1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 
56 #include "coalesced_mmio.h"
57 #include "async_pf.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61 
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64 
65 /*
66  * Ordering of locks:
67  *
68  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69  */
70 
71 DEFINE_RAW_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73 
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77 
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80 
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82 
83 struct dentry *kvm_debugfs_dir;
84 
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 			   unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89 
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91 
92 bool kvm_rebooting;
93 EXPORT_SYMBOL_GPL(kvm_rebooting);
94 
95 static bool largepages_enabled = true;
96 
97 static struct page *hwpoison_page;
98 static pfn_t hwpoison_pfn;
99 
100 static struct page *fault_page;
101 static pfn_t fault_pfn;
102 
kvm_is_mmio_pfn(pfn_t pfn)103 inline int kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn)) {
106 		int reserved;
107 		struct page *tail = pfn_to_page(pfn);
108 		struct page *head = compound_trans_head(tail);
109 		reserved = PageReserved(head);
110 		if (head != tail) {
111 			/*
112 			 * "head" is not a dangling pointer
113 			 * (compound_trans_head takes care of that)
114 			 * but the hugepage may have been splitted
115 			 * from under us (and we may not hold a
116 			 * reference count on the head page so it can
117 			 * be reused before we run PageReferenced), so
118 			 * we've to check PageTail before returning
119 			 * what we just read.
120 			 */
121 			smp_rmb();
122 			if (PageTail(tail))
123 				return reserved;
124 		}
125 		return PageReserved(tail);
126 	}
127 
128 	return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
vcpu_load(struct kvm_vcpu * vcpu)134 void vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 	int cpu;
137 
138 	mutex_lock(&vcpu->mutex);
139 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
140 		/* The thread running this VCPU changed. */
141 		struct pid *oldpid = vcpu->pid;
142 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
143 		rcu_assign_pointer(vcpu->pid, newpid);
144 		synchronize_rcu();
145 		put_pid(oldpid);
146 	}
147 	cpu = get_cpu();
148 	preempt_notifier_register(&vcpu->preempt_notifier);
149 	kvm_arch_vcpu_load(vcpu, cpu);
150 	put_cpu();
151 }
152 
vcpu_put(struct kvm_vcpu * vcpu)153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 
ack_flush(void * _completed)162 static void ack_flush(void *_completed)
163 {
164 }
165 
make_all_cpus_request(struct kvm * kvm,unsigned int req)166 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
167 {
168 	int i, cpu, me;
169 	cpumask_var_t cpus;
170 	bool called = true;
171 	struct kvm_vcpu *vcpu;
172 
173 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
174 
175 	me = get_cpu();
176 	kvm_for_each_vcpu(i, vcpu, kvm) {
177 		kvm_make_request(req, vcpu);
178 		cpu = vcpu->cpu;
179 
180 		/* Set ->requests bit before we read ->mode */
181 		smp_mb();
182 
183 		if (cpus != NULL && cpu != -1 && cpu != me &&
184 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
185 			cpumask_set_cpu(cpu, cpus);
186 	}
187 	if (unlikely(cpus == NULL))
188 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
189 	else if (!cpumask_empty(cpus))
190 		smp_call_function_many(cpus, ack_flush, NULL, 1);
191 	else
192 		called = false;
193 	put_cpu();
194 	free_cpumask_var(cpus);
195 	return called;
196 }
197 
kvm_flush_remote_tlbs(struct kvm * kvm)198 void kvm_flush_remote_tlbs(struct kvm *kvm)
199 {
200 	int dirty_count = kvm->tlbs_dirty;
201 
202 	smp_mb();
203 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
204 		++kvm->stat.remote_tlb_flush;
205 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
206 }
207 
kvm_reload_remote_mmus(struct kvm * kvm)208 void kvm_reload_remote_mmus(struct kvm *kvm)
209 {
210 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
211 }
212 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 	struct page *page;
216 	int r;
217 
218 	mutex_init(&vcpu->mutex);
219 	vcpu->cpu = -1;
220 	vcpu->kvm = kvm;
221 	vcpu->vcpu_id = id;
222 	vcpu->pid = NULL;
223 	init_waitqueue_head(&vcpu->wq);
224 	kvm_async_pf_vcpu_init(vcpu);
225 
226 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 	if (!page) {
228 		r = -ENOMEM;
229 		goto fail;
230 	}
231 	vcpu->run = page_address(page);
232 
233 	r = kvm_arch_vcpu_init(vcpu);
234 	if (r < 0)
235 		goto fail_free_run;
236 	return 0;
237 
238 fail_free_run:
239 	free_page((unsigned long)vcpu->run);
240 fail:
241 	return r;
242 }
243 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
244 
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)245 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
246 {
247 	put_pid(vcpu->pid);
248 	kvm_arch_vcpu_uninit(vcpu);
249 	free_page((unsigned long)vcpu->run);
250 }
251 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
252 
253 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)254 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
255 {
256 	return container_of(mn, struct kvm, mmu_notifier);
257 }
258 
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)259 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
260 					     struct mm_struct *mm,
261 					     unsigned long address)
262 {
263 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
264 	int need_tlb_flush, idx;
265 
266 	/*
267 	 * When ->invalidate_page runs, the linux pte has been zapped
268 	 * already but the page is still allocated until
269 	 * ->invalidate_page returns. So if we increase the sequence
270 	 * here the kvm page fault will notice if the spte can't be
271 	 * established because the page is going to be freed. If
272 	 * instead the kvm page fault establishes the spte before
273 	 * ->invalidate_page runs, kvm_unmap_hva will release it
274 	 * before returning.
275 	 *
276 	 * The sequence increase only need to be seen at spin_unlock
277 	 * time, and not at spin_lock time.
278 	 *
279 	 * Increasing the sequence after the spin_unlock would be
280 	 * unsafe because the kvm page fault could then establish the
281 	 * pte after kvm_unmap_hva returned, without noticing the page
282 	 * is going to be freed.
283 	 */
284 	idx = srcu_read_lock(&kvm->srcu);
285 	spin_lock(&kvm->mmu_lock);
286 	kvm->mmu_notifier_seq++;
287 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
288 	spin_unlock(&kvm->mmu_lock);
289 	srcu_read_unlock(&kvm->srcu, idx);
290 
291 	/* we've to flush the tlb before the pages can be freed */
292 	if (need_tlb_flush)
293 		kvm_flush_remote_tlbs(kvm);
294 
295 }
296 
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)297 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
298 					struct mm_struct *mm,
299 					unsigned long address,
300 					pte_t pte)
301 {
302 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
303 	int idx;
304 
305 	idx = srcu_read_lock(&kvm->srcu);
306 	spin_lock(&kvm->mmu_lock);
307 	kvm->mmu_notifier_seq++;
308 	kvm_set_spte_hva(kvm, address, pte);
309 	spin_unlock(&kvm->mmu_lock);
310 	srcu_read_unlock(&kvm->srcu, idx);
311 }
312 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)313 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
314 						    struct mm_struct *mm,
315 						    unsigned long start,
316 						    unsigned long end)
317 {
318 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 	int need_tlb_flush = 0, idx;
320 
321 	idx = srcu_read_lock(&kvm->srcu);
322 	spin_lock(&kvm->mmu_lock);
323 	/*
324 	 * The count increase must become visible at unlock time as no
325 	 * spte can be established without taking the mmu_lock and
326 	 * count is also read inside the mmu_lock critical section.
327 	 */
328 	kvm->mmu_notifier_count++;
329 	for (; start < end; start += PAGE_SIZE)
330 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
331 	need_tlb_flush |= kvm->tlbs_dirty;
332 	spin_unlock(&kvm->mmu_lock);
333 	srcu_read_unlock(&kvm->srcu, idx);
334 
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 }
339 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
341 						  struct mm_struct *mm,
342 						  unsigned long start,
343 						  unsigned long end)
344 {
345 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
346 
347 	spin_lock(&kvm->mmu_lock);
348 	/*
349 	 * This sequence increase will notify the kvm page fault that
350 	 * the page that is going to be mapped in the spte could have
351 	 * been freed.
352 	 */
353 	kvm->mmu_notifier_seq++;
354 	/*
355 	 * The above sequence increase must be visible before the
356 	 * below count decrease but both values are read by the kvm
357 	 * page fault under mmu_lock spinlock so we don't need to add
358 	 * a smb_wmb() here in between the two.
359 	 */
360 	kvm->mmu_notifier_count--;
361 	spin_unlock(&kvm->mmu_lock);
362 
363 	BUG_ON(kvm->mmu_notifier_count < 0);
364 }
365 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
367 					      struct mm_struct *mm,
368 					      unsigned long address)
369 {
370 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 	int young, idx;
372 
373 	idx = srcu_read_lock(&kvm->srcu);
374 	spin_lock(&kvm->mmu_lock);
375 	young = kvm_age_hva(kvm, address);
376 	spin_unlock(&kvm->mmu_lock);
377 	srcu_read_unlock(&kvm->srcu, idx);
378 
379 	if (young)
380 		kvm_flush_remote_tlbs(kvm);
381 
382 	return young;
383 }
384 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 				       struct mm_struct *mm,
387 				       unsigned long address)
388 {
389 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 	int young, idx;
391 
392 	idx = srcu_read_lock(&kvm->srcu);
393 	spin_lock(&kvm->mmu_lock);
394 	young = kvm_test_age_hva(kvm, address);
395 	spin_unlock(&kvm->mmu_lock);
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return young;
399 }
400 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 				     struct mm_struct *mm)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 	int idx;
406 
407 	idx = srcu_read_lock(&kvm->srcu);
408 	kvm_arch_flush_shadow(kvm);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 }
411 
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
414 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
415 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
416 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
417 	.test_young		= kvm_mmu_notifier_test_young,
418 	.change_pte		= kvm_mmu_notifier_change_pte,
419 	.release		= kvm_mmu_notifier_release,
420 };
421 
kvm_init_mmu_notifier(struct kvm * kvm)422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427 
428 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429 
kvm_init_mmu_notifier(struct kvm * kvm)430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 	return 0;
433 }
434 
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436 
kvm_create_vm(void)437 static struct kvm *kvm_create_vm(void)
438 {
439 	int r, i;
440 	struct kvm *kvm = kvm_arch_alloc_vm();
441 
442 	if (!kvm)
443 		return ERR_PTR(-ENOMEM);
444 
445 	r = kvm_arch_init_vm(kvm);
446 	if (r)
447 		goto out_err_nodisable;
448 
449 	r = hardware_enable_all();
450 	if (r)
451 		goto out_err_nodisable;
452 
453 #ifdef CONFIG_HAVE_KVM_IRQCHIP
454 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
455 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
456 #endif
457 
458 	r = -ENOMEM;
459 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
460 	if (!kvm->memslots)
461 		goto out_err_nosrcu;
462 	if (init_srcu_struct(&kvm->srcu))
463 		goto out_err_nosrcu;
464 	for (i = 0; i < KVM_NR_BUSES; i++) {
465 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
466 					GFP_KERNEL);
467 		if (!kvm->buses[i])
468 			goto out_err;
469 	}
470 
471 	r = kvm_init_mmu_notifier(kvm);
472 	if (r)
473 		goto out_err;
474 
475 	kvm->mm = current->mm;
476 	atomic_inc(&kvm->mm->mm_count);
477 	spin_lock_init(&kvm->mmu_lock);
478 	kvm_eventfd_init(kvm);
479 	mutex_init(&kvm->lock);
480 	mutex_init(&kvm->irq_lock);
481 	mutex_init(&kvm->slots_lock);
482 	atomic_set(&kvm->users_count, 1);
483 	raw_spin_lock(&kvm_lock);
484 	list_add(&kvm->vm_list, &vm_list);
485 	raw_spin_unlock(&kvm_lock);
486 
487 	return kvm;
488 
489 out_err:
490 	cleanup_srcu_struct(&kvm->srcu);
491 out_err_nosrcu:
492 	hardware_disable_all();
493 out_err_nodisable:
494 	for (i = 0; i < KVM_NR_BUSES; i++)
495 		kfree(kvm->buses[i]);
496 	kfree(kvm->memslots);
497 	kvm_arch_free_vm(kvm);
498 	return ERR_PTR(r);
499 }
500 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)501 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
502 {
503 	if (!memslot->dirty_bitmap)
504 		return;
505 
506 	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
507 		vfree(memslot->dirty_bitmap_head);
508 	else
509 		kfree(memslot->dirty_bitmap_head);
510 
511 	memslot->dirty_bitmap = NULL;
512 	memslot->dirty_bitmap_head = NULL;
513 }
514 
515 /*
516  * Free any memory in @free but not in @dont.
517  */
kvm_free_physmem_slot(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)518 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
519 				  struct kvm_memory_slot *dont)
520 {
521 	int i;
522 
523 	if (!dont || free->rmap != dont->rmap)
524 		vfree(free->rmap);
525 
526 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 		kvm_destroy_dirty_bitmap(free);
528 
529 
530 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
531 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
532 			vfree(free->lpage_info[i]);
533 			free->lpage_info[i] = NULL;
534 		}
535 	}
536 
537 	free->npages = 0;
538 	free->rmap = NULL;
539 }
540 
kvm_free_physmem(struct kvm * kvm)541 void kvm_free_physmem(struct kvm *kvm)
542 {
543 	int i;
544 	struct kvm_memslots *slots = kvm->memslots;
545 
546 	for (i = 0; i < slots->nmemslots; ++i)
547 		kvm_free_physmem_slot(&slots->memslots[i], NULL);
548 
549 	kfree(kvm->memslots);
550 }
551 
kvm_destroy_vm(struct kvm * kvm)552 static void kvm_destroy_vm(struct kvm *kvm)
553 {
554 	int i;
555 	struct mm_struct *mm = kvm->mm;
556 
557 	kvm_arch_sync_events(kvm);
558 	raw_spin_lock(&kvm_lock);
559 	list_del(&kvm->vm_list);
560 	raw_spin_unlock(&kvm_lock);
561 	kvm_free_irq_routing(kvm);
562 	for (i = 0; i < KVM_NR_BUSES; i++)
563 		kvm_io_bus_destroy(kvm->buses[i]);
564 	kvm_coalesced_mmio_free(kvm);
565 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
566 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
567 #else
568 	kvm_arch_flush_shadow(kvm);
569 #endif
570 	kvm_arch_destroy_vm(kvm);
571 	kvm_free_physmem(kvm);
572 	cleanup_srcu_struct(&kvm->srcu);
573 	kvm_arch_free_vm(kvm);
574 	hardware_disable_all();
575 	mmdrop(mm);
576 }
577 
kvm_get_kvm(struct kvm * kvm)578 void kvm_get_kvm(struct kvm *kvm)
579 {
580 	atomic_inc(&kvm->users_count);
581 }
582 EXPORT_SYMBOL_GPL(kvm_get_kvm);
583 
kvm_put_kvm(struct kvm * kvm)584 void kvm_put_kvm(struct kvm *kvm)
585 {
586 	if (atomic_dec_and_test(&kvm->users_count))
587 		kvm_destroy_vm(kvm);
588 }
589 EXPORT_SYMBOL_GPL(kvm_put_kvm);
590 
591 
kvm_vm_release(struct inode * inode,struct file * filp)592 static int kvm_vm_release(struct inode *inode, struct file *filp)
593 {
594 	struct kvm *kvm = filp->private_data;
595 
596 	kvm_irqfd_release(kvm);
597 
598 	kvm_put_kvm(kvm);
599 	return 0;
600 }
601 
602 #ifndef CONFIG_S390
603 /*
604  * Allocation size is twice as large as the actual dirty bitmap size.
605  * This makes it possible to do double buffering: see x86's
606  * kvm_vm_ioctl_get_dirty_log().
607  */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)608 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
609 {
610 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
611 
612 	if (dirty_bytes > PAGE_SIZE)
613 		memslot->dirty_bitmap = vzalloc(dirty_bytes);
614 	else
615 		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
616 
617 	if (!memslot->dirty_bitmap)
618 		return -ENOMEM;
619 
620 	memslot->dirty_bitmap_head = memslot->dirty_bitmap;
621 	return 0;
622 }
623 #endif /* !CONFIG_S390 */
624 
625 /*
626  * Allocate some memory and give it an address in the guest physical address
627  * space.
628  *
629  * Discontiguous memory is allowed, mostly for framebuffers.
630  *
631  * Must be called holding mmap_sem for write.
632  */
__kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)633 int __kvm_set_memory_region(struct kvm *kvm,
634 			    struct kvm_userspace_memory_region *mem,
635 			    int user_alloc)
636 {
637 	int r;
638 	gfn_t base_gfn;
639 	unsigned long npages;
640 	unsigned long i;
641 	struct kvm_memory_slot *memslot;
642 	struct kvm_memory_slot old, new;
643 	struct kvm_memslots *slots, *old_memslots;
644 
645 	r = -EINVAL;
646 	/* General sanity checks */
647 	if (mem->memory_size & (PAGE_SIZE - 1))
648 		goto out;
649 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
650 		goto out;
651 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
652 		goto out;
653 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
654 		goto out;
655 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
656 		goto out;
657 
658 	memslot = &kvm->memslots->memslots[mem->slot];
659 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
660 	npages = mem->memory_size >> PAGE_SHIFT;
661 
662 	r = -EINVAL;
663 	if (npages > KVM_MEM_MAX_NR_PAGES)
664 		goto out;
665 
666 	if (!npages)
667 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
668 
669 	new = old = *memslot;
670 
671 	new.id = mem->slot;
672 	new.base_gfn = base_gfn;
673 	new.npages = npages;
674 	new.flags = mem->flags;
675 
676 	/* Disallow changing a memory slot's size. */
677 	r = -EINVAL;
678 	if (npages && old.npages && npages != old.npages)
679 		goto out_free;
680 
681 	/* Check for overlaps */
682 	r = -EEXIST;
683 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
684 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
685 
686 		if (s == memslot || !s->npages)
687 			continue;
688 		if (!((base_gfn + npages <= s->base_gfn) ||
689 		      (base_gfn >= s->base_gfn + s->npages)))
690 			goto out_free;
691 	}
692 
693 	/* Free page dirty bitmap if unneeded */
694 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
695 		new.dirty_bitmap = NULL;
696 
697 	r = -ENOMEM;
698 
699 	/* Allocate if a slot is being created */
700 #ifndef CONFIG_S390
701 	if (npages && !new.rmap) {
702 		new.rmap = vzalloc(npages * sizeof(*new.rmap));
703 
704 		if (!new.rmap)
705 			goto out_free;
706 
707 		new.user_alloc = user_alloc;
708 		new.userspace_addr = mem->userspace_addr;
709 	}
710 	if (!npages)
711 		goto skip_lpage;
712 
713 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
714 		unsigned long ugfn;
715 		unsigned long j;
716 		int lpages;
717 		int level = i + 2;
718 
719 		/* Avoid unused variable warning if no large pages */
720 		(void)level;
721 
722 		if (new.lpage_info[i])
723 			continue;
724 
725 		lpages = 1 + ((base_gfn + npages - 1)
726 			     >> KVM_HPAGE_GFN_SHIFT(level));
727 		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
728 
729 		new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
730 
731 		if (!new.lpage_info[i])
732 			goto out_free;
733 
734 		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
735 			new.lpage_info[i][0].write_count = 1;
736 		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
737 			new.lpage_info[i][lpages - 1].write_count = 1;
738 		ugfn = new.userspace_addr >> PAGE_SHIFT;
739 		/*
740 		 * If the gfn and userspace address are not aligned wrt each
741 		 * other, or if explicitly asked to, disable large page
742 		 * support for this slot
743 		 */
744 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
745 		    !largepages_enabled)
746 			for (j = 0; j < lpages; ++j)
747 				new.lpage_info[i][j].write_count = 1;
748 	}
749 
750 skip_lpage:
751 
752 	/* Allocate page dirty bitmap if needed */
753 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
754 		if (kvm_create_dirty_bitmap(&new) < 0)
755 			goto out_free;
756 		/* destroy any largepage mappings for dirty tracking */
757 	}
758 #else  /* not defined CONFIG_S390 */
759 	new.user_alloc = user_alloc;
760 	if (user_alloc)
761 		new.userspace_addr = mem->userspace_addr;
762 #endif /* not defined CONFIG_S390 */
763 
764 	if (!npages) {
765 		r = -ENOMEM;
766 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
767 		if (!slots)
768 			goto out_free;
769 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
770 		if (mem->slot >= slots->nmemslots)
771 			slots->nmemslots = mem->slot + 1;
772 		slots->generation++;
773 		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
774 
775 		old_memslots = kvm->memslots;
776 		rcu_assign_pointer(kvm->memslots, slots);
777 		synchronize_srcu_expedited(&kvm->srcu);
778 		/* From this point no new shadow pages pointing to a deleted
779 		 * memslot will be created.
780 		 *
781 		 * validation of sp->gfn happens in:
782 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
783 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
784 		 */
785 		kvm_arch_flush_shadow(kvm);
786 		kfree(old_memslots);
787 	}
788 
789 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
790 	if (r)
791 		goto out_free;
792 
793 	/* map the pages in iommu page table */
794 	if (npages) {
795 		r = kvm_iommu_map_pages(kvm, &new);
796 		if (r)
797 			goto out_free;
798 	}
799 
800 	r = -ENOMEM;
801 	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
802 	if (!slots)
803 		goto out_free;
804 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
805 	if (mem->slot >= slots->nmemslots)
806 		slots->nmemslots = mem->slot + 1;
807 	slots->generation++;
808 
809 	/* actual memory is freed via old in kvm_free_physmem_slot below */
810 	if (!npages) {
811 		new.rmap = NULL;
812 		new.dirty_bitmap = NULL;
813 		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
814 			new.lpage_info[i] = NULL;
815 	}
816 
817 	slots->memslots[mem->slot] = new;
818 	old_memslots = kvm->memslots;
819 	rcu_assign_pointer(kvm->memslots, slots);
820 	synchronize_srcu_expedited(&kvm->srcu);
821 
822 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
823 
824 	kvm_free_physmem_slot(&old, &new);
825 	kfree(old_memslots);
826 
827 	return 0;
828 
829 out_free:
830 	kvm_free_physmem_slot(&new, &old);
831 out:
832 	return r;
833 
834 }
835 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
836 
kvm_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)837 int kvm_set_memory_region(struct kvm *kvm,
838 			  struct kvm_userspace_memory_region *mem,
839 			  int user_alloc)
840 {
841 	int r;
842 
843 	mutex_lock(&kvm->slots_lock);
844 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
845 	mutex_unlock(&kvm->slots_lock);
846 	return r;
847 }
848 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
849 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,int user_alloc)850 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
851 				   struct
852 				   kvm_userspace_memory_region *mem,
853 				   int user_alloc)
854 {
855 	if (mem->slot >= KVM_MEMORY_SLOTS)
856 		return -EINVAL;
857 	return kvm_set_memory_region(kvm, mem, user_alloc);
858 }
859 
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)860 int kvm_get_dirty_log(struct kvm *kvm,
861 			struct kvm_dirty_log *log, int *is_dirty)
862 {
863 	struct kvm_memory_slot *memslot;
864 	int r, i;
865 	unsigned long n;
866 	unsigned long any = 0;
867 
868 	r = -EINVAL;
869 	if (log->slot >= KVM_MEMORY_SLOTS)
870 		goto out;
871 
872 	memslot = &kvm->memslots->memslots[log->slot];
873 	r = -ENOENT;
874 	if (!memslot->dirty_bitmap)
875 		goto out;
876 
877 	n = kvm_dirty_bitmap_bytes(memslot);
878 
879 	for (i = 0; !any && i < n/sizeof(long); ++i)
880 		any = memslot->dirty_bitmap[i];
881 
882 	r = -EFAULT;
883 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
884 		goto out;
885 
886 	if (any)
887 		*is_dirty = 1;
888 
889 	r = 0;
890 out:
891 	return r;
892 }
893 
kvm_disable_largepages(void)894 void kvm_disable_largepages(void)
895 {
896 	largepages_enabled = false;
897 }
898 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
899 
is_error_page(struct page * page)900 int is_error_page(struct page *page)
901 {
902 	return page == bad_page || page == hwpoison_page || page == fault_page;
903 }
904 EXPORT_SYMBOL_GPL(is_error_page);
905 
is_error_pfn(pfn_t pfn)906 int is_error_pfn(pfn_t pfn)
907 {
908 	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
909 }
910 EXPORT_SYMBOL_GPL(is_error_pfn);
911 
is_hwpoison_pfn(pfn_t pfn)912 int is_hwpoison_pfn(pfn_t pfn)
913 {
914 	return pfn == hwpoison_pfn;
915 }
916 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
917 
is_fault_pfn(pfn_t pfn)918 int is_fault_pfn(pfn_t pfn)
919 {
920 	return pfn == fault_pfn;
921 }
922 EXPORT_SYMBOL_GPL(is_fault_pfn);
923 
bad_hva(void)924 static inline unsigned long bad_hva(void)
925 {
926 	return PAGE_OFFSET;
927 }
928 
kvm_is_error_hva(unsigned long addr)929 int kvm_is_error_hva(unsigned long addr)
930 {
931 	return addr == bad_hva();
932 }
933 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
934 
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)935 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
936 						gfn_t gfn)
937 {
938 	int i;
939 
940 	for (i = 0; i < slots->nmemslots; ++i) {
941 		struct kvm_memory_slot *memslot = &slots->memslots[i];
942 
943 		if (gfn >= memslot->base_gfn
944 		    && gfn < memslot->base_gfn + memslot->npages)
945 			return memslot;
946 	}
947 	return NULL;
948 }
949 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)950 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
951 {
952 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
953 }
954 EXPORT_SYMBOL_GPL(gfn_to_memslot);
955 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)956 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
957 {
958 	int i;
959 	struct kvm_memslots *slots = kvm_memslots(kvm);
960 
961 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
962 		struct kvm_memory_slot *memslot = &slots->memslots[i];
963 
964 		if (memslot->flags & KVM_MEMSLOT_INVALID)
965 			continue;
966 
967 		if (gfn >= memslot->base_gfn
968 		    && gfn < memslot->base_gfn + memslot->npages)
969 			return 1;
970 	}
971 	return 0;
972 }
973 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
974 
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)975 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
976 {
977 	struct vm_area_struct *vma;
978 	unsigned long addr, size;
979 
980 	size = PAGE_SIZE;
981 
982 	addr = gfn_to_hva(kvm, gfn);
983 	if (kvm_is_error_hva(addr))
984 		return PAGE_SIZE;
985 
986 	down_read(&current->mm->mmap_sem);
987 	vma = find_vma(current->mm, addr);
988 	if (!vma)
989 		goto out;
990 
991 	size = vma_kernel_pagesize(vma);
992 
993 out:
994 	up_read(&current->mm->mmap_sem);
995 
996 	return size;
997 }
998 
memslot_id(struct kvm * kvm,gfn_t gfn)999 int memslot_id(struct kvm *kvm, gfn_t gfn)
1000 {
1001 	int i;
1002 	struct kvm_memslots *slots = kvm_memslots(kvm);
1003 	struct kvm_memory_slot *memslot = NULL;
1004 
1005 	for (i = 0; i < slots->nmemslots; ++i) {
1006 		memslot = &slots->memslots[i];
1007 
1008 		if (gfn >= memslot->base_gfn
1009 		    && gfn < memslot->base_gfn + memslot->npages)
1010 			break;
1011 	}
1012 
1013 	return memslot - slots->memslots;
1014 }
1015 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1016 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1017 				     gfn_t *nr_pages)
1018 {
1019 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1020 		return bad_hva();
1021 
1022 	if (nr_pages)
1023 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1024 
1025 	return gfn_to_hva_memslot(slot, gfn);
1026 }
1027 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1028 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1029 {
1030 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1031 }
1032 EXPORT_SYMBOL_GPL(gfn_to_hva);
1033 
get_fault_pfn(void)1034 static pfn_t get_fault_pfn(void)
1035 {
1036 	get_page(fault_page);
1037 	return fault_pfn;
1038 }
1039 
get_user_page_nowait(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int write,struct page ** page)1040 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1041 	unsigned long start, int write, struct page **page)
1042 {
1043 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1044 
1045 	if (write)
1046 		flags |= FOLL_WRITE;
1047 
1048 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1049 }
1050 
check_user_page_hwpoison(unsigned long addr)1051 static inline int check_user_page_hwpoison(unsigned long addr)
1052 {
1053 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1054 
1055 	rc = __get_user_pages(current, current->mm, addr, 1,
1056 			      flags, NULL, NULL, NULL);
1057 	return rc == -EHWPOISON;
1058 }
1059 
hva_to_pfn(struct kvm * kvm,unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1060 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1061 			bool *async, bool write_fault, bool *writable)
1062 {
1063 	struct page *page[1];
1064 	int npages = 0;
1065 	pfn_t pfn;
1066 
1067 	/* we can do it either atomically or asynchronously, not both */
1068 	BUG_ON(atomic && async);
1069 
1070 	BUG_ON(!write_fault && !writable);
1071 
1072 	if (writable)
1073 		*writable = true;
1074 
1075 	if (atomic || async)
1076 		npages = __get_user_pages_fast(addr, 1, 1, page);
1077 
1078 	if (unlikely(npages != 1) && !atomic) {
1079 		might_sleep();
1080 
1081 		if (writable)
1082 			*writable = write_fault;
1083 
1084 		if (async) {
1085 			down_read(&current->mm->mmap_sem);
1086 			npages = get_user_page_nowait(current, current->mm,
1087 						     addr, write_fault, page);
1088 			up_read(&current->mm->mmap_sem);
1089 		} else
1090 			npages = get_user_pages_fast(addr, 1, write_fault,
1091 						     page);
1092 
1093 		/* map read fault as writable if possible */
1094 		if (unlikely(!write_fault) && npages == 1) {
1095 			struct page *wpage[1];
1096 
1097 			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1098 			if (npages == 1) {
1099 				*writable = true;
1100 				put_page(page[0]);
1101 				page[0] = wpage[0];
1102 			}
1103 			npages = 1;
1104 		}
1105 	}
1106 
1107 	if (unlikely(npages != 1)) {
1108 		struct vm_area_struct *vma;
1109 
1110 		if (atomic)
1111 			return get_fault_pfn();
1112 
1113 		down_read(&current->mm->mmap_sem);
1114 		if (npages == -EHWPOISON ||
1115 			(!async && check_user_page_hwpoison(addr))) {
1116 			up_read(&current->mm->mmap_sem);
1117 			get_page(hwpoison_page);
1118 			return page_to_pfn(hwpoison_page);
1119 		}
1120 
1121 		vma = find_vma_intersection(current->mm, addr, addr+1);
1122 
1123 		if (vma == NULL)
1124 			pfn = get_fault_pfn();
1125 		else if ((vma->vm_flags & VM_PFNMAP)) {
1126 			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1127 				vma->vm_pgoff;
1128 			BUG_ON(!kvm_is_mmio_pfn(pfn));
1129 		} else {
1130 			if (async && (vma->vm_flags & VM_WRITE))
1131 				*async = true;
1132 			pfn = get_fault_pfn();
1133 		}
1134 		up_read(&current->mm->mmap_sem);
1135 	} else
1136 		pfn = page_to_pfn(page[0]);
1137 
1138 	return pfn;
1139 }
1140 
hva_to_pfn_atomic(struct kvm * kvm,unsigned long addr)1141 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1142 {
1143 	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1144 }
1145 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1146 
__gfn_to_pfn(struct kvm * kvm,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1147 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1148 			  bool write_fault, bool *writable)
1149 {
1150 	unsigned long addr;
1151 
1152 	if (async)
1153 		*async = false;
1154 
1155 	addr = gfn_to_hva(kvm, gfn);
1156 	if (kvm_is_error_hva(addr)) {
1157 		get_page(bad_page);
1158 		return page_to_pfn(bad_page);
1159 	}
1160 
1161 	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1162 }
1163 
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1164 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1165 {
1166 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1167 }
1168 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1169 
gfn_to_pfn_async(struct kvm * kvm,gfn_t gfn,bool * async,bool write_fault,bool * writable)1170 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1171 		       bool write_fault, bool *writable)
1172 {
1173 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1174 }
1175 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1176 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1177 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1178 {
1179 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1180 }
1181 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1182 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1183 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1184 		      bool *writable)
1185 {
1186 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1187 }
1188 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1189 
gfn_to_pfn_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn)1190 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1191 			 struct kvm_memory_slot *slot, gfn_t gfn)
1192 {
1193 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1194 	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1195 }
1196 
gfn_to_page_many_atomic(struct kvm * kvm,gfn_t gfn,struct page ** pages,int nr_pages)1197 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1198 								  int nr_pages)
1199 {
1200 	unsigned long addr;
1201 	gfn_t entry;
1202 
1203 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1204 	if (kvm_is_error_hva(addr))
1205 		return -1;
1206 
1207 	if (entry < nr_pages)
1208 		return 0;
1209 
1210 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1211 }
1212 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1213 
gfn_to_page(struct kvm * kvm,gfn_t gfn)1214 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1215 {
1216 	pfn_t pfn;
1217 
1218 	pfn = gfn_to_pfn(kvm, gfn);
1219 	if (!kvm_is_mmio_pfn(pfn))
1220 		return pfn_to_page(pfn);
1221 
1222 	WARN_ON(kvm_is_mmio_pfn(pfn));
1223 
1224 	get_page(bad_page);
1225 	return bad_page;
1226 }
1227 
1228 EXPORT_SYMBOL_GPL(gfn_to_page);
1229 
kvm_release_page_clean(struct page * page)1230 void kvm_release_page_clean(struct page *page)
1231 {
1232 	kvm_release_pfn_clean(page_to_pfn(page));
1233 }
1234 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1235 
kvm_release_pfn_clean(pfn_t pfn)1236 void kvm_release_pfn_clean(pfn_t pfn)
1237 {
1238 	if (!kvm_is_mmio_pfn(pfn))
1239 		put_page(pfn_to_page(pfn));
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1242 
kvm_release_page_dirty(struct page * page)1243 void kvm_release_page_dirty(struct page *page)
1244 {
1245 	kvm_release_pfn_dirty(page_to_pfn(page));
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1248 
kvm_release_pfn_dirty(pfn_t pfn)1249 void kvm_release_pfn_dirty(pfn_t pfn)
1250 {
1251 	kvm_set_pfn_dirty(pfn);
1252 	kvm_release_pfn_clean(pfn);
1253 }
1254 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1255 
kvm_set_page_dirty(struct page * page)1256 void kvm_set_page_dirty(struct page *page)
1257 {
1258 	kvm_set_pfn_dirty(page_to_pfn(page));
1259 }
1260 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1261 
kvm_set_pfn_dirty(pfn_t pfn)1262 void kvm_set_pfn_dirty(pfn_t pfn)
1263 {
1264 	if (!kvm_is_mmio_pfn(pfn)) {
1265 		struct page *page = pfn_to_page(pfn);
1266 		if (!PageReserved(page))
1267 			SetPageDirty(page);
1268 	}
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1271 
kvm_set_pfn_accessed(pfn_t pfn)1272 void kvm_set_pfn_accessed(pfn_t pfn)
1273 {
1274 	if (!kvm_is_mmio_pfn(pfn))
1275 		mark_page_accessed(pfn_to_page(pfn));
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1278 
kvm_get_pfn(pfn_t pfn)1279 void kvm_get_pfn(pfn_t pfn)
1280 {
1281 	if (!kvm_is_mmio_pfn(pfn))
1282 		get_page(pfn_to_page(pfn));
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1285 
next_segment(unsigned long len,int offset)1286 static int next_segment(unsigned long len, int offset)
1287 {
1288 	if (len > PAGE_SIZE - offset)
1289 		return PAGE_SIZE - offset;
1290 	else
1291 		return len;
1292 }
1293 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1294 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1295 			int len)
1296 {
1297 	int r;
1298 	unsigned long addr;
1299 
1300 	addr = gfn_to_hva(kvm, gfn);
1301 	if (kvm_is_error_hva(addr))
1302 		return -EFAULT;
1303 	r = copy_from_user(data, (void __user *)addr + offset, len);
1304 	if (r)
1305 		return -EFAULT;
1306 	return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1309 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1310 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1311 {
1312 	gfn_t gfn = gpa >> PAGE_SHIFT;
1313 	int seg;
1314 	int offset = offset_in_page(gpa);
1315 	int ret;
1316 
1317 	while ((seg = next_segment(len, offset)) != 0) {
1318 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1319 		if (ret < 0)
1320 			return ret;
1321 		offset = 0;
1322 		len -= seg;
1323 		data += seg;
1324 		++gfn;
1325 	}
1326 	return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_read_guest);
1329 
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1330 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1331 			  unsigned long len)
1332 {
1333 	int r;
1334 	unsigned long addr;
1335 	gfn_t gfn = gpa >> PAGE_SHIFT;
1336 	int offset = offset_in_page(gpa);
1337 
1338 	addr = gfn_to_hva(kvm, gfn);
1339 	if (kvm_is_error_hva(addr))
1340 		return -EFAULT;
1341 	pagefault_disable();
1342 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1343 	pagefault_enable();
1344 	if (r)
1345 		return -EFAULT;
1346 	return 0;
1347 }
1348 EXPORT_SYMBOL(kvm_read_guest_atomic);
1349 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1350 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1351 			 int offset, int len)
1352 {
1353 	int r;
1354 	unsigned long addr;
1355 
1356 	addr = gfn_to_hva(kvm, gfn);
1357 	if (kvm_is_error_hva(addr))
1358 		return -EFAULT;
1359 	r = copy_to_user((void __user *)addr + offset, data, len);
1360 	if (r)
1361 		return -EFAULT;
1362 	mark_page_dirty(kvm, gfn);
1363 	return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1366 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1367 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1368 		    unsigned long len)
1369 {
1370 	gfn_t gfn = gpa >> PAGE_SHIFT;
1371 	int seg;
1372 	int offset = offset_in_page(gpa);
1373 	int ret;
1374 
1375 	while ((seg = next_segment(len, offset)) != 0) {
1376 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1377 		if (ret < 0)
1378 			return ret;
1379 		offset = 0;
1380 		len -= seg;
1381 		data += seg;
1382 		++gfn;
1383 	}
1384 	return 0;
1385 }
1386 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa)1387 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1388 			      gpa_t gpa)
1389 {
1390 	struct kvm_memslots *slots = kvm_memslots(kvm);
1391 	int offset = offset_in_page(gpa);
1392 	gfn_t gfn = gpa >> PAGE_SHIFT;
1393 
1394 	ghc->gpa = gpa;
1395 	ghc->generation = slots->generation;
1396 	ghc->memslot = __gfn_to_memslot(slots, gfn);
1397 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1398 	if (!kvm_is_error_hva(ghc->hva))
1399 		ghc->hva += offset;
1400 	else
1401 		return -EFAULT;
1402 
1403 	return 0;
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1406 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1407 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1408 			   void *data, unsigned long len)
1409 {
1410 	struct kvm_memslots *slots = kvm_memslots(kvm);
1411 	int r;
1412 
1413 	if (slots->generation != ghc->generation)
1414 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1415 
1416 	if (kvm_is_error_hva(ghc->hva))
1417 		return -EFAULT;
1418 
1419 	r = copy_to_user((void __user *)ghc->hva, data, len);
1420 	if (r)
1421 		return -EFAULT;
1422 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1423 
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1427 
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)1428 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1429 {
1430 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1431 				    offset, len);
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1434 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)1435 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1436 {
1437 	gfn_t gfn = gpa >> PAGE_SHIFT;
1438 	int seg;
1439 	int offset = offset_in_page(gpa);
1440 	int ret;
1441 
1442         while ((seg = next_segment(len, offset)) != 0) {
1443 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1444 		if (ret < 0)
1445 			return ret;
1446 		offset = 0;
1447 		len -= seg;
1448 		++gfn;
1449 	}
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1453 
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)1454 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1455 			     gfn_t gfn)
1456 {
1457 	if (memslot && memslot->dirty_bitmap) {
1458 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1459 
1460 		__set_bit_le(rel_gfn, memslot->dirty_bitmap);
1461 	}
1462 }
1463 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)1464 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1465 {
1466 	struct kvm_memory_slot *memslot;
1467 
1468 	memslot = gfn_to_memslot(kvm, gfn);
1469 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1470 }
1471 
1472 /*
1473  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1474  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)1475 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1476 {
1477 	DEFINE_WAIT(wait);
1478 
1479 	for (;;) {
1480 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1481 
1482 		if (kvm_arch_vcpu_runnable(vcpu)) {
1483 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1484 			break;
1485 		}
1486 		if (kvm_cpu_has_pending_timer(vcpu))
1487 			break;
1488 		if (signal_pending(current))
1489 			break;
1490 
1491 		schedule();
1492 	}
1493 
1494 	finish_wait(&vcpu->wq, &wait);
1495 }
1496 
kvm_resched(struct kvm_vcpu * vcpu)1497 void kvm_resched(struct kvm_vcpu *vcpu)
1498 {
1499 	if (!need_resched())
1500 		return;
1501 	cond_resched();
1502 }
1503 EXPORT_SYMBOL_GPL(kvm_resched);
1504 
kvm_vcpu_on_spin(struct kvm_vcpu * me)1505 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1506 {
1507 	struct kvm *kvm = me->kvm;
1508 	struct kvm_vcpu *vcpu;
1509 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1510 	int yielded = 0;
1511 	int pass;
1512 	int i;
1513 
1514 	/*
1515 	 * We boost the priority of a VCPU that is runnable but not
1516 	 * currently running, because it got preempted by something
1517 	 * else and called schedule in __vcpu_run.  Hopefully that
1518 	 * VCPU is holding the lock that we need and will release it.
1519 	 * We approximate round-robin by starting at the last boosted VCPU.
1520 	 */
1521 	for (pass = 0; pass < 2 && !yielded; pass++) {
1522 		kvm_for_each_vcpu(i, vcpu, kvm) {
1523 			struct task_struct *task = NULL;
1524 			struct pid *pid;
1525 			if (!pass && i < last_boosted_vcpu) {
1526 				i = last_boosted_vcpu;
1527 				continue;
1528 			} else if (pass && i > last_boosted_vcpu)
1529 				break;
1530 			if (vcpu == me)
1531 				continue;
1532 			if (waitqueue_active(&vcpu->wq))
1533 				continue;
1534 			rcu_read_lock();
1535 			pid = rcu_dereference(vcpu->pid);
1536 			if (pid)
1537 				task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1538 			rcu_read_unlock();
1539 			if (!task)
1540 				continue;
1541 			if (task->flags & PF_VCPU) {
1542 				put_task_struct(task);
1543 				continue;
1544 			}
1545 			if (yield_to(task, 1)) {
1546 				put_task_struct(task);
1547 				kvm->last_boosted_vcpu = i;
1548 				yielded = 1;
1549 				break;
1550 			}
1551 			put_task_struct(task);
1552 		}
1553 	}
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1556 
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1557 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1558 {
1559 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1560 	struct page *page;
1561 
1562 	if (vmf->pgoff == 0)
1563 		page = virt_to_page(vcpu->run);
1564 #ifdef CONFIG_X86
1565 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1566 		page = virt_to_page(vcpu->arch.pio_data);
1567 #endif
1568 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1569 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1570 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1571 #endif
1572 	else
1573 		return VM_FAULT_SIGBUS;
1574 	get_page(page);
1575 	vmf->page = page;
1576 	return 0;
1577 }
1578 
1579 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1580 	.fault = kvm_vcpu_fault,
1581 };
1582 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)1583 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1584 {
1585 	vma->vm_ops = &kvm_vcpu_vm_ops;
1586 	return 0;
1587 }
1588 
kvm_vcpu_release(struct inode * inode,struct file * filp)1589 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1590 {
1591 	struct kvm_vcpu *vcpu = filp->private_data;
1592 
1593 	kvm_put_kvm(vcpu->kvm);
1594 	return 0;
1595 }
1596 
1597 static struct file_operations kvm_vcpu_fops = {
1598 	.release        = kvm_vcpu_release,
1599 	.unlocked_ioctl = kvm_vcpu_ioctl,
1600 	.compat_ioctl   = kvm_vcpu_ioctl,
1601 	.mmap           = kvm_vcpu_mmap,
1602 	.llseek		= noop_llseek,
1603 };
1604 
1605 /*
1606  * Allocates an inode for the vcpu.
1607  */
create_vcpu_fd(struct kvm_vcpu * vcpu)1608 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1609 {
1610 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1611 }
1612 
1613 /*
1614  * Creates some virtual cpus.  Good luck creating more than one.
1615  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)1616 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1617 {
1618 	int r;
1619 	struct kvm_vcpu *vcpu, *v;
1620 
1621 	vcpu = kvm_arch_vcpu_create(kvm, id);
1622 	if (IS_ERR(vcpu))
1623 		return PTR_ERR(vcpu);
1624 
1625 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1626 
1627 	r = kvm_arch_vcpu_setup(vcpu);
1628 	if (r)
1629 		return r;
1630 
1631 	mutex_lock(&kvm->lock);
1632 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1633 		r = -EINVAL;
1634 		goto vcpu_destroy;
1635 	}
1636 
1637 	kvm_for_each_vcpu(r, v, kvm)
1638 		if (v->vcpu_id == id) {
1639 			r = -EEXIST;
1640 			goto vcpu_destroy;
1641 		}
1642 
1643 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1644 
1645 	/* Now it's all set up, let userspace reach it */
1646 	kvm_get_kvm(kvm);
1647 	r = create_vcpu_fd(vcpu);
1648 	if (r < 0) {
1649 		kvm_put_kvm(kvm);
1650 		goto vcpu_destroy;
1651 	}
1652 
1653 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1654 	smp_wmb();
1655 	atomic_inc(&kvm->online_vcpus);
1656 
1657 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1658 	if (kvm->bsp_vcpu_id == id)
1659 		kvm->bsp_vcpu = vcpu;
1660 #endif
1661 	mutex_unlock(&kvm->lock);
1662 	return r;
1663 
1664 vcpu_destroy:
1665 	mutex_unlock(&kvm->lock);
1666 	kvm_arch_vcpu_destroy(vcpu);
1667 	return r;
1668 }
1669 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)1670 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1671 {
1672 	if (sigset) {
1673 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1674 		vcpu->sigset_active = 1;
1675 		vcpu->sigset = *sigset;
1676 	} else
1677 		vcpu->sigset_active = 0;
1678 	return 0;
1679 }
1680 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1681 static long kvm_vcpu_ioctl(struct file *filp,
1682 			   unsigned int ioctl, unsigned long arg)
1683 {
1684 	struct kvm_vcpu *vcpu = filp->private_data;
1685 	void __user *argp = (void __user *)arg;
1686 	int r;
1687 	struct kvm_fpu *fpu = NULL;
1688 	struct kvm_sregs *kvm_sregs = NULL;
1689 
1690 	if (vcpu->kvm->mm != current->mm)
1691 		return -EIO;
1692 
1693 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1694 	/*
1695 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1696 	 * so vcpu_load() would break it.
1697 	 */
1698 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1699 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1700 #endif
1701 
1702 
1703 	vcpu_load(vcpu);
1704 	switch (ioctl) {
1705 	case KVM_RUN:
1706 		r = -EINVAL;
1707 		if (arg)
1708 			goto out;
1709 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1710 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1711 		break;
1712 	case KVM_GET_REGS: {
1713 		struct kvm_regs *kvm_regs;
1714 
1715 		r = -ENOMEM;
1716 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1717 		if (!kvm_regs)
1718 			goto out;
1719 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1720 		if (r)
1721 			goto out_free1;
1722 		r = -EFAULT;
1723 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1724 			goto out_free1;
1725 		r = 0;
1726 out_free1:
1727 		kfree(kvm_regs);
1728 		break;
1729 	}
1730 	case KVM_SET_REGS: {
1731 		struct kvm_regs *kvm_regs;
1732 
1733 		r = -ENOMEM;
1734 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1735 		if (!kvm_regs)
1736 			goto out;
1737 		r = -EFAULT;
1738 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1739 			goto out_free2;
1740 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1741 		if (r)
1742 			goto out_free2;
1743 		r = 0;
1744 out_free2:
1745 		kfree(kvm_regs);
1746 		break;
1747 	}
1748 	case KVM_GET_SREGS: {
1749 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1750 		r = -ENOMEM;
1751 		if (!kvm_sregs)
1752 			goto out;
1753 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1754 		if (r)
1755 			goto out;
1756 		r = -EFAULT;
1757 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1758 			goto out;
1759 		r = 0;
1760 		break;
1761 	}
1762 	case KVM_SET_SREGS: {
1763 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1764 		r = -ENOMEM;
1765 		if (!kvm_sregs)
1766 			goto out;
1767 		r = -EFAULT;
1768 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1769 			goto out;
1770 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1771 		if (r)
1772 			goto out;
1773 		r = 0;
1774 		break;
1775 	}
1776 	case KVM_GET_MP_STATE: {
1777 		struct kvm_mp_state mp_state;
1778 
1779 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1780 		if (r)
1781 			goto out;
1782 		r = -EFAULT;
1783 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1784 			goto out;
1785 		r = 0;
1786 		break;
1787 	}
1788 	case KVM_SET_MP_STATE: {
1789 		struct kvm_mp_state mp_state;
1790 
1791 		r = -EFAULT;
1792 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1793 			goto out;
1794 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1795 		if (r)
1796 			goto out;
1797 		r = 0;
1798 		break;
1799 	}
1800 	case KVM_TRANSLATE: {
1801 		struct kvm_translation tr;
1802 
1803 		r = -EFAULT;
1804 		if (copy_from_user(&tr, argp, sizeof tr))
1805 			goto out;
1806 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1807 		if (r)
1808 			goto out;
1809 		r = -EFAULT;
1810 		if (copy_to_user(argp, &tr, sizeof tr))
1811 			goto out;
1812 		r = 0;
1813 		break;
1814 	}
1815 	case KVM_SET_GUEST_DEBUG: {
1816 		struct kvm_guest_debug dbg;
1817 
1818 		r = -EFAULT;
1819 		if (copy_from_user(&dbg, argp, sizeof dbg))
1820 			goto out;
1821 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1822 		if (r)
1823 			goto out;
1824 		r = 0;
1825 		break;
1826 	}
1827 	case KVM_SET_SIGNAL_MASK: {
1828 		struct kvm_signal_mask __user *sigmask_arg = argp;
1829 		struct kvm_signal_mask kvm_sigmask;
1830 		sigset_t sigset, *p;
1831 
1832 		p = NULL;
1833 		if (argp) {
1834 			r = -EFAULT;
1835 			if (copy_from_user(&kvm_sigmask, argp,
1836 					   sizeof kvm_sigmask))
1837 				goto out;
1838 			r = -EINVAL;
1839 			if (kvm_sigmask.len != sizeof sigset)
1840 				goto out;
1841 			r = -EFAULT;
1842 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1843 					   sizeof sigset))
1844 				goto out;
1845 			p = &sigset;
1846 		}
1847 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1848 		break;
1849 	}
1850 	case KVM_GET_FPU: {
1851 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1852 		r = -ENOMEM;
1853 		if (!fpu)
1854 			goto out;
1855 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1856 		if (r)
1857 			goto out;
1858 		r = -EFAULT;
1859 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1860 			goto out;
1861 		r = 0;
1862 		break;
1863 	}
1864 	case KVM_SET_FPU: {
1865 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1866 		r = -ENOMEM;
1867 		if (!fpu)
1868 			goto out;
1869 		r = -EFAULT;
1870 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1871 			goto out;
1872 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1873 		if (r)
1874 			goto out;
1875 		r = 0;
1876 		break;
1877 	}
1878 	default:
1879 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1880 	}
1881 out:
1882 	vcpu_put(vcpu);
1883 	kfree(fpu);
1884 	kfree(kvm_sregs);
1885 	return r;
1886 }
1887 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1888 static long kvm_vm_ioctl(struct file *filp,
1889 			   unsigned int ioctl, unsigned long arg)
1890 {
1891 	struct kvm *kvm = filp->private_data;
1892 	void __user *argp = (void __user *)arg;
1893 	int r;
1894 
1895 	if (kvm->mm != current->mm)
1896 		return -EIO;
1897 	switch (ioctl) {
1898 	case KVM_CREATE_VCPU:
1899 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1900 		if (r < 0)
1901 			goto out;
1902 		break;
1903 	case KVM_SET_USER_MEMORY_REGION: {
1904 		struct kvm_userspace_memory_region kvm_userspace_mem;
1905 
1906 		r = -EFAULT;
1907 		if (copy_from_user(&kvm_userspace_mem, argp,
1908 						sizeof kvm_userspace_mem))
1909 			goto out;
1910 
1911 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1912 		if (r)
1913 			goto out;
1914 		break;
1915 	}
1916 	case KVM_GET_DIRTY_LOG: {
1917 		struct kvm_dirty_log log;
1918 
1919 		r = -EFAULT;
1920 		if (copy_from_user(&log, argp, sizeof log))
1921 			goto out;
1922 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1923 		if (r)
1924 			goto out;
1925 		break;
1926 	}
1927 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1928 	case KVM_REGISTER_COALESCED_MMIO: {
1929 		struct kvm_coalesced_mmio_zone zone;
1930 		r = -EFAULT;
1931 		if (copy_from_user(&zone, argp, sizeof zone))
1932 			goto out;
1933 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1934 		if (r)
1935 			goto out;
1936 		r = 0;
1937 		break;
1938 	}
1939 	case KVM_UNREGISTER_COALESCED_MMIO: {
1940 		struct kvm_coalesced_mmio_zone zone;
1941 		r = -EFAULT;
1942 		if (copy_from_user(&zone, argp, sizeof zone))
1943 			goto out;
1944 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1945 		if (r)
1946 			goto out;
1947 		r = 0;
1948 		break;
1949 	}
1950 #endif
1951 	case KVM_IRQFD: {
1952 		struct kvm_irqfd data;
1953 
1954 		r = -EFAULT;
1955 		if (copy_from_user(&data, argp, sizeof data))
1956 			goto out;
1957 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1958 		break;
1959 	}
1960 	case KVM_IOEVENTFD: {
1961 		struct kvm_ioeventfd data;
1962 
1963 		r = -EFAULT;
1964 		if (copy_from_user(&data, argp, sizeof data))
1965 			goto out;
1966 		r = kvm_ioeventfd(kvm, &data);
1967 		break;
1968 	}
1969 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1970 	case KVM_SET_BOOT_CPU_ID:
1971 		r = 0;
1972 		mutex_lock(&kvm->lock);
1973 		if (atomic_read(&kvm->online_vcpus) != 0)
1974 			r = -EBUSY;
1975 		else
1976 			kvm->bsp_vcpu_id = arg;
1977 		mutex_unlock(&kvm->lock);
1978 		break;
1979 #endif
1980 	default:
1981 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1982 		if (r == -ENOTTY)
1983 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1984 	}
1985 out:
1986 	return r;
1987 }
1988 
1989 #ifdef CONFIG_COMPAT
1990 struct compat_kvm_dirty_log {
1991 	__u32 slot;
1992 	__u32 padding1;
1993 	union {
1994 		compat_uptr_t dirty_bitmap; /* one bit per page */
1995 		__u64 padding2;
1996 	};
1997 };
1998 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1999 static long kvm_vm_compat_ioctl(struct file *filp,
2000 			   unsigned int ioctl, unsigned long arg)
2001 {
2002 	struct kvm *kvm = filp->private_data;
2003 	int r;
2004 
2005 	if (kvm->mm != current->mm)
2006 		return -EIO;
2007 	switch (ioctl) {
2008 	case KVM_GET_DIRTY_LOG: {
2009 		struct compat_kvm_dirty_log compat_log;
2010 		struct kvm_dirty_log log;
2011 
2012 		r = -EFAULT;
2013 		if (copy_from_user(&compat_log, (void __user *)arg,
2014 				   sizeof(compat_log)))
2015 			goto out;
2016 		log.slot	 = compat_log.slot;
2017 		log.padding1	 = compat_log.padding1;
2018 		log.padding2	 = compat_log.padding2;
2019 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2020 
2021 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2022 		if (r)
2023 			goto out;
2024 		break;
2025 	}
2026 	default:
2027 		r = kvm_vm_ioctl(filp, ioctl, arg);
2028 	}
2029 
2030 out:
2031 	return r;
2032 }
2033 #endif
2034 
kvm_vm_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2035 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2036 {
2037 	struct page *page[1];
2038 	unsigned long addr;
2039 	int npages;
2040 	gfn_t gfn = vmf->pgoff;
2041 	struct kvm *kvm = vma->vm_file->private_data;
2042 
2043 	addr = gfn_to_hva(kvm, gfn);
2044 	if (kvm_is_error_hva(addr))
2045 		return VM_FAULT_SIGBUS;
2046 
2047 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2048 				NULL);
2049 	if (unlikely(npages != 1))
2050 		return VM_FAULT_SIGBUS;
2051 
2052 	vmf->page = page[0];
2053 	return 0;
2054 }
2055 
2056 static const struct vm_operations_struct kvm_vm_vm_ops = {
2057 	.fault = kvm_vm_fault,
2058 };
2059 
kvm_vm_mmap(struct file * file,struct vm_area_struct * vma)2060 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2061 {
2062 	vma->vm_ops = &kvm_vm_vm_ops;
2063 	return 0;
2064 }
2065 
2066 static struct file_operations kvm_vm_fops = {
2067 	.release        = kvm_vm_release,
2068 	.unlocked_ioctl = kvm_vm_ioctl,
2069 #ifdef CONFIG_COMPAT
2070 	.compat_ioctl   = kvm_vm_compat_ioctl,
2071 #endif
2072 	.mmap           = kvm_vm_mmap,
2073 	.llseek		= noop_llseek,
2074 };
2075 
kvm_dev_ioctl_create_vm(void)2076 static int kvm_dev_ioctl_create_vm(void)
2077 {
2078 	int r;
2079 	struct kvm *kvm;
2080 
2081 	kvm = kvm_create_vm();
2082 	if (IS_ERR(kvm))
2083 		return PTR_ERR(kvm);
2084 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2085 	r = kvm_coalesced_mmio_init(kvm);
2086 	if (r < 0) {
2087 		kvm_put_kvm(kvm);
2088 		return r;
2089 	}
2090 #endif
2091 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2092 	if (r < 0)
2093 		kvm_put_kvm(kvm);
2094 
2095 	return r;
2096 }
2097 
kvm_dev_ioctl_check_extension_generic(long arg)2098 static long kvm_dev_ioctl_check_extension_generic(long arg)
2099 {
2100 	switch (arg) {
2101 	case KVM_CAP_USER_MEMORY:
2102 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2103 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2104 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2105 	case KVM_CAP_SET_BOOT_CPU_ID:
2106 #endif
2107 	case KVM_CAP_INTERNAL_ERROR_DATA:
2108 		return 1;
2109 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2110 	case KVM_CAP_IRQ_ROUTING:
2111 		return KVM_MAX_IRQ_ROUTES;
2112 #endif
2113 	default:
2114 		break;
2115 	}
2116 	return kvm_dev_ioctl_check_extension(arg);
2117 }
2118 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2119 static long kvm_dev_ioctl(struct file *filp,
2120 			  unsigned int ioctl, unsigned long arg)
2121 {
2122 	long r = -EINVAL;
2123 
2124 	switch (ioctl) {
2125 	case KVM_GET_API_VERSION:
2126 		r = -EINVAL;
2127 		if (arg)
2128 			goto out;
2129 		r = KVM_API_VERSION;
2130 		break;
2131 	case KVM_CREATE_VM:
2132 		r = -EINVAL;
2133 		if (arg)
2134 			goto out;
2135 		r = kvm_dev_ioctl_create_vm();
2136 		break;
2137 	case KVM_CHECK_EXTENSION:
2138 		r = kvm_dev_ioctl_check_extension_generic(arg);
2139 		break;
2140 	case KVM_GET_VCPU_MMAP_SIZE:
2141 		r = -EINVAL;
2142 		if (arg)
2143 			goto out;
2144 		r = PAGE_SIZE;     /* struct kvm_run */
2145 #ifdef CONFIG_X86
2146 		r += PAGE_SIZE;    /* pio data page */
2147 #endif
2148 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2149 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2150 #endif
2151 		break;
2152 	case KVM_TRACE_ENABLE:
2153 	case KVM_TRACE_PAUSE:
2154 	case KVM_TRACE_DISABLE:
2155 		r = -EOPNOTSUPP;
2156 		break;
2157 	default:
2158 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2159 	}
2160 out:
2161 	return r;
2162 }
2163 
2164 static struct file_operations kvm_chardev_ops = {
2165 	.unlocked_ioctl = kvm_dev_ioctl,
2166 	.compat_ioctl   = kvm_dev_ioctl,
2167 	.llseek		= noop_llseek,
2168 };
2169 
2170 static struct miscdevice kvm_dev = {
2171 	KVM_MINOR,
2172 	"kvm",
2173 	&kvm_chardev_ops,
2174 };
2175 
hardware_enable_nolock(void * junk)2176 static void hardware_enable_nolock(void *junk)
2177 {
2178 	int cpu = raw_smp_processor_id();
2179 	int r;
2180 
2181 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2182 		return;
2183 
2184 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2185 
2186 	r = kvm_arch_hardware_enable(NULL);
2187 
2188 	if (r) {
2189 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2190 		atomic_inc(&hardware_enable_failed);
2191 		printk(KERN_INFO "kvm: enabling virtualization on "
2192 				 "CPU%d failed\n", cpu);
2193 	}
2194 }
2195 
hardware_enable(void * junk)2196 static void hardware_enable(void *junk)
2197 {
2198 	raw_spin_lock(&kvm_lock);
2199 	hardware_enable_nolock(junk);
2200 	raw_spin_unlock(&kvm_lock);
2201 }
2202 
hardware_disable_nolock(void * junk)2203 static void hardware_disable_nolock(void *junk)
2204 {
2205 	int cpu = raw_smp_processor_id();
2206 
2207 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2208 		return;
2209 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2210 	kvm_arch_hardware_disable(NULL);
2211 }
2212 
hardware_disable(void * junk)2213 static void hardware_disable(void *junk)
2214 {
2215 	raw_spin_lock(&kvm_lock);
2216 	hardware_disable_nolock(junk);
2217 	raw_spin_unlock(&kvm_lock);
2218 }
2219 
hardware_disable_all_nolock(void)2220 static void hardware_disable_all_nolock(void)
2221 {
2222 	BUG_ON(!kvm_usage_count);
2223 
2224 	kvm_usage_count--;
2225 	if (!kvm_usage_count)
2226 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2227 }
2228 
hardware_disable_all(void)2229 static void hardware_disable_all(void)
2230 {
2231 	raw_spin_lock(&kvm_lock);
2232 	hardware_disable_all_nolock();
2233 	raw_spin_unlock(&kvm_lock);
2234 }
2235 
hardware_enable_all(void)2236 static int hardware_enable_all(void)
2237 {
2238 	int r = 0;
2239 
2240 	raw_spin_lock(&kvm_lock);
2241 
2242 	kvm_usage_count++;
2243 	if (kvm_usage_count == 1) {
2244 		atomic_set(&hardware_enable_failed, 0);
2245 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2246 
2247 		if (atomic_read(&hardware_enable_failed)) {
2248 			hardware_disable_all_nolock();
2249 			r = -EBUSY;
2250 		}
2251 	}
2252 
2253 	raw_spin_unlock(&kvm_lock);
2254 
2255 	return r;
2256 }
2257 
kvm_cpu_hotplug(struct notifier_block * notifier,unsigned long val,void * v)2258 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2259 			   void *v)
2260 {
2261 	int cpu = (long)v;
2262 
2263 	if (!kvm_usage_count)
2264 		return NOTIFY_OK;
2265 
2266 	val &= ~CPU_TASKS_FROZEN;
2267 	switch (val) {
2268 	case CPU_DYING:
2269 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2270 		       cpu);
2271 		hardware_disable(NULL);
2272 		break;
2273 	case CPU_STARTING:
2274 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2275 		       cpu);
2276 		hardware_enable(NULL);
2277 		break;
2278 	}
2279 	return NOTIFY_OK;
2280 }
2281 
2282 
kvm_spurious_fault(void)2283 asmlinkage void kvm_spurious_fault(void)
2284 {
2285 	/* Fault while not rebooting.  We want the trace. */
2286 	BUG();
2287 }
2288 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2289 
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)2290 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2291 		      void *v)
2292 {
2293 	/*
2294 	 * Some (well, at least mine) BIOSes hang on reboot if
2295 	 * in vmx root mode.
2296 	 *
2297 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2298 	 */
2299 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2300 	kvm_rebooting = true;
2301 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2302 	return NOTIFY_OK;
2303 }
2304 
2305 static struct notifier_block kvm_reboot_notifier = {
2306 	.notifier_call = kvm_reboot,
2307 	.priority = 0,
2308 };
2309 
kvm_io_bus_destroy(struct kvm_io_bus * bus)2310 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2311 {
2312 	int i;
2313 
2314 	for (i = 0; i < bus->dev_count; i++) {
2315 		struct kvm_io_device *pos = bus->devs[i];
2316 
2317 		kvm_iodevice_destructor(pos);
2318 	}
2319 	kfree(bus);
2320 }
2321 
2322 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)2323 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2324 		     int len, const void *val)
2325 {
2326 	int i;
2327 	struct kvm_io_bus *bus;
2328 
2329 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2330 	for (i = 0; i < bus->dev_count; i++)
2331 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2332 			return 0;
2333 	return -EOPNOTSUPP;
2334 }
2335 
2336 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)2337 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2338 		    int len, void *val)
2339 {
2340 	int i;
2341 	struct kvm_io_bus *bus;
2342 
2343 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2344 	for (i = 0; i < bus->dev_count; i++)
2345 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2346 			return 0;
2347 	return -EOPNOTSUPP;
2348 }
2349 
2350 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)2351 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2352 			    struct kvm_io_device *dev)
2353 {
2354 	struct kvm_io_bus *new_bus, *bus;
2355 
2356 	bus = kvm->buses[bus_idx];
2357 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2358 		return -ENOSPC;
2359 
2360 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2361 	if (!new_bus)
2362 		return -ENOMEM;
2363 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2364 	new_bus->devs[new_bus->dev_count++] = dev;
2365 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2366 	synchronize_srcu_expedited(&kvm->srcu);
2367 	kfree(bus);
2368 
2369 	return 0;
2370 }
2371 
2372 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)2373 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2374 			      struct kvm_io_device *dev)
2375 {
2376 	int i, r;
2377 	struct kvm_io_bus *new_bus, *bus;
2378 
2379 	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2380 	if (!new_bus)
2381 		return -ENOMEM;
2382 
2383 	bus = kvm->buses[bus_idx];
2384 	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2385 
2386 	r = -ENOENT;
2387 	for (i = 0; i < new_bus->dev_count; i++)
2388 		if (new_bus->devs[i] == dev) {
2389 			r = 0;
2390 			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2391 			break;
2392 		}
2393 
2394 	if (r) {
2395 		kfree(new_bus);
2396 		return r;
2397 	}
2398 
2399 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2400 	synchronize_srcu_expedited(&kvm->srcu);
2401 	kfree(bus);
2402 	return r;
2403 }
2404 
2405 static struct notifier_block kvm_cpu_notifier = {
2406 	.notifier_call = kvm_cpu_hotplug,
2407 };
2408 
vm_stat_get(void * _offset,u64 * val)2409 static int vm_stat_get(void *_offset, u64 *val)
2410 {
2411 	unsigned offset = (long)_offset;
2412 	struct kvm *kvm;
2413 
2414 	*val = 0;
2415 	raw_spin_lock(&kvm_lock);
2416 	list_for_each_entry(kvm, &vm_list, vm_list)
2417 		*val += *(u32 *)((void *)kvm + offset);
2418 	raw_spin_unlock(&kvm_lock);
2419 	return 0;
2420 }
2421 
2422 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2423 
vcpu_stat_get(void * _offset,u64 * val)2424 static int vcpu_stat_get(void *_offset, u64 *val)
2425 {
2426 	unsigned offset = (long)_offset;
2427 	struct kvm *kvm;
2428 	struct kvm_vcpu *vcpu;
2429 	int i;
2430 
2431 	*val = 0;
2432 	raw_spin_lock(&kvm_lock);
2433 	list_for_each_entry(kvm, &vm_list, vm_list)
2434 		kvm_for_each_vcpu(i, vcpu, kvm)
2435 			*val += *(u32 *)((void *)vcpu + offset);
2436 
2437 	raw_spin_unlock(&kvm_lock);
2438 	return 0;
2439 }
2440 
2441 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2442 
2443 static const struct file_operations *stat_fops[] = {
2444 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2445 	[KVM_STAT_VM]   = &vm_stat_fops,
2446 };
2447 
kvm_init_debug(void)2448 static void kvm_init_debug(void)
2449 {
2450 	struct kvm_stats_debugfs_item *p;
2451 
2452 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2453 	for (p = debugfs_entries; p->name; ++p)
2454 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2455 						(void *)(long)p->offset,
2456 						stat_fops[p->kind]);
2457 }
2458 
kvm_exit_debug(void)2459 static void kvm_exit_debug(void)
2460 {
2461 	struct kvm_stats_debugfs_item *p;
2462 
2463 	for (p = debugfs_entries; p->name; ++p)
2464 		debugfs_remove(p->dentry);
2465 	debugfs_remove(kvm_debugfs_dir);
2466 }
2467 
kvm_suspend(void)2468 static int kvm_suspend(void)
2469 {
2470 	if (kvm_usage_count)
2471 		hardware_disable_nolock(NULL);
2472 	return 0;
2473 }
2474 
kvm_resume(void)2475 static void kvm_resume(void)
2476 {
2477 	if (kvm_usage_count) {
2478 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2479 		hardware_enable_nolock(NULL);
2480 	}
2481 }
2482 
2483 static struct syscore_ops kvm_syscore_ops = {
2484 	.suspend = kvm_suspend,
2485 	.resume = kvm_resume,
2486 };
2487 
2488 struct page *bad_page;
2489 pfn_t bad_pfn;
2490 
2491 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)2492 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2493 {
2494 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2495 }
2496 
kvm_sched_in(struct preempt_notifier * pn,int cpu)2497 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2498 {
2499 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2500 
2501 	kvm_arch_vcpu_load(vcpu, cpu);
2502 }
2503 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)2504 static void kvm_sched_out(struct preempt_notifier *pn,
2505 			  struct task_struct *next)
2506 {
2507 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2508 
2509 	kvm_arch_vcpu_put(vcpu);
2510 }
2511 
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)2512 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2513 		  struct module *module)
2514 {
2515 	int r;
2516 	int cpu;
2517 
2518 	r = kvm_arch_init(opaque);
2519 	if (r)
2520 		goto out_fail;
2521 
2522 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2523 
2524 	if (bad_page == NULL) {
2525 		r = -ENOMEM;
2526 		goto out;
2527 	}
2528 
2529 	bad_pfn = page_to_pfn(bad_page);
2530 
2531 	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2532 
2533 	if (hwpoison_page == NULL) {
2534 		r = -ENOMEM;
2535 		goto out_free_0;
2536 	}
2537 
2538 	hwpoison_pfn = page_to_pfn(hwpoison_page);
2539 
2540 	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2541 
2542 	if (fault_page == NULL) {
2543 		r = -ENOMEM;
2544 		goto out_free_0;
2545 	}
2546 
2547 	fault_pfn = page_to_pfn(fault_page);
2548 
2549 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2550 		r = -ENOMEM;
2551 		goto out_free_0;
2552 	}
2553 
2554 	r = kvm_arch_hardware_setup();
2555 	if (r < 0)
2556 		goto out_free_0a;
2557 
2558 	for_each_online_cpu(cpu) {
2559 		smp_call_function_single(cpu,
2560 				kvm_arch_check_processor_compat,
2561 				&r, 1);
2562 		if (r < 0)
2563 			goto out_free_1;
2564 	}
2565 
2566 	r = register_cpu_notifier(&kvm_cpu_notifier);
2567 	if (r)
2568 		goto out_free_2;
2569 	register_reboot_notifier(&kvm_reboot_notifier);
2570 
2571 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2572 	if (!vcpu_align)
2573 		vcpu_align = __alignof__(struct kvm_vcpu);
2574 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2575 					   0, NULL);
2576 	if (!kvm_vcpu_cache) {
2577 		r = -ENOMEM;
2578 		goto out_free_3;
2579 	}
2580 
2581 	r = kvm_async_pf_init();
2582 	if (r)
2583 		goto out_free;
2584 
2585 	kvm_chardev_ops.owner = module;
2586 	kvm_vm_fops.owner = module;
2587 	kvm_vcpu_fops.owner = module;
2588 
2589 	r = misc_register(&kvm_dev);
2590 	if (r) {
2591 		printk(KERN_ERR "kvm: misc device register failed\n");
2592 		goto out_unreg;
2593 	}
2594 
2595 	register_syscore_ops(&kvm_syscore_ops);
2596 
2597 	kvm_preempt_ops.sched_in = kvm_sched_in;
2598 	kvm_preempt_ops.sched_out = kvm_sched_out;
2599 
2600 	kvm_init_debug();
2601 
2602 	return 0;
2603 
2604 out_unreg:
2605 	kvm_async_pf_deinit();
2606 out_free:
2607 	kmem_cache_destroy(kvm_vcpu_cache);
2608 out_free_3:
2609 	unregister_reboot_notifier(&kvm_reboot_notifier);
2610 	unregister_cpu_notifier(&kvm_cpu_notifier);
2611 out_free_2:
2612 out_free_1:
2613 	kvm_arch_hardware_unsetup();
2614 out_free_0a:
2615 	free_cpumask_var(cpus_hardware_enabled);
2616 out_free_0:
2617 	if (fault_page)
2618 		__free_page(fault_page);
2619 	if (hwpoison_page)
2620 		__free_page(hwpoison_page);
2621 	__free_page(bad_page);
2622 out:
2623 	kvm_arch_exit();
2624 out_fail:
2625 	return r;
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_init);
2628 
kvm_exit(void)2629 void kvm_exit(void)
2630 {
2631 	kvm_exit_debug();
2632 	misc_deregister(&kvm_dev);
2633 	kmem_cache_destroy(kvm_vcpu_cache);
2634 	kvm_async_pf_deinit();
2635 	unregister_syscore_ops(&kvm_syscore_ops);
2636 	unregister_reboot_notifier(&kvm_reboot_notifier);
2637 	unregister_cpu_notifier(&kvm_cpu_notifier);
2638 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2639 	kvm_arch_hardware_unsetup();
2640 	kvm_arch_exit();
2641 	free_cpumask_var(cpus_hardware_enabled);
2642 	__free_page(hwpoison_page);
2643 	__free_page(bad_page);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_exit);
2646