1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *	This program is free software; you can redistribute it and/or modify
24  *	it under the terms of the GNU General Public License as published by
25  *	the Free Software Foundation, version 2.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36 
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41 
42 #define _DEBUG_HASHES
43 
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46 	"common prefixes",
47 	"classes",
48 	"roles",
49 	"types",
50 	"users",
51 	"bools",
52 	"levels",
53 	"categories",
54 };
55 #endif
56 
57 static unsigned int symtab_sizes[SYM_NUM] = {
58 	2,
59 	32,
60 	16,
61 	512,
62 	128,
63 	16,
64 	16,
65 	16,
66 };
67 
68 struct policydb_compat_info {
69 	int version;
70 	int sym_num;
71 	int ocon_num;
72 };
73 
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76 	{
77 		.version	= POLICYDB_VERSION_BASE,
78 		.sym_num	= SYM_NUM - 3,
79 		.ocon_num	= OCON_NUM - 1,
80 	},
81 	{
82 		.version	= POLICYDB_VERSION_BOOL,
83 		.sym_num	= SYM_NUM - 2,
84 		.ocon_num	= OCON_NUM - 1,
85 	},
86 	{
87 		.version	= POLICYDB_VERSION_IPV6,
88 		.sym_num	= SYM_NUM - 2,
89 		.ocon_num	= OCON_NUM,
90 	},
91 	{
92 		.version	= POLICYDB_VERSION_NLCLASS,
93 		.sym_num	= SYM_NUM - 2,
94 		.ocon_num	= OCON_NUM,
95 	},
96 	{
97 		.version	= POLICYDB_VERSION_MLS,
98 		.sym_num	= SYM_NUM,
99 		.ocon_num	= OCON_NUM,
100 	},
101 	{
102 		.version	= POLICYDB_VERSION_AVTAB,
103 		.sym_num	= SYM_NUM,
104 		.ocon_num	= OCON_NUM,
105 	},
106 	{
107 		.version	= POLICYDB_VERSION_RANGETRANS,
108 		.sym_num	= SYM_NUM,
109 		.ocon_num	= OCON_NUM,
110 	},
111 	{
112 		.version	= POLICYDB_VERSION_POLCAP,
113 		.sym_num	= SYM_NUM,
114 		.ocon_num	= OCON_NUM,
115 	},
116 	{
117 		.version	= POLICYDB_VERSION_PERMISSIVE,
118 		.sym_num	= SYM_NUM,
119 		.ocon_num	= OCON_NUM,
120 	},
121 	{
122 		.version	= POLICYDB_VERSION_BOUNDARY,
123 		.sym_num	= SYM_NUM,
124 		.ocon_num	= OCON_NUM,
125 	},
126 	{
127 		.version	= POLICYDB_VERSION_FILENAME_TRANS,
128 		.sym_num	= SYM_NUM,
129 		.ocon_num	= OCON_NUM,
130 	},
131 };
132 
policydb_lookup_compat(int version)133 static struct policydb_compat_info *policydb_lookup_compat(int version)
134 {
135 	int i;
136 	struct policydb_compat_info *info = NULL;
137 
138 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
139 		if (policydb_compat[i].version == version) {
140 			info = &policydb_compat[i];
141 			break;
142 		}
143 	}
144 	return info;
145 }
146 
147 /*
148  * Initialize the role table.
149  */
roles_init(struct policydb * p)150 static int roles_init(struct policydb *p)
151 {
152 	char *key = NULL;
153 	int rc;
154 	struct role_datum *role;
155 
156 	rc = -ENOMEM;
157 	role = kzalloc(sizeof(*role), GFP_KERNEL);
158 	if (!role)
159 		goto out;
160 
161 	rc = -EINVAL;
162 	role->value = ++p->p_roles.nprim;
163 	if (role->value != OBJECT_R_VAL)
164 		goto out;
165 
166 	rc = -ENOMEM;
167 	key = kstrdup(OBJECT_R, GFP_KERNEL);
168 	if (!key)
169 		goto out;
170 
171 	rc = hashtab_insert(p->p_roles.table, key, role);
172 	if (rc)
173 		goto out;
174 
175 	return 0;
176 out:
177 	kfree(key);
178 	kfree(role);
179 	return rc;
180 }
181 
rangetr_hash(struct hashtab * h,const void * k)182 static u32 rangetr_hash(struct hashtab *h, const void *k)
183 {
184 	const struct range_trans *key = k;
185 	return (key->source_type + (key->target_type << 3) +
186 		(key->target_class << 5)) & (h->size - 1);
187 }
188 
rangetr_cmp(struct hashtab * h,const void * k1,const void * k2)189 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
190 {
191 	const struct range_trans *key1 = k1, *key2 = k2;
192 	int v;
193 
194 	v = key1->source_type - key2->source_type;
195 	if (v)
196 		return v;
197 
198 	v = key1->target_type - key2->target_type;
199 	if (v)
200 		return v;
201 
202 	v = key1->target_class - key2->target_class;
203 
204 	return v;
205 }
206 
207 /*
208  * Initialize a policy database structure.
209  */
policydb_init(struct policydb * p)210 static int policydb_init(struct policydb *p)
211 {
212 	int i, rc;
213 
214 	memset(p, 0, sizeof(*p));
215 
216 	for (i = 0; i < SYM_NUM; i++) {
217 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
218 		if (rc)
219 			goto out;
220 	}
221 
222 	rc = avtab_init(&p->te_avtab);
223 	if (rc)
224 		goto out;
225 
226 	rc = roles_init(p);
227 	if (rc)
228 		goto out;
229 
230 	rc = cond_policydb_init(p);
231 	if (rc)
232 		goto out;
233 
234 	p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
235 	if (!p->range_tr)
236 		goto out;
237 
238 	ebitmap_init(&p->policycaps);
239 	ebitmap_init(&p->permissive_map);
240 
241 	return 0;
242 out:
243 	for (i = 0; i < SYM_NUM; i++)
244 		hashtab_destroy(p->symtab[i].table);
245 	return rc;
246 }
247 
248 /*
249  * The following *_index functions are used to
250  * define the val_to_name and val_to_struct arrays
251  * in a policy database structure.  The val_to_name
252  * arrays are used when converting security context
253  * structures into string representations.  The
254  * val_to_struct arrays are used when the attributes
255  * of a class, role, or user are needed.
256  */
257 
common_index(void * key,void * datum,void * datap)258 static int common_index(void *key, void *datum, void *datap)
259 {
260 	struct policydb *p;
261 	struct common_datum *comdatum;
262 	struct flex_array *fa;
263 
264 	comdatum = datum;
265 	p = datap;
266 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
267 		return -EINVAL;
268 
269 	fa = p->sym_val_to_name[SYM_COMMONS];
270 	if (flex_array_put_ptr(fa, comdatum->value - 1, key,
271 			       GFP_KERNEL | __GFP_ZERO))
272 		BUG();
273 	return 0;
274 }
275 
class_index(void * key,void * datum,void * datap)276 static int class_index(void *key, void *datum, void *datap)
277 {
278 	struct policydb *p;
279 	struct class_datum *cladatum;
280 	struct flex_array *fa;
281 
282 	cladatum = datum;
283 	p = datap;
284 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
285 		return -EINVAL;
286 	fa = p->sym_val_to_name[SYM_CLASSES];
287 	if (flex_array_put_ptr(fa, cladatum->value - 1, key,
288 			       GFP_KERNEL | __GFP_ZERO))
289 		BUG();
290 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
291 	return 0;
292 }
293 
role_index(void * key,void * datum,void * datap)294 static int role_index(void *key, void *datum, void *datap)
295 {
296 	struct policydb *p;
297 	struct role_datum *role;
298 	struct flex_array *fa;
299 
300 	role = datum;
301 	p = datap;
302 	if (!role->value
303 	    || role->value > p->p_roles.nprim
304 	    || role->bounds > p->p_roles.nprim)
305 		return -EINVAL;
306 
307 	fa = p->sym_val_to_name[SYM_ROLES];
308 	if (flex_array_put_ptr(fa, role->value - 1, key,
309 			       GFP_KERNEL | __GFP_ZERO))
310 		BUG();
311 	p->role_val_to_struct[role->value - 1] = role;
312 	return 0;
313 }
314 
type_index(void * key,void * datum,void * datap)315 static int type_index(void *key, void *datum, void *datap)
316 {
317 	struct policydb *p;
318 	struct type_datum *typdatum;
319 	struct flex_array *fa;
320 
321 	typdatum = datum;
322 	p = datap;
323 
324 	if (typdatum->primary) {
325 		if (!typdatum->value
326 		    || typdatum->value > p->p_types.nprim
327 		    || typdatum->bounds > p->p_types.nprim)
328 			return -EINVAL;
329 		fa = p->sym_val_to_name[SYM_TYPES];
330 		if (flex_array_put_ptr(fa, typdatum->value - 1, key,
331 				       GFP_KERNEL | __GFP_ZERO))
332 			BUG();
333 
334 		fa = p->type_val_to_struct_array;
335 		if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
336 				       GFP_KERNEL | __GFP_ZERO))
337 			BUG();
338 	}
339 
340 	return 0;
341 }
342 
user_index(void * key,void * datum,void * datap)343 static int user_index(void *key, void *datum, void *datap)
344 {
345 	struct policydb *p;
346 	struct user_datum *usrdatum;
347 	struct flex_array *fa;
348 
349 	usrdatum = datum;
350 	p = datap;
351 	if (!usrdatum->value
352 	    || usrdatum->value > p->p_users.nprim
353 	    || usrdatum->bounds > p->p_users.nprim)
354 		return -EINVAL;
355 
356 	fa = p->sym_val_to_name[SYM_USERS];
357 	if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
358 			       GFP_KERNEL | __GFP_ZERO))
359 		BUG();
360 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
361 	return 0;
362 }
363 
sens_index(void * key,void * datum,void * datap)364 static int sens_index(void *key, void *datum, void *datap)
365 {
366 	struct policydb *p;
367 	struct level_datum *levdatum;
368 	struct flex_array *fa;
369 
370 	levdatum = datum;
371 	p = datap;
372 
373 	if (!levdatum->isalias) {
374 		if (!levdatum->level->sens ||
375 		    levdatum->level->sens > p->p_levels.nprim)
376 			return -EINVAL;
377 		fa = p->sym_val_to_name[SYM_LEVELS];
378 		if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
379 				       GFP_KERNEL | __GFP_ZERO))
380 			BUG();
381 	}
382 
383 	return 0;
384 }
385 
cat_index(void * key,void * datum,void * datap)386 static int cat_index(void *key, void *datum, void *datap)
387 {
388 	struct policydb *p;
389 	struct cat_datum *catdatum;
390 	struct flex_array *fa;
391 
392 	catdatum = datum;
393 	p = datap;
394 
395 	if (!catdatum->isalias) {
396 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
397 			return -EINVAL;
398 		fa = p->sym_val_to_name[SYM_CATS];
399 		if (flex_array_put_ptr(fa, catdatum->value - 1, key,
400 				       GFP_KERNEL | __GFP_ZERO))
401 			BUG();
402 	}
403 
404 	return 0;
405 }
406 
407 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
408 {
409 	common_index,
410 	class_index,
411 	role_index,
412 	type_index,
413 	user_index,
414 	cond_index_bool,
415 	sens_index,
416 	cat_index,
417 };
418 
419 #ifdef DEBUG_HASHES
symtab_hash_eval(struct symtab * s)420 static void symtab_hash_eval(struct symtab *s)
421 {
422 	int i;
423 
424 	for (i = 0; i < SYM_NUM; i++) {
425 		struct hashtab *h = s[i].table;
426 		struct hashtab_info info;
427 
428 		hashtab_stat(h, &info);
429 		printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
430 		       "longest chain length %d\n", symtab_name[i], h->nel,
431 		       info.slots_used, h->size, info.max_chain_len);
432 	}
433 }
434 
rangetr_hash_eval(struct hashtab * h)435 static void rangetr_hash_eval(struct hashtab *h)
436 {
437 	struct hashtab_info info;
438 
439 	hashtab_stat(h, &info);
440 	printk(KERN_DEBUG "SELinux: rangetr:  %d entries and %d/%d buckets used, "
441 	       "longest chain length %d\n", h->nel,
442 	       info.slots_used, h->size, info.max_chain_len);
443 }
444 #else
rangetr_hash_eval(struct hashtab * h)445 static inline void rangetr_hash_eval(struct hashtab *h)
446 {
447 }
448 #endif
449 
450 /*
451  * Define the other val_to_name and val_to_struct arrays
452  * in a policy database structure.
453  *
454  * Caller must clean up on failure.
455  */
policydb_index(struct policydb * p)456 static int policydb_index(struct policydb *p)
457 {
458 	int i, rc;
459 
460 	printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
461 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
462 	if (p->mls_enabled)
463 		printk(", %d sens, %d cats", p->p_levels.nprim,
464 		       p->p_cats.nprim);
465 	printk("\n");
466 
467 	printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
468 	       p->p_classes.nprim, p->te_avtab.nel);
469 
470 #ifdef DEBUG_HASHES
471 	avtab_hash_eval(&p->te_avtab, "rules");
472 	symtab_hash_eval(p->symtab);
473 #endif
474 
475 	rc = -ENOMEM;
476 	p->class_val_to_struct =
477 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
478 			GFP_KERNEL);
479 	if (!p->class_val_to_struct)
480 		goto out;
481 
482 	rc = -ENOMEM;
483 	p->role_val_to_struct =
484 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
485 			GFP_KERNEL);
486 	if (!p->role_val_to_struct)
487 		goto out;
488 
489 	rc = -ENOMEM;
490 	p->user_val_to_struct =
491 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
492 			GFP_KERNEL);
493 	if (!p->user_val_to_struct)
494 		goto out;
495 
496 	/* Yes, I want the sizeof the pointer, not the structure */
497 	rc = -ENOMEM;
498 	p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
499 						       p->p_types.nprim,
500 						       GFP_KERNEL | __GFP_ZERO);
501 	if (!p->type_val_to_struct_array)
502 		goto out;
503 
504 	rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
505 				 p->p_types.nprim, GFP_KERNEL | __GFP_ZERO);
506 	if (rc)
507 		goto out;
508 
509 	rc = cond_init_bool_indexes(p);
510 	if (rc)
511 		goto out;
512 
513 	for (i = 0; i < SYM_NUM; i++) {
514 		rc = -ENOMEM;
515 		p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
516 							 p->symtab[i].nprim,
517 							 GFP_KERNEL | __GFP_ZERO);
518 		if (!p->sym_val_to_name[i])
519 			goto out;
520 
521 		rc = flex_array_prealloc(p->sym_val_to_name[i],
522 					 0, p->symtab[i].nprim,
523 					 GFP_KERNEL | __GFP_ZERO);
524 		if (rc)
525 			goto out;
526 
527 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
528 		if (rc)
529 			goto out;
530 	}
531 	rc = 0;
532 out:
533 	return rc;
534 }
535 
536 /*
537  * The following *_destroy functions are used to
538  * free any memory allocated for each kind of
539  * symbol data in the policy database.
540  */
541 
perm_destroy(void * key,void * datum,void * p)542 static int perm_destroy(void *key, void *datum, void *p)
543 {
544 	kfree(key);
545 	kfree(datum);
546 	return 0;
547 }
548 
common_destroy(void * key,void * datum,void * p)549 static int common_destroy(void *key, void *datum, void *p)
550 {
551 	struct common_datum *comdatum;
552 
553 	kfree(key);
554 	if (datum) {
555 		comdatum = datum;
556 		hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
557 		hashtab_destroy(comdatum->permissions.table);
558 	}
559 	kfree(datum);
560 	return 0;
561 }
562 
cls_destroy(void * key,void * datum,void * p)563 static int cls_destroy(void *key, void *datum, void *p)
564 {
565 	struct class_datum *cladatum;
566 	struct constraint_node *constraint, *ctemp;
567 	struct constraint_expr *e, *etmp;
568 
569 	kfree(key);
570 	if (datum) {
571 		cladatum = datum;
572 		hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
573 		hashtab_destroy(cladatum->permissions.table);
574 		constraint = cladatum->constraints;
575 		while (constraint) {
576 			e = constraint->expr;
577 			while (e) {
578 				ebitmap_destroy(&e->names);
579 				etmp = e;
580 				e = e->next;
581 				kfree(etmp);
582 			}
583 			ctemp = constraint;
584 			constraint = constraint->next;
585 			kfree(ctemp);
586 		}
587 
588 		constraint = cladatum->validatetrans;
589 		while (constraint) {
590 			e = constraint->expr;
591 			while (e) {
592 				ebitmap_destroy(&e->names);
593 				etmp = e;
594 				e = e->next;
595 				kfree(etmp);
596 			}
597 			ctemp = constraint;
598 			constraint = constraint->next;
599 			kfree(ctemp);
600 		}
601 
602 		kfree(cladatum->comkey);
603 	}
604 	kfree(datum);
605 	return 0;
606 }
607 
role_destroy(void * key,void * datum,void * p)608 static int role_destroy(void *key, void *datum, void *p)
609 {
610 	struct role_datum *role;
611 
612 	kfree(key);
613 	if (datum) {
614 		role = datum;
615 		ebitmap_destroy(&role->dominates);
616 		ebitmap_destroy(&role->types);
617 	}
618 	kfree(datum);
619 	return 0;
620 }
621 
type_destroy(void * key,void * datum,void * p)622 static int type_destroy(void *key, void *datum, void *p)
623 {
624 	kfree(key);
625 	kfree(datum);
626 	return 0;
627 }
628 
user_destroy(void * key,void * datum,void * p)629 static int user_destroy(void *key, void *datum, void *p)
630 {
631 	struct user_datum *usrdatum;
632 
633 	kfree(key);
634 	if (datum) {
635 		usrdatum = datum;
636 		ebitmap_destroy(&usrdatum->roles);
637 		ebitmap_destroy(&usrdatum->range.level[0].cat);
638 		ebitmap_destroy(&usrdatum->range.level[1].cat);
639 		ebitmap_destroy(&usrdatum->dfltlevel.cat);
640 	}
641 	kfree(datum);
642 	return 0;
643 }
644 
sens_destroy(void * key,void * datum,void * p)645 static int sens_destroy(void *key, void *datum, void *p)
646 {
647 	struct level_datum *levdatum;
648 
649 	kfree(key);
650 	if (datum) {
651 		levdatum = datum;
652 		ebitmap_destroy(&levdatum->level->cat);
653 		kfree(levdatum->level);
654 	}
655 	kfree(datum);
656 	return 0;
657 }
658 
cat_destroy(void * key,void * datum,void * p)659 static int cat_destroy(void *key, void *datum, void *p)
660 {
661 	kfree(key);
662 	kfree(datum);
663 	return 0;
664 }
665 
666 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
667 {
668 	common_destroy,
669 	cls_destroy,
670 	role_destroy,
671 	type_destroy,
672 	user_destroy,
673 	cond_destroy_bool,
674 	sens_destroy,
675 	cat_destroy,
676 };
677 
range_tr_destroy(void * key,void * datum,void * p)678 static int range_tr_destroy(void *key, void *datum, void *p)
679 {
680 	struct mls_range *rt = datum;
681 	kfree(key);
682 	ebitmap_destroy(&rt->level[0].cat);
683 	ebitmap_destroy(&rt->level[1].cat);
684 	kfree(datum);
685 	cond_resched();
686 	return 0;
687 }
688 
ocontext_destroy(struct ocontext * c,int i)689 static void ocontext_destroy(struct ocontext *c, int i)
690 {
691 	if (!c)
692 		return;
693 
694 	context_destroy(&c->context[0]);
695 	context_destroy(&c->context[1]);
696 	if (i == OCON_ISID || i == OCON_FS ||
697 	    i == OCON_NETIF || i == OCON_FSUSE)
698 		kfree(c->u.name);
699 	kfree(c);
700 }
701 
702 /*
703  * Free any memory allocated by a policy database structure.
704  */
policydb_destroy(struct policydb * p)705 void policydb_destroy(struct policydb *p)
706 {
707 	struct ocontext *c, *ctmp;
708 	struct genfs *g, *gtmp;
709 	int i;
710 	struct role_allow *ra, *lra = NULL;
711 	struct role_trans *tr, *ltr = NULL;
712 	struct filename_trans *ft, *nft;
713 
714 	for (i = 0; i < SYM_NUM; i++) {
715 		cond_resched();
716 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
717 		hashtab_destroy(p->symtab[i].table);
718 	}
719 
720 	for (i = 0; i < SYM_NUM; i++) {
721 		if (p->sym_val_to_name[i])
722 			flex_array_free(p->sym_val_to_name[i]);
723 	}
724 
725 	kfree(p->class_val_to_struct);
726 	kfree(p->role_val_to_struct);
727 	kfree(p->user_val_to_struct);
728 	if (p->type_val_to_struct_array)
729 		flex_array_free(p->type_val_to_struct_array);
730 
731 	avtab_destroy(&p->te_avtab);
732 
733 	for (i = 0; i < OCON_NUM; i++) {
734 		cond_resched();
735 		c = p->ocontexts[i];
736 		while (c) {
737 			ctmp = c;
738 			c = c->next;
739 			ocontext_destroy(ctmp, i);
740 		}
741 		p->ocontexts[i] = NULL;
742 	}
743 
744 	g = p->genfs;
745 	while (g) {
746 		cond_resched();
747 		kfree(g->fstype);
748 		c = g->head;
749 		while (c) {
750 			ctmp = c;
751 			c = c->next;
752 			ocontext_destroy(ctmp, OCON_FSUSE);
753 		}
754 		gtmp = g;
755 		g = g->next;
756 		kfree(gtmp);
757 	}
758 	p->genfs = NULL;
759 
760 	cond_policydb_destroy(p);
761 
762 	for (tr = p->role_tr; tr; tr = tr->next) {
763 		cond_resched();
764 		kfree(ltr);
765 		ltr = tr;
766 	}
767 	kfree(ltr);
768 
769 	for (ra = p->role_allow; ra; ra = ra->next) {
770 		cond_resched();
771 		kfree(lra);
772 		lra = ra;
773 	}
774 	kfree(lra);
775 
776 	hashtab_map(p->range_tr, range_tr_destroy, NULL);
777 	hashtab_destroy(p->range_tr);
778 
779 	if (p->type_attr_map_array) {
780 		for (i = 0; i < p->p_types.nprim; i++) {
781 			struct ebitmap *e;
782 
783 			e = flex_array_get(p->type_attr_map_array, i);
784 			if (!e)
785 				continue;
786 			ebitmap_destroy(e);
787 		}
788 		flex_array_free(p->type_attr_map_array);
789 	}
790 
791 	ft = p->filename_trans;
792 	while (ft) {
793 		nft = ft->next;
794 		kfree(ft->name);
795 		kfree(ft);
796 		ft = nft;
797 	}
798 
799 	ebitmap_destroy(&p->policycaps);
800 	ebitmap_destroy(&p->permissive_map);
801 
802 	return;
803 }
804 
805 /*
806  * Load the initial SIDs specified in a policy database
807  * structure into a SID table.
808  */
policydb_load_isids(struct policydb * p,struct sidtab * s)809 int policydb_load_isids(struct policydb *p, struct sidtab *s)
810 {
811 	struct ocontext *head, *c;
812 	int rc;
813 
814 	rc = sidtab_init(s);
815 	if (rc) {
816 		printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
817 		goto out;
818 	}
819 
820 	head = p->ocontexts[OCON_ISID];
821 	for (c = head; c; c = c->next) {
822 		rc = -EINVAL;
823 		if (!c->context[0].user) {
824 			printk(KERN_ERR "SELinux:  SID %s was never defined.\n",
825 				c->u.name);
826 			goto out;
827 		}
828 
829 		rc = sidtab_insert(s, c->sid[0], &c->context[0]);
830 		if (rc) {
831 			printk(KERN_ERR "SELinux:  unable to load initial SID %s.\n",
832 				c->u.name);
833 			goto out;
834 		}
835 	}
836 	rc = 0;
837 out:
838 	return rc;
839 }
840 
policydb_class_isvalid(struct policydb * p,unsigned int class)841 int policydb_class_isvalid(struct policydb *p, unsigned int class)
842 {
843 	if (!class || class > p->p_classes.nprim)
844 		return 0;
845 	return 1;
846 }
847 
policydb_role_isvalid(struct policydb * p,unsigned int role)848 int policydb_role_isvalid(struct policydb *p, unsigned int role)
849 {
850 	if (!role || role > p->p_roles.nprim)
851 		return 0;
852 	return 1;
853 }
854 
policydb_type_isvalid(struct policydb * p,unsigned int type)855 int policydb_type_isvalid(struct policydb *p, unsigned int type)
856 {
857 	if (!type || type > p->p_types.nprim)
858 		return 0;
859 	return 1;
860 }
861 
862 /*
863  * Return 1 if the fields in the security context
864  * structure `c' are valid.  Return 0 otherwise.
865  */
policydb_context_isvalid(struct policydb * p,struct context * c)866 int policydb_context_isvalid(struct policydb *p, struct context *c)
867 {
868 	struct role_datum *role;
869 	struct user_datum *usrdatum;
870 
871 	if (!c->role || c->role > p->p_roles.nprim)
872 		return 0;
873 
874 	if (!c->user || c->user > p->p_users.nprim)
875 		return 0;
876 
877 	if (!c->type || c->type > p->p_types.nprim)
878 		return 0;
879 
880 	if (c->role != OBJECT_R_VAL) {
881 		/*
882 		 * Role must be authorized for the type.
883 		 */
884 		role = p->role_val_to_struct[c->role - 1];
885 		if (!ebitmap_get_bit(&role->types, c->type - 1))
886 			/* role may not be associated with type */
887 			return 0;
888 
889 		/*
890 		 * User must be authorized for the role.
891 		 */
892 		usrdatum = p->user_val_to_struct[c->user - 1];
893 		if (!usrdatum)
894 			return 0;
895 
896 		if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
897 			/* user may not be associated with role */
898 			return 0;
899 	}
900 
901 	if (!mls_context_isvalid(p, c))
902 		return 0;
903 
904 	return 1;
905 }
906 
907 /*
908  * Read a MLS range structure from a policydb binary
909  * representation file.
910  */
mls_read_range_helper(struct mls_range * r,void * fp)911 static int mls_read_range_helper(struct mls_range *r, void *fp)
912 {
913 	__le32 buf[2];
914 	u32 items;
915 	int rc;
916 
917 	rc = next_entry(buf, fp, sizeof(u32));
918 	if (rc)
919 		goto out;
920 
921 	rc = -EINVAL;
922 	items = le32_to_cpu(buf[0]);
923 	if (items > ARRAY_SIZE(buf)) {
924 		printk(KERN_ERR "SELinux: mls:  range overflow\n");
925 		goto out;
926 	}
927 
928 	rc = next_entry(buf, fp, sizeof(u32) * items);
929 	if (rc) {
930 		printk(KERN_ERR "SELinux: mls:  truncated range\n");
931 		goto out;
932 	}
933 
934 	r->level[0].sens = le32_to_cpu(buf[0]);
935 	if (items > 1)
936 		r->level[1].sens = le32_to_cpu(buf[1]);
937 	else
938 		r->level[1].sens = r->level[0].sens;
939 
940 	rc = ebitmap_read(&r->level[0].cat, fp);
941 	if (rc) {
942 		printk(KERN_ERR "SELinux: mls:  error reading low categories\n");
943 		goto out;
944 	}
945 	if (items > 1) {
946 		rc = ebitmap_read(&r->level[1].cat, fp);
947 		if (rc) {
948 			printk(KERN_ERR "SELinux: mls:  error reading high categories\n");
949 			goto bad_high;
950 		}
951 	} else {
952 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
953 		if (rc) {
954 			printk(KERN_ERR "SELinux: mls:  out of memory\n");
955 			goto bad_high;
956 		}
957 	}
958 
959 	return 0;
960 bad_high:
961 	ebitmap_destroy(&r->level[0].cat);
962 out:
963 	return rc;
964 }
965 
966 /*
967  * Read and validate a security context structure
968  * from a policydb binary representation file.
969  */
context_read_and_validate(struct context * c,struct policydb * p,void * fp)970 static int context_read_and_validate(struct context *c,
971 				     struct policydb *p,
972 				     void *fp)
973 {
974 	__le32 buf[3];
975 	int rc;
976 
977 	rc = next_entry(buf, fp, sizeof buf);
978 	if (rc) {
979 		printk(KERN_ERR "SELinux: context truncated\n");
980 		goto out;
981 	}
982 	c->user = le32_to_cpu(buf[0]);
983 	c->role = le32_to_cpu(buf[1]);
984 	c->type = le32_to_cpu(buf[2]);
985 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
986 		rc = mls_read_range_helper(&c->range, fp);
987 		if (rc) {
988 			printk(KERN_ERR "SELinux: error reading MLS range of context\n");
989 			goto out;
990 		}
991 	}
992 
993 	rc = -EINVAL;
994 	if (!policydb_context_isvalid(p, c)) {
995 		printk(KERN_ERR "SELinux:  invalid security context\n");
996 		context_destroy(c);
997 		goto out;
998 	}
999 	rc = 0;
1000 out:
1001 	return rc;
1002 }
1003 
1004 /*
1005  * The following *_read functions are used to
1006  * read the symbol data from a policy database
1007  * binary representation file.
1008  */
1009 
perm_read(struct policydb * p,struct hashtab * h,void * fp)1010 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
1011 {
1012 	char *key = NULL;
1013 	struct perm_datum *perdatum;
1014 	int rc;
1015 	__le32 buf[2];
1016 	u32 len;
1017 
1018 	rc = -ENOMEM;
1019 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1020 	if (!perdatum)
1021 		goto bad;
1022 
1023 	rc = next_entry(buf, fp, sizeof buf);
1024 	if (rc)
1025 		goto bad;
1026 
1027 	len = le32_to_cpu(buf[0]);
1028 	perdatum->value = le32_to_cpu(buf[1]);
1029 
1030 	rc = -ENOMEM;
1031 	key = kmalloc(len + 1, GFP_KERNEL);
1032 	if (!key)
1033 		goto bad;
1034 
1035 	rc = next_entry(key, fp, len);
1036 	if (rc)
1037 		goto bad;
1038 	key[len] = '\0';
1039 
1040 	rc = hashtab_insert(h, key, perdatum);
1041 	if (rc)
1042 		goto bad;
1043 
1044 	return 0;
1045 bad:
1046 	perm_destroy(key, perdatum, NULL);
1047 	return rc;
1048 }
1049 
common_read(struct policydb * p,struct hashtab * h,void * fp)1050 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1051 {
1052 	char *key = NULL;
1053 	struct common_datum *comdatum;
1054 	__le32 buf[4];
1055 	u32 len, nel;
1056 	int i, rc;
1057 
1058 	rc = -ENOMEM;
1059 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1060 	if (!comdatum)
1061 		goto bad;
1062 
1063 	rc = next_entry(buf, fp, sizeof buf);
1064 	if (rc)
1065 		goto bad;
1066 
1067 	len = le32_to_cpu(buf[0]);
1068 	comdatum->value = le32_to_cpu(buf[1]);
1069 
1070 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1071 	if (rc)
1072 		goto bad;
1073 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1074 	nel = le32_to_cpu(buf[3]);
1075 
1076 	rc = -ENOMEM;
1077 	key = kmalloc(len + 1, GFP_KERNEL);
1078 	if (!key)
1079 		goto bad;
1080 
1081 	rc = next_entry(key, fp, len);
1082 	if (rc)
1083 		goto bad;
1084 	key[len] = '\0';
1085 
1086 	for (i = 0; i < nel; i++) {
1087 		rc = perm_read(p, comdatum->permissions.table, fp);
1088 		if (rc)
1089 			goto bad;
1090 	}
1091 
1092 	rc = hashtab_insert(h, key, comdatum);
1093 	if (rc)
1094 		goto bad;
1095 	return 0;
1096 bad:
1097 	common_destroy(key, comdatum, NULL);
1098 	return rc;
1099 }
1100 
read_cons_helper(struct constraint_node ** nodep,int ncons,int allowxtarget,void * fp)1101 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1102 			    int allowxtarget, void *fp)
1103 {
1104 	struct constraint_node *c, *lc;
1105 	struct constraint_expr *e, *le;
1106 	__le32 buf[3];
1107 	u32 nexpr;
1108 	int rc, i, j, depth;
1109 
1110 	lc = NULL;
1111 	for (i = 0; i < ncons; i++) {
1112 		c = kzalloc(sizeof(*c), GFP_KERNEL);
1113 		if (!c)
1114 			return -ENOMEM;
1115 
1116 		if (lc)
1117 			lc->next = c;
1118 		else
1119 			*nodep = c;
1120 
1121 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1122 		if (rc)
1123 			return rc;
1124 		c->permissions = le32_to_cpu(buf[0]);
1125 		nexpr = le32_to_cpu(buf[1]);
1126 		le = NULL;
1127 		depth = -1;
1128 		for (j = 0; j < nexpr; j++) {
1129 			e = kzalloc(sizeof(*e), GFP_KERNEL);
1130 			if (!e)
1131 				return -ENOMEM;
1132 
1133 			if (le)
1134 				le->next = e;
1135 			else
1136 				c->expr = e;
1137 
1138 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1139 			if (rc)
1140 				return rc;
1141 			e->expr_type = le32_to_cpu(buf[0]);
1142 			e->attr = le32_to_cpu(buf[1]);
1143 			e->op = le32_to_cpu(buf[2]);
1144 
1145 			switch (e->expr_type) {
1146 			case CEXPR_NOT:
1147 				if (depth < 0)
1148 					return -EINVAL;
1149 				break;
1150 			case CEXPR_AND:
1151 			case CEXPR_OR:
1152 				if (depth < 1)
1153 					return -EINVAL;
1154 				depth--;
1155 				break;
1156 			case CEXPR_ATTR:
1157 				if (depth == (CEXPR_MAXDEPTH - 1))
1158 					return -EINVAL;
1159 				depth++;
1160 				break;
1161 			case CEXPR_NAMES:
1162 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1163 					return -EINVAL;
1164 				if (depth == (CEXPR_MAXDEPTH - 1))
1165 					return -EINVAL;
1166 				depth++;
1167 				rc = ebitmap_read(&e->names, fp);
1168 				if (rc)
1169 					return rc;
1170 				break;
1171 			default:
1172 				return -EINVAL;
1173 			}
1174 			le = e;
1175 		}
1176 		if (depth != 0)
1177 			return -EINVAL;
1178 		lc = c;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
class_read(struct policydb * p,struct hashtab * h,void * fp)1184 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1185 {
1186 	char *key = NULL;
1187 	struct class_datum *cladatum;
1188 	__le32 buf[6];
1189 	u32 len, len2, ncons, nel;
1190 	int i, rc;
1191 
1192 	rc = -ENOMEM;
1193 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1194 	if (!cladatum)
1195 		goto bad;
1196 
1197 	rc = next_entry(buf, fp, sizeof(u32)*6);
1198 	if (rc)
1199 		goto bad;
1200 
1201 	len = le32_to_cpu(buf[0]);
1202 	len2 = le32_to_cpu(buf[1]);
1203 	cladatum->value = le32_to_cpu(buf[2]);
1204 
1205 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1206 	if (rc)
1207 		goto bad;
1208 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1209 	nel = le32_to_cpu(buf[4]);
1210 
1211 	ncons = le32_to_cpu(buf[5]);
1212 
1213 	rc = -ENOMEM;
1214 	key = kmalloc(len + 1, GFP_KERNEL);
1215 	if (!key)
1216 		goto bad;
1217 
1218 	rc = next_entry(key, fp, len);
1219 	if (rc)
1220 		goto bad;
1221 	key[len] = '\0';
1222 
1223 	if (len2) {
1224 		rc = -ENOMEM;
1225 		cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1226 		if (!cladatum->comkey)
1227 			goto bad;
1228 		rc = next_entry(cladatum->comkey, fp, len2);
1229 		if (rc)
1230 			goto bad;
1231 		cladatum->comkey[len2] = '\0';
1232 
1233 		rc = -EINVAL;
1234 		cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
1235 		if (!cladatum->comdatum) {
1236 			printk(KERN_ERR "SELinux:  unknown common %s\n", cladatum->comkey);
1237 			goto bad;
1238 		}
1239 	}
1240 	for (i = 0; i < nel; i++) {
1241 		rc = perm_read(p, cladatum->permissions.table, fp);
1242 		if (rc)
1243 			goto bad;
1244 	}
1245 
1246 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1247 	if (rc)
1248 		goto bad;
1249 
1250 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1251 		/* grab the validatetrans rules */
1252 		rc = next_entry(buf, fp, sizeof(u32));
1253 		if (rc)
1254 			goto bad;
1255 		ncons = le32_to_cpu(buf[0]);
1256 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1257 		if (rc)
1258 			goto bad;
1259 	}
1260 
1261 	rc = hashtab_insert(h, key, cladatum);
1262 	if (rc)
1263 		goto bad;
1264 
1265 	return 0;
1266 bad:
1267 	cls_destroy(key, cladatum, NULL);
1268 	return rc;
1269 }
1270 
role_read(struct policydb * p,struct hashtab * h,void * fp)1271 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1272 {
1273 	char *key = NULL;
1274 	struct role_datum *role;
1275 	int rc, to_read = 2;
1276 	__le32 buf[3];
1277 	u32 len;
1278 
1279 	rc = -ENOMEM;
1280 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1281 	if (!role)
1282 		goto bad;
1283 
1284 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1285 		to_read = 3;
1286 
1287 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1288 	if (rc)
1289 		goto bad;
1290 
1291 	len = le32_to_cpu(buf[0]);
1292 	role->value = le32_to_cpu(buf[1]);
1293 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1294 		role->bounds = le32_to_cpu(buf[2]);
1295 
1296 	rc = -ENOMEM;
1297 	key = kmalloc(len + 1, GFP_KERNEL);
1298 	if (!key)
1299 		goto bad;
1300 
1301 	rc = next_entry(key, fp, len);
1302 	if (rc)
1303 		goto bad;
1304 	key[len] = '\0';
1305 
1306 	rc = ebitmap_read(&role->dominates, fp);
1307 	if (rc)
1308 		goto bad;
1309 
1310 	rc = ebitmap_read(&role->types, fp);
1311 	if (rc)
1312 		goto bad;
1313 
1314 	if (strcmp(key, OBJECT_R) == 0) {
1315 		rc = -EINVAL;
1316 		if (role->value != OBJECT_R_VAL) {
1317 			printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1318 			       OBJECT_R, role->value);
1319 			goto bad;
1320 		}
1321 		rc = 0;
1322 		goto bad;
1323 	}
1324 
1325 	rc = hashtab_insert(h, key, role);
1326 	if (rc)
1327 		goto bad;
1328 	return 0;
1329 bad:
1330 	role_destroy(key, role, NULL);
1331 	return rc;
1332 }
1333 
type_read(struct policydb * p,struct hashtab * h,void * fp)1334 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1335 {
1336 	char *key = NULL;
1337 	struct type_datum *typdatum;
1338 	int rc, to_read = 3;
1339 	__le32 buf[4];
1340 	u32 len;
1341 
1342 	rc = -ENOMEM;
1343 	typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1344 	if (!typdatum)
1345 		goto bad;
1346 
1347 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1348 		to_read = 4;
1349 
1350 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1351 	if (rc)
1352 		goto bad;
1353 
1354 	len = le32_to_cpu(buf[0]);
1355 	typdatum->value = le32_to_cpu(buf[1]);
1356 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1357 		u32 prop = le32_to_cpu(buf[2]);
1358 
1359 		if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1360 			typdatum->primary = 1;
1361 		if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1362 			typdatum->attribute = 1;
1363 
1364 		typdatum->bounds = le32_to_cpu(buf[3]);
1365 	} else {
1366 		typdatum->primary = le32_to_cpu(buf[2]);
1367 	}
1368 
1369 	rc = -ENOMEM;
1370 	key = kmalloc(len + 1, GFP_KERNEL);
1371 	if (!key)
1372 		goto bad;
1373 	rc = next_entry(key, fp, len);
1374 	if (rc)
1375 		goto bad;
1376 	key[len] = '\0';
1377 
1378 	rc = hashtab_insert(h, key, typdatum);
1379 	if (rc)
1380 		goto bad;
1381 	return 0;
1382 bad:
1383 	type_destroy(key, typdatum, NULL);
1384 	return rc;
1385 }
1386 
1387 
1388 /*
1389  * Read a MLS level structure from a policydb binary
1390  * representation file.
1391  */
mls_read_level(struct mls_level * lp,void * fp)1392 static int mls_read_level(struct mls_level *lp, void *fp)
1393 {
1394 	__le32 buf[1];
1395 	int rc;
1396 
1397 	memset(lp, 0, sizeof(*lp));
1398 
1399 	rc = next_entry(buf, fp, sizeof buf);
1400 	if (rc) {
1401 		printk(KERN_ERR "SELinux: mls: truncated level\n");
1402 		return rc;
1403 	}
1404 	lp->sens = le32_to_cpu(buf[0]);
1405 
1406 	rc = ebitmap_read(&lp->cat, fp);
1407 	if (rc) {
1408 		printk(KERN_ERR "SELinux: mls:  error reading level categories\n");
1409 		return rc;
1410 	}
1411 	return 0;
1412 }
1413 
user_read(struct policydb * p,struct hashtab * h,void * fp)1414 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1415 {
1416 	char *key = NULL;
1417 	struct user_datum *usrdatum;
1418 	int rc, to_read = 2;
1419 	__le32 buf[3];
1420 	u32 len;
1421 
1422 	rc = -ENOMEM;
1423 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1424 	if (!usrdatum)
1425 		goto bad;
1426 
1427 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1428 		to_read = 3;
1429 
1430 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1431 	if (rc)
1432 		goto bad;
1433 
1434 	len = le32_to_cpu(buf[0]);
1435 	usrdatum->value = le32_to_cpu(buf[1]);
1436 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1437 		usrdatum->bounds = le32_to_cpu(buf[2]);
1438 
1439 	rc = -ENOMEM;
1440 	key = kmalloc(len + 1, GFP_KERNEL);
1441 	if (!key)
1442 		goto bad;
1443 	rc = next_entry(key, fp, len);
1444 	if (rc)
1445 		goto bad;
1446 	key[len] = '\0';
1447 
1448 	rc = ebitmap_read(&usrdatum->roles, fp);
1449 	if (rc)
1450 		goto bad;
1451 
1452 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1453 		rc = mls_read_range_helper(&usrdatum->range, fp);
1454 		if (rc)
1455 			goto bad;
1456 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1457 		if (rc)
1458 			goto bad;
1459 	}
1460 
1461 	rc = hashtab_insert(h, key, usrdatum);
1462 	if (rc)
1463 		goto bad;
1464 	return 0;
1465 bad:
1466 	user_destroy(key, usrdatum, NULL);
1467 	return rc;
1468 }
1469 
sens_read(struct policydb * p,struct hashtab * h,void * fp)1470 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1471 {
1472 	char *key = NULL;
1473 	struct level_datum *levdatum;
1474 	int rc;
1475 	__le32 buf[2];
1476 	u32 len;
1477 
1478 	rc = -ENOMEM;
1479 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1480 	if (!levdatum)
1481 		goto bad;
1482 
1483 	rc = next_entry(buf, fp, sizeof buf);
1484 	if (rc)
1485 		goto bad;
1486 
1487 	len = le32_to_cpu(buf[0]);
1488 	levdatum->isalias = le32_to_cpu(buf[1]);
1489 
1490 	rc = -ENOMEM;
1491 	key = kmalloc(len + 1, GFP_ATOMIC);
1492 	if (!key)
1493 		goto bad;
1494 	rc = next_entry(key, fp, len);
1495 	if (rc)
1496 		goto bad;
1497 	key[len] = '\0';
1498 
1499 	rc = -ENOMEM;
1500 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1501 	if (!levdatum->level)
1502 		goto bad;
1503 
1504 	rc = mls_read_level(levdatum->level, fp);
1505 	if (rc)
1506 		goto bad;
1507 
1508 	rc = hashtab_insert(h, key, levdatum);
1509 	if (rc)
1510 		goto bad;
1511 	return 0;
1512 bad:
1513 	sens_destroy(key, levdatum, NULL);
1514 	return rc;
1515 }
1516 
cat_read(struct policydb * p,struct hashtab * h,void * fp)1517 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1518 {
1519 	char *key = NULL;
1520 	struct cat_datum *catdatum;
1521 	int rc;
1522 	__le32 buf[3];
1523 	u32 len;
1524 
1525 	rc = -ENOMEM;
1526 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1527 	if (!catdatum)
1528 		goto bad;
1529 
1530 	rc = next_entry(buf, fp, sizeof buf);
1531 	if (rc)
1532 		goto bad;
1533 
1534 	len = le32_to_cpu(buf[0]);
1535 	catdatum->value = le32_to_cpu(buf[1]);
1536 	catdatum->isalias = le32_to_cpu(buf[2]);
1537 
1538 	rc = -ENOMEM;
1539 	key = kmalloc(len + 1, GFP_ATOMIC);
1540 	if (!key)
1541 		goto bad;
1542 	rc = next_entry(key, fp, len);
1543 	if (rc)
1544 		goto bad;
1545 	key[len] = '\0';
1546 
1547 	rc = hashtab_insert(h, key, catdatum);
1548 	if (rc)
1549 		goto bad;
1550 	return 0;
1551 bad:
1552 	cat_destroy(key, catdatum, NULL);
1553 	return rc;
1554 }
1555 
1556 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1557 {
1558 	common_read,
1559 	class_read,
1560 	role_read,
1561 	type_read,
1562 	user_read,
1563 	cond_read_bool,
1564 	sens_read,
1565 	cat_read,
1566 };
1567 
user_bounds_sanity_check(void * key,void * datum,void * datap)1568 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1569 {
1570 	struct user_datum *upper, *user;
1571 	struct policydb *p = datap;
1572 	int depth = 0;
1573 
1574 	upper = user = datum;
1575 	while (upper->bounds) {
1576 		struct ebitmap_node *node;
1577 		unsigned long bit;
1578 
1579 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1580 			printk(KERN_ERR "SELinux: user %s: "
1581 			       "too deep or looped boundary",
1582 			       (char *) key);
1583 			return -EINVAL;
1584 		}
1585 
1586 		upper = p->user_val_to_struct[upper->bounds - 1];
1587 		ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1588 			if (ebitmap_get_bit(&upper->roles, bit))
1589 				continue;
1590 
1591 			printk(KERN_ERR
1592 			       "SELinux: boundary violated policy: "
1593 			       "user=%s role=%s bounds=%s\n",
1594 			       sym_name(p, SYM_USERS, user->value - 1),
1595 			       sym_name(p, SYM_ROLES, bit),
1596 			       sym_name(p, SYM_USERS, upper->value - 1));
1597 
1598 			return -EINVAL;
1599 		}
1600 	}
1601 
1602 	return 0;
1603 }
1604 
role_bounds_sanity_check(void * key,void * datum,void * datap)1605 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1606 {
1607 	struct role_datum *upper, *role;
1608 	struct policydb *p = datap;
1609 	int depth = 0;
1610 
1611 	upper = role = datum;
1612 	while (upper->bounds) {
1613 		struct ebitmap_node *node;
1614 		unsigned long bit;
1615 
1616 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1617 			printk(KERN_ERR "SELinux: role %s: "
1618 			       "too deep or looped bounds\n",
1619 			       (char *) key);
1620 			return -EINVAL;
1621 		}
1622 
1623 		upper = p->role_val_to_struct[upper->bounds - 1];
1624 		ebitmap_for_each_positive_bit(&role->types, node, bit) {
1625 			if (ebitmap_get_bit(&upper->types, bit))
1626 				continue;
1627 
1628 			printk(KERN_ERR
1629 			       "SELinux: boundary violated policy: "
1630 			       "role=%s type=%s bounds=%s\n",
1631 			       sym_name(p, SYM_ROLES, role->value - 1),
1632 			       sym_name(p, SYM_TYPES, bit),
1633 			       sym_name(p, SYM_ROLES, upper->value - 1));
1634 
1635 			return -EINVAL;
1636 		}
1637 	}
1638 
1639 	return 0;
1640 }
1641 
type_bounds_sanity_check(void * key,void * datum,void * datap)1642 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1643 {
1644 	struct type_datum *upper;
1645 	struct policydb *p = datap;
1646 	int depth = 0;
1647 
1648 	upper = datum;
1649 	while (upper->bounds) {
1650 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1651 			printk(KERN_ERR "SELinux: type %s: "
1652 			       "too deep or looped boundary\n",
1653 			       (char *) key);
1654 			return -EINVAL;
1655 		}
1656 
1657 		upper = flex_array_get_ptr(p->type_val_to_struct_array,
1658 					   upper->bounds - 1);
1659 		BUG_ON(!upper);
1660 
1661 		if (upper->attribute) {
1662 			printk(KERN_ERR "SELinux: type %s: "
1663 			       "bounded by attribute %s",
1664 			       (char *) key,
1665 			       sym_name(p, SYM_TYPES, upper->value - 1));
1666 			return -EINVAL;
1667 		}
1668 	}
1669 
1670 	return 0;
1671 }
1672 
policydb_bounds_sanity_check(struct policydb * p)1673 static int policydb_bounds_sanity_check(struct policydb *p)
1674 {
1675 	int rc;
1676 
1677 	if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1678 		return 0;
1679 
1680 	rc = hashtab_map(p->p_users.table,
1681 			 user_bounds_sanity_check, p);
1682 	if (rc)
1683 		return rc;
1684 
1685 	rc = hashtab_map(p->p_roles.table,
1686 			 role_bounds_sanity_check, p);
1687 	if (rc)
1688 		return rc;
1689 
1690 	rc = hashtab_map(p->p_types.table,
1691 			 type_bounds_sanity_check, p);
1692 	if (rc)
1693 		return rc;
1694 
1695 	return 0;
1696 }
1697 
1698 extern int ss_initialized;
1699 
string_to_security_class(struct policydb * p,const char * name)1700 u16 string_to_security_class(struct policydb *p, const char *name)
1701 {
1702 	struct class_datum *cladatum;
1703 
1704 	cladatum = hashtab_search(p->p_classes.table, name);
1705 	if (!cladatum)
1706 		return 0;
1707 
1708 	return cladatum->value;
1709 }
1710 
string_to_av_perm(struct policydb * p,u16 tclass,const char * name)1711 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1712 {
1713 	struct class_datum *cladatum;
1714 	struct perm_datum *perdatum = NULL;
1715 	struct common_datum *comdatum;
1716 
1717 	if (!tclass || tclass > p->p_classes.nprim)
1718 		return 0;
1719 
1720 	cladatum = p->class_val_to_struct[tclass-1];
1721 	comdatum = cladatum->comdatum;
1722 	if (comdatum)
1723 		perdatum = hashtab_search(comdatum->permissions.table,
1724 					  name);
1725 	if (!perdatum)
1726 		perdatum = hashtab_search(cladatum->permissions.table,
1727 					  name);
1728 	if (!perdatum)
1729 		return 0;
1730 
1731 	return 1U << (perdatum->value-1);
1732 }
1733 
range_read(struct policydb * p,void * fp)1734 static int range_read(struct policydb *p, void *fp)
1735 {
1736 	struct range_trans *rt = NULL;
1737 	struct mls_range *r = NULL;
1738 	int i, rc;
1739 	__le32 buf[2];
1740 	u32 nel;
1741 
1742 	if (p->policyvers < POLICYDB_VERSION_MLS)
1743 		return 0;
1744 
1745 	rc = next_entry(buf, fp, sizeof(u32));
1746 	if (rc)
1747 		goto out;
1748 
1749 	nel = le32_to_cpu(buf[0]);
1750 	for (i = 0; i < nel; i++) {
1751 		rc = -ENOMEM;
1752 		rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1753 		if (!rt)
1754 			goto out;
1755 
1756 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1757 		if (rc)
1758 			goto out;
1759 
1760 		rt->source_type = le32_to_cpu(buf[0]);
1761 		rt->target_type = le32_to_cpu(buf[1]);
1762 		if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1763 			rc = next_entry(buf, fp, sizeof(u32));
1764 			if (rc)
1765 				goto out;
1766 			rt->target_class = le32_to_cpu(buf[0]);
1767 		} else
1768 			rt->target_class = p->process_class;
1769 
1770 		rc = -EINVAL;
1771 		if (!policydb_type_isvalid(p, rt->source_type) ||
1772 		    !policydb_type_isvalid(p, rt->target_type) ||
1773 		    !policydb_class_isvalid(p, rt->target_class))
1774 			goto out;
1775 
1776 		rc = -ENOMEM;
1777 		r = kzalloc(sizeof(*r), GFP_KERNEL);
1778 		if (!r)
1779 			goto out;
1780 
1781 		rc = mls_read_range_helper(r, fp);
1782 		if (rc)
1783 			goto out;
1784 
1785 		rc = -EINVAL;
1786 		if (!mls_range_isvalid(p, r)) {
1787 			printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1788 			goto out;
1789 		}
1790 
1791 		rc = hashtab_insert(p->range_tr, rt, r);
1792 		if (rc)
1793 			goto out;
1794 
1795 		rt = NULL;
1796 		r = NULL;
1797 	}
1798 	rangetr_hash_eval(p->range_tr);
1799 	rc = 0;
1800 out:
1801 	kfree(rt);
1802 	kfree(r);
1803 	return rc;
1804 }
1805 
filename_trans_read(struct policydb * p,void * fp)1806 static int filename_trans_read(struct policydb *p, void *fp)
1807 {
1808 	struct filename_trans *ft, *last;
1809 	u32 nel, len;
1810 	char *name;
1811 	__le32 buf[4];
1812 	int rc, i;
1813 
1814 	if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
1815 		return 0;
1816 
1817 	rc = next_entry(buf, fp, sizeof(u32));
1818 	if (rc)
1819 		goto out;
1820 	nel = le32_to_cpu(buf[0]);
1821 
1822 	last = p->filename_trans;
1823 	while (last && last->next)
1824 		last = last->next;
1825 
1826 	for (i = 0; i < nel; i++) {
1827 		rc = -ENOMEM;
1828 		ft = kzalloc(sizeof(*ft), GFP_KERNEL);
1829 		if (!ft)
1830 			goto out;
1831 
1832 		/* add it to the tail of the list */
1833 		if (!last)
1834 			p->filename_trans = ft;
1835 		else
1836 			last->next = ft;
1837 		last = ft;
1838 
1839 		/* length of the path component string */
1840 		rc = next_entry(buf, fp, sizeof(u32));
1841 		if (rc)
1842 			goto out;
1843 		len = le32_to_cpu(buf[0]);
1844 
1845 		rc = -ENOMEM;
1846 		name = kmalloc(len + 1, GFP_KERNEL);
1847 		if (!name)
1848 			goto out;
1849 
1850 		ft->name = name;
1851 
1852 		/* path component string */
1853 		rc = next_entry(name, fp, len);
1854 		if (rc)
1855 			goto out;
1856 		name[len] = 0;
1857 
1858 		rc = next_entry(buf, fp, sizeof(u32) * 4);
1859 		if (rc)
1860 			goto out;
1861 
1862 		ft->stype = le32_to_cpu(buf[0]);
1863 		ft->ttype = le32_to_cpu(buf[1]);
1864 		ft->tclass = le32_to_cpu(buf[2]);
1865 		ft->otype = le32_to_cpu(buf[3]);
1866 	}
1867 	rc = 0;
1868 out:
1869 	return rc;
1870 }
1871 
genfs_read(struct policydb * p,void * fp)1872 static int genfs_read(struct policydb *p, void *fp)
1873 {
1874 	int i, j, rc;
1875 	u32 nel, nel2, len, len2;
1876 	__le32 buf[1];
1877 	struct ocontext *l, *c;
1878 	struct ocontext *newc = NULL;
1879 	struct genfs *genfs_p, *genfs;
1880 	struct genfs *newgenfs = NULL;
1881 
1882 	rc = next_entry(buf, fp, sizeof(u32));
1883 	if (rc)
1884 		goto out;
1885 	nel = le32_to_cpu(buf[0]);
1886 
1887 	for (i = 0; i < nel; i++) {
1888 		rc = next_entry(buf, fp, sizeof(u32));
1889 		if (rc)
1890 			goto out;
1891 		len = le32_to_cpu(buf[0]);
1892 
1893 		rc = -ENOMEM;
1894 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1895 		if (!newgenfs)
1896 			goto out;
1897 
1898 		rc = -ENOMEM;
1899 		newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1900 		if (!newgenfs->fstype)
1901 			goto out;
1902 
1903 		rc = next_entry(newgenfs->fstype, fp, len);
1904 		if (rc)
1905 			goto out;
1906 
1907 		newgenfs->fstype[len] = 0;
1908 
1909 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1910 		     genfs_p = genfs, genfs = genfs->next) {
1911 			rc = -EINVAL;
1912 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1913 				printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1914 				       newgenfs->fstype);
1915 				goto out;
1916 			}
1917 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1918 				break;
1919 		}
1920 		newgenfs->next = genfs;
1921 		if (genfs_p)
1922 			genfs_p->next = newgenfs;
1923 		else
1924 			p->genfs = newgenfs;
1925 		genfs = newgenfs;
1926 		newgenfs = NULL;
1927 
1928 		rc = next_entry(buf, fp, sizeof(u32));
1929 		if (rc)
1930 			goto out;
1931 
1932 		nel2 = le32_to_cpu(buf[0]);
1933 		for (j = 0; j < nel2; j++) {
1934 			rc = next_entry(buf, fp, sizeof(u32));
1935 			if (rc)
1936 				goto out;
1937 			len = le32_to_cpu(buf[0]);
1938 
1939 			rc = -ENOMEM;
1940 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1941 			if (!newc)
1942 				goto out;
1943 
1944 			rc = -ENOMEM;
1945 			newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1946 			if (!newc->u.name)
1947 				goto out;
1948 
1949 			rc = next_entry(newc->u.name, fp, len);
1950 			if (rc)
1951 				goto out;
1952 			newc->u.name[len] = 0;
1953 
1954 			rc = next_entry(buf, fp, sizeof(u32));
1955 			if (rc)
1956 				goto out;
1957 
1958 			newc->v.sclass = le32_to_cpu(buf[0]);
1959 			rc = context_read_and_validate(&newc->context[0], p, fp);
1960 			if (rc)
1961 				goto out;
1962 
1963 			for (l = NULL, c = genfs->head; c;
1964 			     l = c, c = c->next) {
1965 				rc = -EINVAL;
1966 				if (!strcmp(newc->u.name, c->u.name) &&
1967 				    (!c->v.sclass || !newc->v.sclass ||
1968 				     newc->v.sclass == c->v.sclass)) {
1969 					printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
1970 					       genfs->fstype, c->u.name);
1971 					goto out;
1972 				}
1973 				len = strlen(newc->u.name);
1974 				len2 = strlen(c->u.name);
1975 				if (len > len2)
1976 					break;
1977 			}
1978 
1979 			newc->next = c;
1980 			if (l)
1981 				l->next = newc;
1982 			else
1983 				genfs->head = newc;
1984 			newc = NULL;
1985 		}
1986 	}
1987 	rc = 0;
1988 out:
1989 	if (newgenfs)
1990 		kfree(newgenfs->fstype);
1991 	kfree(newgenfs);
1992 	ocontext_destroy(newc, OCON_FSUSE);
1993 
1994 	return rc;
1995 }
1996 
ocontext_read(struct policydb * p,struct policydb_compat_info * info,void * fp)1997 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
1998 			 void *fp)
1999 {
2000 	int i, j, rc;
2001 	u32 nel, len;
2002 	__le32 buf[3];
2003 	struct ocontext *l, *c;
2004 	u32 nodebuf[8];
2005 
2006 	for (i = 0; i < info->ocon_num; i++) {
2007 		rc = next_entry(buf, fp, sizeof(u32));
2008 		if (rc)
2009 			goto out;
2010 		nel = le32_to_cpu(buf[0]);
2011 
2012 		l = NULL;
2013 		for (j = 0; j < nel; j++) {
2014 			rc = -ENOMEM;
2015 			c = kzalloc(sizeof(*c), GFP_KERNEL);
2016 			if (!c)
2017 				goto out;
2018 			if (l)
2019 				l->next = c;
2020 			else
2021 				p->ocontexts[i] = c;
2022 			l = c;
2023 
2024 			switch (i) {
2025 			case OCON_ISID:
2026 				rc = next_entry(buf, fp, sizeof(u32));
2027 				if (rc)
2028 					goto out;
2029 
2030 				c->sid[0] = le32_to_cpu(buf[0]);
2031 				rc = context_read_and_validate(&c->context[0], p, fp);
2032 				if (rc)
2033 					goto out;
2034 				break;
2035 			case OCON_FS:
2036 			case OCON_NETIF:
2037 				rc = next_entry(buf, fp, sizeof(u32));
2038 				if (rc)
2039 					goto out;
2040 				len = le32_to_cpu(buf[0]);
2041 
2042 				rc = -ENOMEM;
2043 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2044 				if (!c->u.name)
2045 					goto out;
2046 
2047 				rc = next_entry(c->u.name, fp, len);
2048 				if (rc)
2049 					goto out;
2050 
2051 				c->u.name[len] = 0;
2052 				rc = context_read_and_validate(&c->context[0], p, fp);
2053 				if (rc)
2054 					goto out;
2055 				rc = context_read_and_validate(&c->context[1], p, fp);
2056 				if (rc)
2057 					goto out;
2058 				break;
2059 			case OCON_PORT:
2060 				rc = next_entry(buf, fp, sizeof(u32)*3);
2061 				if (rc)
2062 					goto out;
2063 				c->u.port.protocol = le32_to_cpu(buf[0]);
2064 				c->u.port.low_port = le32_to_cpu(buf[1]);
2065 				c->u.port.high_port = le32_to_cpu(buf[2]);
2066 				rc = context_read_and_validate(&c->context[0], p, fp);
2067 				if (rc)
2068 					goto out;
2069 				break;
2070 			case OCON_NODE:
2071 				rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
2072 				if (rc)
2073 					goto out;
2074 				c->u.node.addr = nodebuf[0]; /* network order */
2075 				c->u.node.mask = nodebuf[1]; /* network order */
2076 				rc = context_read_and_validate(&c->context[0], p, fp);
2077 				if (rc)
2078 					goto out;
2079 				break;
2080 			case OCON_FSUSE:
2081 				rc = next_entry(buf, fp, sizeof(u32)*2);
2082 				if (rc)
2083 					goto out;
2084 
2085 				rc = -EINVAL;
2086 				c->v.behavior = le32_to_cpu(buf[0]);
2087 				if (c->v.behavior > SECURITY_FS_USE_NONE)
2088 					goto out;
2089 
2090 				rc = -ENOMEM;
2091 				len = le32_to_cpu(buf[1]);
2092 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2093 				if (!c->u.name)
2094 					goto out;
2095 
2096 				rc = next_entry(c->u.name, fp, len);
2097 				if (rc)
2098 					goto out;
2099 				c->u.name[len] = 0;
2100 				rc = context_read_and_validate(&c->context[0], p, fp);
2101 				if (rc)
2102 					goto out;
2103 				break;
2104 			case OCON_NODE6: {
2105 				int k;
2106 
2107 				rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2108 				if (rc)
2109 					goto out;
2110 				for (k = 0; k < 4; k++)
2111 					c->u.node6.addr[k] = nodebuf[k];
2112 				for (k = 0; k < 4; k++)
2113 					c->u.node6.mask[k] = nodebuf[k+4];
2114 				rc = context_read_and_validate(&c->context[0], p, fp);
2115 				if (rc)
2116 					goto out;
2117 				break;
2118 			}
2119 			}
2120 		}
2121 	}
2122 	rc = 0;
2123 out:
2124 	return rc;
2125 }
2126 
2127 /*
2128  * Read the configuration data from a policy database binary
2129  * representation file into a policy database structure.
2130  */
policydb_read(struct policydb * p,void * fp)2131 int policydb_read(struct policydb *p, void *fp)
2132 {
2133 	struct role_allow *ra, *lra;
2134 	struct role_trans *tr, *ltr;
2135 	int i, j, rc;
2136 	__le32 buf[4];
2137 	u32 len, nprim, nel;
2138 
2139 	char *policydb_str;
2140 	struct policydb_compat_info *info;
2141 
2142 	rc = policydb_init(p);
2143 	if (rc)
2144 		return rc;
2145 
2146 	/* Read the magic number and string length. */
2147 	rc = next_entry(buf, fp, sizeof(u32) * 2);
2148 	if (rc)
2149 		goto bad;
2150 
2151 	rc = -EINVAL;
2152 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2153 		printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2154 		       "not match expected magic number 0x%x\n",
2155 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2156 		goto bad;
2157 	}
2158 
2159 	rc = -EINVAL;
2160 	len = le32_to_cpu(buf[1]);
2161 	if (len != strlen(POLICYDB_STRING)) {
2162 		printk(KERN_ERR "SELinux:  policydb string length %d does not "
2163 		       "match expected length %Zu\n",
2164 		       len, strlen(POLICYDB_STRING));
2165 		goto bad;
2166 	}
2167 
2168 	rc = -ENOMEM;
2169 	policydb_str = kmalloc(len + 1, GFP_KERNEL);
2170 	if (!policydb_str) {
2171 		printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2172 		       "string of length %d\n", len);
2173 		goto bad;
2174 	}
2175 
2176 	rc = next_entry(policydb_str, fp, len);
2177 	if (rc) {
2178 		printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2179 		kfree(policydb_str);
2180 		goto bad;
2181 	}
2182 
2183 	rc = -EINVAL;
2184 	policydb_str[len] = '\0';
2185 	if (strcmp(policydb_str, POLICYDB_STRING)) {
2186 		printk(KERN_ERR "SELinux:  policydb string %s does not match "
2187 		       "my string %s\n", policydb_str, POLICYDB_STRING);
2188 		kfree(policydb_str);
2189 		goto bad;
2190 	}
2191 	/* Done with policydb_str. */
2192 	kfree(policydb_str);
2193 	policydb_str = NULL;
2194 
2195 	/* Read the version and table sizes. */
2196 	rc = next_entry(buf, fp, sizeof(u32)*4);
2197 	if (rc)
2198 		goto bad;
2199 
2200 	rc = -EINVAL;
2201 	p->policyvers = le32_to_cpu(buf[0]);
2202 	if (p->policyvers < POLICYDB_VERSION_MIN ||
2203 	    p->policyvers > POLICYDB_VERSION_MAX) {
2204 		printk(KERN_ERR "SELinux:  policydb version %d does not match "
2205 		       "my version range %d-%d\n",
2206 		       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2207 		goto bad;
2208 	}
2209 
2210 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2211 		p->mls_enabled = 1;
2212 
2213 		rc = -EINVAL;
2214 		if (p->policyvers < POLICYDB_VERSION_MLS) {
2215 			printk(KERN_ERR "SELinux: security policydb version %d "
2216 				"(MLS) not backwards compatible\n",
2217 				p->policyvers);
2218 			goto bad;
2219 		}
2220 	}
2221 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2222 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2223 
2224 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
2225 		rc = ebitmap_read(&p->policycaps, fp);
2226 		if (rc)
2227 			goto bad;
2228 	}
2229 
2230 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
2231 		rc = ebitmap_read(&p->permissive_map, fp);
2232 		if (rc)
2233 			goto bad;
2234 	}
2235 
2236 	rc = -EINVAL;
2237 	info = policydb_lookup_compat(p->policyvers);
2238 	if (!info) {
2239 		printk(KERN_ERR "SELinux:  unable to find policy compat info "
2240 		       "for version %d\n", p->policyvers);
2241 		goto bad;
2242 	}
2243 
2244 	rc = -EINVAL;
2245 	if (le32_to_cpu(buf[2]) != info->sym_num ||
2246 		le32_to_cpu(buf[3]) != info->ocon_num) {
2247 		printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2248 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2249 			le32_to_cpu(buf[3]),
2250 		       info->sym_num, info->ocon_num);
2251 		goto bad;
2252 	}
2253 
2254 	for (i = 0; i < info->sym_num; i++) {
2255 		rc = next_entry(buf, fp, sizeof(u32)*2);
2256 		if (rc)
2257 			goto bad;
2258 		nprim = le32_to_cpu(buf[0]);
2259 		nel = le32_to_cpu(buf[1]);
2260 		for (j = 0; j < nel; j++) {
2261 			rc = read_f[i](p, p->symtab[i].table, fp);
2262 			if (rc)
2263 				goto bad;
2264 		}
2265 
2266 		p->symtab[i].nprim = nprim;
2267 	}
2268 
2269 	rc = avtab_read(&p->te_avtab, fp, p);
2270 	if (rc)
2271 		goto bad;
2272 
2273 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2274 		rc = cond_read_list(p, fp);
2275 		if (rc)
2276 			goto bad;
2277 	}
2278 
2279 	rc = next_entry(buf, fp, sizeof(u32));
2280 	if (rc)
2281 		goto bad;
2282 	nel = le32_to_cpu(buf[0]);
2283 	ltr = NULL;
2284 	for (i = 0; i < nel; i++) {
2285 		rc = -ENOMEM;
2286 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2287 		if (!tr)
2288 			goto bad;
2289 		if (ltr)
2290 			ltr->next = tr;
2291 		else
2292 			p->role_tr = tr;
2293 		rc = next_entry(buf, fp, sizeof(u32)*3);
2294 		if (rc)
2295 			goto bad;
2296 
2297 		rc = -EINVAL;
2298 		tr->role = le32_to_cpu(buf[0]);
2299 		tr->type = le32_to_cpu(buf[1]);
2300 		tr->new_role = le32_to_cpu(buf[2]);
2301 		if (!policydb_role_isvalid(p, tr->role) ||
2302 		    !policydb_type_isvalid(p, tr->type) ||
2303 		    !policydb_role_isvalid(p, tr->new_role))
2304 			goto bad;
2305 		ltr = tr;
2306 	}
2307 
2308 	rc = next_entry(buf, fp, sizeof(u32));
2309 	if (rc)
2310 		goto bad;
2311 	nel = le32_to_cpu(buf[0]);
2312 	lra = NULL;
2313 	for (i = 0; i < nel; i++) {
2314 		rc = -ENOMEM;
2315 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2316 		if (!ra)
2317 			goto bad;
2318 		if (lra)
2319 			lra->next = ra;
2320 		else
2321 			p->role_allow = ra;
2322 		rc = next_entry(buf, fp, sizeof(u32)*2);
2323 		if (rc)
2324 			goto bad;
2325 
2326 		rc = -EINVAL;
2327 		ra->role = le32_to_cpu(buf[0]);
2328 		ra->new_role = le32_to_cpu(buf[1]);
2329 		if (!policydb_role_isvalid(p, ra->role) ||
2330 		    !policydb_role_isvalid(p, ra->new_role))
2331 			goto bad;
2332 		lra = ra;
2333 	}
2334 
2335 	rc = filename_trans_read(p, fp);
2336 	if (rc)
2337 		goto bad;
2338 
2339 	rc = policydb_index(p);
2340 	if (rc)
2341 		goto bad;
2342 
2343 	rc = -EINVAL;
2344 	p->process_class = string_to_security_class(p, "process");
2345 	if (!p->process_class)
2346 		goto bad;
2347 
2348 	rc = -EINVAL;
2349 	p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
2350 	p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
2351 	if (!p->process_trans_perms)
2352 		goto bad;
2353 
2354 	rc = ocontext_read(p, info, fp);
2355 	if (rc)
2356 		goto bad;
2357 
2358 	rc = genfs_read(p, fp);
2359 	if (rc)
2360 		goto bad;
2361 
2362 	rc = range_read(p, fp);
2363 	if (rc)
2364 		goto bad;
2365 
2366 	rc = -ENOMEM;
2367 	p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2368 						  p->p_types.nprim,
2369 						  GFP_KERNEL | __GFP_ZERO);
2370 	if (!p->type_attr_map_array)
2371 		goto bad;
2372 
2373 	/* preallocate so we don't have to worry about the put ever failing */
2374 	rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim,
2375 				 GFP_KERNEL | __GFP_ZERO);
2376 	if (rc)
2377 		goto bad;
2378 
2379 	for (i = 0; i < p->p_types.nprim; i++) {
2380 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2381 
2382 		BUG_ON(!e);
2383 		ebitmap_init(e);
2384 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2385 			rc = ebitmap_read(e, fp);
2386 			if (rc)
2387 				goto bad;
2388 		}
2389 		/* add the type itself as the degenerate case */
2390 		rc = ebitmap_set_bit(e, i, 1);
2391 		if (rc)
2392 			goto bad;
2393 	}
2394 
2395 	rc = policydb_bounds_sanity_check(p);
2396 	if (rc)
2397 		goto bad;
2398 
2399 	rc = 0;
2400 out:
2401 	return rc;
2402 bad:
2403 	policydb_destroy(p);
2404 	goto out;
2405 }
2406 
2407 /*
2408  * Write a MLS level structure to a policydb binary
2409  * representation file.
2410  */
mls_write_level(struct mls_level * l,void * fp)2411 static int mls_write_level(struct mls_level *l, void *fp)
2412 {
2413 	__le32 buf[1];
2414 	int rc;
2415 
2416 	buf[0] = cpu_to_le32(l->sens);
2417 	rc = put_entry(buf, sizeof(u32), 1, fp);
2418 	if (rc)
2419 		return rc;
2420 
2421 	rc = ebitmap_write(&l->cat, fp);
2422 	if (rc)
2423 		return rc;
2424 
2425 	return 0;
2426 }
2427 
2428 /*
2429  * Write a MLS range structure to a policydb binary
2430  * representation file.
2431  */
mls_write_range_helper(struct mls_range * r,void * fp)2432 static int mls_write_range_helper(struct mls_range *r, void *fp)
2433 {
2434 	__le32 buf[3];
2435 	size_t items;
2436 	int rc, eq;
2437 
2438 	eq = mls_level_eq(&r->level[1], &r->level[0]);
2439 
2440 	if (eq)
2441 		items = 2;
2442 	else
2443 		items = 3;
2444 	buf[0] = cpu_to_le32(items-1);
2445 	buf[1] = cpu_to_le32(r->level[0].sens);
2446 	if (!eq)
2447 		buf[2] = cpu_to_le32(r->level[1].sens);
2448 
2449 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2450 
2451 	rc = put_entry(buf, sizeof(u32), items, fp);
2452 	if (rc)
2453 		return rc;
2454 
2455 	rc = ebitmap_write(&r->level[0].cat, fp);
2456 	if (rc)
2457 		return rc;
2458 	if (!eq) {
2459 		rc = ebitmap_write(&r->level[1].cat, fp);
2460 		if (rc)
2461 			return rc;
2462 	}
2463 
2464 	return 0;
2465 }
2466 
sens_write(void * vkey,void * datum,void * ptr)2467 static int sens_write(void *vkey, void *datum, void *ptr)
2468 {
2469 	char *key = vkey;
2470 	struct level_datum *levdatum = datum;
2471 	struct policy_data *pd = ptr;
2472 	void *fp = pd->fp;
2473 	__le32 buf[2];
2474 	size_t len;
2475 	int rc;
2476 
2477 	len = strlen(key);
2478 	buf[0] = cpu_to_le32(len);
2479 	buf[1] = cpu_to_le32(levdatum->isalias);
2480 	rc = put_entry(buf, sizeof(u32), 2, fp);
2481 	if (rc)
2482 		return rc;
2483 
2484 	rc = put_entry(key, 1, len, fp);
2485 	if (rc)
2486 		return rc;
2487 
2488 	rc = mls_write_level(levdatum->level, fp);
2489 	if (rc)
2490 		return rc;
2491 
2492 	return 0;
2493 }
2494 
cat_write(void * vkey,void * datum,void * ptr)2495 static int cat_write(void *vkey, void *datum, void *ptr)
2496 {
2497 	char *key = vkey;
2498 	struct cat_datum *catdatum = datum;
2499 	struct policy_data *pd = ptr;
2500 	void *fp = pd->fp;
2501 	__le32 buf[3];
2502 	size_t len;
2503 	int rc;
2504 
2505 	len = strlen(key);
2506 	buf[0] = cpu_to_le32(len);
2507 	buf[1] = cpu_to_le32(catdatum->value);
2508 	buf[2] = cpu_to_le32(catdatum->isalias);
2509 	rc = put_entry(buf, sizeof(u32), 3, fp);
2510 	if (rc)
2511 		return rc;
2512 
2513 	rc = put_entry(key, 1, len, fp);
2514 	if (rc)
2515 		return rc;
2516 
2517 	return 0;
2518 }
2519 
role_trans_write(struct role_trans * r,void * fp)2520 static int role_trans_write(struct role_trans *r, void *fp)
2521 {
2522 	struct role_trans *tr;
2523 	u32 buf[3];
2524 	size_t nel;
2525 	int rc;
2526 
2527 	nel = 0;
2528 	for (tr = r; tr; tr = tr->next)
2529 		nel++;
2530 	buf[0] = cpu_to_le32(nel);
2531 	rc = put_entry(buf, sizeof(u32), 1, fp);
2532 	if (rc)
2533 		return rc;
2534 	for (tr = r; tr; tr = tr->next) {
2535 		buf[0] = cpu_to_le32(tr->role);
2536 		buf[1] = cpu_to_le32(tr->type);
2537 		buf[2] = cpu_to_le32(tr->new_role);
2538 		rc = put_entry(buf, sizeof(u32), 3, fp);
2539 		if (rc)
2540 			return rc;
2541 	}
2542 
2543 	return 0;
2544 }
2545 
role_allow_write(struct role_allow * r,void * fp)2546 static int role_allow_write(struct role_allow *r, void *fp)
2547 {
2548 	struct role_allow *ra;
2549 	u32 buf[2];
2550 	size_t nel;
2551 	int rc;
2552 
2553 	nel = 0;
2554 	for (ra = r; ra; ra = ra->next)
2555 		nel++;
2556 	buf[0] = cpu_to_le32(nel);
2557 	rc = put_entry(buf, sizeof(u32), 1, fp);
2558 	if (rc)
2559 		return rc;
2560 	for (ra = r; ra; ra = ra->next) {
2561 		buf[0] = cpu_to_le32(ra->role);
2562 		buf[1] = cpu_to_le32(ra->new_role);
2563 		rc = put_entry(buf, sizeof(u32), 2, fp);
2564 		if (rc)
2565 			return rc;
2566 	}
2567 	return 0;
2568 }
2569 
2570 /*
2571  * Write a security context structure
2572  * to a policydb binary representation file.
2573  */
context_write(struct policydb * p,struct context * c,void * fp)2574 static int context_write(struct policydb *p, struct context *c,
2575 			 void *fp)
2576 {
2577 	int rc;
2578 	__le32 buf[3];
2579 
2580 	buf[0] = cpu_to_le32(c->user);
2581 	buf[1] = cpu_to_le32(c->role);
2582 	buf[2] = cpu_to_le32(c->type);
2583 
2584 	rc = put_entry(buf, sizeof(u32), 3, fp);
2585 	if (rc)
2586 		return rc;
2587 
2588 	rc = mls_write_range_helper(&c->range, fp);
2589 	if (rc)
2590 		return rc;
2591 
2592 	return 0;
2593 }
2594 
2595 /*
2596  * The following *_write functions are used to
2597  * write the symbol data to a policy database
2598  * binary representation file.
2599  */
2600 
perm_write(void * vkey,void * datum,void * fp)2601 static int perm_write(void *vkey, void *datum, void *fp)
2602 {
2603 	char *key = vkey;
2604 	struct perm_datum *perdatum = datum;
2605 	__le32 buf[2];
2606 	size_t len;
2607 	int rc;
2608 
2609 	len = strlen(key);
2610 	buf[0] = cpu_to_le32(len);
2611 	buf[1] = cpu_to_le32(perdatum->value);
2612 	rc = put_entry(buf, sizeof(u32), 2, fp);
2613 	if (rc)
2614 		return rc;
2615 
2616 	rc = put_entry(key, 1, len, fp);
2617 	if (rc)
2618 		return rc;
2619 
2620 	return 0;
2621 }
2622 
common_write(void * vkey,void * datum,void * ptr)2623 static int common_write(void *vkey, void *datum, void *ptr)
2624 {
2625 	char *key = vkey;
2626 	struct common_datum *comdatum = datum;
2627 	struct policy_data *pd = ptr;
2628 	void *fp = pd->fp;
2629 	__le32 buf[4];
2630 	size_t len;
2631 	int rc;
2632 
2633 	len = strlen(key);
2634 	buf[0] = cpu_to_le32(len);
2635 	buf[1] = cpu_to_le32(comdatum->value);
2636 	buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2637 	buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2638 	rc = put_entry(buf, sizeof(u32), 4, fp);
2639 	if (rc)
2640 		return rc;
2641 
2642 	rc = put_entry(key, 1, len, fp);
2643 	if (rc)
2644 		return rc;
2645 
2646 	rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2647 	if (rc)
2648 		return rc;
2649 
2650 	return 0;
2651 }
2652 
write_cons_helper(struct policydb * p,struct constraint_node * node,void * fp)2653 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2654 			     void *fp)
2655 {
2656 	struct constraint_node *c;
2657 	struct constraint_expr *e;
2658 	__le32 buf[3];
2659 	u32 nel;
2660 	int rc;
2661 
2662 	for (c = node; c; c = c->next) {
2663 		nel = 0;
2664 		for (e = c->expr; e; e = e->next)
2665 			nel++;
2666 		buf[0] = cpu_to_le32(c->permissions);
2667 		buf[1] = cpu_to_le32(nel);
2668 		rc = put_entry(buf, sizeof(u32), 2, fp);
2669 		if (rc)
2670 			return rc;
2671 		for (e = c->expr; e; e = e->next) {
2672 			buf[0] = cpu_to_le32(e->expr_type);
2673 			buf[1] = cpu_to_le32(e->attr);
2674 			buf[2] = cpu_to_le32(e->op);
2675 			rc = put_entry(buf, sizeof(u32), 3, fp);
2676 			if (rc)
2677 				return rc;
2678 
2679 			switch (e->expr_type) {
2680 			case CEXPR_NAMES:
2681 				rc = ebitmap_write(&e->names, fp);
2682 				if (rc)
2683 					return rc;
2684 				break;
2685 			default:
2686 				break;
2687 			}
2688 		}
2689 	}
2690 
2691 	return 0;
2692 }
2693 
class_write(void * vkey,void * datum,void * ptr)2694 static int class_write(void *vkey, void *datum, void *ptr)
2695 {
2696 	char *key = vkey;
2697 	struct class_datum *cladatum = datum;
2698 	struct policy_data *pd = ptr;
2699 	void *fp = pd->fp;
2700 	struct policydb *p = pd->p;
2701 	struct constraint_node *c;
2702 	__le32 buf[6];
2703 	u32 ncons;
2704 	size_t len, len2;
2705 	int rc;
2706 
2707 	len = strlen(key);
2708 	if (cladatum->comkey)
2709 		len2 = strlen(cladatum->comkey);
2710 	else
2711 		len2 = 0;
2712 
2713 	ncons = 0;
2714 	for (c = cladatum->constraints; c; c = c->next)
2715 		ncons++;
2716 
2717 	buf[0] = cpu_to_le32(len);
2718 	buf[1] = cpu_to_le32(len2);
2719 	buf[2] = cpu_to_le32(cladatum->value);
2720 	buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2721 	if (cladatum->permissions.table)
2722 		buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2723 	else
2724 		buf[4] = 0;
2725 	buf[5] = cpu_to_le32(ncons);
2726 	rc = put_entry(buf, sizeof(u32), 6, fp);
2727 	if (rc)
2728 		return rc;
2729 
2730 	rc = put_entry(key, 1, len, fp);
2731 	if (rc)
2732 		return rc;
2733 
2734 	if (cladatum->comkey) {
2735 		rc = put_entry(cladatum->comkey, 1, len2, fp);
2736 		if (rc)
2737 			return rc;
2738 	}
2739 
2740 	rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2741 	if (rc)
2742 		return rc;
2743 
2744 	rc = write_cons_helper(p, cladatum->constraints, fp);
2745 	if (rc)
2746 		return rc;
2747 
2748 	/* write out the validatetrans rule */
2749 	ncons = 0;
2750 	for (c = cladatum->validatetrans; c; c = c->next)
2751 		ncons++;
2752 
2753 	buf[0] = cpu_to_le32(ncons);
2754 	rc = put_entry(buf, sizeof(u32), 1, fp);
2755 	if (rc)
2756 		return rc;
2757 
2758 	rc = write_cons_helper(p, cladatum->validatetrans, fp);
2759 	if (rc)
2760 		return rc;
2761 
2762 	return 0;
2763 }
2764 
role_write(void * vkey,void * datum,void * ptr)2765 static int role_write(void *vkey, void *datum, void *ptr)
2766 {
2767 	char *key = vkey;
2768 	struct role_datum *role = datum;
2769 	struct policy_data *pd = ptr;
2770 	void *fp = pd->fp;
2771 	struct policydb *p = pd->p;
2772 	__le32 buf[3];
2773 	size_t items, len;
2774 	int rc;
2775 
2776 	len = strlen(key);
2777 	items = 0;
2778 	buf[items++] = cpu_to_le32(len);
2779 	buf[items++] = cpu_to_le32(role->value);
2780 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2781 		buf[items++] = cpu_to_le32(role->bounds);
2782 
2783 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2784 
2785 	rc = put_entry(buf, sizeof(u32), items, fp);
2786 	if (rc)
2787 		return rc;
2788 
2789 	rc = put_entry(key, 1, len, fp);
2790 	if (rc)
2791 		return rc;
2792 
2793 	rc = ebitmap_write(&role->dominates, fp);
2794 	if (rc)
2795 		return rc;
2796 
2797 	rc = ebitmap_write(&role->types, fp);
2798 	if (rc)
2799 		return rc;
2800 
2801 	return 0;
2802 }
2803 
type_write(void * vkey,void * datum,void * ptr)2804 static int type_write(void *vkey, void *datum, void *ptr)
2805 {
2806 	char *key = vkey;
2807 	struct type_datum *typdatum = datum;
2808 	struct policy_data *pd = ptr;
2809 	struct policydb *p = pd->p;
2810 	void *fp = pd->fp;
2811 	__le32 buf[4];
2812 	int rc;
2813 	size_t items, len;
2814 
2815 	len = strlen(key);
2816 	items = 0;
2817 	buf[items++] = cpu_to_le32(len);
2818 	buf[items++] = cpu_to_le32(typdatum->value);
2819 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
2820 		u32 properties = 0;
2821 
2822 		if (typdatum->primary)
2823 			properties |= TYPEDATUM_PROPERTY_PRIMARY;
2824 
2825 		if (typdatum->attribute)
2826 			properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
2827 
2828 		buf[items++] = cpu_to_le32(properties);
2829 		buf[items++] = cpu_to_le32(typdatum->bounds);
2830 	} else {
2831 		buf[items++] = cpu_to_le32(typdatum->primary);
2832 	}
2833 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2834 	rc = put_entry(buf, sizeof(u32), items, fp);
2835 	if (rc)
2836 		return rc;
2837 
2838 	rc = put_entry(key, 1, len, fp);
2839 	if (rc)
2840 		return rc;
2841 
2842 	return 0;
2843 }
2844 
user_write(void * vkey,void * datum,void * ptr)2845 static int user_write(void *vkey, void *datum, void *ptr)
2846 {
2847 	char *key = vkey;
2848 	struct user_datum *usrdatum = datum;
2849 	struct policy_data *pd = ptr;
2850 	struct policydb *p = pd->p;
2851 	void *fp = pd->fp;
2852 	__le32 buf[3];
2853 	size_t items, len;
2854 	int rc;
2855 
2856 	len = strlen(key);
2857 	items = 0;
2858 	buf[items++] = cpu_to_le32(len);
2859 	buf[items++] = cpu_to_le32(usrdatum->value);
2860 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2861 		buf[items++] = cpu_to_le32(usrdatum->bounds);
2862 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2863 	rc = put_entry(buf, sizeof(u32), items, fp);
2864 	if (rc)
2865 		return rc;
2866 
2867 	rc = put_entry(key, 1, len, fp);
2868 	if (rc)
2869 		return rc;
2870 
2871 	rc = ebitmap_write(&usrdatum->roles, fp);
2872 	if (rc)
2873 		return rc;
2874 
2875 	rc = mls_write_range_helper(&usrdatum->range, fp);
2876 	if (rc)
2877 		return rc;
2878 
2879 	rc = mls_write_level(&usrdatum->dfltlevel, fp);
2880 	if (rc)
2881 		return rc;
2882 
2883 	return 0;
2884 }
2885 
2886 static int (*write_f[SYM_NUM]) (void *key, void *datum,
2887 				void *datap) =
2888 {
2889 	common_write,
2890 	class_write,
2891 	role_write,
2892 	type_write,
2893 	user_write,
2894 	cond_write_bool,
2895 	sens_write,
2896 	cat_write,
2897 };
2898 
ocontext_write(struct policydb * p,struct policydb_compat_info * info,void * fp)2899 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
2900 			  void *fp)
2901 {
2902 	unsigned int i, j, rc;
2903 	size_t nel, len;
2904 	__le32 buf[3];
2905 	u32 nodebuf[8];
2906 	struct ocontext *c;
2907 	for (i = 0; i < info->ocon_num; i++) {
2908 		nel = 0;
2909 		for (c = p->ocontexts[i]; c; c = c->next)
2910 			nel++;
2911 		buf[0] = cpu_to_le32(nel);
2912 		rc = put_entry(buf, sizeof(u32), 1, fp);
2913 		if (rc)
2914 			return rc;
2915 		for (c = p->ocontexts[i]; c; c = c->next) {
2916 			switch (i) {
2917 			case OCON_ISID:
2918 				buf[0] = cpu_to_le32(c->sid[0]);
2919 				rc = put_entry(buf, sizeof(u32), 1, fp);
2920 				if (rc)
2921 					return rc;
2922 				rc = context_write(p, &c->context[0], fp);
2923 				if (rc)
2924 					return rc;
2925 				break;
2926 			case OCON_FS:
2927 			case OCON_NETIF:
2928 				len = strlen(c->u.name);
2929 				buf[0] = cpu_to_le32(len);
2930 				rc = put_entry(buf, sizeof(u32), 1, fp);
2931 				if (rc)
2932 					return rc;
2933 				rc = put_entry(c->u.name, 1, len, fp);
2934 				if (rc)
2935 					return rc;
2936 				rc = context_write(p, &c->context[0], fp);
2937 				if (rc)
2938 					return rc;
2939 				rc = context_write(p, &c->context[1], fp);
2940 				if (rc)
2941 					return rc;
2942 				break;
2943 			case OCON_PORT:
2944 				buf[0] = cpu_to_le32(c->u.port.protocol);
2945 				buf[1] = cpu_to_le32(c->u.port.low_port);
2946 				buf[2] = cpu_to_le32(c->u.port.high_port);
2947 				rc = put_entry(buf, sizeof(u32), 3, fp);
2948 				if (rc)
2949 					return rc;
2950 				rc = context_write(p, &c->context[0], fp);
2951 				if (rc)
2952 					return rc;
2953 				break;
2954 			case OCON_NODE:
2955 				nodebuf[0] = c->u.node.addr; /* network order */
2956 				nodebuf[1] = c->u.node.mask; /* network order */
2957 				rc = put_entry(nodebuf, sizeof(u32), 2, fp);
2958 				if (rc)
2959 					return rc;
2960 				rc = context_write(p, &c->context[0], fp);
2961 				if (rc)
2962 					return rc;
2963 				break;
2964 			case OCON_FSUSE:
2965 				buf[0] = cpu_to_le32(c->v.behavior);
2966 				len = strlen(c->u.name);
2967 				buf[1] = cpu_to_le32(len);
2968 				rc = put_entry(buf, sizeof(u32), 2, fp);
2969 				if (rc)
2970 					return rc;
2971 				rc = put_entry(c->u.name, 1, len, fp);
2972 				if (rc)
2973 					return rc;
2974 				rc = context_write(p, &c->context[0], fp);
2975 				if (rc)
2976 					return rc;
2977 				break;
2978 			case OCON_NODE6:
2979 				for (j = 0; j < 4; j++)
2980 					nodebuf[j] = c->u.node6.addr[j]; /* network order */
2981 				for (j = 0; j < 4; j++)
2982 					nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
2983 				rc = put_entry(nodebuf, sizeof(u32), 8, fp);
2984 				if (rc)
2985 					return rc;
2986 				rc = context_write(p, &c->context[0], fp);
2987 				if (rc)
2988 					return rc;
2989 				break;
2990 			}
2991 		}
2992 	}
2993 	return 0;
2994 }
2995 
genfs_write(struct policydb * p,void * fp)2996 static int genfs_write(struct policydb *p, void *fp)
2997 {
2998 	struct genfs *genfs;
2999 	struct ocontext *c;
3000 	size_t len;
3001 	__le32 buf[1];
3002 	int rc;
3003 
3004 	len = 0;
3005 	for (genfs = p->genfs; genfs; genfs = genfs->next)
3006 		len++;
3007 	buf[0] = cpu_to_le32(len);
3008 	rc = put_entry(buf, sizeof(u32), 1, fp);
3009 	if (rc)
3010 		return rc;
3011 	for (genfs = p->genfs; genfs; genfs = genfs->next) {
3012 		len = strlen(genfs->fstype);
3013 		buf[0] = cpu_to_le32(len);
3014 		rc = put_entry(buf, sizeof(u32), 1, fp);
3015 		if (rc)
3016 			return rc;
3017 		rc = put_entry(genfs->fstype, 1, len, fp);
3018 		if (rc)
3019 			return rc;
3020 		len = 0;
3021 		for (c = genfs->head; c; c = c->next)
3022 			len++;
3023 		buf[0] = cpu_to_le32(len);
3024 		rc = put_entry(buf, sizeof(u32), 1, fp);
3025 		if (rc)
3026 			return rc;
3027 		for (c = genfs->head; c; c = c->next) {
3028 			len = strlen(c->u.name);
3029 			buf[0] = cpu_to_le32(len);
3030 			rc = put_entry(buf, sizeof(u32), 1, fp);
3031 			if (rc)
3032 				return rc;
3033 			rc = put_entry(c->u.name, 1, len, fp);
3034 			if (rc)
3035 				return rc;
3036 			buf[0] = cpu_to_le32(c->v.sclass);
3037 			rc = put_entry(buf, sizeof(u32), 1, fp);
3038 			if (rc)
3039 				return rc;
3040 			rc = context_write(p, &c->context[0], fp);
3041 			if (rc)
3042 				return rc;
3043 		}
3044 	}
3045 	return 0;
3046 }
3047 
range_count(void * key,void * data,void * ptr)3048 static int range_count(void *key, void *data, void *ptr)
3049 {
3050 	int *cnt = ptr;
3051 	*cnt = *cnt + 1;
3052 
3053 	return 0;
3054 }
3055 
range_write_helper(void * key,void * data,void * ptr)3056 static int range_write_helper(void *key, void *data, void *ptr)
3057 {
3058 	__le32 buf[2];
3059 	struct range_trans *rt = key;
3060 	struct mls_range *r = data;
3061 	struct policy_data *pd = ptr;
3062 	void *fp = pd->fp;
3063 	struct policydb *p = pd->p;
3064 	int rc;
3065 
3066 	buf[0] = cpu_to_le32(rt->source_type);
3067 	buf[1] = cpu_to_le32(rt->target_type);
3068 	rc = put_entry(buf, sizeof(u32), 2, fp);
3069 	if (rc)
3070 		return rc;
3071 	if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
3072 		buf[0] = cpu_to_le32(rt->target_class);
3073 		rc = put_entry(buf, sizeof(u32), 1, fp);
3074 		if (rc)
3075 			return rc;
3076 	}
3077 	rc = mls_write_range_helper(r, fp);
3078 	if (rc)
3079 		return rc;
3080 
3081 	return 0;
3082 }
3083 
range_write(struct policydb * p,void * fp)3084 static int range_write(struct policydb *p, void *fp)
3085 {
3086 	size_t nel;
3087 	__le32 buf[1];
3088 	int rc;
3089 	struct policy_data pd;
3090 
3091 	pd.p = p;
3092 	pd.fp = fp;
3093 
3094 	/* count the number of entries in the hashtab */
3095 	nel = 0;
3096 	rc = hashtab_map(p->range_tr, range_count, &nel);
3097 	if (rc)
3098 		return rc;
3099 
3100 	buf[0] = cpu_to_le32(nel);
3101 	rc = put_entry(buf, sizeof(u32), 1, fp);
3102 	if (rc)
3103 		return rc;
3104 
3105 	/* actually write all of the entries */
3106 	rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3107 	if (rc)
3108 		return rc;
3109 
3110 	return 0;
3111 }
3112 
filename_trans_write(struct policydb * p,void * fp)3113 static int filename_trans_write(struct policydb *p, void *fp)
3114 {
3115 	struct filename_trans *ft;
3116 	u32 len, nel = 0;
3117 	__le32 buf[4];
3118 	int rc;
3119 
3120 	for (ft = p->filename_trans; ft; ft = ft->next)
3121 		nel++;
3122 
3123 	buf[0] = cpu_to_le32(nel);
3124 	rc = put_entry(buf, sizeof(u32), 1, fp);
3125 	if (rc)
3126 		return rc;
3127 
3128 	for (ft = p->filename_trans; ft; ft = ft->next) {
3129 		len = strlen(ft->name);
3130 		buf[0] = cpu_to_le32(len);
3131 		rc = put_entry(buf, sizeof(u32), 1, fp);
3132 		if (rc)
3133 			return rc;
3134 
3135 		rc = put_entry(ft->name, sizeof(char), len, fp);
3136 		if (rc)
3137 			return rc;
3138 
3139 		buf[0] = ft->stype;
3140 		buf[1] = ft->ttype;
3141 		buf[2] = ft->tclass;
3142 		buf[3] = ft->otype;
3143 
3144 		rc = put_entry(buf, sizeof(u32), 4, fp);
3145 		if (rc)
3146 			return rc;
3147 	}
3148 	return 0;
3149 }
3150 /*
3151  * Write the configuration data in a policy database
3152  * structure to a policy database binary representation
3153  * file.
3154  */
policydb_write(struct policydb * p,void * fp)3155 int policydb_write(struct policydb *p, void *fp)
3156 {
3157 	unsigned int i, num_syms;
3158 	int rc;
3159 	__le32 buf[4];
3160 	u32 config;
3161 	size_t len;
3162 	struct policydb_compat_info *info;
3163 
3164 	/*
3165 	 * refuse to write policy older than compressed avtab
3166 	 * to simplify the writer.  There are other tests dropped
3167 	 * since we assume this throughout the writer code.  Be
3168 	 * careful if you ever try to remove this restriction
3169 	 */
3170 	if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3171 		printk(KERN_ERR "SELinux: refusing to write policy version %d."
3172 		       "  Because it is less than version %d\n", p->policyvers,
3173 		       POLICYDB_VERSION_AVTAB);
3174 		return -EINVAL;
3175 	}
3176 
3177 	config = 0;
3178 	if (p->mls_enabled)
3179 		config |= POLICYDB_CONFIG_MLS;
3180 
3181 	if (p->reject_unknown)
3182 		config |= REJECT_UNKNOWN;
3183 	if (p->allow_unknown)
3184 		config |= ALLOW_UNKNOWN;
3185 
3186 	/* Write the magic number and string identifiers. */
3187 	buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3188 	len = strlen(POLICYDB_STRING);
3189 	buf[1] = cpu_to_le32(len);
3190 	rc = put_entry(buf, sizeof(u32), 2, fp);
3191 	if (rc)
3192 		return rc;
3193 	rc = put_entry(POLICYDB_STRING, 1, len, fp);
3194 	if (rc)
3195 		return rc;
3196 
3197 	/* Write the version, config, and table sizes. */
3198 	info = policydb_lookup_compat(p->policyvers);
3199 	if (!info) {
3200 		printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3201 		    "version %d", p->policyvers);
3202 		return -EINVAL;
3203 	}
3204 
3205 	buf[0] = cpu_to_le32(p->policyvers);
3206 	buf[1] = cpu_to_le32(config);
3207 	buf[2] = cpu_to_le32(info->sym_num);
3208 	buf[3] = cpu_to_le32(info->ocon_num);
3209 
3210 	rc = put_entry(buf, sizeof(u32), 4, fp);
3211 	if (rc)
3212 		return rc;
3213 
3214 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3215 		rc = ebitmap_write(&p->policycaps, fp);
3216 		if (rc)
3217 			return rc;
3218 	}
3219 
3220 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3221 		rc = ebitmap_write(&p->permissive_map, fp);
3222 		if (rc)
3223 			return rc;
3224 	}
3225 
3226 	num_syms = info->sym_num;
3227 	for (i = 0; i < num_syms; i++) {
3228 		struct policy_data pd;
3229 
3230 		pd.fp = fp;
3231 		pd.p = p;
3232 
3233 		buf[0] = cpu_to_le32(p->symtab[i].nprim);
3234 		buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3235 
3236 		rc = put_entry(buf, sizeof(u32), 2, fp);
3237 		if (rc)
3238 			return rc;
3239 		rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3240 		if (rc)
3241 			return rc;
3242 	}
3243 
3244 	rc = avtab_write(p, &p->te_avtab, fp);
3245 	if (rc)
3246 		return rc;
3247 
3248 	rc = cond_write_list(p, p->cond_list, fp);
3249 	if (rc)
3250 		return rc;
3251 
3252 	rc = role_trans_write(p->role_tr, fp);
3253 	if (rc)
3254 		return rc;
3255 
3256 	rc = role_allow_write(p->role_allow, fp);
3257 	if (rc)
3258 		return rc;
3259 
3260 	rc = filename_trans_write(p, fp);
3261 	if (rc)
3262 		return rc;
3263 
3264 	rc = ocontext_write(p, info, fp);
3265 	if (rc)
3266 		return rc;
3267 
3268 	rc = genfs_write(p, fp);
3269 	if (rc)
3270 		return rc;
3271 
3272 	rc = range_write(p, fp);
3273 	if (rc)
3274 		return rc;
3275 
3276 	for (i = 0; i < p->p_types.nprim; i++) {
3277 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3278 
3279 		BUG_ON(!e);
3280 		rc = ebitmap_write(e, fp);
3281 		if (rc)
3282 			return rc;
3283 	}
3284 
3285 	return 0;
3286 }
3287