1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 extern void selnl_notify_policyload(u32 seqno);
74 
75 int selinux_policycap_netpeer;
76 int selinux_policycap_openperm;
77 
78 static DEFINE_RWLOCK(policy_rwlock);
79 
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized;
83 
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting;
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94 				    u32 *scontext_len);
95 
96 static void context_struct_compute_av(struct context *scontext,
97 				      struct context *tcontext,
98 				      u16 tclass,
99 				      struct av_decision *avd);
100 
101 struct selinux_mapping {
102 	u16 value; /* policy value */
103 	unsigned num_perms;
104 	u32 perms[sizeof(u32) * 8];
105 };
106 
107 static struct selinux_mapping *current_mapping;
108 static u16 current_mapping_size;
109 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_mapping ** out_map_p,u16 * out_map_size)110 static int selinux_set_mapping(struct policydb *pol,
111 			       struct security_class_mapping *map,
112 			       struct selinux_mapping **out_map_p,
113 			       u16 *out_map_size)
114 {
115 	struct selinux_mapping *out_map = NULL;
116 	size_t size = sizeof(struct selinux_mapping);
117 	u16 i, j;
118 	unsigned k;
119 	bool print_unknown_handle = false;
120 
121 	/* Find number of classes in the input mapping */
122 	if (!map)
123 		return -EINVAL;
124 	i = 0;
125 	while (map[i].name)
126 		i++;
127 
128 	/* Allocate space for the class records, plus one for class zero */
129 	out_map = kcalloc(++i, size, GFP_ATOMIC);
130 	if (!out_map)
131 		return -ENOMEM;
132 
133 	/* Store the raw class and permission values */
134 	j = 0;
135 	while (map[j].name) {
136 		struct security_class_mapping *p_in = map + (j++);
137 		struct selinux_mapping *p_out = out_map + j;
138 
139 		/* An empty class string skips ahead */
140 		if (!strcmp(p_in->name, "")) {
141 			p_out->num_perms = 0;
142 			continue;
143 		}
144 
145 		p_out->value = string_to_security_class(pol, p_in->name);
146 		if (!p_out->value) {
147 			printk(KERN_INFO
148 			       "SELinux:  Class %s not defined in policy.\n",
149 			       p_in->name);
150 			if (pol->reject_unknown)
151 				goto err;
152 			p_out->num_perms = 0;
153 			print_unknown_handle = true;
154 			continue;
155 		}
156 
157 		k = 0;
158 		while (p_in->perms && p_in->perms[k]) {
159 			/* An empty permission string skips ahead */
160 			if (!*p_in->perms[k]) {
161 				k++;
162 				continue;
163 			}
164 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 							    p_in->perms[k]);
166 			if (!p_out->perms[k]) {
167 				printk(KERN_INFO
168 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
169 				       p_in->perms[k], p_in->name);
170 				if (pol->reject_unknown)
171 					goto err;
172 				print_unknown_handle = true;
173 			}
174 
175 			k++;
176 		}
177 		p_out->num_perms = k;
178 	}
179 
180 	if (print_unknown_handle)
181 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 		       pol->allow_unknown ? "allowed" : "denied");
183 
184 	*out_map_p = out_map;
185 	*out_map_size = i;
186 	return 0;
187 err:
188 	kfree(out_map);
189 	return -EINVAL;
190 }
191 
192 /*
193  * Get real, policy values from mapped values
194  */
195 
unmap_class(u16 tclass)196 static u16 unmap_class(u16 tclass)
197 {
198 	if (tclass < current_mapping_size)
199 		return current_mapping[tclass].value;
200 
201 	return tclass;
202 }
203 
204 /*
205  * Get kernel value for class from its policy value
206  */
map_class(u16 pol_value)207 static u16 map_class(u16 pol_value)
208 {
209 	u16 i;
210 
211 	for (i = 1; i < current_mapping_size; i++) {
212 		if (current_mapping[i].value == pol_value)
213 			return i;
214 	}
215 
216 	return SECCLASS_NULL;
217 }
218 
map_decision(u16 tclass,struct av_decision * avd,int allow_unknown)219 static void map_decision(u16 tclass, struct av_decision *avd,
220 			 int allow_unknown)
221 {
222 	if (tclass < current_mapping_size) {
223 		unsigned i, n = current_mapping[tclass].num_perms;
224 		u32 result;
225 
226 		for (i = 0, result = 0; i < n; i++) {
227 			if (avd->allowed & current_mapping[tclass].perms[i])
228 				result |= 1<<i;
229 			if (allow_unknown && !current_mapping[tclass].perms[i])
230 				result |= 1<<i;
231 		}
232 		avd->allowed = result;
233 
234 		for (i = 0, result = 0; i < n; i++)
235 			if (avd->auditallow & current_mapping[tclass].perms[i])
236 				result |= 1<<i;
237 		avd->auditallow = result;
238 
239 		for (i = 0, result = 0; i < n; i++) {
240 			if (avd->auditdeny & current_mapping[tclass].perms[i])
241 				result |= 1<<i;
242 			if (!allow_unknown && !current_mapping[tclass].perms[i])
243 				result |= 1<<i;
244 		}
245 		/*
246 		 * In case the kernel has a bug and requests a permission
247 		 * between num_perms and the maximum permission number, we
248 		 * should audit that denial
249 		 */
250 		for (; i < (sizeof(u32)*8); i++)
251 			result |= 1<<i;
252 		avd->auditdeny = result;
253 	}
254 }
255 
security_mls_enabled(void)256 int security_mls_enabled(void)
257 {
258 	return policydb.mls_enabled;
259 }
260 
261 /*
262  * Return the boolean value of a constraint expression
263  * when it is applied to the specified source and target
264  * security contexts.
265  *
266  * xcontext is a special beast...  It is used by the validatetrans rules
267  * only.  For these rules, scontext is the context before the transition,
268  * tcontext is the context after the transition, and xcontext is the context
269  * of the process performing the transition.  All other callers of
270  * constraint_expr_eval should pass in NULL for xcontext.
271  */
constraint_expr_eval(struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)272 static int constraint_expr_eval(struct context *scontext,
273 				struct context *tcontext,
274 				struct context *xcontext,
275 				struct constraint_expr *cexpr)
276 {
277 	u32 val1, val2;
278 	struct context *c;
279 	struct role_datum *r1, *r2;
280 	struct mls_level *l1, *l2;
281 	struct constraint_expr *e;
282 	int s[CEXPR_MAXDEPTH];
283 	int sp = -1;
284 
285 	for (e = cexpr; e; e = e->next) {
286 		switch (e->expr_type) {
287 		case CEXPR_NOT:
288 			BUG_ON(sp < 0);
289 			s[sp] = !s[sp];
290 			break;
291 		case CEXPR_AND:
292 			BUG_ON(sp < 1);
293 			sp--;
294 			s[sp] &= s[sp + 1];
295 			break;
296 		case CEXPR_OR:
297 			BUG_ON(sp < 1);
298 			sp--;
299 			s[sp] |= s[sp + 1];
300 			break;
301 		case CEXPR_ATTR:
302 			if (sp == (CEXPR_MAXDEPTH - 1))
303 				return 0;
304 			switch (e->attr) {
305 			case CEXPR_USER:
306 				val1 = scontext->user;
307 				val2 = tcontext->user;
308 				break;
309 			case CEXPR_TYPE:
310 				val1 = scontext->type;
311 				val2 = tcontext->type;
312 				break;
313 			case CEXPR_ROLE:
314 				val1 = scontext->role;
315 				val2 = tcontext->role;
316 				r1 = policydb.role_val_to_struct[val1 - 1];
317 				r2 = policydb.role_val_to_struct[val2 - 1];
318 				switch (e->op) {
319 				case CEXPR_DOM:
320 					s[++sp] = ebitmap_get_bit(&r1->dominates,
321 								  val2 - 1);
322 					continue;
323 				case CEXPR_DOMBY:
324 					s[++sp] = ebitmap_get_bit(&r2->dominates,
325 								  val1 - 1);
326 					continue;
327 				case CEXPR_INCOMP:
328 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
329 								    val2 - 1) &&
330 						   !ebitmap_get_bit(&r2->dominates,
331 								    val1 - 1));
332 					continue;
333 				default:
334 					break;
335 				}
336 				break;
337 			case CEXPR_L1L2:
338 				l1 = &(scontext->range.level[0]);
339 				l2 = &(tcontext->range.level[0]);
340 				goto mls_ops;
341 			case CEXPR_L1H2:
342 				l1 = &(scontext->range.level[0]);
343 				l2 = &(tcontext->range.level[1]);
344 				goto mls_ops;
345 			case CEXPR_H1L2:
346 				l1 = &(scontext->range.level[1]);
347 				l2 = &(tcontext->range.level[0]);
348 				goto mls_ops;
349 			case CEXPR_H1H2:
350 				l1 = &(scontext->range.level[1]);
351 				l2 = &(tcontext->range.level[1]);
352 				goto mls_ops;
353 			case CEXPR_L1H1:
354 				l1 = &(scontext->range.level[0]);
355 				l2 = &(scontext->range.level[1]);
356 				goto mls_ops;
357 			case CEXPR_L2H2:
358 				l1 = &(tcontext->range.level[0]);
359 				l2 = &(tcontext->range.level[1]);
360 				goto mls_ops;
361 mls_ops:
362 			switch (e->op) {
363 			case CEXPR_EQ:
364 				s[++sp] = mls_level_eq(l1, l2);
365 				continue;
366 			case CEXPR_NEQ:
367 				s[++sp] = !mls_level_eq(l1, l2);
368 				continue;
369 			case CEXPR_DOM:
370 				s[++sp] = mls_level_dom(l1, l2);
371 				continue;
372 			case CEXPR_DOMBY:
373 				s[++sp] = mls_level_dom(l2, l1);
374 				continue;
375 			case CEXPR_INCOMP:
376 				s[++sp] = mls_level_incomp(l2, l1);
377 				continue;
378 			default:
379 				BUG();
380 				return 0;
381 			}
382 			break;
383 			default:
384 				BUG();
385 				return 0;
386 			}
387 
388 			switch (e->op) {
389 			case CEXPR_EQ:
390 				s[++sp] = (val1 == val2);
391 				break;
392 			case CEXPR_NEQ:
393 				s[++sp] = (val1 != val2);
394 				break;
395 			default:
396 				BUG();
397 				return 0;
398 			}
399 			break;
400 		case CEXPR_NAMES:
401 			if (sp == (CEXPR_MAXDEPTH-1))
402 				return 0;
403 			c = scontext;
404 			if (e->attr & CEXPR_TARGET)
405 				c = tcontext;
406 			else if (e->attr & CEXPR_XTARGET) {
407 				c = xcontext;
408 				if (!c) {
409 					BUG();
410 					return 0;
411 				}
412 			}
413 			if (e->attr & CEXPR_USER)
414 				val1 = c->user;
415 			else if (e->attr & CEXPR_ROLE)
416 				val1 = c->role;
417 			else if (e->attr & CEXPR_TYPE)
418 				val1 = c->type;
419 			else {
420 				BUG();
421 				return 0;
422 			}
423 
424 			switch (e->op) {
425 			case CEXPR_EQ:
426 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
427 				break;
428 			case CEXPR_NEQ:
429 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
430 				break;
431 			default:
432 				BUG();
433 				return 0;
434 			}
435 			break;
436 		default:
437 			BUG();
438 			return 0;
439 		}
440 	}
441 
442 	BUG_ON(sp != 0);
443 	return s[0];
444 }
445 
446 /*
447  * security_dump_masked_av - dumps masked permissions during
448  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449  */
dump_masked_av_helper(void * k,void * d,void * args)450 static int dump_masked_av_helper(void *k, void *d, void *args)
451 {
452 	struct perm_datum *pdatum = d;
453 	char **permission_names = args;
454 
455 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
456 
457 	permission_names[pdatum->value - 1] = (char *)k;
458 
459 	return 0;
460 }
461 
security_dump_masked_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)462 static void security_dump_masked_av(struct context *scontext,
463 				    struct context *tcontext,
464 				    u16 tclass,
465 				    u32 permissions,
466 				    const char *reason)
467 {
468 	struct common_datum *common_dat;
469 	struct class_datum *tclass_dat;
470 	struct audit_buffer *ab;
471 	char *tclass_name;
472 	char *scontext_name = NULL;
473 	char *tcontext_name = NULL;
474 	char *permission_names[32];
475 	int index;
476 	u32 length;
477 	bool need_comma = false;
478 
479 	if (!permissions)
480 		return;
481 
482 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
484 	common_dat = tclass_dat->comdatum;
485 
486 	/* init permission_names */
487 	if (common_dat &&
488 	    hashtab_map(common_dat->permissions.table,
489 			dump_masked_av_helper, permission_names) < 0)
490 		goto out;
491 
492 	if (hashtab_map(tclass_dat->permissions.table,
493 			dump_masked_av_helper, permission_names) < 0)
494 		goto out;
495 
496 	/* get scontext/tcontext in text form */
497 	if (context_struct_to_string(scontext,
498 				     &scontext_name, &length) < 0)
499 		goto out;
500 
501 	if (context_struct_to_string(tcontext,
502 				     &tcontext_name, &length) < 0)
503 		goto out;
504 
505 	/* audit a message */
506 	ab = audit_log_start(current->audit_context,
507 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 	if (!ab)
509 		goto out;
510 
511 	audit_log_format(ab, "op=security_compute_av reason=%s "
512 			 "scontext=%s tcontext=%s tclass=%s perms=",
513 			 reason, scontext_name, tcontext_name, tclass_name);
514 
515 	for (index = 0; index < 32; index++) {
516 		u32 mask = (1 << index);
517 
518 		if ((mask & permissions) == 0)
519 			continue;
520 
521 		audit_log_format(ab, "%s%s",
522 				 need_comma ? "," : "",
523 				 permission_names[index]
524 				 ? permission_names[index] : "????");
525 		need_comma = true;
526 	}
527 	audit_log_end(ab);
528 out:
529 	/* release scontext/tcontext */
530 	kfree(tcontext_name);
531 	kfree(scontext_name);
532 
533 	return;
534 }
535 
536 /*
537  * security_boundary_permission - drops violated permissions
538  * on boundary constraint.
539  */
type_attribute_bounds_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)540 static void type_attribute_bounds_av(struct context *scontext,
541 				     struct context *tcontext,
542 				     u16 tclass,
543 				     struct av_decision *avd)
544 {
545 	struct context lo_scontext;
546 	struct context lo_tcontext;
547 	struct av_decision lo_avd;
548 	struct type_datum *source;
549 	struct type_datum *target;
550 	u32 masked = 0;
551 
552 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
553 				    scontext->type - 1);
554 	BUG_ON(!source);
555 
556 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
557 				    tcontext->type - 1);
558 	BUG_ON(!target);
559 
560 	if (source->bounds) {
561 		memset(&lo_avd, 0, sizeof(lo_avd));
562 
563 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564 		lo_scontext.type = source->bounds;
565 
566 		context_struct_compute_av(&lo_scontext,
567 					  tcontext,
568 					  tclass,
569 					  &lo_avd);
570 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
571 			return;		/* no masked permission */
572 		masked = ~lo_avd.allowed & avd->allowed;
573 	}
574 
575 	if (target->bounds) {
576 		memset(&lo_avd, 0, sizeof(lo_avd));
577 
578 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
579 		lo_tcontext.type = target->bounds;
580 
581 		context_struct_compute_av(scontext,
582 					  &lo_tcontext,
583 					  tclass,
584 					  &lo_avd);
585 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
586 			return;		/* no masked permission */
587 		masked = ~lo_avd.allowed & avd->allowed;
588 	}
589 
590 	if (source->bounds && target->bounds) {
591 		memset(&lo_avd, 0, sizeof(lo_avd));
592 		/*
593 		 * lo_scontext and lo_tcontext are already
594 		 * set up.
595 		 */
596 
597 		context_struct_compute_av(&lo_scontext,
598 					  &lo_tcontext,
599 					  tclass,
600 					  &lo_avd);
601 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
602 			return;		/* no masked permission */
603 		masked = ~lo_avd.allowed & avd->allowed;
604 	}
605 
606 	if (masked) {
607 		/* mask violated permissions */
608 		avd->allowed &= ~masked;
609 
610 		/* audit masked permissions */
611 		security_dump_masked_av(scontext, tcontext,
612 					tclass, masked, "bounds");
613 	}
614 }
615 
616 /*
617  * Compute access vectors based on a context structure pair for
618  * the permissions in a particular class.
619  */
context_struct_compute_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)620 static void context_struct_compute_av(struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd)
624 {
625 	struct constraint_node *constraint;
626 	struct role_allow *ra;
627 	struct avtab_key avkey;
628 	struct avtab_node *node;
629 	struct class_datum *tclass_datum;
630 	struct ebitmap *sattr, *tattr;
631 	struct ebitmap_node *snode, *tnode;
632 	unsigned int i, j;
633 
634 	avd->allowed = 0;
635 	avd->auditallow = 0;
636 	avd->auditdeny = 0xffffffff;
637 
638 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
639 		if (printk_ratelimit())
640 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
641 		return;
642 	}
643 
644 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
645 
646 	/*
647 	 * If a specific type enforcement rule was defined for
648 	 * this permission check, then use it.
649 	 */
650 	avkey.target_class = tclass;
651 	avkey.specified = AVTAB_AV;
652 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
653 	BUG_ON(!sattr);
654 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
655 	BUG_ON(!tattr);
656 	ebitmap_for_each_positive_bit(sattr, snode, i) {
657 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
658 			avkey.source_type = i + 1;
659 			avkey.target_type = j + 1;
660 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
661 			     node;
662 			     node = avtab_search_node_next(node, avkey.specified)) {
663 				if (node->key.specified == AVTAB_ALLOWED)
664 					avd->allowed |= node->datum.data;
665 				else if (node->key.specified == AVTAB_AUDITALLOW)
666 					avd->auditallow |= node->datum.data;
667 				else if (node->key.specified == AVTAB_AUDITDENY)
668 					avd->auditdeny &= node->datum.data;
669 			}
670 
671 			/* Check conditional av table for additional permissions */
672 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
673 
674 		}
675 	}
676 
677 	/*
678 	 * Remove any permissions prohibited by a constraint (this includes
679 	 * the MLS policy).
680 	 */
681 	constraint = tclass_datum->constraints;
682 	while (constraint) {
683 		if ((constraint->permissions & (avd->allowed)) &&
684 		    !constraint_expr_eval(scontext, tcontext, NULL,
685 					  constraint->expr)) {
686 			avd->allowed &= ~(constraint->permissions);
687 		}
688 		constraint = constraint->next;
689 	}
690 
691 	/*
692 	 * If checking process transition permission and the
693 	 * role is changing, then check the (current_role, new_role)
694 	 * pair.
695 	 */
696 	if (tclass == policydb.process_class &&
697 	    (avd->allowed & policydb.process_trans_perms) &&
698 	    scontext->role != tcontext->role) {
699 		for (ra = policydb.role_allow; ra; ra = ra->next) {
700 			if (scontext->role == ra->role &&
701 			    tcontext->role == ra->new_role)
702 				break;
703 		}
704 		if (!ra)
705 			avd->allowed &= ~policydb.process_trans_perms;
706 	}
707 
708 	/*
709 	 * If the given source and target types have boundary
710 	 * constraint, lazy checks have to mask any violated
711 	 * permission and notice it to userspace via audit.
712 	 */
713 	type_attribute_bounds_av(scontext, tcontext,
714 				 tclass, avd);
715 }
716 
security_validtrans_handle_fail(struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)717 static int security_validtrans_handle_fail(struct context *ocontext,
718 					   struct context *ncontext,
719 					   struct context *tcontext,
720 					   u16 tclass)
721 {
722 	char *o = NULL, *n = NULL, *t = NULL;
723 	u32 olen, nlen, tlen;
724 
725 	if (context_struct_to_string(ocontext, &o, &olen))
726 		goto out;
727 	if (context_struct_to_string(ncontext, &n, &nlen))
728 		goto out;
729 	if (context_struct_to_string(tcontext, &t, &tlen))
730 		goto out;
731 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
732 		  "security_validate_transition:  denied for"
733 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
734 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
735 out:
736 	kfree(o);
737 	kfree(n);
738 	kfree(t);
739 
740 	if (!selinux_enforcing)
741 		return 0;
742 	return -EPERM;
743 }
744 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)745 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
746 				 u16 orig_tclass)
747 {
748 	struct context *ocontext;
749 	struct context *ncontext;
750 	struct context *tcontext;
751 	struct class_datum *tclass_datum;
752 	struct constraint_node *constraint;
753 	u16 tclass;
754 	int rc = 0;
755 
756 	if (!ss_initialized)
757 		return 0;
758 
759 	read_lock(&policy_rwlock);
760 
761 	tclass = unmap_class(orig_tclass);
762 
763 	if (!tclass || tclass > policydb.p_classes.nprim) {
764 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
765 			__func__, tclass);
766 		rc = -EINVAL;
767 		goto out;
768 	}
769 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
770 
771 	ocontext = sidtab_search(&sidtab, oldsid);
772 	if (!ocontext) {
773 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
774 			__func__, oldsid);
775 		rc = -EINVAL;
776 		goto out;
777 	}
778 
779 	ncontext = sidtab_search(&sidtab, newsid);
780 	if (!ncontext) {
781 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
782 			__func__, newsid);
783 		rc = -EINVAL;
784 		goto out;
785 	}
786 
787 	tcontext = sidtab_search(&sidtab, tasksid);
788 	if (!tcontext) {
789 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
790 			__func__, tasksid);
791 		rc = -EINVAL;
792 		goto out;
793 	}
794 
795 	constraint = tclass_datum->validatetrans;
796 	while (constraint) {
797 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
798 					  constraint->expr)) {
799 			rc = security_validtrans_handle_fail(ocontext, ncontext,
800 							     tcontext, tclass);
801 			goto out;
802 		}
803 		constraint = constraint->next;
804 	}
805 
806 out:
807 	read_unlock(&policy_rwlock);
808 	return rc;
809 }
810 
811 /*
812  * security_bounded_transition - check whether the given
813  * transition is directed to bounded, or not.
814  * It returns 0, if @newsid is bounded by @oldsid.
815  * Otherwise, it returns error code.
816  *
817  * @oldsid : current security identifier
818  * @newsid : destinated security identifier
819  */
security_bounded_transition(u32 old_sid,u32 new_sid)820 int security_bounded_transition(u32 old_sid, u32 new_sid)
821 {
822 	struct context *old_context, *new_context;
823 	struct type_datum *type;
824 	int index;
825 	int rc;
826 
827 	read_lock(&policy_rwlock);
828 
829 	rc = -EINVAL;
830 	old_context = sidtab_search(&sidtab, old_sid);
831 	if (!old_context) {
832 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
833 		       __func__, old_sid);
834 		goto out;
835 	}
836 
837 	rc = -EINVAL;
838 	new_context = sidtab_search(&sidtab, new_sid);
839 	if (!new_context) {
840 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
841 		       __func__, new_sid);
842 		goto out;
843 	}
844 
845 	rc = 0;
846 	/* type/domain unchanged */
847 	if (old_context->type == new_context->type)
848 		goto out;
849 
850 	index = new_context->type;
851 	while (true) {
852 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
853 					  index - 1);
854 		BUG_ON(!type);
855 
856 		/* not bounded anymore */
857 		rc = -EPERM;
858 		if (!type->bounds)
859 			break;
860 
861 		/* @newsid is bounded by @oldsid */
862 		rc = 0;
863 		if (type->bounds == old_context->type)
864 			break;
865 
866 		index = type->bounds;
867 	}
868 
869 	if (rc) {
870 		char *old_name = NULL;
871 		char *new_name = NULL;
872 		u32 length;
873 
874 		if (!context_struct_to_string(old_context,
875 					      &old_name, &length) &&
876 		    !context_struct_to_string(new_context,
877 					      &new_name, &length)) {
878 			audit_log(current->audit_context,
879 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
880 				  "op=security_bounded_transition "
881 				  "result=denied "
882 				  "oldcontext=%s newcontext=%s",
883 				  old_name, new_name);
884 		}
885 		kfree(new_name);
886 		kfree(old_name);
887 	}
888 out:
889 	read_unlock(&policy_rwlock);
890 
891 	return rc;
892 }
893 
avd_init(struct av_decision * avd)894 static void avd_init(struct av_decision *avd)
895 {
896 	avd->allowed = 0;
897 	avd->auditallow = 0;
898 	avd->auditdeny = 0xffffffff;
899 	avd->seqno = latest_granting;
900 	avd->flags = 0;
901 }
902 
903 
904 /**
905  * security_compute_av - Compute access vector decisions.
906  * @ssid: source security identifier
907  * @tsid: target security identifier
908  * @tclass: target security class
909  * @avd: access vector decisions
910  *
911  * Compute a set of access vector decisions based on the
912  * SID pair (@ssid, @tsid) for the permissions in @tclass.
913  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd)914 void security_compute_av(u32 ssid,
915 			 u32 tsid,
916 			 u16 orig_tclass,
917 			 struct av_decision *avd)
918 {
919 	u16 tclass;
920 	struct context *scontext = NULL, *tcontext = NULL;
921 
922 	read_lock(&policy_rwlock);
923 	avd_init(avd);
924 	if (!ss_initialized)
925 		goto allow;
926 
927 	scontext = sidtab_search(&sidtab, ssid);
928 	if (!scontext) {
929 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
930 		       __func__, ssid);
931 		goto out;
932 	}
933 
934 	/* permissive domain? */
935 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
936 		avd->flags |= AVD_FLAGS_PERMISSIVE;
937 
938 	tcontext = sidtab_search(&sidtab, tsid);
939 	if (!tcontext) {
940 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
941 		       __func__, tsid);
942 		goto out;
943 	}
944 
945 	tclass = unmap_class(orig_tclass);
946 	if (unlikely(orig_tclass && !tclass)) {
947 		if (policydb.allow_unknown)
948 			goto allow;
949 		goto out;
950 	}
951 	context_struct_compute_av(scontext, tcontext, tclass, avd);
952 	map_decision(orig_tclass, avd, policydb.allow_unknown);
953 out:
954 	read_unlock(&policy_rwlock);
955 	return;
956 allow:
957 	avd->allowed = 0xffffffff;
958 	goto out;
959 }
960 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)961 void security_compute_av_user(u32 ssid,
962 			      u32 tsid,
963 			      u16 tclass,
964 			      struct av_decision *avd)
965 {
966 	struct context *scontext = NULL, *tcontext = NULL;
967 
968 	read_lock(&policy_rwlock);
969 	avd_init(avd);
970 	if (!ss_initialized)
971 		goto allow;
972 
973 	scontext = sidtab_search(&sidtab, ssid);
974 	if (!scontext) {
975 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
976 		       __func__, ssid);
977 		goto out;
978 	}
979 
980 	/* permissive domain? */
981 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
982 		avd->flags |= AVD_FLAGS_PERMISSIVE;
983 
984 	tcontext = sidtab_search(&sidtab, tsid);
985 	if (!tcontext) {
986 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
987 		       __func__, tsid);
988 		goto out;
989 	}
990 
991 	if (unlikely(!tclass)) {
992 		if (policydb.allow_unknown)
993 			goto allow;
994 		goto out;
995 	}
996 
997 	context_struct_compute_av(scontext, tcontext, tclass, avd);
998  out:
999 	read_unlock(&policy_rwlock);
1000 	return;
1001 allow:
1002 	avd->allowed = 0xffffffff;
1003 	goto out;
1004 }
1005 
1006 /*
1007  * Write the security context string representation of
1008  * the context structure `context' into a dynamically
1009  * allocated string of the correct size.  Set `*scontext'
1010  * to point to this string and set `*scontext_len' to
1011  * the length of the string.
1012  */
context_struct_to_string(struct context * context,char ** scontext,u32 * scontext_len)1013 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1014 {
1015 	char *scontextp;
1016 
1017 	if (scontext)
1018 		*scontext = NULL;
1019 	*scontext_len = 0;
1020 
1021 	if (context->len) {
1022 		*scontext_len = context->len;
1023 		*scontext = kstrdup(context->str, GFP_ATOMIC);
1024 		if (!(*scontext))
1025 			return -ENOMEM;
1026 		return 0;
1027 	}
1028 
1029 	/* Compute the size of the context. */
1030 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033 	*scontext_len += mls_compute_context_len(context);
1034 
1035 	if (!scontext)
1036 		return 0;
1037 
1038 	/* Allocate space for the context; caller must free this space. */
1039 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040 	if (!scontextp)
1041 		return -ENOMEM;
1042 	*scontext = scontextp;
1043 
1044 	/*
1045 	 * Copy the user name, role name and type name into the context.
1046 	 */
1047 	sprintf(scontextp, "%s:%s:%s",
1048 		sym_name(&policydb, SYM_USERS, context->user - 1),
1049 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051 	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052 		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053 		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054 
1055 	mls_sid_to_context(context, &scontextp);
1056 
1057 	*scontextp = 0;
1058 
1059 	return 0;
1060 }
1061 
1062 #include "initial_sid_to_string.h"
1063 
security_get_initial_sid_context(u32 sid)1064 const char *security_get_initial_sid_context(u32 sid)
1065 {
1066 	if (unlikely(sid > SECINITSID_NUM))
1067 		return NULL;
1068 	return initial_sid_to_string[sid];
1069 }
1070 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force)1071 static int security_sid_to_context_core(u32 sid, char **scontext,
1072 					u32 *scontext_len, int force)
1073 {
1074 	struct context *context;
1075 	int rc = 0;
1076 
1077 	if (scontext)
1078 		*scontext = NULL;
1079 	*scontext_len  = 0;
1080 
1081 	if (!ss_initialized) {
1082 		if (sid <= SECINITSID_NUM) {
1083 			char *scontextp;
1084 
1085 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086 			if (!scontext)
1087 				goto out;
1088 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089 			if (!scontextp) {
1090 				rc = -ENOMEM;
1091 				goto out;
1092 			}
1093 			strcpy(scontextp, initial_sid_to_string[sid]);
1094 			*scontext = scontextp;
1095 			goto out;
1096 		}
1097 		printk(KERN_ERR "SELinux: %s:  called before initial "
1098 		       "load_policy on unknown SID %d\n", __func__, sid);
1099 		rc = -EINVAL;
1100 		goto out;
1101 	}
1102 	read_lock(&policy_rwlock);
1103 	if (force)
1104 		context = sidtab_search_force(&sidtab, sid);
1105 	else
1106 		context = sidtab_search(&sidtab, sid);
1107 	if (!context) {
1108 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109 			__func__, sid);
1110 		rc = -EINVAL;
1111 		goto out_unlock;
1112 	}
1113 	rc = context_struct_to_string(context, scontext, scontext_len);
1114 out_unlock:
1115 	read_unlock(&policy_rwlock);
1116 out:
1117 	return rc;
1118 
1119 }
1120 
1121 /**
1122  * security_sid_to_context - Obtain a context for a given SID.
1123  * @sid: security identifier, SID
1124  * @scontext: security context
1125  * @scontext_len: length in bytes
1126  *
1127  * Write the string representation of the context associated with @sid
1128  * into a dynamically allocated string of the correct size.  Set @scontext
1129  * to point to this string and set @scontext_len to the length of the string.
1130  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1131 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132 {
1133 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134 }
1135 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1136 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137 {
1138 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139 }
1140 
1141 /*
1142  * Caveat:  Mutates scontext.
1143  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)1144 static int string_to_context_struct(struct policydb *pol,
1145 				    struct sidtab *sidtabp,
1146 				    char *scontext,
1147 				    u32 scontext_len,
1148 				    struct context *ctx,
1149 				    u32 def_sid)
1150 {
1151 	struct role_datum *role;
1152 	struct type_datum *typdatum;
1153 	struct user_datum *usrdatum;
1154 	char *scontextp, *p, oldc;
1155 	int rc = 0;
1156 
1157 	context_init(ctx);
1158 
1159 	/* Parse the security context. */
1160 
1161 	rc = -EINVAL;
1162 	scontextp = (char *) scontext;
1163 
1164 	/* Extract the user. */
1165 	p = scontextp;
1166 	while (*p && *p != ':')
1167 		p++;
1168 
1169 	if (*p == 0)
1170 		goto out;
1171 
1172 	*p++ = 0;
1173 
1174 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175 	if (!usrdatum)
1176 		goto out;
1177 
1178 	ctx->user = usrdatum->value;
1179 
1180 	/* Extract role. */
1181 	scontextp = p;
1182 	while (*p && *p != ':')
1183 		p++;
1184 
1185 	if (*p == 0)
1186 		goto out;
1187 
1188 	*p++ = 0;
1189 
1190 	role = hashtab_search(pol->p_roles.table, scontextp);
1191 	if (!role)
1192 		goto out;
1193 	ctx->role = role->value;
1194 
1195 	/* Extract type. */
1196 	scontextp = p;
1197 	while (*p && *p != ':')
1198 		p++;
1199 	oldc = *p;
1200 	*p++ = 0;
1201 
1202 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203 	if (!typdatum || typdatum->attribute)
1204 		goto out;
1205 
1206 	ctx->type = typdatum->value;
1207 
1208 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209 	if (rc)
1210 		goto out;
1211 
1212 	rc = -EINVAL;
1213 	if ((p - scontext) < scontext_len)
1214 		goto out;
1215 
1216 	/* Check the validity of the new context. */
1217 	if (!policydb_context_isvalid(pol, ctx))
1218 		goto out;
1219 	rc = 0;
1220 out:
1221 	if (rc)
1222 		context_destroy(ctx);
1223 	return rc;
1224 }
1225 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1226 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228 					int force)
1229 {
1230 	char *scontext2, *str = NULL;
1231 	struct context context;
1232 	int rc = 0;
1233 
1234 	if (!ss_initialized) {
1235 		int i;
1236 
1237 		for (i = 1; i < SECINITSID_NUM; i++) {
1238 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239 				*sid = i;
1240 				return 0;
1241 			}
1242 		}
1243 		*sid = SECINITSID_KERNEL;
1244 		return 0;
1245 	}
1246 	*sid = SECSID_NULL;
1247 
1248 	/* Copy the string so that we can modify the copy as we parse it. */
1249 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250 	if (!scontext2)
1251 		return -ENOMEM;
1252 	memcpy(scontext2, scontext, scontext_len);
1253 	scontext2[scontext_len] = 0;
1254 
1255 	if (force) {
1256 		/* Save another copy for storing in uninterpreted form */
1257 		rc = -ENOMEM;
1258 		str = kstrdup(scontext2, gfp_flags);
1259 		if (!str)
1260 			goto out;
1261 	}
1262 
1263 	read_lock(&policy_rwlock);
1264 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265 				      scontext_len, &context, def_sid);
1266 	if (rc == -EINVAL && force) {
1267 		context.str = str;
1268 		context.len = scontext_len;
1269 		str = NULL;
1270 	} else if (rc)
1271 		goto out_unlock;
1272 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273 	context_destroy(&context);
1274 out_unlock:
1275 	read_unlock(&policy_rwlock);
1276 out:
1277 	kfree(scontext2);
1278 	kfree(str);
1279 	return rc;
1280 }
1281 
1282 /**
1283  * security_context_to_sid - Obtain a SID for a given security context.
1284  * @scontext: security context
1285  * @scontext_len: length in bytes
1286  * @sid: security identifier, SID
1287  *
1288  * Obtains a SID associated with the security context that
1289  * has the string representation specified by @scontext.
1290  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291  * memory is available, or 0 on success.
1292  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid)1293 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294 {
1295 	return security_context_to_sid_core(scontext, scontext_len,
1296 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297 }
1298 
1299 /**
1300  * security_context_to_sid_default - Obtain a SID for a given security context,
1301  * falling back to specified default if needed.
1302  *
1303  * @scontext: security context
1304  * @scontext_len: length in bytes
1305  * @sid: security identifier, SID
1306  * @def_sid: default SID to assign on error
1307  *
1308  * Obtains a SID associated with the security context that
1309  * has the string representation specified by @scontext.
1310  * The default SID is passed to the MLS layer to be used to allow
1311  * kernel labeling of the MLS field if the MLS field is not present
1312  * (for upgrading to MLS without full relabel).
1313  * Implicitly forces adding of the context even if it cannot be mapped yet.
1314  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315  * memory is available, or 0 on success.
1316  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1317 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319 {
1320 	return security_context_to_sid_core(scontext, scontext_len,
1321 					    sid, def_sid, gfp_flags, 1);
1322 }
1323 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1324 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325 				  u32 *sid)
1326 {
1327 	return security_context_to_sid_core(scontext, scontext_len,
1328 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329 }
1330 
compute_sid_handle_invalid_context(struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1331 static int compute_sid_handle_invalid_context(
1332 	struct context *scontext,
1333 	struct context *tcontext,
1334 	u16 tclass,
1335 	struct context *newcontext)
1336 {
1337 	char *s = NULL, *t = NULL, *n = NULL;
1338 	u32 slen, tlen, nlen;
1339 
1340 	if (context_struct_to_string(scontext, &s, &slen))
1341 		goto out;
1342 	if (context_struct_to_string(tcontext, &t, &tlen))
1343 		goto out;
1344 	if (context_struct_to_string(newcontext, &n, &nlen))
1345 		goto out;
1346 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347 		  "security_compute_sid:  invalid context %s"
1348 		  " for scontext=%s"
1349 		  " tcontext=%s"
1350 		  " tclass=%s",
1351 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352 out:
1353 	kfree(s);
1354 	kfree(t);
1355 	kfree(n);
1356 	if (!selinux_enforcing)
1357 		return 0;
1358 	return -EACCES;
1359 }
1360 
filename_compute_type(struct policydb * p,struct context * newcontext,u32 scon,u32 tcon,u16 tclass,const struct qstr * qstr)1361 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362 				  u32 scon, u32 tcon, u16 tclass,
1363 				  const struct qstr *qstr)
1364 {
1365 	struct filename_trans *ft;
1366 	for (ft = p->filename_trans; ft; ft = ft->next) {
1367 		if (ft->stype == scon &&
1368 		    ft->ttype == tcon &&
1369 		    ft->tclass == tclass &&
1370 		    !strcmp(ft->name, qstr->name)) {
1371 			newcontext->type = ft->otype;
1372 			return;
1373 		}
1374 	}
1375 }
1376 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const struct qstr * qstr,u32 * out_sid,bool kern)1377 static int security_compute_sid(u32 ssid,
1378 				u32 tsid,
1379 				u16 orig_tclass,
1380 				u32 specified,
1381 				const struct qstr *qstr,
1382 				u32 *out_sid,
1383 				bool kern)
1384 {
1385 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1386 	struct role_trans *roletr = NULL;
1387 	struct avtab_key avkey;
1388 	struct avtab_datum *avdatum;
1389 	struct avtab_node *node;
1390 	u16 tclass;
1391 	int rc = 0;
1392 	bool sock;
1393 
1394 	if (!ss_initialized) {
1395 		switch (orig_tclass) {
1396 		case SECCLASS_PROCESS: /* kernel value */
1397 			*out_sid = ssid;
1398 			break;
1399 		default:
1400 			*out_sid = tsid;
1401 			break;
1402 		}
1403 		goto out;
1404 	}
1405 
1406 	context_init(&newcontext);
1407 
1408 	read_lock(&policy_rwlock);
1409 
1410 	if (kern) {
1411 		tclass = unmap_class(orig_tclass);
1412 		sock = security_is_socket_class(orig_tclass);
1413 	} else {
1414 		tclass = orig_tclass;
1415 		sock = security_is_socket_class(map_class(tclass));
1416 	}
1417 
1418 	scontext = sidtab_search(&sidtab, ssid);
1419 	if (!scontext) {
1420 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1421 		       __func__, ssid);
1422 		rc = -EINVAL;
1423 		goto out_unlock;
1424 	}
1425 	tcontext = sidtab_search(&sidtab, tsid);
1426 	if (!tcontext) {
1427 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1428 		       __func__, tsid);
1429 		rc = -EINVAL;
1430 		goto out_unlock;
1431 	}
1432 
1433 	/* Set the user identity. */
1434 	switch (specified) {
1435 	case AVTAB_TRANSITION:
1436 	case AVTAB_CHANGE:
1437 		/* Use the process user identity. */
1438 		newcontext.user = scontext->user;
1439 		break;
1440 	case AVTAB_MEMBER:
1441 		/* Use the related object owner. */
1442 		newcontext.user = tcontext->user;
1443 		break;
1444 	}
1445 
1446 	/* Set the role and type to default values. */
1447 	if ((tclass == policydb.process_class) || (sock == true)) {
1448 		/* Use the current role and type of process. */
1449 		newcontext.role = scontext->role;
1450 		newcontext.type = scontext->type;
1451 	} else {
1452 		/* Use the well-defined object role. */
1453 		newcontext.role = OBJECT_R_VAL;
1454 		/* Use the type of the related object. */
1455 		newcontext.type = tcontext->type;
1456 	}
1457 
1458 	/* Look for a type transition/member/change rule. */
1459 	avkey.source_type = scontext->type;
1460 	avkey.target_type = tcontext->type;
1461 	avkey.target_class = tclass;
1462 	avkey.specified = specified;
1463 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1464 
1465 	/* If no permanent rule, also check for enabled conditional rules */
1466 	if (!avdatum) {
1467 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1468 		for (; node; node = avtab_search_node_next(node, specified)) {
1469 			if (node->key.specified & AVTAB_ENABLED) {
1470 				avdatum = &node->datum;
1471 				break;
1472 			}
1473 		}
1474 	}
1475 
1476 	if (avdatum) {
1477 		/* Use the type from the type transition/member/change rule. */
1478 		newcontext.type = avdatum->data;
1479 	}
1480 
1481 	/* if we have a qstr this is a file trans check so check those rules */
1482 	if (qstr)
1483 		filename_compute_type(&policydb, &newcontext, scontext->type,
1484 				      tcontext->type, tclass, qstr);
1485 
1486 	/* Check for class-specific changes. */
1487 	if  (tclass == policydb.process_class) {
1488 		if (specified & AVTAB_TRANSITION) {
1489 			/* Look for a role transition rule. */
1490 			for (roletr = policydb.role_tr; roletr;
1491 			     roletr = roletr->next) {
1492 				if (roletr->role == scontext->role &&
1493 				    roletr->type == tcontext->type) {
1494 					/* Use the role transition rule. */
1495 					newcontext.role = roletr->new_role;
1496 					break;
1497 				}
1498 			}
1499 		}
1500 	}
1501 
1502 	/* Set the MLS attributes.
1503 	   This is done last because it may allocate memory. */
1504 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1505 			     &newcontext, sock);
1506 	if (rc)
1507 		goto out_unlock;
1508 
1509 	/* Check the validity of the context. */
1510 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1511 		rc = compute_sid_handle_invalid_context(scontext,
1512 							tcontext,
1513 							tclass,
1514 							&newcontext);
1515 		if (rc)
1516 			goto out_unlock;
1517 	}
1518 	/* Obtain the sid for the context. */
1519 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1520 out_unlock:
1521 	read_unlock(&policy_rwlock);
1522 	context_destroy(&newcontext);
1523 out:
1524 	return rc;
1525 }
1526 
1527 /**
1528  * security_transition_sid - Compute the SID for a new subject/object.
1529  * @ssid: source security identifier
1530  * @tsid: target security identifier
1531  * @tclass: target security class
1532  * @out_sid: security identifier for new subject/object
1533  *
1534  * Compute a SID to use for labeling a new subject or object in the
1535  * class @tclass based on a SID pair (@ssid, @tsid).
1536  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1537  * if insufficient memory is available, or %0 if the new SID was
1538  * computed successfully.
1539  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1540 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1541 			    const struct qstr *qstr, u32 *out_sid)
1542 {
1543 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1544 				    qstr, out_sid, true);
1545 }
1546 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1547 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, u32 *out_sid)
1548 {
1549 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1550 				    NULL, out_sid, false);
1551 }
1552 
1553 /**
1554  * security_member_sid - Compute the SID for member selection.
1555  * @ssid: source security identifier
1556  * @tsid: target security identifier
1557  * @tclass: target security class
1558  * @out_sid: security identifier for selected member
1559  *
1560  * Compute a SID to use when selecting a member of a polyinstantiated
1561  * object of class @tclass based on a SID pair (@ssid, @tsid).
1562  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1563  * if insufficient memory is available, or %0 if the SID was
1564  * computed successfully.
1565  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1566 int security_member_sid(u32 ssid,
1567 			u32 tsid,
1568 			u16 tclass,
1569 			u32 *out_sid)
1570 {
1571 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1572 				    out_sid, false);
1573 }
1574 
1575 /**
1576  * security_change_sid - Compute the SID for object relabeling.
1577  * @ssid: source security identifier
1578  * @tsid: target security identifier
1579  * @tclass: target security class
1580  * @out_sid: security identifier for selected member
1581  *
1582  * Compute a SID to use for relabeling an object of class @tclass
1583  * based on a SID pair (@ssid, @tsid).
1584  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1585  * if insufficient memory is available, or %0 if the SID was
1586  * computed successfully.
1587  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1588 int security_change_sid(u32 ssid,
1589 			u32 tsid,
1590 			u16 tclass,
1591 			u32 *out_sid)
1592 {
1593 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1594 				    out_sid, false);
1595 }
1596 
1597 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1598 static int clone_sid(u32 sid,
1599 		     struct context *context,
1600 		     void *arg)
1601 {
1602 	struct sidtab *s = arg;
1603 
1604 	if (sid > SECINITSID_NUM)
1605 		return sidtab_insert(s, sid, context);
1606 	else
1607 		return 0;
1608 }
1609 
convert_context_handle_invalid_context(struct context * context)1610 static inline int convert_context_handle_invalid_context(struct context *context)
1611 {
1612 	char *s;
1613 	u32 len;
1614 
1615 	if (selinux_enforcing)
1616 		return -EINVAL;
1617 
1618 	if (!context_struct_to_string(context, &s, &len)) {
1619 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1620 		kfree(s);
1621 	}
1622 	return 0;
1623 }
1624 
1625 struct convert_context_args {
1626 	struct policydb *oldp;
1627 	struct policydb *newp;
1628 };
1629 
1630 /*
1631  * Convert the values in the security context
1632  * structure `c' from the values specified
1633  * in the policy `p->oldp' to the values specified
1634  * in the policy `p->newp'.  Verify that the
1635  * context is valid under the new policy.
1636  */
convert_context(u32 key,struct context * c,void * p)1637 static int convert_context(u32 key,
1638 			   struct context *c,
1639 			   void *p)
1640 {
1641 	struct convert_context_args *args;
1642 	struct context oldc;
1643 	struct ocontext *oc;
1644 	struct mls_range *range;
1645 	struct role_datum *role;
1646 	struct type_datum *typdatum;
1647 	struct user_datum *usrdatum;
1648 	char *s;
1649 	u32 len;
1650 	int rc = 0;
1651 
1652 	if (key <= SECINITSID_NUM)
1653 		goto out;
1654 
1655 	args = p;
1656 
1657 	if (c->str) {
1658 		struct context ctx;
1659 
1660 		rc = -ENOMEM;
1661 		s = kstrdup(c->str, GFP_KERNEL);
1662 		if (!s)
1663 			goto out;
1664 
1665 		rc = string_to_context_struct(args->newp, NULL, s,
1666 					      c->len, &ctx, SECSID_NULL);
1667 		kfree(s);
1668 		if (!rc) {
1669 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1670 			       c->str);
1671 			/* Replace string with mapped representation. */
1672 			kfree(c->str);
1673 			memcpy(c, &ctx, sizeof(*c));
1674 			goto out;
1675 		} else if (rc == -EINVAL) {
1676 			/* Retain string representation for later mapping. */
1677 			rc = 0;
1678 			goto out;
1679 		} else {
1680 			/* Other error condition, e.g. ENOMEM. */
1681 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1682 			       c->str, -rc);
1683 			goto out;
1684 		}
1685 	}
1686 
1687 	rc = context_cpy(&oldc, c);
1688 	if (rc)
1689 		goto out;
1690 
1691 	/* Convert the user. */
1692 	rc = -EINVAL;
1693 	usrdatum = hashtab_search(args->newp->p_users.table,
1694 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1695 	if (!usrdatum)
1696 		goto bad;
1697 	c->user = usrdatum->value;
1698 
1699 	/* Convert the role. */
1700 	rc = -EINVAL;
1701 	role = hashtab_search(args->newp->p_roles.table,
1702 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1703 	if (!role)
1704 		goto bad;
1705 	c->role = role->value;
1706 
1707 	/* Convert the type. */
1708 	rc = -EINVAL;
1709 	typdatum = hashtab_search(args->newp->p_types.table,
1710 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1711 	if (!typdatum)
1712 		goto bad;
1713 	c->type = typdatum->value;
1714 
1715 	/* Convert the MLS fields if dealing with MLS policies */
1716 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1717 		rc = mls_convert_context(args->oldp, args->newp, c);
1718 		if (rc)
1719 			goto bad;
1720 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1721 		/*
1722 		 * Switching between MLS and non-MLS policy:
1723 		 * free any storage used by the MLS fields in the
1724 		 * context for all existing entries in the sidtab.
1725 		 */
1726 		mls_context_destroy(c);
1727 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1728 		/*
1729 		 * Switching between non-MLS and MLS policy:
1730 		 * ensure that the MLS fields of the context for all
1731 		 * existing entries in the sidtab are filled in with a
1732 		 * suitable default value, likely taken from one of the
1733 		 * initial SIDs.
1734 		 */
1735 		oc = args->newp->ocontexts[OCON_ISID];
1736 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1737 			oc = oc->next;
1738 		rc = -EINVAL;
1739 		if (!oc) {
1740 			printk(KERN_ERR "SELinux:  unable to look up"
1741 				" the initial SIDs list\n");
1742 			goto bad;
1743 		}
1744 		range = &oc->context[0].range;
1745 		rc = mls_range_set(c, range);
1746 		if (rc)
1747 			goto bad;
1748 	}
1749 
1750 	/* Check the validity of the new context. */
1751 	if (!policydb_context_isvalid(args->newp, c)) {
1752 		rc = convert_context_handle_invalid_context(&oldc);
1753 		if (rc)
1754 			goto bad;
1755 	}
1756 
1757 	context_destroy(&oldc);
1758 
1759 	rc = 0;
1760 out:
1761 	return rc;
1762 bad:
1763 	/* Map old representation to string and save it. */
1764 	rc = context_struct_to_string(&oldc, &s, &len);
1765 	if (rc)
1766 		return rc;
1767 	context_destroy(&oldc);
1768 	context_destroy(c);
1769 	c->str = s;
1770 	c->len = len;
1771 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1772 	       c->str);
1773 	rc = 0;
1774 	goto out;
1775 }
1776 
security_load_policycaps(void)1777 static void security_load_policycaps(void)
1778 {
1779 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1780 						  POLICYDB_CAPABILITY_NETPEER);
1781 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1782 						  POLICYDB_CAPABILITY_OPENPERM);
1783 }
1784 
1785 extern void selinux_complete_init(void);
1786 static int security_preserve_bools(struct policydb *p);
1787 
1788 /**
1789  * security_load_policy - Load a security policy configuration.
1790  * @data: binary policy data
1791  * @len: length of data in bytes
1792  *
1793  * Load a new set of security policy configuration data,
1794  * validate it and convert the SID table as necessary.
1795  * This function will flush the access vector cache after
1796  * loading the new policy.
1797  */
security_load_policy(void * data,size_t len)1798 int security_load_policy(void *data, size_t len)
1799 {
1800 	struct policydb oldpolicydb, newpolicydb;
1801 	struct sidtab oldsidtab, newsidtab;
1802 	struct selinux_mapping *oldmap, *map = NULL;
1803 	struct convert_context_args args;
1804 	u32 seqno;
1805 	u16 map_size;
1806 	int rc = 0;
1807 	struct policy_file file = { data, len }, *fp = &file;
1808 
1809 	if (!ss_initialized) {
1810 		avtab_cache_init();
1811 		rc = policydb_read(&policydb, fp);
1812 		if (rc) {
1813 			avtab_cache_destroy();
1814 			return rc;
1815 		}
1816 
1817 		policydb.len = len;
1818 		rc = selinux_set_mapping(&policydb, secclass_map,
1819 					 &current_mapping,
1820 					 &current_mapping_size);
1821 		if (rc) {
1822 			policydb_destroy(&policydb);
1823 			avtab_cache_destroy();
1824 			return rc;
1825 		}
1826 
1827 		rc = policydb_load_isids(&policydb, &sidtab);
1828 		if (rc) {
1829 			policydb_destroy(&policydb);
1830 			avtab_cache_destroy();
1831 			return rc;
1832 		}
1833 
1834 		security_load_policycaps();
1835 		ss_initialized = 1;
1836 		seqno = ++latest_granting;
1837 		selinux_complete_init();
1838 		avc_ss_reset(seqno);
1839 		selnl_notify_policyload(seqno);
1840 		selinux_status_update_policyload(seqno);
1841 		selinux_netlbl_cache_invalidate();
1842 		selinux_xfrm_notify_policyload();
1843 		return 0;
1844 	}
1845 
1846 #if 0
1847 	sidtab_hash_eval(&sidtab, "sids");
1848 #endif
1849 
1850 	rc = policydb_read(&newpolicydb, fp);
1851 	if (rc)
1852 		return rc;
1853 
1854 	newpolicydb.len = len;
1855 	/* If switching between different policy types, log MLS status */
1856 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1857 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1858 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1859 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1860 
1861 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1862 	if (rc) {
1863 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1864 		policydb_destroy(&newpolicydb);
1865 		return rc;
1866 	}
1867 
1868 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1869 	if (rc)
1870 		goto err;
1871 
1872 	rc = security_preserve_bools(&newpolicydb);
1873 	if (rc) {
1874 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1875 		goto err;
1876 	}
1877 
1878 	/* Clone the SID table. */
1879 	sidtab_shutdown(&sidtab);
1880 
1881 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1882 	if (rc)
1883 		goto err;
1884 
1885 	/*
1886 	 * Convert the internal representations of contexts
1887 	 * in the new SID table.
1888 	 */
1889 	args.oldp = &policydb;
1890 	args.newp = &newpolicydb;
1891 	rc = sidtab_map(&newsidtab, convert_context, &args);
1892 	if (rc) {
1893 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1894 			" representation of contexts in the new SID"
1895 			" table\n");
1896 		goto err;
1897 	}
1898 
1899 	/* Save the old policydb and SID table to free later. */
1900 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1901 	sidtab_set(&oldsidtab, &sidtab);
1902 
1903 	/* Install the new policydb and SID table. */
1904 	write_lock_irq(&policy_rwlock);
1905 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1906 	sidtab_set(&sidtab, &newsidtab);
1907 	security_load_policycaps();
1908 	oldmap = current_mapping;
1909 	current_mapping = map;
1910 	current_mapping_size = map_size;
1911 	seqno = ++latest_granting;
1912 	write_unlock_irq(&policy_rwlock);
1913 
1914 	/* Free the old policydb and SID table. */
1915 	policydb_destroy(&oldpolicydb);
1916 	sidtab_destroy(&oldsidtab);
1917 	kfree(oldmap);
1918 
1919 	avc_ss_reset(seqno);
1920 	selnl_notify_policyload(seqno);
1921 	selinux_status_update_policyload(seqno);
1922 	selinux_netlbl_cache_invalidate();
1923 	selinux_xfrm_notify_policyload();
1924 
1925 	return 0;
1926 
1927 err:
1928 	kfree(map);
1929 	sidtab_destroy(&newsidtab);
1930 	policydb_destroy(&newpolicydb);
1931 	return rc;
1932 
1933 }
1934 
security_policydb_len(void)1935 size_t security_policydb_len(void)
1936 {
1937 	size_t len;
1938 
1939 	read_lock(&policy_rwlock);
1940 	len = policydb.len;
1941 	read_unlock(&policy_rwlock);
1942 
1943 	return len;
1944 }
1945 
1946 /**
1947  * security_port_sid - Obtain the SID for a port.
1948  * @protocol: protocol number
1949  * @port: port number
1950  * @out_sid: security identifier
1951  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)1952 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1953 {
1954 	struct ocontext *c;
1955 	int rc = 0;
1956 
1957 	read_lock(&policy_rwlock);
1958 
1959 	c = policydb.ocontexts[OCON_PORT];
1960 	while (c) {
1961 		if (c->u.port.protocol == protocol &&
1962 		    c->u.port.low_port <= port &&
1963 		    c->u.port.high_port >= port)
1964 			break;
1965 		c = c->next;
1966 	}
1967 
1968 	if (c) {
1969 		if (!c->sid[0]) {
1970 			rc = sidtab_context_to_sid(&sidtab,
1971 						   &c->context[0],
1972 						   &c->sid[0]);
1973 			if (rc)
1974 				goto out;
1975 		}
1976 		*out_sid = c->sid[0];
1977 	} else {
1978 		*out_sid = SECINITSID_PORT;
1979 	}
1980 
1981 out:
1982 	read_unlock(&policy_rwlock);
1983 	return rc;
1984 }
1985 
1986 /**
1987  * security_netif_sid - Obtain the SID for a network interface.
1988  * @name: interface name
1989  * @if_sid: interface SID
1990  */
security_netif_sid(char * name,u32 * if_sid)1991 int security_netif_sid(char *name, u32 *if_sid)
1992 {
1993 	int rc = 0;
1994 	struct ocontext *c;
1995 
1996 	read_lock(&policy_rwlock);
1997 
1998 	c = policydb.ocontexts[OCON_NETIF];
1999 	while (c) {
2000 		if (strcmp(name, c->u.name) == 0)
2001 			break;
2002 		c = c->next;
2003 	}
2004 
2005 	if (c) {
2006 		if (!c->sid[0] || !c->sid[1]) {
2007 			rc = sidtab_context_to_sid(&sidtab,
2008 						  &c->context[0],
2009 						  &c->sid[0]);
2010 			if (rc)
2011 				goto out;
2012 			rc = sidtab_context_to_sid(&sidtab,
2013 						   &c->context[1],
2014 						   &c->sid[1]);
2015 			if (rc)
2016 				goto out;
2017 		}
2018 		*if_sid = c->sid[0];
2019 	} else
2020 		*if_sid = SECINITSID_NETIF;
2021 
2022 out:
2023 	read_unlock(&policy_rwlock);
2024 	return rc;
2025 }
2026 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2027 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2028 {
2029 	int i, fail = 0;
2030 
2031 	for (i = 0; i < 4; i++)
2032 		if (addr[i] != (input[i] & mask[i])) {
2033 			fail = 1;
2034 			break;
2035 		}
2036 
2037 	return !fail;
2038 }
2039 
2040 /**
2041  * security_node_sid - Obtain the SID for a node (host).
2042  * @domain: communication domain aka address family
2043  * @addrp: address
2044  * @addrlen: address length in bytes
2045  * @out_sid: security identifier
2046  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2047 int security_node_sid(u16 domain,
2048 		      void *addrp,
2049 		      u32 addrlen,
2050 		      u32 *out_sid)
2051 {
2052 	int rc;
2053 	struct ocontext *c;
2054 
2055 	read_lock(&policy_rwlock);
2056 
2057 	switch (domain) {
2058 	case AF_INET: {
2059 		u32 addr;
2060 
2061 		rc = -EINVAL;
2062 		if (addrlen != sizeof(u32))
2063 			goto out;
2064 
2065 		addr = *((u32 *)addrp);
2066 
2067 		c = policydb.ocontexts[OCON_NODE];
2068 		while (c) {
2069 			if (c->u.node.addr == (addr & c->u.node.mask))
2070 				break;
2071 			c = c->next;
2072 		}
2073 		break;
2074 	}
2075 
2076 	case AF_INET6:
2077 		rc = -EINVAL;
2078 		if (addrlen != sizeof(u64) * 2)
2079 			goto out;
2080 		c = policydb.ocontexts[OCON_NODE6];
2081 		while (c) {
2082 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2083 						c->u.node6.mask))
2084 				break;
2085 			c = c->next;
2086 		}
2087 		break;
2088 
2089 	default:
2090 		rc = 0;
2091 		*out_sid = SECINITSID_NODE;
2092 		goto out;
2093 	}
2094 
2095 	if (c) {
2096 		if (!c->sid[0]) {
2097 			rc = sidtab_context_to_sid(&sidtab,
2098 						   &c->context[0],
2099 						   &c->sid[0]);
2100 			if (rc)
2101 				goto out;
2102 		}
2103 		*out_sid = c->sid[0];
2104 	} else {
2105 		*out_sid = SECINITSID_NODE;
2106 	}
2107 
2108 	rc = 0;
2109 out:
2110 	read_unlock(&policy_rwlock);
2111 	return rc;
2112 }
2113 
2114 #define SIDS_NEL 25
2115 
2116 /**
2117  * security_get_user_sids - Obtain reachable SIDs for a user.
2118  * @fromsid: starting SID
2119  * @username: username
2120  * @sids: array of reachable SIDs for user
2121  * @nel: number of elements in @sids
2122  *
2123  * Generate the set of SIDs for legal security contexts
2124  * for a given user that can be reached by @fromsid.
2125  * Set *@sids to point to a dynamically allocated
2126  * array containing the set of SIDs.  Set *@nel to the
2127  * number of elements in the array.
2128  */
2129 
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2130 int security_get_user_sids(u32 fromsid,
2131 			   char *username,
2132 			   u32 **sids,
2133 			   u32 *nel)
2134 {
2135 	struct context *fromcon, usercon;
2136 	u32 *mysids = NULL, *mysids2, sid;
2137 	u32 mynel = 0, maxnel = SIDS_NEL;
2138 	struct user_datum *user;
2139 	struct role_datum *role;
2140 	struct ebitmap_node *rnode, *tnode;
2141 	int rc = 0, i, j;
2142 
2143 	*sids = NULL;
2144 	*nel = 0;
2145 
2146 	if (!ss_initialized)
2147 		goto out;
2148 
2149 	read_lock(&policy_rwlock);
2150 
2151 	context_init(&usercon);
2152 
2153 	rc = -EINVAL;
2154 	fromcon = sidtab_search(&sidtab, fromsid);
2155 	if (!fromcon)
2156 		goto out_unlock;
2157 
2158 	rc = -EINVAL;
2159 	user = hashtab_search(policydb.p_users.table, username);
2160 	if (!user)
2161 		goto out_unlock;
2162 
2163 	usercon.user = user->value;
2164 
2165 	rc = -ENOMEM;
2166 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2167 	if (!mysids)
2168 		goto out_unlock;
2169 
2170 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2171 		role = policydb.role_val_to_struct[i];
2172 		usercon.role = i + 1;
2173 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2174 			usercon.type = j + 1;
2175 
2176 			if (mls_setup_user_range(fromcon, user, &usercon))
2177 				continue;
2178 
2179 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2180 			if (rc)
2181 				goto out_unlock;
2182 			if (mynel < maxnel) {
2183 				mysids[mynel++] = sid;
2184 			} else {
2185 				rc = -ENOMEM;
2186 				maxnel += SIDS_NEL;
2187 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2188 				if (!mysids2)
2189 					goto out_unlock;
2190 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2191 				kfree(mysids);
2192 				mysids = mysids2;
2193 				mysids[mynel++] = sid;
2194 			}
2195 		}
2196 	}
2197 	rc = 0;
2198 out_unlock:
2199 	read_unlock(&policy_rwlock);
2200 	if (rc || !mynel) {
2201 		kfree(mysids);
2202 		goto out;
2203 	}
2204 
2205 	rc = -ENOMEM;
2206 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2207 	if (!mysids2) {
2208 		kfree(mysids);
2209 		goto out;
2210 	}
2211 	for (i = 0, j = 0; i < mynel; i++) {
2212 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2213 					  SECCLASS_PROCESS, /* kernel value */
2214 					  PROCESS__TRANSITION, AVC_STRICT,
2215 					  NULL);
2216 		if (!rc)
2217 			mysids2[j++] = mysids[i];
2218 		cond_resched();
2219 	}
2220 	rc = 0;
2221 	kfree(mysids);
2222 	*sids = mysids2;
2223 	*nel = j;
2224 out:
2225 	return rc;
2226 }
2227 
2228 /**
2229  * security_genfs_sid - Obtain a SID for a file in a filesystem
2230  * @fstype: filesystem type
2231  * @path: path from root of mount
2232  * @sclass: file security class
2233  * @sid: SID for path
2234  *
2235  * Obtain a SID to use for a file in a filesystem that
2236  * cannot support xattr or use a fixed labeling behavior like
2237  * transition SIDs or task SIDs.
2238  */
security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2239 int security_genfs_sid(const char *fstype,
2240 		       char *path,
2241 		       u16 orig_sclass,
2242 		       u32 *sid)
2243 {
2244 	int len;
2245 	u16 sclass;
2246 	struct genfs *genfs;
2247 	struct ocontext *c;
2248 	int rc, cmp = 0;
2249 
2250 	while (path[0] == '/' && path[1] == '/')
2251 		path++;
2252 
2253 	read_lock(&policy_rwlock);
2254 
2255 	sclass = unmap_class(orig_sclass);
2256 	*sid = SECINITSID_UNLABELED;
2257 
2258 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2259 		cmp = strcmp(fstype, genfs->fstype);
2260 		if (cmp <= 0)
2261 			break;
2262 	}
2263 
2264 	rc = -ENOENT;
2265 	if (!genfs || cmp)
2266 		goto out;
2267 
2268 	for (c = genfs->head; c; c = c->next) {
2269 		len = strlen(c->u.name);
2270 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2271 		    (strncmp(c->u.name, path, len) == 0))
2272 			break;
2273 	}
2274 
2275 	rc = -ENOENT;
2276 	if (!c)
2277 		goto out;
2278 
2279 	if (!c->sid[0]) {
2280 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2281 		if (rc)
2282 			goto out;
2283 	}
2284 
2285 	*sid = c->sid[0];
2286 	rc = 0;
2287 out:
2288 	read_unlock(&policy_rwlock);
2289 	return rc;
2290 }
2291 
2292 /**
2293  * security_fs_use - Determine how to handle labeling for a filesystem.
2294  * @fstype: filesystem type
2295  * @behavior: labeling behavior
2296  * @sid: SID for filesystem (superblock)
2297  */
security_fs_use(const char * fstype,unsigned int * behavior,u32 * sid)2298 int security_fs_use(
2299 	const char *fstype,
2300 	unsigned int *behavior,
2301 	u32 *sid)
2302 {
2303 	int rc = 0;
2304 	struct ocontext *c;
2305 
2306 	read_lock(&policy_rwlock);
2307 
2308 	c = policydb.ocontexts[OCON_FSUSE];
2309 	while (c) {
2310 		if (strcmp(fstype, c->u.name) == 0)
2311 			break;
2312 		c = c->next;
2313 	}
2314 
2315 	if (c) {
2316 		*behavior = c->v.behavior;
2317 		if (!c->sid[0]) {
2318 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2319 						   &c->sid[0]);
2320 			if (rc)
2321 				goto out;
2322 		}
2323 		*sid = c->sid[0];
2324 	} else {
2325 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2326 		if (rc) {
2327 			*behavior = SECURITY_FS_USE_NONE;
2328 			rc = 0;
2329 		} else {
2330 			*behavior = SECURITY_FS_USE_GENFS;
2331 		}
2332 	}
2333 
2334 out:
2335 	read_unlock(&policy_rwlock);
2336 	return rc;
2337 }
2338 
security_get_bools(int * len,char *** names,int ** values)2339 int security_get_bools(int *len, char ***names, int **values)
2340 {
2341 	int i, rc;
2342 
2343 	read_lock(&policy_rwlock);
2344 	*names = NULL;
2345 	*values = NULL;
2346 
2347 	rc = 0;
2348 	*len = policydb.p_bools.nprim;
2349 	if (!*len)
2350 		goto out;
2351 
2352 	rc = -ENOMEM;
2353 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2354 	if (!*names)
2355 		goto err;
2356 
2357 	rc = -ENOMEM;
2358 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2359 	if (!*values)
2360 		goto err;
2361 
2362 	for (i = 0; i < *len; i++) {
2363 		size_t name_len;
2364 
2365 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2366 		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2367 
2368 		rc = -ENOMEM;
2369 		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2370 		if (!(*names)[i])
2371 			goto err;
2372 
2373 		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2374 		(*names)[i][name_len - 1] = 0;
2375 	}
2376 	rc = 0;
2377 out:
2378 	read_unlock(&policy_rwlock);
2379 	return rc;
2380 err:
2381 	if (*names) {
2382 		for (i = 0; i < *len; i++)
2383 			kfree((*names)[i]);
2384 	}
2385 	kfree(*values);
2386 	goto out;
2387 }
2388 
2389 
security_set_bools(int len,int * values)2390 int security_set_bools(int len, int *values)
2391 {
2392 	int i, rc;
2393 	int lenp, seqno = 0;
2394 	struct cond_node *cur;
2395 
2396 	write_lock_irq(&policy_rwlock);
2397 
2398 	rc = -EFAULT;
2399 	lenp = policydb.p_bools.nprim;
2400 	if (len != lenp)
2401 		goto out;
2402 
2403 	for (i = 0; i < len; i++) {
2404 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2405 			audit_log(current->audit_context, GFP_ATOMIC,
2406 				AUDIT_MAC_CONFIG_CHANGE,
2407 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2408 				sym_name(&policydb, SYM_BOOLS, i),
2409 				!!values[i],
2410 				policydb.bool_val_to_struct[i]->state,
2411 				audit_get_loginuid(current),
2412 				audit_get_sessionid(current));
2413 		}
2414 		if (values[i])
2415 			policydb.bool_val_to_struct[i]->state = 1;
2416 		else
2417 			policydb.bool_val_to_struct[i]->state = 0;
2418 	}
2419 
2420 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2421 		rc = evaluate_cond_node(&policydb, cur);
2422 		if (rc)
2423 			goto out;
2424 	}
2425 
2426 	seqno = ++latest_granting;
2427 	rc = 0;
2428 out:
2429 	write_unlock_irq(&policy_rwlock);
2430 	if (!rc) {
2431 		avc_ss_reset(seqno);
2432 		selnl_notify_policyload(seqno);
2433 		selinux_status_update_policyload(seqno);
2434 		selinux_xfrm_notify_policyload();
2435 	}
2436 	return rc;
2437 }
2438 
security_get_bool_value(int bool)2439 int security_get_bool_value(int bool)
2440 {
2441 	int rc;
2442 	int len;
2443 
2444 	read_lock(&policy_rwlock);
2445 
2446 	rc = -EFAULT;
2447 	len = policydb.p_bools.nprim;
2448 	if (bool >= len)
2449 		goto out;
2450 
2451 	rc = policydb.bool_val_to_struct[bool]->state;
2452 out:
2453 	read_unlock(&policy_rwlock);
2454 	return rc;
2455 }
2456 
security_preserve_bools(struct policydb * p)2457 static int security_preserve_bools(struct policydb *p)
2458 {
2459 	int rc, nbools = 0, *bvalues = NULL, i;
2460 	char **bnames = NULL;
2461 	struct cond_bool_datum *booldatum;
2462 	struct cond_node *cur;
2463 
2464 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2465 	if (rc)
2466 		goto out;
2467 	for (i = 0; i < nbools; i++) {
2468 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2469 		if (booldatum)
2470 			booldatum->state = bvalues[i];
2471 	}
2472 	for (cur = p->cond_list; cur; cur = cur->next) {
2473 		rc = evaluate_cond_node(p, cur);
2474 		if (rc)
2475 			goto out;
2476 	}
2477 
2478 out:
2479 	if (bnames) {
2480 		for (i = 0; i < nbools; i++)
2481 			kfree(bnames[i]);
2482 	}
2483 	kfree(bnames);
2484 	kfree(bvalues);
2485 	return rc;
2486 }
2487 
2488 /*
2489  * security_sid_mls_copy() - computes a new sid based on the given
2490  * sid and the mls portion of mls_sid.
2491  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)2492 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2493 {
2494 	struct context *context1;
2495 	struct context *context2;
2496 	struct context newcon;
2497 	char *s;
2498 	u32 len;
2499 	int rc;
2500 
2501 	rc = 0;
2502 	if (!ss_initialized || !policydb.mls_enabled) {
2503 		*new_sid = sid;
2504 		goto out;
2505 	}
2506 
2507 	context_init(&newcon);
2508 
2509 	read_lock(&policy_rwlock);
2510 
2511 	rc = -EINVAL;
2512 	context1 = sidtab_search(&sidtab, sid);
2513 	if (!context1) {
2514 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2515 			__func__, sid);
2516 		goto out_unlock;
2517 	}
2518 
2519 	rc = -EINVAL;
2520 	context2 = sidtab_search(&sidtab, mls_sid);
2521 	if (!context2) {
2522 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2523 			__func__, mls_sid);
2524 		goto out_unlock;
2525 	}
2526 
2527 	newcon.user = context1->user;
2528 	newcon.role = context1->role;
2529 	newcon.type = context1->type;
2530 	rc = mls_context_cpy(&newcon, context2);
2531 	if (rc)
2532 		goto out_unlock;
2533 
2534 	/* Check the validity of the new context. */
2535 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2536 		rc = convert_context_handle_invalid_context(&newcon);
2537 		if (rc) {
2538 			if (!context_struct_to_string(&newcon, &s, &len)) {
2539 				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2540 					  "security_sid_mls_copy: invalid context %s", s);
2541 				kfree(s);
2542 			}
2543 			goto out_unlock;
2544 		}
2545 	}
2546 
2547 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2548 out_unlock:
2549 	read_unlock(&policy_rwlock);
2550 	context_destroy(&newcon);
2551 out:
2552 	return rc;
2553 }
2554 
2555 /**
2556  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2557  * @nlbl_sid: NetLabel SID
2558  * @nlbl_type: NetLabel labeling protocol type
2559  * @xfrm_sid: XFRM SID
2560  *
2561  * Description:
2562  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2563  * resolved into a single SID it is returned via @peer_sid and the function
2564  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2565  * returns a negative value.  A table summarizing the behavior is below:
2566  *
2567  *                                 | function return |      @sid
2568  *   ------------------------------+-----------------+-----------------
2569  *   no peer labels                |        0        |    SECSID_NULL
2570  *   single peer label             |        0        |    <peer_label>
2571  *   multiple, consistent labels   |        0        |    <peer_label>
2572  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2573  *
2574  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)2575 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2576 				 u32 xfrm_sid,
2577 				 u32 *peer_sid)
2578 {
2579 	int rc;
2580 	struct context *nlbl_ctx;
2581 	struct context *xfrm_ctx;
2582 
2583 	*peer_sid = SECSID_NULL;
2584 
2585 	/* handle the common (which also happens to be the set of easy) cases
2586 	 * right away, these two if statements catch everything involving a
2587 	 * single or absent peer SID/label */
2588 	if (xfrm_sid == SECSID_NULL) {
2589 		*peer_sid = nlbl_sid;
2590 		return 0;
2591 	}
2592 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2593 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2594 	 * is present */
2595 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2596 		*peer_sid = xfrm_sid;
2597 		return 0;
2598 	}
2599 
2600 	/* we don't need to check ss_initialized here since the only way both
2601 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2602 	 * security server was initialized and ss_initialized was true */
2603 	if (!policydb.mls_enabled)
2604 		return 0;
2605 
2606 	read_lock(&policy_rwlock);
2607 
2608 	rc = -EINVAL;
2609 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2610 	if (!nlbl_ctx) {
2611 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2612 		       __func__, nlbl_sid);
2613 		goto out;
2614 	}
2615 	rc = -EINVAL;
2616 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2617 	if (!xfrm_ctx) {
2618 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2619 		       __func__, xfrm_sid);
2620 		goto out;
2621 	}
2622 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2623 	if (rc)
2624 		goto out;
2625 
2626 	/* at present NetLabel SIDs/labels really only carry MLS
2627 	 * information so if the MLS portion of the NetLabel SID
2628 	 * matches the MLS portion of the labeled XFRM SID/label
2629 	 * then pass along the XFRM SID as it is the most
2630 	 * expressive */
2631 	*peer_sid = xfrm_sid;
2632 out:
2633 	read_unlock(&policy_rwlock);
2634 	return rc;
2635 }
2636 
get_classes_callback(void * k,void * d,void * args)2637 static int get_classes_callback(void *k, void *d, void *args)
2638 {
2639 	struct class_datum *datum = d;
2640 	char *name = k, **classes = args;
2641 	int value = datum->value - 1;
2642 
2643 	classes[value] = kstrdup(name, GFP_ATOMIC);
2644 	if (!classes[value])
2645 		return -ENOMEM;
2646 
2647 	return 0;
2648 }
2649 
security_get_classes(char *** classes,int * nclasses)2650 int security_get_classes(char ***classes, int *nclasses)
2651 {
2652 	int rc;
2653 
2654 	read_lock(&policy_rwlock);
2655 
2656 	rc = -ENOMEM;
2657 	*nclasses = policydb.p_classes.nprim;
2658 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2659 	if (!*classes)
2660 		goto out;
2661 
2662 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2663 			*classes);
2664 	if (rc) {
2665 		int i;
2666 		for (i = 0; i < *nclasses; i++)
2667 			kfree((*classes)[i]);
2668 		kfree(*classes);
2669 	}
2670 
2671 out:
2672 	read_unlock(&policy_rwlock);
2673 	return rc;
2674 }
2675 
get_permissions_callback(void * k,void * d,void * args)2676 static int get_permissions_callback(void *k, void *d, void *args)
2677 {
2678 	struct perm_datum *datum = d;
2679 	char *name = k, **perms = args;
2680 	int value = datum->value - 1;
2681 
2682 	perms[value] = kstrdup(name, GFP_ATOMIC);
2683 	if (!perms[value])
2684 		return -ENOMEM;
2685 
2686 	return 0;
2687 }
2688 
security_get_permissions(char * class,char *** perms,int * nperms)2689 int security_get_permissions(char *class, char ***perms, int *nperms)
2690 {
2691 	int rc, i;
2692 	struct class_datum *match;
2693 
2694 	read_lock(&policy_rwlock);
2695 
2696 	rc = -EINVAL;
2697 	match = hashtab_search(policydb.p_classes.table, class);
2698 	if (!match) {
2699 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2700 			__func__, class);
2701 		goto out;
2702 	}
2703 
2704 	rc = -ENOMEM;
2705 	*nperms = match->permissions.nprim;
2706 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2707 	if (!*perms)
2708 		goto out;
2709 
2710 	if (match->comdatum) {
2711 		rc = hashtab_map(match->comdatum->permissions.table,
2712 				get_permissions_callback, *perms);
2713 		if (rc)
2714 			goto err;
2715 	}
2716 
2717 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2718 			*perms);
2719 	if (rc)
2720 		goto err;
2721 
2722 out:
2723 	read_unlock(&policy_rwlock);
2724 	return rc;
2725 
2726 err:
2727 	read_unlock(&policy_rwlock);
2728 	for (i = 0; i < *nperms; i++)
2729 		kfree((*perms)[i]);
2730 	kfree(*perms);
2731 	return rc;
2732 }
2733 
security_get_reject_unknown(void)2734 int security_get_reject_unknown(void)
2735 {
2736 	return policydb.reject_unknown;
2737 }
2738 
security_get_allow_unknown(void)2739 int security_get_allow_unknown(void)
2740 {
2741 	return policydb.allow_unknown;
2742 }
2743 
2744 /**
2745  * security_policycap_supported - Check for a specific policy capability
2746  * @req_cap: capability
2747  *
2748  * Description:
2749  * This function queries the currently loaded policy to see if it supports the
2750  * capability specified by @req_cap.  Returns true (1) if the capability is
2751  * supported, false (0) if it isn't supported.
2752  *
2753  */
security_policycap_supported(unsigned int req_cap)2754 int security_policycap_supported(unsigned int req_cap)
2755 {
2756 	int rc;
2757 
2758 	read_lock(&policy_rwlock);
2759 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2760 	read_unlock(&policy_rwlock);
2761 
2762 	return rc;
2763 }
2764 
2765 struct selinux_audit_rule {
2766 	u32 au_seqno;
2767 	struct context au_ctxt;
2768 };
2769 
selinux_audit_rule_free(void * vrule)2770 void selinux_audit_rule_free(void *vrule)
2771 {
2772 	struct selinux_audit_rule *rule = vrule;
2773 
2774 	if (rule) {
2775 		context_destroy(&rule->au_ctxt);
2776 		kfree(rule);
2777 	}
2778 }
2779 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)2780 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2781 {
2782 	struct selinux_audit_rule *tmprule;
2783 	struct role_datum *roledatum;
2784 	struct type_datum *typedatum;
2785 	struct user_datum *userdatum;
2786 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2787 	int rc = 0;
2788 
2789 	*rule = NULL;
2790 
2791 	if (!ss_initialized)
2792 		return -EOPNOTSUPP;
2793 
2794 	switch (field) {
2795 	case AUDIT_SUBJ_USER:
2796 	case AUDIT_SUBJ_ROLE:
2797 	case AUDIT_SUBJ_TYPE:
2798 	case AUDIT_OBJ_USER:
2799 	case AUDIT_OBJ_ROLE:
2800 	case AUDIT_OBJ_TYPE:
2801 		/* only 'equals' and 'not equals' fit user, role, and type */
2802 		if (op != Audit_equal && op != Audit_not_equal)
2803 			return -EINVAL;
2804 		break;
2805 	case AUDIT_SUBJ_SEN:
2806 	case AUDIT_SUBJ_CLR:
2807 	case AUDIT_OBJ_LEV_LOW:
2808 	case AUDIT_OBJ_LEV_HIGH:
2809 		/* we do not allow a range, indicated by the presence of '-' */
2810 		if (strchr(rulestr, '-'))
2811 			return -EINVAL;
2812 		break;
2813 	default:
2814 		/* only the above fields are valid */
2815 		return -EINVAL;
2816 	}
2817 
2818 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2819 	if (!tmprule)
2820 		return -ENOMEM;
2821 
2822 	context_init(&tmprule->au_ctxt);
2823 
2824 	read_lock(&policy_rwlock);
2825 
2826 	tmprule->au_seqno = latest_granting;
2827 
2828 	switch (field) {
2829 	case AUDIT_SUBJ_USER:
2830 	case AUDIT_OBJ_USER:
2831 		rc = -EINVAL;
2832 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2833 		if (!userdatum)
2834 			goto out;
2835 		tmprule->au_ctxt.user = userdatum->value;
2836 		break;
2837 	case AUDIT_SUBJ_ROLE:
2838 	case AUDIT_OBJ_ROLE:
2839 		rc = -EINVAL;
2840 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2841 		if (!roledatum)
2842 			goto out;
2843 		tmprule->au_ctxt.role = roledatum->value;
2844 		break;
2845 	case AUDIT_SUBJ_TYPE:
2846 	case AUDIT_OBJ_TYPE:
2847 		rc = -EINVAL;
2848 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2849 		if (!typedatum)
2850 			goto out;
2851 		tmprule->au_ctxt.type = typedatum->value;
2852 		break;
2853 	case AUDIT_SUBJ_SEN:
2854 	case AUDIT_SUBJ_CLR:
2855 	case AUDIT_OBJ_LEV_LOW:
2856 	case AUDIT_OBJ_LEV_HIGH:
2857 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2858 		if (rc)
2859 			goto out;
2860 		break;
2861 	}
2862 	rc = 0;
2863 out:
2864 	read_unlock(&policy_rwlock);
2865 
2866 	if (rc) {
2867 		selinux_audit_rule_free(tmprule);
2868 		tmprule = NULL;
2869 	}
2870 
2871 	*rule = tmprule;
2872 
2873 	return rc;
2874 }
2875 
2876 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)2877 int selinux_audit_rule_known(struct audit_krule *rule)
2878 {
2879 	int i;
2880 
2881 	for (i = 0; i < rule->field_count; i++) {
2882 		struct audit_field *f = &rule->fields[i];
2883 		switch (f->type) {
2884 		case AUDIT_SUBJ_USER:
2885 		case AUDIT_SUBJ_ROLE:
2886 		case AUDIT_SUBJ_TYPE:
2887 		case AUDIT_SUBJ_SEN:
2888 		case AUDIT_SUBJ_CLR:
2889 		case AUDIT_OBJ_USER:
2890 		case AUDIT_OBJ_ROLE:
2891 		case AUDIT_OBJ_TYPE:
2892 		case AUDIT_OBJ_LEV_LOW:
2893 		case AUDIT_OBJ_LEV_HIGH:
2894 			return 1;
2895 		}
2896 	}
2897 
2898 	return 0;
2899 }
2900 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)2901 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2902 			     struct audit_context *actx)
2903 {
2904 	struct context *ctxt;
2905 	struct mls_level *level;
2906 	struct selinux_audit_rule *rule = vrule;
2907 	int match = 0;
2908 
2909 	if (!rule) {
2910 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2911 			  "selinux_audit_rule_match: missing rule\n");
2912 		return -ENOENT;
2913 	}
2914 
2915 	read_lock(&policy_rwlock);
2916 
2917 	if (rule->au_seqno < latest_granting) {
2918 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2919 			  "selinux_audit_rule_match: stale rule\n");
2920 		match = -ESTALE;
2921 		goto out;
2922 	}
2923 
2924 	ctxt = sidtab_search(&sidtab, sid);
2925 	if (!ctxt) {
2926 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2927 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2928 			  sid);
2929 		match = -ENOENT;
2930 		goto out;
2931 	}
2932 
2933 	/* a field/op pair that is not caught here will simply fall through
2934 	   without a match */
2935 	switch (field) {
2936 	case AUDIT_SUBJ_USER:
2937 	case AUDIT_OBJ_USER:
2938 		switch (op) {
2939 		case Audit_equal:
2940 			match = (ctxt->user == rule->au_ctxt.user);
2941 			break;
2942 		case Audit_not_equal:
2943 			match = (ctxt->user != rule->au_ctxt.user);
2944 			break;
2945 		}
2946 		break;
2947 	case AUDIT_SUBJ_ROLE:
2948 	case AUDIT_OBJ_ROLE:
2949 		switch (op) {
2950 		case Audit_equal:
2951 			match = (ctxt->role == rule->au_ctxt.role);
2952 			break;
2953 		case Audit_not_equal:
2954 			match = (ctxt->role != rule->au_ctxt.role);
2955 			break;
2956 		}
2957 		break;
2958 	case AUDIT_SUBJ_TYPE:
2959 	case AUDIT_OBJ_TYPE:
2960 		switch (op) {
2961 		case Audit_equal:
2962 			match = (ctxt->type == rule->au_ctxt.type);
2963 			break;
2964 		case Audit_not_equal:
2965 			match = (ctxt->type != rule->au_ctxt.type);
2966 			break;
2967 		}
2968 		break;
2969 	case AUDIT_SUBJ_SEN:
2970 	case AUDIT_SUBJ_CLR:
2971 	case AUDIT_OBJ_LEV_LOW:
2972 	case AUDIT_OBJ_LEV_HIGH:
2973 		level = ((field == AUDIT_SUBJ_SEN ||
2974 			  field == AUDIT_OBJ_LEV_LOW) ?
2975 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2976 		switch (op) {
2977 		case Audit_equal:
2978 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2979 					     level);
2980 			break;
2981 		case Audit_not_equal:
2982 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2983 					      level);
2984 			break;
2985 		case Audit_lt:
2986 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2987 					       level) &&
2988 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2989 					       level));
2990 			break;
2991 		case Audit_le:
2992 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2993 					      level);
2994 			break;
2995 		case Audit_gt:
2996 			match = (mls_level_dom(level,
2997 					      &rule->au_ctxt.range.level[0]) &&
2998 				 !mls_level_eq(level,
2999 					       &rule->au_ctxt.range.level[0]));
3000 			break;
3001 		case Audit_ge:
3002 			match = mls_level_dom(level,
3003 					      &rule->au_ctxt.range.level[0]);
3004 			break;
3005 		}
3006 	}
3007 
3008 out:
3009 	read_unlock(&policy_rwlock);
3010 	return match;
3011 }
3012 
3013 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3014 
aurule_avc_callback(u32 event,u32 ssid,u32 tsid,u16 class,u32 perms,u32 * retained)3015 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3016 			       u16 class, u32 perms, u32 *retained)
3017 {
3018 	int err = 0;
3019 
3020 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3021 		err = aurule_callback();
3022 	return err;
3023 }
3024 
aurule_init(void)3025 static int __init aurule_init(void)
3026 {
3027 	int err;
3028 
3029 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3030 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3031 	if (err)
3032 		panic("avc_add_callback() failed, error %d\n", err);
3033 
3034 	return err;
3035 }
3036 __initcall(aurule_init);
3037 
3038 #ifdef CONFIG_NETLABEL
3039 /**
3040  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3041  * @secattr: the NetLabel packet security attributes
3042  * @sid: the SELinux SID
3043  *
3044  * Description:
3045  * Attempt to cache the context in @ctx, which was derived from the packet in
3046  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3047  * already been initialized.
3048  *
3049  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3050 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3051 				      u32 sid)
3052 {
3053 	u32 *sid_cache;
3054 
3055 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3056 	if (sid_cache == NULL)
3057 		return;
3058 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3059 	if (secattr->cache == NULL) {
3060 		kfree(sid_cache);
3061 		return;
3062 	}
3063 
3064 	*sid_cache = sid;
3065 	secattr->cache->free = kfree;
3066 	secattr->cache->data = sid_cache;
3067 	secattr->flags |= NETLBL_SECATTR_CACHE;
3068 }
3069 
3070 /**
3071  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3072  * @secattr: the NetLabel packet security attributes
3073  * @sid: the SELinux SID
3074  *
3075  * Description:
3076  * Convert the given NetLabel security attributes in @secattr into a
3077  * SELinux SID.  If the @secattr field does not contain a full SELinux
3078  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3079  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3080  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3081  * conversion for future lookups.  Returns zero on success, negative values on
3082  * failure.
3083  *
3084  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3085 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3086 				   u32 *sid)
3087 {
3088 	int rc;
3089 	struct context *ctx;
3090 	struct context ctx_new;
3091 
3092 	if (!ss_initialized) {
3093 		*sid = SECSID_NULL;
3094 		return 0;
3095 	}
3096 
3097 	read_lock(&policy_rwlock);
3098 
3099 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3100 		*sid = *(u32 *)secattr->cache->data;
3101 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3102 		*sid = secattr->attr.secid;
3103 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3104 		rc = -EIDRM;
3105 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3106 		if (ctx == NULL)
3107 			goto out;
3108 
3109 		context_init(&ctx_new);
3110 		ctx_new.user = ctx->user;
3111 		ctx_new.role = ctx->role;
3112 		ctx_new.type = ctx->type;
3113 		mls_import_netlbl_lvl(&ctx_new, secattr);
3114 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3115 			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3116 						   secattr->attr.mls.cat);
3117 			if (rc)
3118 				goto out;
3119 			memcpy(&ctx_new.range.level[1].cat,
3120 			       &ctx_new.range.level[0].cat,
3121 			       sizeof(ctx_new.range.level[0].cat));
3122 		}
3123 		rc = -EIDRM;
3124 		if (!mls_context_isvalid(&policydb, &ctx_new))
3125 			goto out_free;
3126 
3127 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3128 		if (rc)
3129 			goto out_free;
3130 
3131 		security_netlbl_cache_add(secattr, *sid);
3132 
3133 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3134 	} else
3135 		*sid = SECSID_NULL;
3136 
3137 	read_unlock(&policy_rwlock);
3138 	return 0;
3139 out_free:
3140 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3141 out:
3142 	read_unlock(&policy_rwlock);
3143 	return rc;
3144 }
3145 
3146 /**
3147  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3148  * @sid: the SELinux SID
3149  * @secattr: the NetLabel packet security attributes
3150  *
3151  * Description:
3152  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3153  * Returns zero on success, negative values on failure.
3154  *
3155  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3156 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3157 {
3158 	int rc;
3159 	struct context *ctx;
3160 
3161 	if (!ss_initialized)
3162 		return 0;
3163 
3164 	read_lock(&policy_rwlock);
3165 
3166 	rc = -ENOENT;
3167 	ctx = sidtab_search(&sidtab, sid);
3168 	if (ctx == NULL)
3169 		goto out;
3170 
3171 	rc = -ENOMEM;
3172 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3173 				  GFP_ATOMIC);
3174 	if (secattr->domain == NULL)
3175 		goto out;
3176 
3177 	secattr->attr.secid = sid;
3178 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3179 	mls_export_netlbl_lvl(ctx, secattr);
3180 	rc = mls_export_netlbl_cat(ctx, secattr);
3181 out:
3182 	read_unlock(&policy_rwlock);
3183 	return rc;
3184 }
3185 #endif /* CONFIG_NETLABEL */
3186 
3187 /**
3188  * security_read_policy - read the policy.
3189  * @data: binary policy data
3190  * @len: length of data in bytes
3191  *
3192  */
security_read_policy(void ** data,ssize_t * len)3193 int security_read_policy(void **data, ssize_t *len)
3194 {
3195 	int rc;
3196 	struct policy_file fp;
3197 
3198 	if (!ss_initialized)
3199 		return -EINVAL;
3200 
3201 	*len = security_policydb_len();
3202 
3203 	*data = vmalloc_user(*len);
3204 	if (!*data)
3205 		return -ENOMEM;
3206 
3207 	fp.data = *data;
3208 	fp.len = *len;
3209 
3210 	read_lock(&policy_rwlock);
3211 	rc = policydb_write(&policydb, &fp);
3212 	read_unlock(&policy_rwlock);
3213 
3214 	if (rc)
3215 		return rc;
3216 
3217 	*len = (unsigned long)fp.data - (unsigned long)*data;
3218 	return 0;
3219 
3220 }
3221