offset,u64 * val)2409 static int vm_stat_get(void *_offset, u64 *val)
2410 {
2411 unsigned offset = (long)_offset;
2412 struct kvm *kvm;
2413
2414 *val = 0;
2415 raw_spin_lock(&kvm_lock);
2416 list_for_each_entry(kvm, &vm_list, vm_list)
2417 *val += *(u32 *)((void *)kvm + offset);
2418 raw_spin_unlock(&kvm_lock);
2419 return 0;
2420 }
2421
2422 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2423
vcpu_stat_get(void * _offset,u64 * val)2424 static int vcpu_stat_get(void *_offset, u64 *val)
2425 {
2426 unsigned offset = (long)_offset;
2427 struct kvm *kvm;
2428 struct kvm_vcpu *vcpu;
2429 int i;
2430
2431 *val = 0;
2432 raw_spin_lock(&kvm_lock);
2433 list_for_each_entry(kvm, &vm_list, vm_list)
2434 kvm_for_each_vcpu(i, vcpu, kvm)
2435 *val += *(u32 *)((void *)vcpu + offset);
2436
2437 raw_spin_unlock(&kvm_lock);
2438 return 0;
2439 }
2440
2441 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2442
2443 static const struct file_operations *stat_fops[] = {
2444 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2445 [KVM_STAT_VM] = &vm_stat_fops,
2446 };
2447
kvm_init_debug(void)2448 static void kvm_init_debug(void)
2449 {
2450 struct kvm_stats_debugfs_item *p;
2451
2452 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2453 for (p = debugfs_entries; p->name; ++p)
2454 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2455 (void *)(long)p->offset,
2456 stat_fops[p->kind]);
2457 }
2458
kvm_exit_debug(void)2459 static void kvm_exit_debug(void)
2460 {
2461 struct kvm_stats_debugfs_item *p;
2462
2463 for (p = debugfs_entries; p->name; ++p)
2464 debugfs_remove(p->dentry);
2465 debugfs_remove(kvm_debugfs_dir);
2466 }
2467
kvm_suspend(void)2468 static int kvm_suspend(void)
2469 {
2470 if (kvm_usage_count)
2471 hardware_disable_nolock(NULL);
2472 return 0;
2473 }
2474
kvm_resume(void)2475 static void kvm_resume(void)
2476 {
2477 if (kvm_usage_count) {
2478 WARN_ON(raw_spin_is_locked(&kvm_lock));
2479 hardware_enable_nolock(NULL);
2480 }
2481 }
2482
2483 static struct syscore_ops kvm_syscore_ops = {
2484 .suspend = kvm_suspend,
2485 .resume = kvm_resume,
2486 };
2487
2488 struct page *bad_page;
2489 pfn_t bad_pfn;
2490
2491 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)2492 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2493 {
2494 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2495 }
2496
kvm_sched_in(struct preempt_notifier * pn,int cpu)2497 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2498 {
2499 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2500
2501 kvm_arch_vcpu_load(vcpu, cpu);
2502 }
2503
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)2504 static void kvm_sched_out(struct preempt_notifier *pn,
2505 struct task_struct *next)
2506 {
2507 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2508
2509 kvm_arch_vcpu_put(vcpu);
2510 }
2511
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)2512 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2513 struct module *module)
2514 {
2515 int r;
2516 int cpu;
2517
2518 r = kvm_arch_init(opaque);
2519 if (r)
2520 goto out_fail;
2521
2522 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2523
2524 if (bad_page == NULL) {
2525 r = -ENOMEM;
2526 goto out;
2527 }
2528
2529 bad_pfn = page_to_pfn(bad_page);
2530
2531 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2532
2533 if (hwpoison_page == NULL) {
2534 r = -ENOMEM;
2535 goto out_free_0;
2536 }
2537
2538 hwpoison_pfn = page_to_pfn(hwpoison_page);
2539
2540 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2541
2542 if (fault_page == NULL) {
2543 r = -ENOMEM;
2544 goto out_free_0;
2545 }
2546
2547 fault_pfn = page_to_pfn(fault_page);
2548
2549 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2550 r = -ENOMEM;
2551 goto out_free_0;
2552 }
2553
2554 r = kvm_arch_hardware_setup();
2555 if (r < 0)
2556 goto out_free_0a;
2557
2558 for_each_online_cpu(cpu) {
2559 smp_call_function_single(cpu,
2560 kvm_arch_check_processor_compat,
2561 &r, 1);
2562 if (r < 0)
2563 goto out_free_1;
2564 }
2565
2566 r = register_cpu_notifier(&kvm_cpu_notifier);
2567 if (r)
2568 goto out_free_2;
2569 register_reboot_notifier(&kvm_reboot_notifier);
2570
2571 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2572 if (!vcpu_align)
2573 vcpu_align = __alignof__(struct kvm_vcpu);
2574 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2575 0, NULL);
2576 if (!kvm_vcpu_cache) {
2577 r = -ENOMEM;
2578 goto out_free_3;
2579 }
2580
2581 r = kvm_async_pf_init();
2582 if (r)
2583 goto out_free;
2584
2585 kvm_chardev_ops.owner = module;
2586 kvm_vm_fops.owner = module;
2587 kvm_vcpu_fops.owner = module;
2588
2589 r = misc_register(&kvm_dev);
2590 if (r) {
2591 printk(KERN_ERR "kvm: misc device register failed\n");
2592 goto out_unreg;
2593 }
2594
2595 register_syscore_ops(&kvm_syscore_ops);
2596
2597 kvm_preempt_ops.sched_in = kvm_sched_in;
2598 kvm_preempt_ops.sched_out = kvm_sched_out;
2599
2600 kvm_init_debug();
2601
2602 return 0;
2603
2604 out_unreg:
2605 kvm_async_pf_deinit();
2606 out_free:
2607 kmem_cache_destroy(kvm_vcpu_cache);
2608 out_free_3:
2609 unregister_reboot_notifier(&kvm_reboot_notifier);
2610 unregister_cpu_notifier(&kvm_cpu_notifier);
2611 out_free_2:
2612 out_free_1:
2613 kvm_arch_hardware_unsetup();
2614 out_free_0a:
2615 free_cpumask_var(cpus_hardware_enabled);
2616 out_free_0:
2617 if (fault_page)
2618 __free_page(fault_page);
2619 if (hwpoison_page)
2620 __free_page(hwpoison_page);
2621 __free_page(bad_page);
2622 out:
2623 kvm_arch_exit();
2624 out_fail:
2625 return r;
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_init);
2628
kvm_exit(void)2629 void kvm_exit(void)
2630 {
2631 kvm_exit_debug();
2632 misc_deregister(&kvm_dev);
2633 kmem_cache_destroy(kvm_vcpu_cache);
2634 kvm_async_pf_deinit();
2635 unregister_syscore_ops(&kvm_syscore_ops);
2636 unregister_reboot_notifier(&kvm_reboot_notifier);
2637 unregister_cpu_notifier(&kvm_cpu_notifier);
2638 on_each_cpu(hardware_disable_nolock, NULL, 1);
2639 kvm_arch_hardware_unsetup();
2640 kvm_arch_exit();
2641 free_cpumask_var(cpus_hardware_enabled);
2642 __free_page(hwpoison_page);
2643 __free_page(bad_page);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_exit);
2646