1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10 
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13 
14 #include "util/debug.h"
15 
16 #include <sys/prctl.h>
17 
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21 
22 static char			const *input_name = "perf.data";
23 
24 static char			default_sort_order[] = "avg, max, switch, runtime";
25 static const char		*sort_order = default_sort_order;
26 
27 static int			profile_cpu = -1;
28 
29 #define PR_SET_NAME		15               /* Set process name */
30 #define MAX_CPUS		4096
31 
32 static u64			run_measurement_overhead;
33 static u64			sleep_measurement_overhead;
34 
35 #define COMM_LEN		20
36 #define SYM_LEN			129
37 
38 #define MAX_PID			65536
39 
40 static unsigned long		nr_tasks;
41 
42 struct sched_atom;
43 
44 struct task_desc {
45 	unsigned long		nr;
46 	unsigned long		pid;
47 	char			comm[COMM_LEN];
48 
49 	unsigned long		nr_events;
50 	unsigned long		curr_event;
51 	struct sched_atom	**atoms;
52 
53 	pthread_t		thread;
54 	sem_t			sleep_sem;
55 
56 	sem_t			ready_for_work;
57 	sem_t			work_done_sem;
58 
59 	u64			cpu_usage;
60 };
61 
62 enum sched_event_type {
63 	SCHED_EVENT_RUN,
64 	SCHED_EVENT_SLEEP,
65 	SCHED_EVENT_WAKEUP,
66 	SCHED_EVENT_MIGRATION,
67 };
68 
69 struct sched_atom {
70 	enum sched_event_type	type;
71 	int			specific_wait;
72 	u64			timestamp;
73 	u64			duration;
74 	unsigned long		nr;
75 	sem_t			*wait_sem;
76 	struct task_desc	*wakee;
77 };
78 
79 static struct task_desc		*pid_to_task[MAX_PID];
80 
81 static struct task_desc		**tasks;
82 
83 static pthread_mutex_t		start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84 static u64			start_time;
85 
86 static pthread_mutex_t		work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87 
88 static unsigned long		nr_run_events;
89 static unsigned long		nr_sleep_events;
90 static unsigned long		nr_wakeup_events;
91 
92 static unsigned long		nr_sleep_corrections;
93 static unsigned long		nr_run_events_optimized;
94 
95 static unsigned long		targetless_wakeups;
96 static unsigned long		multitarget_wakeups;
97 
98 static u64			cpu_usage;
99 static u64			runavg_cpu_usage;
100 static u64			parent_cpu_usage;
101 static u64			runavg_parent_cpu_usage;
102 
103 static unsigned long		nr_runs;
104 static u64			sum_runtime;
105 static u64			sum_fluct;
106 static u64			run_avg;
107 
108 static unsigned int		replay_repeat = 10;
109 static unsigned long		nr_timestamps;
110 static unsigned long		nr_unordered_timestamps;
111 static unsigned long		nr_state_machine_bugs;
112 static unsigned long		nr_context_switch_bugs;
113 static unsigned long		nr_events;
114 static unsigned long		nr_lost_chunks;
115 static unsigned long		nr_lost_events;
116 
117 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118 
119 enum thread_state {
120 	THREAD_SLEEPING = 0,
121 	THREAD_WAIT_CPU,
122 	THREAD_SCHED_IN,
123 	THREAD_IGNORE
124 };
125 
126 struct work_atom {
127 	struct list_head	list;
128 	enum thread_state	state;
129 	u64			sched_out_time;
130 	u64			wake_up_time;
131 	u64			sched_in_time;
132 	u64			runtime;
133 };
134 
135 struct work_atoms {
136 	struct list_head	work_list;
137 	struct thread		*thread;
138 	struct rb_node		node;
139 	u64			max_lat;
140 	u64			max_lat_at;
141 	u64			total_lat;
142 	u64			nb_atoms;
143 	u64			total_runtime;
144 };
145 
146 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147 
148 static struct rb_root		atom_root, sorted_atom_root;
149 
150 static u64			all_runtime;
151 static u64			all_count;
152 
153 
get_nsecs(void)154 static u64 get_nsecs(void)
155 {
156 	struct timespec ts;
157 
158 	clock_gettime(CLOCK_MONOTONIC, &ts);
159 
160 	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161 }
162 
burn_nsecs(u64 nsecs)163 static void burn_nsecs(u64 nsecs)
164 {
165 	u64 T0 = get_nsecs(), T1;
166 
167 	do {
168 		T1 = get_nsecs();
169 	} while (T1 + run_measurement_overhead < T0 + nsecs);
170 }
171 
sleep_nsecs(u64 nsecs)172 static void sleep_nsecs(u64 nsecs)
173 {
174 	struct timespec ts;
175 
176 	ts.tv_nsec = nsecs % 999999999;
177 	ts.tv_sec = nsecs / 999999999;
178 
179 	nanosleep(&ts, NULL);
180 }
181 
calibrate_run_measurement_overhead(void)182 static void calibrate_run_measurement_overhead(void)
183 {
184 	u64 T0, T1, delta, min_delta = 1000000000ULL;
185 	int i;
186 
187 	for (i = 0; i < 10; i++) {
188 		T0 = get_nsecs();
189 		burn_nsecs(0);
190 		T1 = get_nsecs();
191 		delta = T1-T0;
192 		min_delta = min(min_delta, delta);
193 	}
194 	run_measurement_overhead = min_delta;
195 
196 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
197 }
198 
calibrate_sleep_measurement_overhead(void)199 static void calibrate_sleep_measurement_overhead(void)
200 {
201 	u64 T0, T1, delta, min_delta = 1000000000ULL;
202 	int i;
203 
204 	for (i = 0; i < 10; i++) {
205 		T0 = get_nsecs();
206 		sleep_nsecs(10000);
207 		T1 = get_nsecs();
208 		delta = T1-T0;
209 		min_delta = min(min_delta, delta);
210 	}
211 	min_delta -= 10000;
212 	sleep_measurement_overhead = min_delta;
213 
214 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
215 }
216 
217 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)218 get_new_event(struct task_desc *task, u64 timestamp)
219 {
220 	struct sched_atom *event = zalloc(sizeof(*event));
221 	unsigned long idx = task->nr_events;
222 	size_t size;
223 
224 	event->timestamp = timestamp;
225 	event->nr = idx;
226 
227 	task->nr_events++;
228 	size = sizeof(struct sched_atom *) * task->nr_events;
229 	task->atoms = realloc(task->atoms, size);
230 	BUG_ON(!task->atoms);
231 
232 	task->atoms[idx] = event;
233 
234 	return event;
235 }
236 
last_event(struct task_desc * task)237 static struct sched_atom *last_event(struct task_desc *task)
238 {
239 	if (!task->nr_events)
240 		return NULL;
241 
242 	return task->atoms[task->nr_events - 1];
243 }
244 
245 static void
add_sched_event_run(struct task_desc * task,u64 timestamp,u64 duration)246 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247 {
248 	struct sched_atom *event, *curr_event = last_event(task);
249 
250 	/*
251 	 * optimize an existing RUN event by merging this one
252 	 * to it:
253 	 */
254 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255 		nr_run_events_optimized++;
256 		curr_event->duration += duration;
257 		return;
258 	}
259 
260 	event = get_new_event(task, timestamp);
261 
262 	event->type = SCHED_EVENT_RUN;
263 	event->duration = duration;
264 
265 	nr_run_events++;
266 }
267 
268 static void
add_sched_event_wakeup(struct task_desc * task,u64 timestamp,struct task_desc * wakee)269 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270 		       struct task_desc *wakee)
271 {
272 	struct sched_atom *event, *wakee_event;
273 
274 	event = get_new_event(task, timestamp);
275 	event->type = SCHED_EVENT_WAKEUP;
276 	event->wakee = wakee;
277 
278 	wakee_event = last_event(wakee);
279 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280 		targetless_wakeups++;
281 		return;
282 	}
283 	if (wakee_event->wait_sem) {
284 		multitarget_wakeups++;
285 		return;
286 	}
287 
288 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289 	sem_init(wakee_event->wait_sem, 0, 0);
290 	wakee_event->specific_wait = 1;
291 	event->wait_sem = wakee_event->wait_sem;
292 
293 	nr_wakeup_events++;
294 }
295 
296 static void
add_sched_event_sleep(struct task_desc * task,u64 timestamp,u64 task_state __used)297 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298 		      u64 task_state __used)
299 {
300 	struct sched_atom *event = get_new_event(task, timestamp);
301 
302 	event->type = SCHED_EVENT_SLEEP;
303 
304 	nr_sleep_events++;
305 }
306 
register_pid(unsigned long pid,const char * comm)307 static struct task_desc *register_pid(unsigned long pid, const char *comm)
308 {
309 	struct task_desc *task;
310 
311 	BUG_ON(pid >= MAX_PID);
312 
313 	task = pid_to_task[pid];
314 
315 	if (task)
316 		return task;
317 
318 	task = zalloc(sizeof(*task));
319 	task->pid = pid;
320 	task->nr = nr_tasks;
321 	strcpy(task->comm, comm);
322 	/*
323 	 * every task starts in sleeping state - this gets ignored
324 	 * if there's no wakeup pointing to this sleep state:
325 	 */
326 	add_sched_event_sleep(task, 0, 0);
327 
328 	pid_to_task[pid] = task;
329 	nr_tasks++;
330 	tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331 	BUG_ON(!tasks);
332 	tasks[task->nr] = task;
333 
334 	if (verbose)
335 		printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336 
337 	return task;
338 }
339 
340 
print_task_traces(void)341 static void print_task_traces(void)
342 {
343 	struct task_desc *task;
344 	unsigned long i;
345 
346 	for (i = 0; i < nr_tasks; i++) {
347 		task = tasks[i];
348 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349 			task->nr, task->comm, task->pid, task->nr_events);
350 	}
351 }
352 
add_cross_task_wakeups(void)353 static void add_cross_task_wakeups(void)
354 {
355 	struct task_desc *task1, *task2;
356 	unsigned long i, j;
357 
358 	for (i = 0; i < nr_tasks; i++) {
359 		task1 = tasks[i];
360 		j = i + 1;
361 		if (j == nr_tasks)
362 			j = 0;
363 		task2 = tasks[j];
364 		add_sched_event_wakeup(task1, 0, task2);
365 	}
366 }
367 
368 static void
process_sched_event(struct task_desc * this_task __used,struct sched_atom * atom)369 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370 {
371 	int ret = 0;
372 
373 	switch (atom->type) {
374 		case SCHED_EVENT_RUN:
375 			burn_nsecs(atom->duration);
376 			break;
377 		case SCHED_EVENT_SLEEP:
378 			if (atom->wait_sem)
379 				ret = sem_wait(atom->wait_sem);
380 			BUG_ON(ret);
381 			break;
382 		case SCHED_EVENT_WAKEUP:
383 			if (atom->wait_sem)
384 				ret = sem_post(atom->wait_sem);
385 			BUG_ON(ret);
386 			break;
387 		case SCHED_EVENT_MIGRATION:
388 			break;
389 		default:
390 			BUG_ON(1);
391 	}
392 }
393 
get_cpu_usage_nsec_parent(void)394 static u64 get_cpu_usage_nsec_parent(void)
395 {
396 	struct rusage ru;
397 	u64 sum;
398 	int err;
399 
400 	err = getrusage(RUSAGE_SELF, &ru);
401 	BUG_ON(err);
402 
403 	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
404 	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
405 
406 	return sum;
407 }
408 
self_open_counters(void)409 static int self_open_counters(void)
410 {
411 	struct perf_event_attr attr;
412 	int fd;
413 
414 	memset(&attr, 0, sizeof(attr));
415 
416 	attr.type = PERF_TYPE_SOFTWARE;
417 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
418 
419 	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
420 
421 	if (fd < 0)
422 		die("Error: sys_perf_event_open() syscall returned"
423 		    "with %d (%s)\n", fd, strerror(errno));
424 	return fd;
425 }
426 
get_cpu_usage_nsec_self(int fd)427 static u64 get_cpu_usage_nsec_self(int fd)
428 {
429 	u64 runtime;
430 	int ret;
431 
432 	ret = read(fd, &runtime, sizeof(runtime));
433 	BUG_ON(ret != sizeof(runtime));
434 
435 	return runtime;
436 }
437 
thread_func(void * ctx)438 static void *thread_func(void *ctx)
439 {
440 	struct task_desc *this_task = ctx;
441 	u64 cpu_usage_0, cpu_usage_1;
442 	unsigned long i, ret;
443 	char comm2[22];
444 	int fd;
445 
446 	sprintf(comm2, ":%s", this_task->comm);
447 	prctl(PR_SET_NAME, comm2);
448 	fd = self_open_counters();
449 
450 again:
451 	ret = sem_post(&this_task->ready_for_work);
452 	BUG_ON(ret);
453 	ret = pthread_mutex_lock(&start_work_mutex);
454 	BUG_ON(ret);
455 	ret = pthread_mutex_unlock(&start_work_mutex);
456 	BUG_ON(ret);
457 
458 	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
459 
460 	for (i = 0; i < this_task->nr_events; i++) {
461 		this_task->curr_event = i;
462 		process_sched_event(this_task, this_task->atoms[i]);
463 	}
464 
465 	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
466 	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
467 	ret = sem_post(&this_task->work_done_sem);
468 	BUG_ON(ret);
469 
470 	ret = pthread_mutex_lock(&work_done_wait_mutex);
471 	BUG_ON(ret);
472 	ret = pthread_mutex_unlock(&work_done_wait_mutex);
473 	BUG_ON(ret);
474 
475 	goto again;
476 }
477 
create_tasks(void)478 static void create_tasks(void)
479 {
480 	struct task_desc *task;
481 	pthread_attr_t attr;
482 	unsigned long i;
483 	int err;
484 
485 	err = pthread_attr_init(&attr);
486 	BUG_ON(err);
487 	err = pthread_attr_setstacksize(&attr,
488 			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
489 	BUG_ON(err);
490 	err = pthread_mutex_lock(&start_work_mutex);
491 	BUG_ON(err);
492 	err = pthread_mutex_lock(&work_done_wait_mutex);
493 	BUG_ON(err);
494 	for (i = 0; i < nr_tasks; i++) {
495 		task = tasks[i];
496 		sem_init(&task->sleep_sem, 0, 0);
497 		sem_init(&task->ready_for_work, 0, 0);
498 		sem_init(&task->work_done_sem, 0, 0);
499 		task->curr_event = 0;
500 		err = pthread_create(&task->thread, &attr, thread_func, task);
501 		BUG_ON(err);
502 	}
503 }
504 
wait_for_tasks(void)505 static void wait_for_tasks(void)
506 {
507 	u64 cpu_usage_0, cpu_usage_1;
508 	struct task_desc *task;
509 	unsigned long i, ret;
510 
511 	start_time = get_nsecs();
512 	cpu_usage = 0;
513 	pthread_mutex_unlock(&work_done_wait_mutex);
514 
515 	for (i = 0; i < nr_tasks; i++) {
516 		task = tasks[i];
517 		ret = sem_wait(&task->ready_for_work);
518 		BUG_ON(ret);
519 		sem_init(&task->ready_for_work, 0, 0);
520 	}
521 	ret = pthread_mutex_lock(&work_done_wait_mutex);
522 	BUG_ON(ret);
523 
524 	cpu_usage_0 = get_cpu_usage_nsec_parent();
525 
526 	pthread_mutex_unlock(&start_work_mutex);
527 
528 	for (i = 0; i < nr_tasks; i++) {
529 		task = tasks[i];
530 		ret = sem_wait(&task->work_done_sem);
531 		BUG_ON(ret);
532 		sem_init(&task->work_done_sem, 0, 0);
533 		cpu_usage += task->cpu_usage;
534 		task->cpu_usage = 0;
535 	}
536 
537 	cpu_usage_1 = get_cpu_usage_nsec_parent();
538 	if (!runavg_cpu_usage)
539 		runavg_cpu_usage = cpu_usage;
540 	runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
541 
542 	parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
543 	if (!runavg_parent_cpu_usage)
544 		runavg_parent_cpu_usage = parent_cpu_usage;
545 	runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
546 				   parent_cpu_usage)/10;
547 
548 	ret = pthread_mutex_lock(&start_work_mutex);
549 	BUG_ON(ret);
550 
551 	for (i = 0; i < nr_tasks; i++) {
552 		task = tasks[i];
553 		sem_init(&task->sleep_sem, 0, 0);
554 		task->curr_event = 0;
555 	}
556 }
557 
run_one_test(void)558 static void run_one_test(void)
559 {
560 	u64 T0, T1, delta, avg_delta, fluct;
561 
562 	T0 = get_nsecs();
563 	wait_for_tasks();
564 	T1 = get_nsecs();
565 
566 	delta = T1 - T0;
567 	sum_runtime += delta;
568 	nr_runs++;
569 
570 	avg_delta = sum_runtime / nr_runs;
571 	if (delta < avg_delta)
572 		fluct = avg_delta - delta;
573 	else
574 		fluct = delta - avg_delta;
575 	sum_fluct += fluct;
576 	if (!run_avg)
577 		run_avg = delta;
578 	run_avg = (run_avg*9 + delta)/10;
579 
580 	printf("#%-3ld: %0.3f, ",
581 		nr_runs, (double)delta/1000000.0);
582 
583 	printf("ravg: %0.2f, ",
584 		(double)run_avg/1e6);
585 
586 	printf("cpu: %0.2f / %0.2f",
587 		(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
588 
589 #if 0
590 	/*
591 	 * rusage statistics done by the parent, these are less
592 	 * accurate than the sum_exec_runtime based statistics:
593 	 */
594 	printf(" [%0.2f / %0.2f]",
595 		(double)parent_cpu_usage/1e6,
596 		(double)runavg_parent_cpu_usage/1e6);
597 #endif
598 
599 	printf("\n");
600 
601 	if (nr_sleep_corrections)
602 		printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
603 	nr_sleep_corrections = 0;
604 }
605 
test_calibrations(void)606 static void test_calibrations(void)
607 {
608 	u64 T0, T1;
609 
610 	T0 = get_nsecs();
611 	burn_nsecs(1e6);
612 	T1 = get_nsecs();
613 
614 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
615 
616 	T0 = get_nsecs();
617 	sleep_nsecs(1e6);
618 	T1 = get_nsecs();
619 
620 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
621 }
622 
623 #define FILL_FIELD(ptr, field, event, data)	\
624 	ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
625 
626 #define FILL_ARRAY(ptr, array, event, data)			\
627 do {								\
628 	void *__array = raw_field_ptr(event, #array, data);	\
629 	memcpy(ptr.array, __array, sizeof(ptr.array));	\
630 } while(0)
631 
632 #define FILL_COMMON_FIELDS(ptr, event, data)			\
633 do {								\
634 	FILL_FIELD(ptr, common_type, event, data);		\
635 	FILL_FIELD(ptr, common_flags, event, data);		\
636 	FILL_FIELD(ptr, common_preempt_count, event, data);	\
637 	FILL_FIELD(ptr, common_pid, event, data);		\
638 	FILL_FIELD(ptr, common_tgid, event, data);		\
639 } while (0)
640 
641 
642 
643 struct trace_switch_event {
644 	u32 size;
645 
646 	u16 common_type;
647 	u8 common_flags;
648 	u8 common_preempt_count;
649 	u32 common_pid;
650 	u32 common_tgid;
651 
652 	char prev_comm[16];
653 	u32 prev_pid;
654 	u32 prev_prio;
655 	u64 prev_state;
656 	char next_comm[16];
657 	u32 next_pid;
658 	u32 next_prio;
659 };
660 
661 struct trace_runtime_event {
662 	u32 size;
663 
664 	u16 common_type;
665 	u8 common_flags;
666 	u8 common_preempt_count;
667 	u32 common_pid;
668 	u32 common_tgid;
669 
670 	char comm[16];
671 	u32 pid;
672 	u64 runtime;
673 	u64 vruntime;
674 };
675 
676 struct trace_wakeup_event {
677 	u32 size;
678 
679 	u16 common_type;
680 	u8 common_flags;
681 	u8 common_preempt_count;
682 	u32 common_pid;
683 	u32 common_tgid;
684 
685 	char comm[16];
686 	u32 pid;
687 
688 	u32 prio;
689 	u32 success;
690 	u32 cpu;
691 };
692 
693 struct trace_fork_event {
694 	u32 size;
695 
696 	u16 common_type;
697 	u8 common_flags;
698 	u8 common_preempt_count;
699 	u32 common_pid;
700 	u32 common_tgid;
701 
702 	char parent_comm[16];
703 	u32 parent_pid;
704 	char child_comm[16];
705 	u32 child_pid;
706 };
707 
708 struct trace_migrate_task_event {
709 	u32 size;
710 
711 	u16 common_type;
712 	u8 common_flags;
713 	u8 common_preempt_count;
714 	u32 common_pid;
715 	u32 common_tgid;
716 
717 	char comm[16];
718 	u32 pid;
719 
720 	u32 prio;
721 	u32 cpu;
722 };
723 
724 struct trace_sched_handler {
725 	void (*switch_event)(struct trace_switch_event *,
726 			     struct perf_session *,
727 			     struct event *,
728 			     int cpu,
729 			     u64 timestamp,
730 			     struct thread *thread);
731 
732 	void (*runtime_event)(struct trace_runtime_event *,
733 			      struct perf_session *,
734 			      struct event *,
735 			      int cpu,
736 			      u64 timestamp,
737 			      struct thread *thread);
738 
739 	void (*wakeup_event)(struct trace_wakeup_event *,
740 			     struct perf_session *,
741 			     struct event *,
742 			     int cpu,
743 			     u64 timestamp,
744 			     struct thread *thread);
745 
746 	void (*fork_event)(struct trace_fork_event *,
747 			   struct event *,
748 			   int cpu,
749 			   u64 timestamp,
750 			   struct thread *thread);
751 
752 	void (*migrate_task_event)(struct trace_migrate_task_event *,
753 			   struct perf_session *session,
754 			   struct event *,
755 			   int cpu,
756 			   u64 timestamp,
757 			   struct thread *thread);
758 };
759 
760 
761 static void
replay_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session __used,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)762 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
763 		    struct perf_session *session __used,
764 		    struct event *event,
765 		    int cpu __used,
766 		    u64 timestamp __used,
767 		    struct thread *thread __used)
768 {
769 	struct task_desc *waker, *wakee;
770 
771 	if (verbose) {
772 		printf("sched_wakeup event %p\n", event);
773 
774 		printf(" ... pid %d woke up %s/%d\n",
775 			wakeup_event->common_pid,
776 			wakeup_event->comm,
777 			wakeup_event->pid);
778 	}
779 
780 	waker = register_pid(wakeup_event->common_pid, "<unknown>");
781 	wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
782 
783 	add_sched_event_wakeup(waker, timestamp, wakee);
784 }
785 
786 static u64 cpu_last_switched[MAX_CPUS];
787 
788 static void
replay_switch_event(struct trace_switch_event * switch_event,struct perf_session * session __used,struct event * event,int cpu,u64 timestamp,struct thread * thread __used)789 replay_switch_event(struct trace_switch_event *switch_event,
790 		    struct perf_session *session __used,
791 		    struct event *event,
792 		    int cpu,
793 		    u64 timestamp,
794 		    struct thread *thread __used)
795 {
796 	struct task_desc *prev, __used *next;
797 	u64 timestamp0;
798 	s64 delta;
799 
800 	if (verbose)
801 		printf("sched_switch event %p\n", event);
802 
803 	if (cpu >= MAX_CPUS || cpu < 0)
804 		return;
805 
806 	timestamp0 = cpu_last_switched[cpu];
807 	if (timestamp0)
808 		delta = timestamp - timestamp0;
809 	else
810 		delta = 0;
811 
812 	if (delta < 0)
813 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
814 
815 	if (verbose) {
816 		printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
817 			switch_event->prev_comm, switch_event->prev_pid,
818 			switch_event->next_comm, switch_event->next_pid,
819 			delta);
820 	}
821 
822 	prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
823 	next = register_pid(switch_event->next_pid, switch_event->next_comm);
824 
825 	cpu_last_switched[cpu] = timestamp;
826 
827 	add_sched_event_run(prev, timestamp, delta);
828 	add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
829 }
830 
831 
832 static void
replay_fork_event(struct trace_fork_event * fork_event,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)833 replay_fork_event(struct trace_fork_event *fork_event,
834 		  struct event *event,
835 		  int cpu __used,
836 		  u64 timestamp __used,
837 		  struct thread *thread __used)
838 {
839 	if (verbose) {
840 		printf("sched_fork event %p\n", event);
841 		printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
842 		printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
843 	}
844 	register_pid(fork_event->parent_pid, fork_event->parent_comm);
845 	register_pid(fork_event->child_pid, fork_event->child_comm);
846 }
847 
848 static struct trace_sched_handler replay_ops  = {
849 	.wakeup_event		= replay_wakeup_event,
850 	.switch_event		= replay_switch_event,
851 	.fork_event		= replay_fork_event,
852 };
853 
854 struct sort_dimension {
855 	const char		*name;
856 	sort_fn_t		cmp;
857 	struct list_head	list;
858 };
859 
860 static LIST_HEAD(cmp_pid);
861 
862 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)863 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
864 {
865 	struct sort_dimension *sort;
866 	int ret = 0;
867 
868 	BUG_ON(list_empty(list));
869 
870 	list_for_each_entry(sort, list, list) {
871 		ret = sort->cmp(l, r);
872 		if (ret)
873 			return ret;
874 	}
875 
876 	return ret;
877 }
878 
879 static struct work_atoms *
thread_atoms_search(struct rb_root * root,struct thread * thread,struct list_head * sort_list)880 thread_atoms_search(struct rb_root *root, struct thread *thread,
881 			 struct list_head *sort_list)
882 {
883 	struct rb_node *node = root->rb_node;
884 	struct work_atoms key = { .thread = thread };
885 
886 	while (node) {
887 		struct work_atoms *atoms;
888 		int cmp;
889 
890 		atoms = container_of(node, struct work_atoms, node);
891 
892 		cmp = thread_lat_cmp(sort_list, &key, atoms);
893 		if (cmp > 0)
894 			node = node->rb_left;
895 		else if (cmp < 0)
896 			node = node->rb_right;
897 		else {
898 			BUG_ON(thread != atoms->thread);
899 			return atoms;
900 		}
901 	}
902 	return NULL;
903 }
904 
905 static void
__thread_latency_insert(struct rb_root * root,struct work_atoms * data,struct list_head * sort_list)906 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
907 			 struct list_head *sort_list)
908 {
909 	struct rb_node **new = &(root->rb_node), *parent = NULL;
910 
911 	while (*new) {
912 		struct work_atoms *this;
913 		int cmp;
914 
915 		this = container_of(*new, struct work_atoms, node);
916 		parent = *new;
917 
918 		cmp = thread_lat_cmp(sort_list, data, this);
919 
920 		if (cmp > 0)
921 			new = &((*new)->rb_left);
922 		else
923 			new = &((*new)->rb_right);
924 	}
925 
926 	rb_link_node(&data->node, parent, new);
927 	rb_insert_color(&data->node, root);
928 }
929 
thread_atoms_insert(struct thread * thread)930 static void thread_atoms_insert(struct thread *thread)
931 {
932 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
933 	if (!atoms)
934 		die("No memory");
935 
936 	atoms->thread = thread;
937 	INIT_LIST_HEAD(&atoms->work_list);
938 	__thread_latency_insert(&atom_root, atoms, &cmp_pid);
939 }
940 
941 static void
latency_fork_event(struct trace_fork_event * fork_event __used,struct event * event __used,int cpu __used,u64 timestamp __used,struct thread * thread __used)942 latency_fork_event(struct trace_fork_event *fork_event __used,
943 		   struct event *event __used,
944 		   int cpu __used,
945 		   u64 timestamp __used,
946 		   struct thread *thread __used)
947 {
948 	/* should insert the newcomer */
949 }
950 
951 __used
sched_out_state(struct trace_switch_event * switch_event)952 static char sched_out_state(struct trace_switch_event *switch_event)
953 {
954 	const char *str = TASK_STATE_TO_CHAR_STR;
955 
956 	return str[switch_event->prev_state];
957 }
958 
959 static void
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)960 add_sched_out_event(struct work_atoms *atoms,
961 		    char run_state,
962 		    u64 timestamp)
963 {
964 	struct work_atom *atom = zalloc(sizeof(*atom));
965 	if (!atom)
966 		die("Non memory");
967 
968 	atom->sched_out_time = timestamp;
969 
970 	if (run_state == 'R') {
971 		atom->state = THREAD_WAIT_CPU;
972 		atom->wake_up_time = atom->sched_out_time;
973 	}
974 
975 	list_add_tail(&atom->list, &atoms->work_list);
976 }
977 
978 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __used)979 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
980 {
981 	struct work_atom *atom;
982 
983 	BUG_ON(list_empty(&atoms->work_list));
984 
985 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
986 
987 	atom->runtime += delta;
988 	atoms->total_runtime += delta;
989 }
990 
991 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)992 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
993 {
994 	struct work_atom *atom;
995 	u64 delta;
996 
997 	if (list_empty(&atoms->work_list))
998 		return;
999 
1000 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1001 
1002 	if (atom->state != THREAD_WAIT_CPU)
1003 		return;
1004 
1005 	if (timestamp < atom->wake_up_time) {
1006 		atom->state = THREAD_IGNORE;
1007 		return;
1008 	}
1009 
1010 	atom->state = THREAD_SCHED_IN;
1011 	atom->sched_in_time = timestamp;
1012 
1013 	delta = atom->sched_in_time - atom->wake_up_time;
1014 	atoms->total_lat += delta;
1015 	if (delta > atoms->max_lat) {
1016 		atoms->max_lat = delta;
1017 		atoms->max_lat_at = timestamp;
1018 	}
1019 	atoms->nb_atoms++;
1020 }
1021 
1022 static void
latency_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * thread __used)1023 latency_switch_event(struct trace_switch_event *switch_event,
1024 		     struct perf_session *session,
1025 		     struct event *event __used,
1026 		     int cpu,
1027 		     u64 timestamp,
1028 		     struct thread *thread __used)
1029 {
1030 	struct work_atoms *out_events, *in_events;
1031 	struct thread *sched_out, *sched_in;
1032 	u64 timestamp0;
1033 	s64 delta;
1034 
1035 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036 
1037 	timestamp0 = cpu_last_switched[cpu];
1038 	cpu_last_switched[cpu] = timestamp;
1039 	if (timestamp0)
1040 		delta = timestamp - timestamp0;
1041 	else
1042 		delta = 0;
1043 
1044 	if (delta < 0)
1045 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1046 
1047 
1048 	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1049 	sched_in = perf_session__findnew(session, switch_event->next_pid);
1050 
1051 	out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052 	if (!out_events) {
1053 		thread_atoms_insert(sched_out);
1054 		out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055 		if (!out_events)
1056 			die("out-event: Internal tree error");
1057 	}
1058 	add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1059 
1060 	in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061 	if (!in_events) {
1062 		thread_atoms_insert(sched_in);
1063 		in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064 		if (!in_events)
1065 			die("in-event: Internal tree error");
1066 		/*
1067 		 * Take came in we have not heard about yet,
1068 		 * add in an initial atom in runnable state:
1069 		 */
1070 		add_sched_out_event(in_events, 'R', timestamp);
1071 	}
1072 	add_sched_in_event(in_events, timestamp);
1073 }
1074 
1075 static void
latency_runtime_event(struct trace_runtime_event * runtime_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * this_thread __used)1076 latency_runtime_event(struct trace_runtime_event *runtime_event,
1077 		     struct perf_session *session,
1078 		     struct event *event __used,
1079 		     int cpu,
1080 		     u64 timestamp,
1081 		     struct thread *this_thread __used)
1082 {
1083 	struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1084 	struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085 
1086 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087 	if (!atoms) {
1088 		thread_atoms_insert(thread);
1089 		atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090 		if (!atoms)
1091 			die("in-event: Internal tree error");
1092 		add_sched_out_event(atoms, 'R', timestamp);
1093 	}
1094 
1095 	add_runtime_event(atoms, runtime_event->runtime, timestamp);
1096 }
1097 
1098 static void
latency_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1099 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100 		     struct perf_session *session,
1101 		     struct event *__event __used,
1102 		     int cpu __used,
1103 		     u64 timestamp,
1104 		     struct thread *thread __used)
1105 {
1106 	struct work_atoms *atoms;
1107 	struct work_atom *atom;
1108 	struct thread *wakee;
1109 
1110 	/* Note for later, it may be interesting to observe the failing cases */
1111 	if (!wakeup_event->success)
1112 		return;
1113 
1114 	wakee = perf_session__findnew(session, wakeup_event->pid);
1115 	atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116 	if (!atoms) {
1117 		thread_atoms_insert(wakee);
1118 		atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119 		if (!atoms)
1120 			die("wakeup-event: Internal tree error");
1121 		add_sched_out_event(atoms, 'S', timestamp);
1122 	}
1123 
1124 	BUG_ON(list_empty(&atoms->work_list));
1125 
1126 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1127 
1128 	/*
1129 	 * You WILL be missing events if you've recorded only
1130 	 * one CPU, or are only looking at only one, so don't
1131 	 * make useless noise.
1132 	 */
1133 	if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1134 		nr_state_machine_bugs++;
1135 
1136 	nr_timestamps++;
1137 	if (atom->sched_out_time > timestamp) {
1138 		nr_unordered_timestamps++;
1139 		return;
1140 	}
1141 
1142 	atom->state = THREAD_WAIT_CPU;
1143 	atom->wake_up_time = timestamp;
1144 }
1145 
1146 static void
latency_migrate_task_event(struct trace_migrate_task_event * migrate_task_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1147 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1148 		     struct perf_session *session,
1149 		     struct event *__event __used,
1150 		     int cpu __used,
1151 		     u64 timestamp,
1152 		     struct thread *thread __used)
1153 {
1154 	struct work_atoms *atoms;
1155 	struct work_atom *atom;
1156 	struct thread *migrant;
1157 
1158 	/*
1159 	 * Only need to worry about migration when profiling one CPU.
1160 	 */
1161 	if (profile_cpu == -1)
1162 		return;
1163 
1164 	migrant = perf_session__findnew(session, migrate_task_event->pid);
1165 	atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1166 	if (!atoms) {
1167 		thread_atoms_insert(migrant);
1168 		register_pid(migrant->pid, migrant->comm);
1169 		atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170 		if (!atoms)
1171 			die("migration-event: Internal tree error");
1172 		add_sched_out_event(atoms, 'R', timestamp);
1173 	}
1174 
1175 	BUG_ON(list_empty(&atoms->work_list));
1176 
1177 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1178 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1179 
1180 	nr_timestamps++;
1181 
1182 	if (atom->sched_out_time > timestamp)
1183 		nr_unordered_timestamps++;
1184 }
1185 
1186 static struct trace_sched_handler lat_ops  = {
1187 	.wakeup_event		= latency_wakeup_event,
1188 	.switch_event		= latency_switch_event,
1189 	.runtime_event		= latency_runtime_event,
1190 	.fork_event		= latency_fork_event,
1191 	.migrate_task_event	= latency_migrate_task_event,
1192 };
1193 
output_lat_thread(struct work_atoms * work_list)1194 static void output_lat_thread(struct work_atoms *work_list)
1195 {
1196 	int i;
1197 	int ret;
1198 	u64 avg;
1199 
1200 	if (!work_list->nb_atoms)
1201 		return;
1202 	/*
1203 	 * Ignore idle threads:
1204 	 */
1205 	if (!strcmp(work_list->thread->comm, "swapper"))
1206 		return;
1207 
1208 	all_runtime += work_list->total_runtime;
1209 	all_count += work_list->nb_atoms;
1210 
1211 	ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1212 
1213 	for (i = 0; i < 24 - ret; i++)
1214 		printf(" ");
1215 
1216 	avg = work_list->total_lat / work_list->nb_atoms;
1217 
1218 	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1219 	      (double)work_list->total_runtime / 1e6,
1220 		 work_list->nb_atoms, (double)avg / 1e6,
1221 		 (double)work_list->max_lat / 1e6,
1222 		 (double)work_list->max_lat_at / 1e9);
1223 }
1224 
pid_cmp(struct work_atoms * l,struct work_atoms * r)1225 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1226 {
1227 	if (l->thread->pid < r->thread->pid)
1228 		return -1;
1229 	if (l->thread->pid > r->thread->pid)
1230 		return 1;
1231 
1232 	return 0;
1233 }
1234 
1235 static struct sort_dimension pid_sort_dimension = {
1236 	.name			= "pid",
1237 	.cmp			= pid_cmp,
1238 };
1239 
avg_cmp(struct work_atoms * l,struct work_atoms * r)1240 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1241 {
1242 	u64 avgl, avgr;
1243 
1244 	if (!l->nb_atoms)
1245 		return -1;
1246 
1247 	if (!r->nb_atoms)
1248 		return 1;
1249 
1250 	avgl = l->total_lat / l->nb_atoms;
1251 	avgr = r->total_lat / r->nb_atoms;
1252 
1253 	if (avgl < avgr)
1254 		return -1;
1255 	if (avgl > avgr)
1256 		return 1;
1257 
1258 	return 0;
1259 }
1260 
1261 static struct sort_dimension avg_sort_dimension = {
1262 	.name			= "avg",
1263 	.cmp			= avg_cmp,
1264 };
1265 
max_cmp(struct work_atoms * l,struct work_atoms * r)1266 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1267 {
1268 	if (l->max_lat < r->max_lat)
1269 		return -1;
1270 	if (l->max_lat > r->max_lat)
1271 		return 1;
1272 
1273 	return 0;
1274 }
1275 
1276 static struct sort_dimension max_sort_dimension = {
1277 	.name			= "max",
1278 	.cmp			= max_cmp,
1279 };
1280 
switch_cmp(struct work_atoms * l,struct work_atoms * r)1281 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1282 {
1283 	if (l->nb_atoms < r->nb_atoms)
1284 		return -1;
1285 	if (l->nb_atoms > r->nb_atoms)
1286 		return 1;
1287 
1288 	return 0;
1289 }
1290 
1291 static struct sort_dimension switch_sort_dimension = {
1292 	.name			= "switch",
1293 	.cmp			= switch_cmp,
1294 };
1295 
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1296 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1297 {
1298 	if (l->total_runtime < r->total_runtime)
1299 		return -1;
1300 	if (l->total_runtime > r->total_runtime)
1301 		return 1;
1302 
1303 	return 0;
1304 }
1305 
1306 static struct sort_dimension runtime_sort_dimension = {
1307 	.name			= "runtime",
1308 	.cmp			= runtime_cmp,
1309 };
1310 
1311 static struct sort_dimension *available_sorts[] = {
1312 	&pid_sort_dimension,
1313 	&avg_sort_dimension,
1314 	&max_sort_dimension,
1315 	&switch_sort_dimension,
1316 	&runtime_sort_dimension,
1317 };
1318 
1319 #define NB_AVAILABLE_SORTS	(int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1320 
1321 static LIST_HEAD(sort_list);
1322 
sort_dimension__add(const char * tok,struct list_head * list)1323 static int sort_dimension__add(const char *tok, struct list_head *list)
1324 {
1325 	int i;
1326 
1327 	for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1328 		if (!strcmp(available_sorts[i]->name, tok)) {
1329 			list_add_tail(&available_sorts[i]->list, list);
1330 
1331 			return 0;
1332 		}
1333 	}
1334 
1335 	return -1;
1336 }
1337 
1338 static void setup_sorting(void);
1339 
sort_lat(void)1340 static void sort_lat(void)
1341 {
1342 	struct rb_node *node;
1343 
1344 	for (;;) {
1345 		struct work_atoms *data;
1346 		node = rb_first(&atom_root);
1347 		if (!node)
1348 			break;
1349 
1350 		rb_erase(node, &atom_root);
1351 		data = rb_entry(node, struct work_atoms, node);
1352 		__thread_latency_insert(&sorted_atom_root, data, &sort_list);
1353 	}
1354 }
1355 
1356 static struct trace_sched_handler *trace_handler;
1357 
1358 static void
process_sched_wakeup_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1359 process_sched_wakeup_event(void *data, struct perf_session *session,
1360 			   struct event *event,
1361 			   int cpu __used,
1362 			   u64 timestamp __used,
1363 			   struct thread *thread __used)
1364 {
1365 	struct trace_wakeup_event wakeup_event;
1366 
1367 	FILL_COMMON_FIELDS(wakeup_event, event, data);
1368 
1369 	FILL_ARRAY(wakeup_event, comm, event, data);
1370 	FILL_FIELD(wakeup_event, pid, event, data);
1371 	FILL_FIELD(wakeup_event, prio, event, data);
1372 	FILL_FIELD(wakeup_event, success, event, data);
1373 	FILL_FIELD(wakeup_event, cpu, event, data);
1374 
1375 	if (trace_handler->wakeup_event)
1376 		trace_handler->wakeup_event(&wakeup_event, session, event,
1377 					    cpu, timestamp, thread);
1378 }
1379 
1380 /*
1381  * Track the current task - that way we can know whether there's any
1382  * weird events, such as a task being switched away that is not current.
1383  */
1384 static int max_cpu;
1385 
1386 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1387 
1388 static struct thread *curr_thread[MAX_CPUS];
1389 
1390 static char next_shortname1 = 'A';
1391 static char next_shortname2 = '0';
1392 
1393 static void
map_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int this_cpu,u64 timestamp,struct thread * thread __used)1394 map_switch_event(struct trace_switch_event *switch_event,
1395 		 struct perf_session *session,
1396 		 struct event *event __used,
1397 		 int this_cpu,
1398 		 u64 timestamp,
1399 		 struct thread *thread __used)
1400 {
1401 	struct thread *sched_out __used, *sched_in;
1402 	int new_shortname;
1403 	u64 timestamp0;
1404 	s64 delta;
1405 	int cpu;
1406 
1407 	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1408 
1409 	if (this_cpu > max_cpu)
1410 		max_cpu = this_cpu;
1411 
1412 	timestamp0 = cpu_last_switched[this_cpu];
1413 	cpu_last_switched[this_cpu] = timestamp;
1414 	if (timestamp0)
1415 		delta = timestamp - timestamp0;
1416 	else
1417 		delta = 0;
1418 
1419 	if (delta < 0)
1420 		die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1421 
1422 
1423 	sched_out = perf_session__findnew(session, switch_event->prev_pid);
1424 	sched_in = perf_session__findnew(session, switch_event->next_pid);
1425 
1426 	curr_thread[this_cpu] = sched_in;
1427 
1428 	printf("  ");
1429 
1430 	new_shortname = 0;
1431 	if (!sched_in->shortname[0]) {
1432 		sched_in->shortname[0] = next_shortname1;
1433 		sched_in->shortname[1] = next_shortname2;
1434 
1435 		if (next_shortname1 < 'Z') {
1436 			next_shortname1++;
1437 		} else {
1438 			next_shortname1='A';
1439 			if (next_shortname2 < '9') {
1440 				next_shortname2++;
1441 			} else {
1442 				next_shortname2='0';
1443 			}
1444 		}
1445 		new_shortname = 1;
1446 	}
1447 
1448 	for (cpu = 0; cpu <= max_cpu; cpu++) {
1449 		if (cpu != this_cpu)
1450 			printf(" ");
1451 		else
1452 			printf("*");
1453 
1454 		if (curr_thread[cpu]) {
1455 			if (curr_thread[cpu]->pid)
1456 				printf("%2s ", curr_thread[cpu]->shortname);
1457 			else
1458 				printf(".  ");
1459 		} else
1460 			printf("   ");
1461 	}
1462 
1463 	printf("  %12.6f secs ", (double)timestamp/1e9);
1464 	if (new_shortname) {
1465 		printf("%s => %s:%d\n",
1466 			sched_in->shortname, sched_in->comm, sched_in->pid);
1467 	} else {
1468 		printf("\n");
1469 	}
1470 }
1471 
1472 
1473 static void
process_sched_switch_event(void * data,struct perf_session * session,struct event * event,int this_cpu,u64 timestamp __used,struct thread * thread __used)1474 process_sched_switch_event(void *data, struct perf_session *session,
1475 			   struct event *event,
1476 			   int this_cpu,
1477 			   u64 timestamp __used,
1478 			   struct thread *thread __used)
1479 {
1480 	struct trace_switch_event switch_event;
1481 
1482 	FILL_COMMON_FIELDS(switch_event, event, data);
1483 
1484 	FILL_ARRAY(switch_event, prev_comm, event, data);
1485 	FILL_FIELD(switch_event, prev_pid, event, data);
1486 	FILL_FIELD(switch_event, prev_prio, event, data);
1487 	FILL_FIELD(switch_event, prev_state, event, data);
1488 	FILL_ARRAY(switch_event, next_comm, event, data);
1489 	FILL_FIELD(switch_event, next_pid, event, data);
1490 	FILL_FIELD(switch_event, next_prio, event, data);
1491 
1492 	if (curr_pid[this_cpu] != (u32)-1) {
1493 		/*
1494 		 * Are we trying to switch away a PID that is
1495 		 * not current?
1496 		 */
1497 		if (curr_pid[this_cpu] != switch_event.prev_pid)
1498 			nr_context_switch_bugs++;
1499 	}
1500 	if (trace_handler->switch_event)
1501 		trace_handler->switch_event(&switch_event, session, event,
1502 					    this_cpu, timestamp, thread);
1503 
1504 	curr_pid[this_cpu] = switch_event.next_pid;
1505 }
1506 
1507 static void
process_sched_runtime_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1508 process_sched_runtime_event(void *data, struct perf_session *session,
1509 			   struct event *event,
1510 			   int cpu __used,
1511 			   u64 timestamp __used,
1512 			   struct thread *thread __used)
1513 {
1514 	struct trace_runtime_event runtime_event;
1515 
1516 	FILL_ARRAY(runtime_event, comm, event, data);
1517 	FILL_FIELD(runtime_event, pid, event, data);
1518 	FILL_FIELD(runtime_event, runtime, event, data);
1519 	FILL_FIELD(runtime_event, vruntime, event, data);
1520 
1521 	if (trace_handler->runtime_event)
1522 		trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1523 }
1524 
1525 static void
process_sched_fork_event(void * data,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1526 process_sched_fork_event(void *data,
1527 			 struct event *event,
1528 			 int cpu __used,
1529 			 u64 timestamp __used,
1530 			 struct thread *thread __used)
1531 {
1532 	struct trace_fork_event fork_event;
1533 
1534 	FILL_COMMON_FIELDS(fork_event, event, data);
1535 
1536 	FILL_ARRAY(fork_event, parent_comm, event, data);
1537 	FILL_FIELD(fork_event, parent_pid, event, data);
1538 	FILL_ARRAY(fork_event, child_comm, event, data);
1539 	FILL_FIELD(fork_event, child_pid, event, data);
1540 
1541 	if (trace_handler->fork_event)
1542 		trace_handler->fork_event(&fork_event, event,
1543 					  cpu, timestamp, thread);
1544 }
1545 
1546 static void
process_sched_exit_event(struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1547 process_sched_exit_event(struct event *event,
1548 			 int cpu __used,
1549 			 u64 timestamp __used,
1550 			 struct thread *thread __used)
1551 {
1552 	if (verbose)
1553 		printf("sched_exit event %p\n", event);
1554 }
1555 
1556 static void
process_sched_migrate_task_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1557 process_sched_migrate_task_event(void *data, struct perf_session *session,
1558 			   struct event *event,
1559 			   int cpu __used,
1560 			   u64 timestamp __used,
1561 			   struct thread *thread __used)
1562 {
1563 	struct trace_migrate_task_event migrate_task_event;
1564 
1565 	FILL_COMMON_FIELDS(migrate_task_event, event, data);
1566 
1567 	FILL_ARRAY(migrate_task_event, comm, event, data);
1568 	FILL_FIELD(migrate_task_event, pid, event, data);
1569 	FILL_FIELD(migrate_task_event, prio, event, data);
1570 	FILL_FIELD(migrate_task_event, cpu, event, data);
1571 
1572 	if (trace_handler->migrate_task_event)
1573 		trace_handler->migrate_task_event(&migrate_task_event, session,
1574 						 event, cpu, timestamp, thread);
1575 }
1576 
process_raw_event(union perf_event * raw_event __used,struct perf_session * session,void * data,int cpu,u64 timestamp,struct thread * thread)1577 static void process_raw_event(union perf_event *raw_event __used,
1578 			      struct perf_session *session, void *data, int cpu,
1579 			      u64 timestamp, struct thread *thread)
1580 {
1581 	struct event *event;
1582 	int type;
1583 
1584 
1585 	type = trace_parse_common_type(data);
1586 	event = trace_find_event(type);
1587 
1588 	if (!strcmp(event->name, "sched_switch"))
1589 		process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1590 	if (!strcmp(event->name, "sched_stat_runtime"))
1591 		process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1592 	if (!strcmp(event->name, "sched_wakeup"))
1593 		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1594 	if (!strcmp(event->name, "sched_wakeup_new"))
1595 		process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1596 	if (!strcmp(event->name, "sched_process_fork"))
1597 		process_sched_fork_event(data, event, cpu, timestamp, thread);
1598 	if (!strcmp(event->name, "sched_process_exit"))
1599 		process_sched_exit_event(event, cpu, timestamp, thread);
1600 	if (!strcmp(event->name, "sched_migrate_task"))
1601 		process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1602 }
1603 
process_sample_event(union perf_event * event,struct perf_sample * sample,struct perf_evsel * evsel __used,struct perf_session * session)1604 static int process_sample_event(union perf_event *event,
1605 				struct perf_sample *sample,
1606 				struct perf_evsel *evsel __used,
1607 				struct perf_session *session)
1608 {
1609 	struct thread *thread;
1610 
1611 	if (!(session->sample_type & PERF_SAMPLE_RAW))
1612 		return 0;
1613 
1614 	thread = perf_session__findnew(session, sample->pid);
1615 	if (thread == NULL) {
1616 		pr_debug("problem processing %d event, skipping it.\n",
1617 			 event->header.type);
1618 		return -1;
1619 	}
1620 
1621 	dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1622 
1623 	if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1624 		return 0;
1625 
1626 	process_raw_event(event, session, sample->raw_data, sample->cpu,
1627 			  sample->time, thread);
1628 
1629 	return 0;
1630 }
1631 
1632 static struct perf_event_ops event_ops = {
1633 	.sample			= process_sample_event,
1634 	.comm			= perf_event__process_comm,
1635 	.lost			= perf_event__process_lost,
1636 	.fork			= perf_event__process_task,
1637 	.ordered_samples	= true,
1638 };
1639 
read_events(void)1640 static int read_events(void)
1641 {
1642 	int err = -EINVAL;
1643 	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644 							 0, false, &event_ops);
1645 	if (session == NULL)
1646 		return -ENOMEM;
1647 
1648 	if (perf_session__has_traces(session, "record -R")) {
1649 		err = perf_session__process_events(session, &event_ops);
1650 		nr_events      = session->hists.stats.nr_events[0];
1651 		nr_lost_events = session->hists.stats.total_lost;
1652 		nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1653 	}
1654 
1655 	perf_session__delete(session);
1656 	return err;
1657 }
1658 
print_bad_events(void)1659 static void print_bad_events(void)
1660 {
1661 	if (nr_unordered_timestamps && nr_timestamps) {
1662 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1663 			(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1664 			nr_unordered_timestamps, nr_timestamps);
1665 	}
1666 	if (nr_lost_events && nr_events) {
1667 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1668 			(double)nr_lost_events/(double)nr_events*100.0,
1669 			nr_lost_events, nr_events, nr_lost_chunks);
1670 	}
1671 	if (nr_state_machine_bugs && nr_timestamps) {
1672 		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1673 			(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1674 			nr_state_machine_bugs, nr_timestamps);
1675 		if (nr_lost_events)
1676 			printf(" (due to lost events?)");
1677 		printf("\n");
1678 	}
1679 	if (nr_context_switch_bugs && nr_timestamps) {
1680 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1681 			(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1682 			nr_context_switch_bugs, nr_timestamps);
1683 		if (nr_lost_events)
1684 			printf(" (due to lost events?)");
1685 		printf("\n");
1686 	}
1687 }
1688 
__cmd_lat(void)1689 static void __cmd_lat(void)
1690 {
1691 	struct rb_node *next;
1692 
1693 	setup_pager();
1694 	read_events();
1695 	sort_lat();
1696 
1697 	printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1698 	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1699 	printf(" ---------------------------------------------------------------------------------------------------------------\n");
1700 
1701 	next = rb_first(&sorted_atom_root);
1702 
1703 	while (next) {
1704 		struct work_atoms *work_list;
1705 
1706 		work_list = rb_entry(next, struct work_atoms, node);
1707 		output_lat_thread(work_list);
1708 		next = rb_next(next);
1709 	}
1710 
1711 	printf(" -----------------------------------------------------------------------------------------\n");
1712 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1713 		(double)all_runtime/1e6, all_count);
1714 
1715 	printf(" ---------------------------------------------------\n");
1716 
1717 	print_bad_events();
1718 	printf("\n");
1719 
1720 }
1721 
1722 static struct trace_sched_handler map_ops  = {
1723 	.wakeup_event		= NULL,
1724 	.switch_event		= map_switch_event,
1725 	.runtime_event		= NULL,
1726 	.fork_event		= NULL,
1727 };
1728 
__cmd_map(void)1729 static void __cmd_map(void)
1730 {
1731 	max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1732 
1733 	setup_pager();
1734 	read_events();
1735 	print_bad_events();
1736 }
1737 
__cmd_replay(void)1738 static void __cmd_replay(void)
1739 {
1740 	unsigned long i;
1741 
1742 	calibrate_run_measurement_overhead();
1743 	calibrate_sleep_measurement_overhead();
1744 
1745 	test_calibrations();
1746 
1747 	read_events();
1748 
1749 	printf("nr_run_events:        %ld\n", nr_run_events);
1750 	printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1751 	printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1752 
1753 	if (targetless_wakeups)
1754 		printf("target-less wakeups:  %ld\n", targetless_wakeups);
1755 	if (multitarget_wakeups)
1756 		printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1757 	if (nr_run_events_optimized)
1758 		printf("run atoms optimized: %ld\n",
1759 			nr_run_events_optimized);
1760 
1761 	print_task_traces();
1762 	add_cross_task_wakeups();
1763 
1764 	create_tasks();
1765 	printf("------------------------------------------------------------\n");
1766 	for (i = 0; i < replay_repeat; i++)
1767 		run_one_test();
1768 }
1769 
1770 
1771 static const char * const sched_usage[] = {
1772 	"perf sched [<options>] {record|latency|map|replay|trace}",
1773 	NULL
1774 };
1775 
1776 static const struct option sched_options[] = {
1777 	OPT_STRING('i', "input", &input_name, "file",
1778 		    "input file name"),
1779 	OPT_INCR('v', "verbose", &verbose,
1780 		    "be more verbose (show symbol address, etc)"),
1781 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1782 		    "dump raw trace in ASCII"),
1783 	OPT_END()
1784 };
1785 
1786 static const char * const latency_usage[] = {
1787 	"perf sched latency [<options>]",
1788 	NULL
1789 };
1790 
1791 static const struct option latency_options[] = {
1792 	OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1793 		   "sort by key(s): runtime, switch, avg, max"),
1794 	OPT_INCR('v', "verbose", &verbose,
1795 		    "be more verbose (show symbol address, etc)"),
1796 	OPT_INTEGER('C', "CPU", &profile_cpu,
1797 		    "CPU to profile on"),
1798 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1799 		    "dump raw trace in ASCII"),
1800 	OPT_END()
1801 };
1802 
1803 static const char * const replay_usage[] = {
1804 	"perf sched replay [<options>]",
1805 	NULL
1806 };
1807 
1808 static const struct option replay_options[] = {
1809 	OPT_UINTEGER('r', "repeat", &replay_repeat,
1810 		     "repeat the workload replay N times (-1: infinite)"),
1811 	OPT_INCR('v', "verbose", &verbose,
1812 		    "be more verbose (show symbol address, etc)"),
1813 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1814 		    "dump raw trace in ASCII"),
1815 	OPT_END()
1816 };
1817 
setup_sorting(void)1818 static void setup_sorting(void)
1819 {
1820 	char *tmp, *tok, *str = strdup(sort_order);
1821 
1822 	for (tok = strtok_r(str, ", ", &tmp);
1823 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1824 		if (sort_dimension__add(tok, &sort_list) < 0) {
1825 			error("Unknown --sort key: `%s'", tok);
1826 			usage_with_options(latency_usage, latency_options);
1827 		}
1828 	}
1829 
1830 	free(str);
1831 
1832 	sort_dimension__add("pid", &cmp_pid);
1833 }
1834 
1835 static const char *record_args[] = {
1836 	"record",
1837 	"-a",
1838 	"-R",
1839 	"-f",
1840 	"-m", "1024",
1841 	"-c", "1",
1842 	"-e", "sched:sched_switch",
1843 	"-e", "sched:sched_stat_wait",
1844 	"-e", "sched:sched_stat_sleep",
1845 	"-e", "sched:sched_stat_iowait",
1846 	"-e", "sched:sched_stat_runtime",
1847 	"-e", "sched:sched_process_exit",
1848 	"-e", "sched:sched_process_fork",
1849 	"-e", "sched:sched_wakeup",
1850 	"-e", "sched:sched_migrate_task",
1851 };
1852 
__cmd_record(int argc,const char ** argv)1853 static int __cmd_record(int argc, const char **argv)
1854 {
1855 	unsigned int rec_argc, i, j;
1856 	const char **rec_argv;
1857 
1858 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1859 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1860 
1861 	if (rec_argv == NULL)
1862 		return -ENOMEM;
1863 
1864 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1865 		rec_argv[i] = strdup(record_args[i]);
1866 
1867 	for (j = 1; j < (unsigned int)argc; j++, i++)
1868 		rec_argv[i] = argv[j];
1869 
1870 	BUG_ON(i != rec_argc);
1871 
1872 	return cmd_record(i, rec_argv, NULL);
1873 }
1874 
cmd_sched(int argc,const char ** argv,const char * prefix __used)1875 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1876 {
1877 	argc = parse_options(argc, argv, sched_options, sched_usage,
1878 			     PARSE_OPT_STOP_AT_NON_OPTION);
1879 	if (!argc)
1880 		usage_with_options(sched_usage, sched_options);
1881 
1882 	/*
1883 	 * Aliased to 'perf script' for now:
1884 	 */
1885 	if (!strcmp(argv[0], "script"))
1886 		return cmd_script(argc, argv, prefix);
1887 
1888 	symbol__init();
1889 	if (!strncmp(argv[0], "rec", 3)) {
1890 		return __cmd_record(argc, argv);
1891 	} else if (!strncmp(argv[0], "lat", 3)) {
1892 		trace_handler = &lat_ops;
1893 		if (argc > 1) {
1894 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1895 			if (argc)
1896 				usage_with_options(latency_usage, latency_options);
1897 		}
1898 		setup_sorting();
1899 		__cmd_lat();
1900 	} else if (!strcmp(argv[0], "map")) {
1901 		trace_handler = &map_ops;
1902 		setup_sorting();
1903 		__cmd_map();
1904 	} else if (!strncmp(argv[0], "rep", 3)) {
1905 		trace_handler = &replay_ops;
1906 		if (argc) {
1907 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1908 			if (argc)
1909 				usage_with_options(replay_usage, replay_options);
1910 		}
1911 		__cmd_replay();
1912 	} else {
1913 		usage_with_options(sched_usage, sched_options);
1914 	}
1915 
1916 	return 0;
1917 }
1918