1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13
14 #include "util/debug.h"
15
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char const *input_name = "perf.data";
23
24 static char default_sort_order[] = "avg, max, switch, runtime";
25 static const char *sort_order = default_sort_order;
26
27 static int profile_cpu = -1;
28
29 #define PR_SET_NAME 15 /* Set process name */
30 #define MAX_CPUS 4096
31
32 static u64 run_measurement_overhead;
33 static u64 sleep_measurement_overhead;
34
35 #define COMM_LEN 20
36 #define SYM_LEN 129
37
38 #define MAX_PID 65536
39
40 static unsigned long nr_tasks;
41
42 struct sched_atom;
43
44 struct task_desc {
45 unsigned long nr;
46 unsigned long pid;
47 char comm[COMM_LEN];
48
49 unsigned long nr_events;
50 unsigned long curr_event;
51 struct sched_atom **atoms;
52
53 pthread_t thread;
54 sem_t sleep_sem;
55
56 sem_t ready_for_work;
57 sem_t work_done_sem;
58
59 u64 cpu_usage;
60 };
61
62 enum sched_event_type {
63 SCHED_EVENT_RUN,
64 SCHED_EVENT_SLEEP,
65 SCHED_EVENT_WAKEUP,
66 SCHED_EVENT_MIGRATION,
67 };
68
69 struct sched_atom {
70 enum sched_event_type type;
71 int specific_wait;
72 u64 timestamp;
73 u64 duration;
74 unsigned long nr;
75 sem_t *wait_sem;
76 struct task_desc *wakee;
77 };
78
79 static struct task_desc *pid_to_task[MAX_PID];
80
81 static struct task_desc **tasks;
82
83 static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84 static u64 start_time;
85
86 static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87
88 static unsigned long nr_run_events;
89 static unsigned long nr_sleep_events;
90 static unsigned long nr_wakeup_events;
91
92 static unsigned long nr_sleep_corrections;
93 static unsigned long nr_run_events_optimized;
94
95 static unsigned long targetless_wakeups;
96 static unsigned long multitarget_wakeups;
97
98 static u64 cpu_usage;
99 static u64 runavg_cpu_usage;
100 static u64 parent_cpu_usage;
101 static u64 runavg_parent_cpu_usage;
102
103 static unsigned long nr_runs;
104 static u64 sum_runtime;
105 static u64 sum_fluct;
106 static u64 run_avg;
107
108 static unsigned int replay_repeat = 10;
109 static unsigned long nr_timestamps;
110 static unsigned long nr_unordered_timestamps;
111 static unsigned long nr_state_machine_bugs;
112 static unsigned long nr_context_switch_bugs;
113 static unsigned long nr_events;
114 static unsigned long nr_lost_chunks;
115 static unsigned long nr_lost_events;
116
117 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118
119 enum thread_state {
120 THREAD_SLEEPING = 0,
121 THREAD_WAIT_CPU,
122 THREAD_SCHED_IN,
123 THREAD_IGNORE
124 };
125
126 struct work_atom {
127 struct list_head list;
128 enum thread_state state;
129 u64 sched_out_time;
130 u64 wake_up_time;
131 u64 sched_in_time;
132 u64 runtime;
133 };
134
135 struct work_atoms {
136 struct list_head work_list;
137 struct thread *thread;
138 struct rb_node node;
139 u64 max_lat;
140 u64 max_lat_at;
141 u64 total_lat;
142 u64 nb_atoms;
143 u64 total_runtime;
144 };
145
146 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147
148 static struct rb_root atom_root, sorted_atom_root;
149
150 static u64 all_runtime;
151 static u64 all_count;
152
153
get_nsecs(void)154 static u64 get_nsecs(void)
155 {
156 struct timespec ts;
157
158 clock_gettime(CLOCK_MONOTONIC, &ts);
159
160 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161 }
162
burn_nsecs(u64 nsecs)163 static void burn_nsecs(u64 nsecs)
164 {
165 u64 T0 = get_nsecs(), T1;
166
167 do {
168 T1 = get_nsecs();
169 } while (T1 + run_measurement_overhead < T0 + nsecs);
170 }
171
sleep_nsecs(u64 nsecs)172 static void sleep_nsecs(u64 nsecs)
173 {
174 struct timespec ts;
175
176 ts.tv_nsec = nsecs % 999999999;
177 ts.tv_sec = nsecs / 999999999;
178
179 nanosleep(&ts, NULL);
180 }
181
calibrate_run_measurement_overhead(void)182 static void calibrate_run_measurement_overhead(void)
183 {
184 u64 T0, T1, delta, min_delta = 1000000000ULL;
185 int i;
186
187 for (i = 0; i < 10; i++) {
188 T0 = get_nsecs();
189 burn_nsecs(0);
190 T1 = get_nsecs();
191 delta = T1-T0;
192 min_delta = min(min_delta, delta);
193 }
194 run_measurement_overhead = min_delta;
195
196 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
197 }
198
calibrate_sleep_measurement_overhead(void)199 static void calibrate_sleep_measurement_overhead(void)
200 {
201 u64 T0, T1, delta, min_delta = 1000000000ULL;
202 int i;
203
204 for (i = 0; i < 10; i++) {
205 T0 = get_nsecs();
206 sleep_nsecs(10000);
207 T1 = get_nsecs();
208 delta = T1-T0;
209 min_delta = min(min_delta, delta);
210 }
211 min_delta -= 10000;
212 sleep_measurement_overhead = min_delta;
213
214 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
215 }
216
217 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)218 get_new_event(struct task_desc *task, u64 timestamp)
219 {
220 struct sched_atom *event = zalloc(sizeof(*event));
221 unsigned long idx = task->nr_events;
222 size_t size;
223
224 event->timestamp = timestamp;
225 event->nr = idx;
226
227 task->nr_events++;
228 size = sizeof(struct sched_atom *) * task->nr_events;
229 task->atoms = realloc(task->atoms, size);
230 BUG_ON(!task->atoms);
231
232 task->atoms[idx] = event;
233
234 return event;
235 }
236
last_event(struct task_desc * task)237 static struct sched_atom *last_event(struct task_desc *task)
238 {
239 if (!task->nr_events)
240 return NULL;
241
242 return task->atoms[task->nr_events - 1];
243 }
244
245 static void
add_sched_event_run(struct task_desc * task,u64 timestamp,u64 duration)246 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247 {
248 struct sched_atom *event, *curr_event = last_event(task);
249
250 /*
251 * optimize an existing RUN event by merging this one
252 * to it:
253 */
254 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255 nr_run_events_optimized++;
256 curr_event->duration += duration;
257 return;
258 }
259
260 event = get_new_event(task, timestamp);
261
262 event->type = SCHED_EVENT_RUN;
263 event->duration = duration;
264
265 nr_run_events++;
266 }
267
268 static void
add_sched_event_wakeup(struct task_desc * task,u64 timestamp,struct task_desc * wakee)269 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270 struct task_desc *wakee)
271 {
272 struct sched_atom *event, *wakee_event;
273
274 event = get_new_event(task, timestamp);
275 event->type = SCHED_EVENT_WAKEUP;
276 event->wakee = wakee;
277
278 wakee_event = last_event(wakee);
279 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280 targetless_wakeups++;
281 return;
282 }
283 if (wakee_event->wait_sem) {
284 multitarget_wakeups++;
285 return;
286 }
287
288 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289 sem_init(wakee_event->wait_sem, 0, 0);
290 wakee_event->specific_wait = 1;
291 event->wait_sem = wakee_event->wait_sem;
292
293 nr_wakeup_events++;
294 }
295
296 static void
add_sched_event_sleep(struct task_desc * task,u64 timestamp,u64 task_state __used)297 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298 u64 task_state __used)
299 {
300 struct sched_atom *event = get_new_event(task, timestamp);
301
302 event->type = SCHED_EVENT_SLEEP;
303
304 nr_sleep_events++;
305 }
306
register_pid(unsigned long pid,const char * comm)307 static struct task_desc *register_pid(unsigned long pid, const char *comm)
308 {
309 struct task_desc *task;
310
311 BUG_ON(pid >= MAX_PID);
312
313 task = pid_to_task[pid];
314
315 if (task)
316 return task;
317
318 task = zalloc(sizeof(*task));
319 task->pid = pid;
320 task->nr = nr_tasks;
321 strcpy(task->comm, comm);
322 /*
323 * every task starts in sleeping state - this gets ignored
324 * if there's no wakeup pointing to this sleep state:
325 */
326 add_sched_event_sleep(task, 0, 0);
327
328 pid_to_task[pid] = task;
329 nr_tasks++;
330 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331 BUG_ON(!tasks);
332 tasks[task->nr] = task;
333
334 if (verbose)
335 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336
337 return task;
338 }
339
340
print_task_traces(void)341 static void print_task_traces(void)
342 {
343 struct task_desc *task;
344 unsigned long i;
345
346 for (i = 0; i < nr_tasks; i++) {
347 task = tasks[i];
348 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349 task->nr, task->comm, task->pid, task->nr_events);
350 }
351 }
352
add_cross_task_wakeups(void)353 static void add_cross_task_wakeups(void)
354 {
355 struct task_desc *task1, *task2;
356 unsigned long i, j;
357
358 for (i = 0; i < nr_tasks; i++) {
359 task1 = tasks[i];
360 j = i + 1;
361 if (j == nr_tasks)
362 j = 0;
363 task2 = tasks[j];
364 add_sched_event_wakeup(task1, 0, task2);
365 }
366 }
367
368 static void
process_sched_event(struct task_desc * this_task __used,struct sched_atom * atom)369 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370 {
371 int ret = 0;
372
373 switch (atom->type) {
374 case SCHED_EVENT_RUN:
375 burn_nsecs(atom->duration);
376 break;
377 case SCHED_EVENT_SLEEP:
378 if (atom->wait_sem)
379 ret = sem_wait(atom->wait_sem);
380 BUG_ON(ret);
381 break;
382 case SCHED_EVENT_WAKEUP:
383 if (atom->wait_sem)
384 ret = sem_post(atom->wait_sem);
385 BUG_ON(ret);
386 break;
387 case SCHED_EVENT_MIGRATION:
388 break;
389 default:
390 BUG_ON(1);
391 }
392 }
393
get_cpu_usage_nsec_parent(void)394 static u64 get_cpu_usage_nsec_parent(void)
395 {
396 struct rusage ru;
397 u64 sum;
398 int err;
399
400 err = getrusage(RUSAGE_SELF, &ru);
401 BUG_ON(err);
402
403 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
404 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
405
406 return sum;
407 }
408
self_open_counters(void)409 static int self_open_counters(void)
410 {
411 struct perf_event_attr attr;
412 int fd;
413
414 memset(&attr, 0, sizeof(attr));
415
416 attr.type = PERF_TYPE_SOFTWARE;
417 attr.config = PERF_COUNT_SW_TASK_CLOCK;
418
419 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
420
421 if (fd < 0)
422 die("Error: sys_perf_event_open() syscall returned"
423 "with %d (%s)\n", fd, strerror(errno));
424 return fd;
425 }
426
get_cpu_usage_nsec_self(int fd)427 static u64 get_cpu_usage_nsec_self(int fd)
428 {
429 u64 runtime;
430 int ret;
431
432 ret = read(fd, &runtime, sizeof(runtime));
433 BUG_ON(ret != sizeof(runtime));
434
435 return runtime;
436 }
437
thread_func(void * ctx)438 static void *thread_func(void *ctx)
439 {
440 struct task_desc *this_task = ctx;
441 u64 cpu_usage_0, cpu_usage_1;
442 unsigned long i, ret;
443 char comm2[22];
444 int fd;
445
446 sprintf(comm2, ":%s", this_task->comm);
447 prctl(PR_SET_NAME, comm2);
448 fd = self_open_counters();
449
450 again:
451 ret = sem_post(&this_task->ready_for_work);
452 BUG_ON(ret);
453 ret = pthread_mutex_lock(&start_work_mutex);
454 BUG_ON(ret);
455 ret = pthread_mutex_unlock(&start_work_mutex);
456 BUG_ON(ret);
457
458 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
459
460 for (i = 0; i < this_task->nr_events; i++) {
461 this_task->curr_event = i;
462 process_sched_event(this_task, this_task->atoms[i]);
463 }
464
465 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
466 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
467 ret = sem_post(&this_task->work_done_sem);
468 BUG_ON(ret);
469
470 ret = pthread_mutex_lock(&work_done_wait_mutex);
471 BUG_ON(ret);
472 ret = pthread_mutex_unlock(&work_done_wait_mutex);
473 BUG_ON(ret);
474
475 goto again;
476 }
477
create_tasks(void)478 static void create_tasks(void)
479 {
480 struct task_desc *task;
481 pthread_attr_t attr;
482 unsigned long i;
483 int err;
484
485 err = pthread_attr_init(&attr);
486 BUG_ON(err);
487 err = pthread_attr_setstacksize(&attr,
488 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
489 BUG_ON(err);
490 err = pthread_mutex_lock(&start_work_mutex);
491 BUG_ON(err);
492 err = pthread_mutex_lock(&work_done_wait_mutex);
493 BUG_ON(err);
494 for (i = 0; i < nr_tasks; i++) {
495 task = tasks[i];
496 sem_init(&task->sleep_sem, 0, 0);
497 sem_init(&task->ready_for_work, 0, 0);
498 sem_init(&task->work_done_sem, 0, 0);
499 task->curr_event = 0;
500 err = pthread_create(&task->thread, &attr, thread_func, task);
501 BUG_ON(err);
502 }
503 }
504
wait_for_tasks(void)505 static void wait_for_tasks(void)
506 {
507 u64 cpu_usage_0, cpu_usage_1;
508 struct task_desc *task;
509 unsigned long i, ret;
510
511 start_time = get_nsecs();
512 cpu_usage = 0;
513 pthread_mutex_unlock(&work_done_wait_mutex);
514
515 for (i = 0; i < nr_tasks; i++) {
516 task = tasks[i];
517 ret = sem_wait(&task->ready_for_work);
518 BUG_ON(ret);
519 sem_init(&task->ready_for_work, 0, 0);
520 }
521 ret = pthread_mutex_lock(&work_done_wait_mutex);
522 BUG_ON(ret);
523
524 cpu_usage_0 = get_cpu_usage_nsec_parent();
525
526 pthread_mutex_unlock(&start_work_mutex);
527
528 for (i = 0; i < nr_tasks; i++) {
529 task = tasks[i];
530 ret = sem_wait(&task->work_done_sem);
531 BUG_ON(ret);
532 sem_init(&task->work_done_sem, 0, 0);
533 cpu_usage += task->cpu_usage;
534 task->cpu_usage = 0;
535 }
536
537 cpu_usage_1 = get_cpu_usage_nsec_parent();
538 if (!runavg_cpu_usage)
539 runavg_cpu_usage = cpu_usage;
540 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
541
542 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
543 if (!runavg_parent_cpu_usage)
544 runavg_parent_cpu_usage = parent_cpu_usage;
545 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
546 parent_cpu_usage)/10;
547
548 ret = pthread_mutex_lock(&start_work_mutex);
549 BUG_ON(ret);
550
551 for (i = 0; i < nr_tasks; i++) {
552 task = tasks[i];
553 sem_init(&task->sleep_sem, 0, 0);
554 task->curr_event = 0;
555 }
556 }
557
run_one_test(void)558 static void run_one_test(void)
559 {
560 u64 T0, T1, delta, avg_delta, fluct;
561
562 T0 = get_nsecs();
563 wait_for_tasks();
564 T1 = get_nsecs();
565
566 delta = T1 - T0;
567 sum_runtime += delta;
568 nr_runs++;
569
570 avg_delta = sum_runtime / nr_runs;
571 if (delta < avg_delta)
572 fluct = avg_delta - delta;
573 else
574 fluct = delta - avg_delta;
575 sum_fluct += fluct;
576 if (!run_avg)
577 run_avg = delta;
578 run_avg = (run_avg*9 + delta)/10;
579
580 printf("#%-3ld: %0.3f, ",
581 nr_runs, (double)delta/1000000.0);
582
583 printf("ravg: %0.2f, ",
584 (double)run_avg/1e6);
585
586 printf("cpu: %0.2f / %0.2f",
587 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
588
589 #if 0
590 /*
591 * rusage statistics done by the parent, these are less
592 * accurate than the sum_exec_runtime based statistics:
593 */
594 printf(" [%0.2f / %0.2f]",
595 (double)parent_cpu_usage/1e6,
596 (double)runavg_parent_cpu_usage/1e6);
597 #endif
598
599 printf("\n");
600
601 if (nr_sleep_corrections)
602 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
603 nr_sleep_corrections = 0;
604 }
605
test_calibrations(void)606 static void test_calibrations(void)
607 {
608 u64 T0, T1;
609
610 T0 = get_nsecs();
611 burn_nsecs(1e6);
612 T1 = get_nsecs();
613
614 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
615
616 T0 = get_nsecs();
617 sleep_nsecs(1e6);
618 T1 = get_nsecs();
619
620 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
621 }
622
623 #define FILL_FIELD(ptr, field, event, data) \
624 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
625
626 #define FILL_ARRAY(ptr, array, event, data) \
627 do { \
628 void *__array = raw_field_ptr(event, #array, data); \
629 memcpy(ptr.array, __array, sizeof(ptr.array)); \
630 } while(0)
631
632 #define FILL_COMMON_FIELDS(ptr, event, data) \
633 do { \
634 FILL_FIELD(ptr, common_type, event, data); \
635 FILL_FIELD(ptr, common_flags, event, data); \
636 FILL_FIELD(ptr, common_preempt_count, event, data); \
637 FILL_FIELD(ptr, common_pid, event, data); \
638 FILL_FIELD(ptr, common_tgid, event, data); \
639 } while (0)
640
641
642
643 struct trace_switch_event {
644 u32 size;
645
646 u16 common_type;
647 u8 common_flags;
648 u8 common_preempt_count;
649 u32 common_pid;
650 u32 common_tgid;
651
652 char prev_comm[16];
653 u32 prev_pid;
654 u32 prev_prio;
655 u64 prev_state;
656 char next_comm[16];
657 u32 next_pid;
658 u32 next_prio;
659 };
660
661 struct trace_runtime_event {
662 u32 size;
663
664 u16 common_type;
665 u8 common_flags;
666 u8 common_preempt_count;
667 u32 common_pid;
668 u32 common_tgid;
669
670 char comm[16];
671 u32 pid;
672 u64 runtime;
673 u64 vruntime;
674 };
675
676 struct trace_wakeup_event {
677 u32 size;
678
679 u16 common_type;
680 u8 common_flags;
681 u8 common_preempt_count;
682 u32 common_pid;
683 u32 common_tgid;
684
685 char comm[16];
686 u32 pid;
687
688 u32 prio;
689 u32 success;
690 u32 cpu;
691 };
692
693 struct trace_fork_event {
694 u32 size;
695
696 u16 common_type;
697 u8 common_flags;
698 u8 common_preempt_count;
699 u32 common_pid;
700 u32 common_tgid;
701
702 char parent_comm[16];
703 u32 parent_pid;
704 char child_comm[16];
705 u32 child_pid;
706 };
707
708 struct trace_migrate_task_event {
709 u32 size;
710
711 u16 common_type;
712 u8 common_flags;
713 u8 common_preempt_count;
714 u32 common_pid;
715 u32 common_tgid;
716
717 char comm[16];
718 u32 pid;
719
720 u32 prio;
721 u32 cpu;
722 };
723
724 struct trace_sched_handler {
725 void (*switch_event)(struct trace_switch_event *,
726 struct perf_session *,
727 struct event *,
728 int cpu,
729 u64 timestamp,
730 struct thread *thread);
731
732 void (*runtime_event)(struct trace_runtime_event *,
733 struct perf_session *,
734 struct event *,
735 int cpu,
736 u64 timestamp,
737 struct thread *thread);
738
739 void (*wakeup_event)(struct trace_wakeup_event *,
740 struct perf_session *,
741 struct event *,
742 int cpu,
743 u64 timestamp,
744 struct thread *thread);
745
746 void (*fork_event)(struct trace_fork_event *,
747 struct event *,
748 int cpu,
749 u64 timestamp,
750 struct thread *thread);
751
752 void (*migrate_task_event)(struct trace_migrate_task_event *,
753 struct perf_session *session,
754 struct event *,
755 int cpu,
756 u64 timestamp,
757 struct thread *thread);
758 };
759
760
761 static void
replay_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session __used,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)762 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
763 struct perf_session *session __used,
764 struct event *event,
765 int cpu __used,
766 u64 timestamp __used,
767 struct thread *thread __used)
768 {
769 struct task_desc *waker, *wakee;
770
771 if (verbose) {
772 printf("sched_wakeup event %p\n", event);
773
774 printf(" ... pid %d woke up %s/%d\n",
775 wakeup_event->common_pid,
776 wakeup_event->comm,
777 wakeup_event->pid);
778 }
779
780 waker = register_pid(wakeup_event->common_pid, "<unknown>");
781 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
782
783 add_sched_event_wakeup(waker, timestamp, wakee);
784 }
785
786 static u64 cpu_last_switched[MAX_CPUS];
787
788 static void
replay_switch_event(struct trace_switch_event * switch_event,struct perf_session * session __used,struct event * event,int cpu,u64 timestamp,struct thread * thread __used)789 replay_switch_event(struct trace_switch_event *switch_event,
790 struct perf_session *session __used,
791 struct event *event,
792 int cpu,
793 u64 timestamp,
794 struct thread *thread __used)
795 {
796 struct task_desc *prev, __used *next;
797 u64 timestamp0;
798 s64 delta;
799
800 if (verbose)
801 printf("sched_switch event %p\n", event);
802
803 if (cpu >= MAX_CPUS || cpu < 0)
804 return;
805
806 timestamp0 = cpu_last_switched[cpu];
807 if (timestamp0)
808 delta = timestamp - timestamp0;
809 else
810 delta = 0;
811
812 if (delta < 0)
813 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
814
815 if (verbose) {
816 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
817 switch_event->prev_comm, switch_event->prev_pid,
818 switch_event->next_comm, switch_event->next_pid,
819 delta);
820 }
821
822 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
823 next = register_pid(switch_event->next_pid, switch_event->next_comm);
824
825 cpu_last_switched[cpu] = timestamp;
826
827 add_sched_event_run(prev, timestamp, delta);
828 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
829 }
830
831
832 static void
replay_fork_event(struct trace_fork_event * fork_event,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)833 replay_fork_event(struct trace_fork_event *fork_event,
834 struct event *event,
835 int cpu __used,
836 u64 timestamp __used,
837 struct thread *thread __used)
838 {
839 if (verbose) {
840 printf("sched_fork event %p\n", event);
841 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
842 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
843 }
844 register_pid(fork_event->parent_pid, fork_event->parent_comm);
845 register_pid(fork_event->child_pid, fork_event->child_comm);
846 }
847
848 static struct trace_sched_handler replay_ops = {
849 .wakeup_event = replay_wakeup_event,
850 .switch_event = replay_switch_event,
851 .fork_event = replay_fork_event,
852 };
853
854 struct sort_dimension {
855 const char *name;
856 sort_fn_t cmp;
857 struct list_head list;
858 };
859
860 static LIST_HEAD(cmp_pid);
861
862 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)863 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
864 {
865 struct sort_dimension *sort;
866 int ret = 0;
867
868 BUG_ON(list_empty(list));
869
870 list_for_each_entry(sort, list, list) {
871 ret = sort->cmp(l, r);
872 if (ret)
873 return ret;
874 }
875
876 return ret;
877 }
878
879 static struct work_atoms *
thread_atoms_search(struct rb_root * root,struct thread * thread,struct list_head * sort_list)880 thread_atoms_search(struct rb_root *root, struct thread *thread,
881 struct list_head *sort_list)
882 {
883 struct rb_node *node = root->rb_node;
884 struct work_atoms key = { .thread = thread };
885
886 while (node) {
887 struct work_atoms *atoms;
888 int cmp;
889
890 atoms = container_of(node, struct work_atoms, node);
891
892 cmp = thread_lat_cmp(sort_list, &key, atoms);
893 if (cmp > 0)
894 node = node->rb_left;
895 else if (cmp < 0)
896 node = node->rb_right;
897 else {
898 BUG_ON(thread != atoms->thread);
899 return atoms;
900 }
901 }
902 return NULL;
903 }
904
905 static void
__thread_latency_insert(struct rb_root * root,struct work_atoms * data,struct list_head * sort_list)906 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
907 struct list_head *sort_list)
908 {
909 struct rb_node **new = &(root->rb_node), *parent = NULL;
910
911 while (*new) {
912 struct work_atoms *this;
913 int cmp;
914
915 this = container_of(*new, struct work_atoms, node);
916 parent = *new;
917
918 cmp = thread_lat_cmp(sort_list, data, this);
919
920 if (cmp > 0)
921 new = &((*new)->rb_left);
922 else
923 new = &((*new)->rb_right);
924 }
925
926 rb_link_node(&data->node, parent, new);
927 rb_insert_color(&data->node, root);
928 }
929
thread_atoms_insert(struct thread * thread)930 static void thread_atoms_insert(struct thread *thread)
931 {
932 struct work_atoms *atoms = zalloc(sizeof(*atoms));
933 if (!atoms)
934 die("No memory");
935
936 atoms->thread = thread;
937 INIT_LIST_HEAD(&atoms->work_list);
938 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
939 }
940
941 static void
latency_fork_event(struct trace_fork_event * fork_event __used,struct event * event __used,int cpu __used,u64 timestamp __used,struct thread * thread __used)942 latency_fork_event(struct trace_fork_event *fork_event __used,
943 struct event *event __used,
944 int cpu __used,
945 u64 timestamp __used,
946 struct thread *thread __used)
947 {
948 /* should insert the newcomer */
949 }
950
951 __used
sched_out_state(struct trace_switch_event * switch_event)952 static char sched_out_state(struct trace_switch_event *switch_event)
953 {
954 const char *str = TASK_STATE_TO_CHAR_STR;
955
956 return str[switch_event->prev_state];
957 }
958
959 static void
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)960 add_sched_out_event(struct work_atoms *atoms,
961 char run_state,
962 u64 timestamp)
963 {
964 struct work_atom *atom = zalloc(sizeof(*atom));
965 if (!atom)
966 die("Non memory");
967
968 atom->sched_out_time = timestamp;
969
970 if (run_state == 'R') {
971 atom->state = THREAD_WAIT_CPU;
972 atom->wake_up_time = atom->sched_out_time;
973 }
974
975 list_add_tail(&atom->list, &atoms->work_list);
976 }
977
978 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __used)979 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
980 {
981 struct work_atom *atom;
982
983 BUG_ON(list_empty(&atoms->work_list));
984
985 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
986
987 atom->runtime += delta;
988 atoms->total_runtime += delta;
989 }
990
991 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)992 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
993 {
994 struct work_atom *atom;
995 u64 delta;
996
997 if (list_empty(&atoms->work_list))
998 return;
999
1000 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1001
1002 if (atom->state != THREAD_WAIT_CPU)
1003 return;
1004
1005 if (timestamp < atom->wake_up_time) {
1006 atom->state = THREAD_IGNORE;
1007 return;
1008 }
1009
1010 atom->state = THREAD_SCHED_IN;
1011 atom->sched_in_time = timestamp;
1012
1013 delta = atom->sched_in_time - atom->wake_up_time;
1014 atoms->total_lat += delta;
1015 if (delta > atoms->max_lat) {
1016 atoms->max_lat = delta;
1017 atoms->max_lat_at = timestamp;
1018 }
1019 atoms->nb_atoms++;
1020 }
1021
1022 static void
latency_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * thread __used)1023 latency_switch_event(struct trace_switch_event *switch_event,
1024 struct perf_session *session,
1025 struct event *event __used,
1026 int cpu,
1027 u64 timestamp,
1028 struct thread *thread __used)
1029 {
1030 struct work_atoms *out_events, *in_events;
1031 struct thread *sched_out, *sched_in;
1032 u64 timestamp0;
1033 s64 delta;
1034
1035 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036
1037 timestamp0 = cpu_last_switched[cpu];
1038 cpu_last_switched[cpu] = timestamp;
1039 if (timestamp0)
1040 delta = timestamp - timestamp0;
1041 else
1042 delta = 0;
1043
1044 if (delta < 0)
1045 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1046
1047
1048 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1049 sched_in = perf_session__findnew(session, switch_event->next_pid);
1050
1051 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052 if (!out_events) {
1053 thread_atoms_insert(sched_out);
1054 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055 if (!out_events)
1056 die("out-event: Internal tree error");
1057 }
1058 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1059
1060 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061 if (!in_events) {
1062 thread_atoms_insert(sched_in);
1063 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064 if (!in_events)
1065 die("in-event: Internal tree error");
1066 /*
1067 * Take came in we have not heard about yet,
1068 * add in an initial atom in runnable state:
1069 */
1070 add_sched_out_event(in_events, 'R', timestamp);
1071 }
1072 add_sched_in_event(in_events, timestamp);
1073 }
1074
1075 static void
latency_runtime_event(struct trace_runtime_event * runtime_event,struct perf_session * session,struct event * event __used,int cpu,u64 timestamp,struct thread * this_thread __used)1076 latency_runtime_event(struct trace_runtime_event *runtime_event,
1077 struct perf_session *session,
1078 struct event *event __used,
1079 int cpu,
1080 u64 timestamp,
1081 struct thread *this_thread __used)
1082 {
1083 struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1084 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085
1086 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087 if (!atoms) {
1088 thread_atoms_insert(thread);
1089 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090 if (!atoms)
1091 die("in-event: Internal tree error");
1092 add_sched_out_event(atoms, 'R', timestamp);
1093 }
1094
1095 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1096 }
1097
1098 static void
latency_wakeup_event(struct trace_wakeup_event * wakeup_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1099 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100 struct perf_session *session,
1101 struct event *__event __used,
1102 int cpu __used,
1103 u64 timestamp,
1104 struct thread *thread __used)
1105 {
1106 struct work_atoms *atoms;
1107 struct work_atom *atom;
1108 struct thread *wakee;
1109
1110 /* Note for later, it may be interesting to observe the failing cases */
1111 if (!wakeup_event->success)
1112 return;
1113
1114 wakee = perf_session__findnew(session, wakeup_event->pid);
1115 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116 if (!atoms) {
1117 thread_atoms_insert(wakee);
1118 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119 if (!atoms)
1120 die("wakeup-event: Internal tree error");
1121 add_sched_out_event(atoms, 'S', timestamp);
1122 }
1123
1124 BUG_ON(list_empty(&atoms->work_list));
1125
1126 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1127
1128 /*
1129 * You WILL be missing events if you've recorded only
1130 * one CPU, or are only looking at only one, so don't
1131 * make useless noise.
1132 */
1133 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1134 nr_state_machine_bugs++;
1135
1136 nr_timestamps++;
1137 if (atom->sched_out_time > timestamp) {
1138 nr_unordered_timestamps++;
1139 return;
1140 }
1141
1142 atom->state = THREAD_WAIT_CPU;
1143 atom->wake_up_time = timestamp;
1144 }
1145
1146 static void
latency_migrate_task_event(struct trace_migrate_task_event * migrate_task_event,struct perf_session * session,struct event * __event __used,int cpu __used,u64 timestamp,struct thread * thread __used)1147 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1148 struct perf_session *session,
1149 struct event *__event __used,
1150 int cpu __used,
1151 u64 timestamp,
1152 struct thread *thread __used)
1153 {
1154 struct work_atoms *atoms;
1155 struct work_atom *atom;
1156 struct thread *migrant;
1157
1158 /*
1159 * Only need to worry about migration when profiling one CPU.
1160 */
1161 if (profile_cpu == -1)
1162 return;
1163
1164 migrant = perf_session__findnew(session, migrate_task_event->pid);
1165 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1166 if (!atoms) {
1167 thread_atoms_insert(migrant);
1168 register_pid(migrant->pid, migrant->comm);
1169 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170 if (!atoms)
1171 die("migration-event: Internal tree error");
1172 add_sched_out_event(atoms, 'R', timestamp);
1173 }
1174
1175 BUG_ON(list_empty(&atoms->work_list));
1176
1177 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1178 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1179
1180 nr_timestamps++;
1181
1182 if (atom->sched_out_time > timestamp)
1183 nr_unordered_timestamps++;
1184 }
1185
1186 static struct trace_sched_handler lat_ops = {
1187 .wakeup_event = latency_wakeup_event,
1188 .switch_event = latency_switch_event,
1189 .runtime_event = latency_runtime_event,
1190 .fork_event = latency_fork_event,
1191 .migrate_task_event = latency_migrate_task_event,
1192 };
1193
output_lat_thread(struct work_atoms * work_list)1194 static void output_lat_thread(struct work_atoms *work_list)
1195 {
1196 int i;
1197 int ret;
1198 u64 avg;
1199
1200 if (!work_list->nb_atoms)
1201 return;
1202 /*
1203 * Ignore idle threads:
1204 */
1205 if (!strcmp(work_list->thread->comm, "swapper"))
1206 return;
1207
1208 all_runtime += work_list->total_runtime;
1209 all_count += work_list->nb_atoms;
1210
1211 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1212
1213 for (i = 0; i < 24 - ret; i++)
1214 printf(" ");
1215
1216 avg = work_list->total_lat / work_list->nb_atoms;
1217
1218 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1219 (double)work_list->total_runtime / 1e6,
1220 work_list->nb_atoms, (double)avg / 1e6,
1221 (double)work_list->max_lat / 1e6,
1222 (double)work_list->max_lat_at / 1e9);
1223 }
1224
pid_cmp(struct work_atoms * l,struct work_atoms * r)1225 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1226 {
1227 if (l->thread->pid < r->thread->pid)
1228 return -1;
1229 if (l->thread->pid > r->thread->pid)
1230 return 1;
1231
1232 return 0;
1233 }
1234
1235 static struct sort_dimension pid_sort_dimension = {
1236 .name = "pid",
1237 .cmp = pid_cmp,
1238 };
1239
avg_cmp(struct work_atoms * l,struct work_atoms * r)1240 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1241 {
1242 u64 avgl, avgr;
1243
1244 if (!l->nb_atoms)
1245 return -1;
1246
1247 if (!r->nb_atoms)
1248 return 1;
1249
1250 avgl = l->total_lat / l->nb_atoms;
1251 avgr = r->total_lat / r->nb_atoms;
1252
1253 if (avgl < avgr)
1254 return -1;
1255 if (avgl > avgr)
1256 return 1;
1257
1258 return 0;
1259 }
1260
1261 static struct sort_dimension avg_sort_dimension = {
1262 .name = "avg",
1263 .cmp = avg_cmp,
1264 };
1265
max_cmp(struct work_atoms * l,struct work_atoms * r)1266 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1267 {
1268 if (l->max_lat < r->max_lat)
1269 return -1;
1270 if (l->max_lat > r->max_lat)
1271 return 1;
1272
1273 return 0;
1274 }
1275
1276 static struct sort_dimension max_sort_dimension = {
1277 .name = "max",
1278 .cmp = max_cmp,
1279 };
1280
switch_cmp(struct work_atoms * l,struct work_atoms * r)1281 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1282 {
1283 if (l->nb_atoms < r->nb_atoms)
1284 return -1;
1285 if (l->nb_atoms > r->nb_atoms)
1286 return 1;
1287
1288 return 0;
1289 }
1290
1291 static struct sort_dimension switch_sort_dimension = {
1292 .name = "switch",
1293 .cmp = switch_cmp,
1294 };
1295
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1296 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1297 {
1298 if (l->total_runtime < r->total_runtime)
1299 return -1;
1300 if (l->total_runtime > r->total_runtime)
1301 return 1;
1302
1303 return 0;
1304 }
1305
1306 static struct sort_dimension runtime_sort_dimension = {
1307 .name = "runtime",
1308 .cmp = runtime_cmp,
1309 };
1310
1311 static struct sort_dimension *available_sorts[] = {
1312 &pid_sort_dimension,
1313 &avg_sort_dimension,
1314 &max_sort_dimension,
1315 &switch_sort_dimension,
1316 &runtime_sort_dimension,
1317 };
1318
1319 #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1320
1321 static LIST_HEAD(sort_list);
1322
sort_dimension__add(const char * tok,struct list_head * list)1323 static int sort_dimension__add(const char *tok, struct list_head *list)
1324 {
1325 int i;
1326
1327 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1328 if (!strcmp(available_sorts[i]->name, tok)) {
1329 list_add_tail(&available_sorts[i]->list, list);
1330
1331 return 0;
1332 }
1333 }
1334
1335 return -1;
1336 }
1337
1338 static void setup_sorting(void);
1339
sort_lat(void)1340 static void sort_lat(void)
1341 {
1342 struct rb_node *node;
1343
1344 for (;;) {
1345 struct work_atoms *data;
1346 node = rb_first(&atom_root);
1347 if (!node)
1348 break;
1349
1350 rb_erase(node, &atom_root);
1351 data = rb_entry(node, struct work_atoms, node);
1352 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1353 }
1354 }
1355
1356 static struct trace_sched_handler *trace_handler;
1357
1358 static void
process_sched_wakeup_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1359 process_sched_wakeup_event(void *data, struct perf_session *session,
1360 struct event *event,
1361 int cpu __used,
1362 u64 timestamp __used,
1363 struct thread *thread __used)
1364 {
1365 struct trace_wakeup_event wakeup_event;
1366
1367 FILL_COMMON_FIELDS(wakeup_event, event, data);
1368
1369 FILL_ARRAY(wakeup_event, comm, event, data);
1370 FILL_FIELD(wakeup_event, pid, event, data);
1371 FILL_FIELD(wakeup_event, prio, event, data);
1372 FILL_FIELD(wakeup_event, success, event, data);
1373 FILL_FIELD(wakeup_event, cpu, event, data);
1374
1375 if (trace_handler->wakeup_event)
1376 trace_handler->wakeup_event(&wakeup_event, session, event,
1377 cpu, timestamp, thread);
1378 }
1379
1380 /*
1381 * Track the current task - that way we can know whether there's any
1382 * weird events, such as a task being switched away that is not current.
1383 */
1384 static int max_cpu;
1385
1386 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1387
1388 static struct thread *curr_thread[MAX_CPUS];
1389
1390 static char next_shortname1 = 'A';
1391 static char next_shortname2 = '0';
1392
1393 static void
map_switch_event(struct trace_switch_event * switch_event,struct perf_session * session,struct event * event __used,int this_cpu,u64 timestamp,struct thread * thread __used)1394 map_switch_event(struct trace_switch_event *switch_event,
1395 struct perf_session *session,
1396 struct event *event __used,
1397 int this_cpu,
1398 u64 timestamp,
1399 struct thread *thread __used)
1400 {
1401 struct thread *sched_out __used, *sched_in;
1402 int new_shortname;
1403 u64 timestamp0;
1404 s64 delta;
1405 int cpu;
1406
1407 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1408
1409 if (this_cpu > max_cpu)
1410 max_cpu = this_cpu;
1411
1412 timestamp0 = cpu_last_switched[this_cpu];
1413 cpu_last_switched[this_cpu] = timestamp;
1414 if (timestamp0)
1415 delta = timestamp - timestamp0;
1416 else
1417 delta = 0;
1418
1419 if (delta < 0)
1420 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1421
1422
1423 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1424 sched_in = perf_session__findnew(session, switch_event->next_pid);
1425
1426 curr_thread[this_cpu] = sched_in;
1427
1428 printf(" ");
1429
1430 new_shortname = 0;
1431 if (!sched_in->shortname[0]) {
1432 sched_in->shortname[0] = next_shortname1;
1433 sched_in->shortname[1] = next_shortname2;
1434
1435 if (next_shortname1 < 'Z') {
1436 next_shortname1++;
1437 } else {
1438 next_shortname1='A';
1439 if (next_shortname2 < '9') {
1440 next_shortname2++;
1441 } else {
1442 next_shortname2='0';
1443 }
1444 }
1445 new_shortname = 1;
1446 }
1447
1448 for (cpu = 0; cpu <= max_cpu; cpu++) {
1449 if (cpu != this_cpu)
1450 printf(" ");
1451 else
1452 printf("*");
1453
1454 if (curr_thread[cpu]) {
1455 if (curr_thread[cpu]->pid)
1456 printf("%2s ", curr_thread[cpu]->shortname);
1457 else
1458 printf(". ");
1459 } else
1460 printf(" ");
1461 }
1462
1463 printf(" %12.6f secs ", (double)timestamp/1e9);
1464 if (new_shortname) {
1465 printf("%s => %s:%d\n",
1466 sched_in->shortname, sched_in->comm, sched_in->pid);
1467 } else {
1468 printf("\n");
1469 }
1470 }
1471
1472
1473 static void
process_sched_switch_event(void * data,struct perf_session * session,struct event * event,int this_cpu,u64 timestamp __used,struct thread * thread __used)1474 process_sched_switch_event(void *data, struct perf_session *session,
1475 struct event *event,
1476 int this_cpu,
1477 u64 timestamp __used,
1478 struct thread *thread __used)
1479 {
1480 struct trace_switch_event switch_event;
1481
1482 FILL_COMMON_FIELDS(switch_event, event, data);
1483
1484 FILL_ARRAY(switch_event, prev_comm, event, data);
1485 FILL_FIELD(switch_event, prev_pid, event, data);
1486 FILL_FIELD(switch_event, prev_prio, event, data);
1487 FILL_FIELD(switch_event, prev_state, event, data);
1488 FILL_ARRAY(switch_event, next_comm, event, data);
1489 FILL_FIELD(switch_event, next_pid, event, data);
1490 FILL_FIELD(switch_event, next_prio, event, data);
1491
1492 if (curr_pid[this_cpu] != (u32)-1) {
1493 /*
1494 * Are we trying to switch away a PID that is
1495 * not current?
1496 */
1497 if (curr_pid[this_cpu] != switch_event.prev_pid)
1498 nr_context_switch_bugs++;
1499 }
1500 if (trace_handler->switch_event)
1501 trace_handler->switch_event(&switch_event, session, event,
1502 this_cpu, timestamp, thread);
1503
1504 curr_pid[this_cpu] = switch_event.next_pid;
1505 }
1506
1507 static void
process_sched_runtime_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1508 process_sched_runtime_event(void *data, struct perf_session *session,
1509 struct event *event,
1510 int cpu __used,
1511 u64 timestamp __used,
1512 struct thread *thread __used)
1513 {
1514 struct trace_runtime_event runtime_event;
1515
1516 FILL_ARRAY(runtime_event, comm, event, data);
1517 FILL_FIELD(runtime_event, pid, event, data);
1518 FILL_FIELD(runtime_event, runtime, event, data);
1519 FILL_FIELD(runtime_event, vruntime, event, data);
1520
1521 if (trace_handler->runtime_event)
1522 trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1523 }
1524
1525 static void
process_sched_fork_event(void * data,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1526 process_sched_fork_event(void *data,
1527 struct event *event,
1528 int cpu __used,
1529 u64 timestamp __used,
1530 struct thread *thread __used)
1531 {
1532 struct trace_fork_event fork_event;
1533
1534 FILL_COMMON_FIELDS(fork_event, event, data);
1535
1536 FILL_ARRAY(fork_event, parent_comm, event, data);
1537 FILL_FIELD(fork_event, parent_pid, event, data);
1538 FILL_ARRAY(fork_event, child_comm, event, data);
1539 FILL_FIELD(fork_event, child_pid, event, data);
1540
1541 if (trace_handler->fork_event)
1542 trace_handler->fork_event(&fork_event, event,
1543 cpu, timestamp, thread);
1544 }
1545
1546 static void
process_sched_exit_event(struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1547 process_sched_exit_event(struct event *event,
1548 int cpu __used,
1549 u64 timestamp __used,
1550 struct thread *thread __used)
1551 {
1552 if (verbose)
1553 printf("sched_exit event %p\n", event);
1554 }
1555
1556 static void
process_sched_migrate_task_event(void * data,struct perf_session * session,struct event * event,int cpu __used,u64 timestamp __used,struct thread * thread __used)1557 process_sched_migrate_task_event(void *data, struct perf_session *session,
1558 struct event *event,
1559 int cpu __used,
1560 u64 timestamp __used,
1561 struct thread *thread __used)
1562 {
1563 struct trace_migrate_task_event migrate_task_event;
1564
1565 FILL_COMMON_FIELDS(migrate_task_event, event, data);
1566
1567 FILL_ARRAY(migrate_task_event, comm, event, data);
1568 FILL_FIELD(migrate_task_event, pid, event, data);
1569 FILL_FIELD(migrate_task_event, prio, event, data);
1570 FILL_FIELD(migrate_task_event, cpu, event, data);
1571
1572 if (trace_handler->migrate_task_event)
1573 trace_handler->migrate_task_event(&migrate_task_event, session,
1574 event, cpu, timestamp, thread);
1575 }
1576
process_raw_event(union perf_event * raw_event __used,struct perf_session * session,void * data,int cpu,u64 timestamp,struct thread * thread)1577 static void process_raw_event(union perf_event *raw_event __used,
1578 struct perf_session *session, void *data, int cpu,
1579 u64 timestamp, struct thread *thread)
1580 {
1581 struct event *event;
1582 int type;
1583
1584
1585 type = trace_parse_common_type(data);
1586 event = trace_find_event(type);
1587
1588 if (!strcmp(event->name, "sched_switch"))
1589 process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1590 if (!strcmp(event->name, "sched_stat_runtime"))
1591 process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1592 if (!strcmp(event->name, "sched_wakeup"))
1593 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1594 if (!strcmp(event->name, "sched_wakeup_new"))
1595 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1596 if (!strcmp(event->name, "sched_process_fork"))
1597 process_sched_fork_event(data, event, cpu, timestamp, thread);
1598 if (!strcmp(event->name, "sched_process_exit"))
1599 process_sched_exit_event(event, cpu, timestamp, thread);
1600 if (!strcmp(event->name, "sched_migrate_task"))
1601 process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1602 }
1603
process_sample_event(union perf_event * event,struct perf_sample * sample,struct perf_evsel * evsel __used,struct perf_session * session)1604 static int process_sample_event(union perf_event *event,
1605 struct perf_sample *sample,
1606 struct perf_evsel *evsel __used,
1607 struct perf_session *session)
1608 {
1609 struct thread *thread;
1610
1611 if (!(session->sample_type & PERF_SAMPLE_RAW))
1612 return 0;
1613
1614 thread = perf_session__findnew(session, sample->pid);
1615 if (thread == NULL) {
1616 pr_debug("problem processing %d event, skipping it.\n",
1617 event->header.type);
1618 return -1;
1619 }
1620
1621 dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1622
1623 if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1624 return 0;
1625
1626 process_raw_event(event, session, sample->raw_data, sample->cpu,
1627 sample->time, thread);
1628
1629 return 0;
1630 }
1631
1632 static struct perf_event_ops event_ops = {
1633 .sample = process_sample_event,
1634 .comm = perf_event__process_comm,
1635 .lost = perf_event__process_lost,
1636 .fork = perf_event__process_task,
1637 .ordered_samples = true,
1638 };
1639
read_events(void)1640 static int read_events(void)
1641 {
1642 int err = -EINVAL;
1643 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644 0, false, &event_ops);
1645 if (session == NULL)
1646 return -ENOMEM;
1647
1648 if (perf_session__has_traces(session, "record -R")) {
1649 err = perf_session__process_events(session, &event_ops);
1650 nr_events = session->hists.stats.nr_events[0];
1651 nr_lost_events = session->hists.stats.total_lost;
1652 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1653 }
1654
1655 perf_session__delete(session);
1656 return err;
1657 }
1658
print_bad_events(void)1659 static void print_bad_events(void)
1660 {
1661 if (nr_unordered_timestamps && nr_timestamps) {
1662 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1663 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1664 nr_unordered_timestamps, nr_timestamps);
1665 }
1666 if (nr_lost_events && nr_events) {
1667 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1668 (double)nr_lost_events/(double)nr_events*100.0,
1669 nr_lost_events, nr_events, nr_lost_chunks);
1670 }
1671 if (nr_state_machine_bugs && nr_timestamps) {
1672 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1673 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1674 nr_state_machine_bugs, nr_timestamps);
1675 if (nr_lost_events)
1676 printf(" (due to lost events?)");
1677 printf("\n");
1678 }
1679 if (nr_context_switch_bugs && nr_timestamps) {
1680 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1681 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1682 nr_context_switch_bugs, nr_timestamps);
1683 if (nr_lost_events)
1684 printf(" (due to lost events?)");
1685 printf("\n");
1686 }
1687 }
1688
__cmd_lat(void)1689 static void __cmd_lat(void)
1690 {
1691 struct rb_node *next;
1692
1693 setup_pager();
1694 read_events();
1695 sort_lat();
1696
1697 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1698 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1699 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1700
1701 next = rb_first(&sorted_atom_root);
1702
1703 while (next) {
1704 struct work_atoms *work_list;
1705
1706 work_list = rb_entry(next, struct work_atoms, node);
1707 output_lat_thread(work_list);
1708 next = rb_next(next);
1709 }
1710
1711 printf(" -----------------------------------------------------------------------------------------\n");
1712 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1713 (double)all_runtime/1e6, all_count);
1714
1715 printf(" ---------------------------------------------------\n");
1716
1717 print_bad_events();
1718 printf("\n");
1719
1720 }
1721
1722 static struct trace_sched_handler map_ops = {
1723 .wakeup_event = NULL,
1724 .switch_event = map_switch_event,
1725 .runtime_event = NULL,
1726 .fork_event = NULL,
1727 };
1728
__cmd_map(void)1729 static void __cmd_map(void)
1730 {
1731 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1732
1733 setup_pager();
1734 read_events();
1735 print_bad_events();
1736 }
1737
__cmd_replay(void)1738 static void __cmd_replay(void)
1739 {
1740 unsigned long i;
1741
1742 calibrate_run_measurement_overhead();
1743 calibrate_sleep_measurement_overhead();
1744
1745 test_calibrations();
1746
1747 read_events();
1748
1749 printf("nr_run_events: %ld\n", nr_run_events);
1750 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1751 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1752
1753 if (targetless_wakeups)
1754 printf("target-less wakeups: %ld\n", targetless_wakeups);
1755 if (multitarget_wakeups)
1756 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1757 if (nr_run_events_optimized)
1758 printf("run atoms optimized: %ld\n",
1759 nr_run_events_optimized);
1760
1761 print_task_traces();
1762 add_cross_task_wakeups();
1763
1764 create_tasks();
1765 printf("------------------------------------------------------------\n");
1766 for (i = 0; i < replay_repeat; i++)
1767 run_one_test();
1768 }
1769
1770
1771 static const char * const sched_usage[] = {
1772 "perf sched [<options>] {record|latency|map|replay|trace}",
1773 NULL
1774 };
1775
1776 static const struct option sched_options[] = {
1777 OPT_STRING('i', "input", &input_name, "file",
1778 "input file name"),
1779 OPT_INCR('v', "verbose", &verbose,
1780 "be more verbose (show symbol address, etc)"),
1781 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1782 "dump raw trace in ASCII"),
1783 OPT_END()
1784 };
1785
1786 static const char * const latency_usage[] = {
1787 "perf sched latency [<options>]",
1788 NULL
1789 };
1790
1791 static const struct option latency_options[] = {
1792 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1793 "sort by key(s): runtime, switch, avg, max"),
1794 OPT_INCR('v', "verbose", &verbose,
1795 "be more verbose (show symbol address, etc)"),
1796 OPT_INTEGER('C', "CPU", &profile_cpu,
1797 "CPU to profile on"),
1798 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1799 "dump raw trace in ASCII"),
1800 OPT_END()
1801 };
1802
1803 static const char * const replay_usage[] = {
1804 "perf sched replay [<options>]",
1805 NULL
1806 };
1807
1808 static const struct option replay_options[] = {
1809 OPT_UINTEGER('r', "repeat", &replay_repeat,
1810 "repeat the workload replay N times (-1: infinite)"),
1811 OPT_INCR('v', "verbose", &verbose,
1812 "be more verbose (show symbol address, etc)"),
1813 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1814 "dump raw trace in ASCII"),
1815 OPT_END()
1816 };
1817
setup_sorting(void)1818 static void setup_sorting(void)
1819 {
1820 char *tmp, *tok, *str = strdup(sort_order);
1821
1822 for (tok = strtok_r(str, ", ", &tmp);
1823 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1824 if (sort_dimension__add(tok, &sort_list) < 0) {
1825 error("Unknown --sort key: `%s'", tok);
1826 usage_with_options(latency_usage, latency_options);
1827 }
1828 }
1829
1830 free(str);
1831
1832 sort_dimension__add("pid", &cmp_pid);
1833 }
1834
1835 static const char *record_args[] = {
1836 "record",
1837 "-a",
1838 "-R",
1839 "-f",
1840 "-m", "1024",
1841 "-c", "1",
1842 "-e", "sched:sched_switch",
1843 "-e", "sched:sched_stat_wait",
1844 "-e", "sched:sched_stat_sleep",
1845 "-e", "sched:sched_stat_iowait",
1846 "-e", "sched:sched_stat_runtime",
1847 "-e", "sched:sched_process_exit",
1848 "-e", "sched:sched_process_fork",
1849 "-e", "sched:sched_wakeup",
1850 "-e", "sched:sched_migrate_task",
1851 };
1852
__cmd_record(int argc,const char ** argv)1853 static int __cmd_record(int argc, const char **argv)
1854 {
1855 unsigned int rec_argc, i, j;
1856 const char **rec_argv;
1857
1858 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1859 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1860
1861 if (rec_argv == NULL)
1862 return -ENOMEM;
1863
1864 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1865 rec_argv[i] = strdup(record_args[i]);
1866
1867 for (j = 1; j < (unsigned int)argc; j++, i++)
1868 rec_argv[i] = argv[j];
1869
1870 BUG_ON(i != rec_argc);
1871
1872 return cmd_record(i, rec_argv, NULL);
1873 }
1874
cmd_sched(int argc,const char ** argv,const char * prefix __used)1875 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1876 {
1877 argc = parse_options(argc, argv, sched_options, sched_usage,
1878 PARSE_OPT_STOP_AT_NON_OPTION);
1879 if (!argc)
1880 usage_with_options(sched_usage, sched_options);
1881
1882 /*
1883 * Aliased to 'perf script' for now:
1884 */
1885 if (!strcmp(argv[0], "script"))
1886 return cmd_script(argc, argv, prefix);
1887
1888 symbol__init();
1889 if (!strncmp(argv[0], "rec", 3)) {
1890 return __cmd_record(argc, argv);
1891 } else if (!strncmp(argv[0], "lat", 3)) {
1892 trace_handler = &lat_ops;
1893 if (argc > 1) {
1894 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1895 if (argc)
1896 usage_with_options(latency_usage, latency_options);
1897 }
1898 setup_sorting();
1899 __cmd_lat();
1900 } else if (!strcmp(argv[0], "map")) {
1901 trace_handler = &map_ops;
1902 setup_sorting();
1903 __cmd_map();
1904 } else if (!strncmp(argv[0], "rep", 3)) {
1905 trace_handler = &replay_ops;
1906 if (argc) {
1907 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1908 if (argc)
1909 usage_with_options(replay_usage, replay_options);
1910 }
1911 __cmd_replay();
1912 } else {
1913 usage_with_options(sched_usage, sched_options);
1914 }
1915
1916 return 0;
1917 }
1918