1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35 
36 #define AVC_CACHE_SLOTS			512
37 #define AVC_DEF_CACHE_THRESHOLD		512
38 #define AVC_CACHE_RECLAIM		16
39 
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field)				\
42 do {								\
43 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
44 	put_cpu();						\
45 } while (0)
46 #else
47 #define avc_cache_stats_incr(field)	do {} while (0)
48 #endif
49 
50 struct avc_entry {
51 	u32			ssid;
52 	u32			tsid;
53 	u16			tclass;
54 	struct av_decision	avd;
55 };
56 
57 struct avc_node {
58 	struct avc_entry	ae;
59 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
60 	struct rcu_head		rhead;
61 };
62 
63 struct avc_cache {
64 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
65 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
66 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
67 	atomic_t		active_nodes;
68 	u32			latest_notif;	/* latest revocation notification */
69 };
70 
71 struct avc_callback_node {
72 	int (*callback) (u32 event, u32 ssid, u32 tsid,
73 			 u16 tclass, u32 perms,
74 			 u32 *out_retained);
75 	u32 events;
76 	u32 ssid;
77 	u32 tsid;
78 	u16 tclass;
79 	u32 perms;
80 	struct avc_callback_node *next;
81 };
82 
83 /* Exported via selinufs */
84 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
85 
86 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
87 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
88 #endif
89 
90 static struct avc_cache avc_cache;
91 static struct avc_callback_node *avc_callbacks;
92 static struct kmem_cache *avc_node_cachep;
93 
avc_hash(u32 ssid,u32 tsid,u16 tclass)94 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
95 {
96 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
97 }
98 
99 /**
100  * avc_dump_av - Display an access vector in human-readable form.
101  * @tclass: target security class
102  * @av: access vector
103  */
avc_dump_av(struct audit_buffer * ab,u16 tclass,u32 av)104 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
105 {
106 	const char **perms;
107 	int i, perm;
108 
109 	if (av == 0) {
110 		audit_log_format(ab, " null");
111 		return;
112 	}
113 
114 	perms = secclass_map[tclass-1].perms;
115 
116 	audit_log_format(ab, " {");
117 	i = 0;
118 	perm = 1;
119 	while (i < (sizeof(av) * 8)) {
120 		if ((perm & av) && perms[i]) {
121 			audit_log_format(ab, " %s", perms[i]);
122 			av &= ~perm;
123 		}
124 		i++;
125 		perm <<= 1;
126 	}
127 
128 	if (av)
129 		audit_log_format(ab, " 0x%x", av);
130 
131 	audit_log_format(ab, " }");
132 }
133 
134 /**
135  * avc_dump_query - Display a SID pair and a class in human-readable form.
136  * @ssid: source security identifier
137  * @tsid: target security identifier
138  * @tclass: target security class
139  */
avc_dump_query(struct audit_buffer * ab,u32 ssid,u32 tsid,u16 tclass)140 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
141 {
142 	int rc;
143 	char *scontext;
144 	u32 scontext_len;
145 
146 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
147 	if (rc)
148 		audit_log_format(ab, "ssid=%d", ssid);
149 	else {
150 		audit_log_format(ab, "scontext=%s", scontext);
151 		kfree(scontext);
152 	}
153 
154 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
155 	if (rc)
156 		audit_log_format(ab, " tsid=%d", tsid);
157 	else {
158 		audit_log_format(ab, " tcontext=%s", scontext);
159 		kfree(scontext);
160 	}
161 
162 	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
163 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
164 }
165 
166 /**
167  * avc_init - Initialize the AVC.
168  *
169  * Initialize the access vector cache.
170  */
avc_init(void)171 void __init avc_init(void)
172 {
173 	int i;
174 
175 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
176 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
177 		spin_lock_init(&avc_cache.slots_lock[i]);
178 	}
179 	atomic_set(&avc_cache.active_nodes, 0);
180 	atomic_set(&avc_cache.lru_hint, 0);
181 
182 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
183 					     0, SLAB_PANIC, NULL);
184 
185 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
186 }
187 
avc_get_hash_stats(char * page)188 int avc_get_hash_stats(char *page)
189 {
190 	int i, chain_len, max_chain_len, slots_used;
191 	struct avc_node *node;
192 	struct hlist_head *head;
193 
194 	rcu_read_lock();
195 
196 	slots_used = 0;
197 	max_chain_len = 0;
198 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
199 		head = &avc_cache.slots[i];
200 		if (!hlist_empty(head)) {
201 			struct hlist_node *next;
202 
203 			slots_used++;
204 			chain_len = 0;
205 			hlist_for_each_entry_rcu(node, next, head, list)
206 				chain_len++;
207 			if (chain_len > max_chain_len)
208 				max_chain_len = chain_len;
209 		}
210 	}
211 
212 	rcu_read_unlock();
213 
214 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
215 			 "longest chain: %d\n",
216 			 atomic_read(&avc_cache.active_nodes),
217 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
218 }
219 
avc_node_free(struct rcu_head * rhead)220 static void avc_node_free(struct rcu_head *rhead)
221 {
222 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
223 	kmem_cache_free(avc_node_cachep, node);
224 	avc_cache_stats_incr(frees);
225 }
226 
avc_node_delete(struct avc_node * node)227 static void avc_node_delete(struct avc_node *node)
228 {
229 	hlist_del_rcu(&node->list);
230 	call_rcu(&node->rhead, avc_node_free);
231 	atomic_dec(&avc_cache.active_nodes);
232 }
233 
avc_node_kill(struct avc_node * node)234 static void avc_node_kill(struct avc_node *node)
235 {
236 	kmem_cache_free(avc_node_cachep, node);
237 	avc_cache_stats_incr(frees);
238 	atomic_dec(&avc_cache.active_nodes);
239 }
240 
avc_node_replace(struct avc_node * new,struct avc_node * old)241 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
242 {
243 	hlist_replace_rcu(&old->list, &new->list);
244 	call_rcu(&old->rhead, avc_node_free);
245 	atomic_dec(&avc_cache.active_nodes);
246 }
247 
avc_reclaim_node(void)248 static inline int avc_reclaim_node(void)
249 {
250 	struct avc_node *node;
251 	int hvalue, try, ecx;
252 	unsigned long flags;
253 	struct hlist_head *head;
254 	struct hlist_node *next;
255 	spinlock_t *lock;
256 
257 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
258 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
259 		head = &avc_cache.slots[hvalue];
260 		lock = &avc_cache.slots_lock[hvalue];
261 
262 		if (!spin_trylock_irqsave(lock, flags))
263 			continue;
264 
265 		rcu_read_lock();
266 		hlist_for_each_entry(node, next, head, list) {
267 			avc_node_delete(node);
268 			avc_cache_stats_incr(reclaims);
269 			ecx++;
270 			if (ecx >= AVC_CACHE_RECLAIM) {
271 				rcu_read_unlock();
272 				spin_unlock_irqrestore(lock, flags);
273 				goto out;
274 			}
275 		}
276 		rcu_read_unlock();
277 		spin_unlock_irqrestore(lock, flags);
278 	}
279 out:
280 	return ecx;
281 }
282 
avc_alloc_node(void)283 static struct avc_node *avc_alloc_node(void)
284 {
285 	struct avc_node *node;
286 
287 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
288 	if (!node)
289 		goto out;
290 
291 	INIT_HLIST_NODE(&node->list);
292 	avc_cache_stats_incr(allocations);
293 
294 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
295 		avc_reclaim_node();
296 
297 out:
298 	return node;
299 }
300 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)301 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
302 {
303 	node->ae.ssid = ssid;
304 	node->ae.tsid = tsid;
305 	node->ae.tclass = tclass;
306 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
307 }
308 
avc_search_node(u32 ssid,u32 tsid,u16 tclass)309 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
310 {
311 	struct avc_node *node, *ret = NULL;
312 	int hvalue;
313 	struct hlist_head *head;
314 	struct hlist_node *next;
315 
316 	hvalue = avc_hash(ssid, tsid, tclass);
317 	head = &avc_cache.slots[hvalue];
318 	hlist_for_each_entry_rcu(node, next, head, list) {
319 		if (ssid == node->ae.ssid &&
320 		    tclass == node->ae.tclass &&
321 		    tsid == node->ae.tsid) {
322 			ret = node;
323 			break;
324 		}
325 	}
326 
327 	return ret;
328 }
329 
330 /**
331  * avc_lookup - Look up an AVC entry.
332  * @ssid: source security identifier
333  * @tsid: target security identifier
334  * @tclass: target security class
335  *
336  * Look up an AVC entry that is valid for the
337  * (@ssid, @tsid), interpreting the permissions
338  * based on @tclass.  If a valid AVC entry exists,
339  * then this function returns the avc_node.
340  * Otherwise, this function returns NULL.
341  */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)342 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
343 {
344 	struct avc_node *node;
345 
346 	avc_cache_stats_incr(lookups);
347 	node = avc_search_node(ssid, tsid, tclass);
348 
349 	if (node)
350 		avc_cache_stats_incr(hits);
351 	else
352 		avc_cache_stats_incr(misses);
353 
354 	return node;
355 }
356 
avc_latest_notif_update(int seqno,int is_insert)357 static int avc_latest_notif_update(int seqno, int is_insert)
358 {
359 	int ret = 0;
360 	static DEFINE_SPINLOCK(notif_lock);
361 	unsigned long flag;
362 
363 	spin_lock_irqsave(&notif_lock, flag);
364 	if (is_insert) {
365 		if (seqno < avc_cache.latest_notif) {
366 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
367 			       seqno, avc_cache.latest_notif);
368 			ret = -EAGAIN;
369 		}
370 	} else {
371 		if (seqno > avc_cache.latest_notif)
372 			avc_cache.latest_notif = seqno;
373 	}
374 	spin_unlock_irqrestore(&notif_lock, flag);
375 
376 	return ret;
377 }
378 
379 /**
380  * avc_insert - Insert an AVC entry.
381  * @ssid: source security identifier
382  * @tsid: target security identifier
383  * @tclass: target security class
384  * @avd: resulting av decision
385  *
386  * Insert an AVC entry for the SID pair
387  * (@ssid, @tsid) and class @tclass.
388  * The access vectors and the sequence number are
389  * normally provided by the security server in
390  * response to a security_compute_av() call.  If the
391  * sequence number @avd->seqno is not less than the latest
392  * revocation notification, then the function copies
393  * the access vectors into a cache entry, returns
394  * avc_node inserted. Otherwise, this function returns NULL.
395  */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)396 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
397 {
398 	struct avc_node *pos, *node = NULL;
399 	int hvalue;
400 	unsigned long flag;
401 
402 	if (avc_latest_notif_update(avd->seqno, 1))
403 		goto out;
404 
405 	node = avc_alloc_node();
406 	if (node) {
407 		struct hlist_head *head;
408 		struct hlist_node *next;
409 		spinlock_t *lock;
410 
411 		hvalue = avc_hash(ssid, tsid, tclass);
412 		avc_node_populate(node, ssid, tsid, tclass, avd);
413 
414 		head = &avc_cache.slots[hvalue];
415 		lock = &avc_cache.slots_lock[hvalue];
416 
417 		spin_lock_irqsave(lock, flag);
418 		hlist_for_each_entry(pos, next, head, list) {
419 			if (pos->ae.ssid == ssid &&
420 			    pos->ae.tsid == tsid &&
421 			    pos->ae.tclass == tclass) {
422 				avc_node_replace(node, pos);
423 				goto found;
424 			}
425 		}
426 		hlist_add_head_rcu(&node->list, head);
427 found:
428 		spin_unlock_irqrestore(lock, flag);
429 	}
430 out:
431 	return node;
432 }
433 
434 /**
435  * avc_audit_pre_callback - SELinux specific information
436  * will be called by generic audit code
437  * @ab: the audit buffer
438  * @a: audit_data
439  */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)440 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
441 {
442 	struct common_audit_data *ad = a;
443 	audit_log_format(ab, "avc:  %s ",
444 			 ad->selinux_audit_data.denied ? "denied" : "granted");
445 	avc_dump_av(ab, ad->selinux_audit_data.tclass,
446 			ad->selinux_audit_data.audited);
447 	audit_log_format(ab, " for ");
448 }
449 
450 /**
451  * avc_audit_post_callback - SELinux specific information
452  * will be called by generic audit code
453  * @ab: the audit buffer
454  * @a: audit_data
455  */
avc_audit_post_callback(struct audit_buffer * ab,void * a)456 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
457 {
458 	struct common_audit_data *ad = a;
459 	audit_log_format(ab, " ");
460 	avc_dump_query(ab, ad->selinux_audit_data.ssid,
461 			   ad->selinux_audit_data.tsid,
462 			   ad->selinux_audit_data.tclass);
463 }
464 
465 /**
466  * avc_audit - Audit the granting or denial of permissions.
467  * @ssid: source security identifier
468  * @tsid: target security identifier
469  * @tclass: target security class
470  * @requested: requested permissions
471  * @avd: access vector decisions
472  * @result: result from avc_has_perm_noaudit
473  * @a:  auxiliary audit data
474  * @flags: VFS walk flags
475  *
476  * Audit the granting or denial of permissions in accordance
477  * with the policy.  This function is typically called by
478  * avc_has_perm() after a permission check, but can also be
479  * called directly by callers who use avc_has_perm_noaudit()
480  * in order to separate the permission check from the auditing.
481  * For example, this separation is useful when the permission check must
482  * be performed under a lock, to allow the lock to be released
483  * before calling the auditing code.
484  */
avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,int result,struct common_audit_data * a,unsigned flags)485 int avc_audit(u32 ssid, u32 tsid,
486 	       u16 tclass, u32 requested,
487 	       struct av_decision *avd, int result, struct common_audit_data *a,
488 	       unsigned flags)
489 {
490 	struct common_audit_data stack_data;
491 	u32 denied, audited;
492 	denied = requested & ~avd->allowed;
493 	if (denied) {
494 		audited = denied & avd->auditdeny;
495 		/*
496 		 * a->selinux_audit_data.auditdeny is TRICKY!  Setting a bit in
497 		 * this field means that ANY denials should NOT be audited if
498 		 * the policy contains an explicit dontaudit rule for that
499 		 * permission.  Take notice that this is unrelated to the
500 		 * actual permissions that were denied.  As an example lets
501 		 * assume:
502 		 *
503 		 * denied == READ
504 		 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
505 		 * selinux_audit_data.auditdeny & ACCESS == 1
506 		 *
507 		 * We will NOT audit the denial even though the denied
508 		 * permission was READ and the auditdeny checks were for
509 		 * ACCESS
510 		 */
511 		if (a &&
512 		    a->selinux_audit_data.auditdeny &&
513 		    !(a->selinux_audit_data.auditdeny & avd->auditdeny))
514 			audited = 0;
515 	} else if (result)
516 		audited = denied = requested;
517 	else
518 		audited = requested & avd->auditallow;
519 	if (!audited)
520 		return 0;
521 
522 	if (!a) {
523 		a = &stack_data;
524 		COMMON_AUDIT_DATA_INIT(a, NONE);
525 	}
526 
527 	/*
528 	 * When in a RCU walk do the audit on the RCU retry.  This is because
529 	 * the collection of the dname in an inode audit message is not RCU
530 	 * safe.  Note this may drop some audits when the situation changes
531 	 * during retry. However this is logically just as if the operation
532 	 * happened a little later.
533 	 */
534 	if ((a->type == LSM_AUDIT_DATA_FS) &&
535 	    (flags & IPERM_FLAG_RCU))
536 		return -ECHILD;
537 
538 	a->selinux_audit_data.tclass = tclass;
539 	a->selinux_audit_data.requested = requested;
540 	a->selinux_audit_data.ssid = ssid;
541 	a->selinux_audit_data.tsid = tsid;
542 	a->selinux_audit_data.audited = audited;
543 	a->selinux_audit_data.denied = denied;
544 	a->lsm_pre_audit = avc_audit_pre_callback;
545 	a->lsm_post_audit = avc_audit_post_callback;
546 	common_lsm_audit(a);
547 	return 0;
548 }
549 
550 /**
551  * avc_add_callback - Register a callback for security events.
552  * @callback: callback function
553  * @events: security events
554  * @ssid: source security identifier or %SECSID_WILD
555  * @tsid: target security identifier or %SECSID_WILD
556  * @tclass: target security class
557  * @perms: permissions
558  *
559  * Register a callback function for events in the set @events
560  * related to the SID pair (@ssid, @tsid)
561  * and the permissions @perms, interpreting
562  * @perms based on @tclass.  Returns %0 on success or
563  * -%ENOMEM if insufficient memory exists to add the callback.
564  */
avc_add_callback(int (* callback)(u32 event,u32 ssid,u32 tsid,u16 tclass,u32 perms,u32 * out_retained),u32 events,u32 ssid,u32 tsid,u16 tclass,u32 perms)565 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
566 				     u16 tclass, u32 perms,
567 				     u32 *out_retained),
568 		     u32 events, u32 ssid, u32 tsid,
569 		     u16 tclass, u32 perms)
570 {
571 	struct avc_callback_node *c;
572 	int rc = 0;
573 
574 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
575 	if (!c) {
576 		rc = -ENOMEM;
577 		goto out;
578 	}
579 
580 	c->callback = callback;
581 	c->events = events;
582 	c->ssid = ssid;
583 	c->tsid = tsid;
584 	c->perms = perms;
585 	c->next = avc_callbacks;
586 	avc_callbacks = c;
587 out:
588 	return rc;
589 }
590 
avc_sidcmp(u32 x,u32 y)591 static inline int avc_sidcmp(u32 x, u32 y)
592 {
593 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
594 }
595 
596 /**
597  * avc_update_node Update an AVC entry
598  * @event : Updating event
599  * @perms : Permission mask bits
600  * @ssid,@tsid,@tclass : identifier of an AVC entry
601  * @seqno : sequence number when decision was made
602  *
603  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
604  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
605  * otherwise, this function updates the AVC entry. The original AVC-entry object
606  * will release later by RCU.
607  */
avc_update_node(u32 event,u32 perms,u32 ssid,u32 tsid,u16 tclass,u32 seqno)608 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
609 			   u32 seqno)
610 {
611 	int hvalue, rc = 0;
612 	unsigned long flag;
613 	struct avc_node *pos, *node, *orig = NULL;
614 	struct hlist_head *head;
615 	struct hlist_node *next;
616 	spinlock_t *lock;
617 
618 	node = avc_alloc_node();
619 	if (!node) {
620 		rc = -ENOMEM;
621 		goto out;
622 	}
623 
624 	/* Lock the target slot */
625 	hvalue = avc_hash(ssid, tsid, tclass);
626 
627 	head = &avc_cache.slots[hvalue];
628 	lock = &avc_cache.slots_lock[hvalue];
629 
630 	spin_lock_irqsave(lock, flag);
631 
632 	hlist_for_each_entry(pos, next, head, list) {
633 		if (ssid == pos->ae.ssid &&
634 		    tsid == pos->ae.tsid &&
635 		    tclass == pos->ae.tclass &&
636 		    seqno == pos->ae.avd.seqno){
637 			orig = pos;
638 			break;
639 		}
640 	}
641 
642 	if (!orig) {
643 		rc = -ENOENT;
644 		avc_node_kill(node);
645 		goto out_unlock;
646 	}
647 
648 	/*
649 	 * Copy and replace original node.
650 	 */
651 
652 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
653 
654 	switch (event) {
655 	case AVC_CALLBACK_GRANT:
656 		node->ae.avd.allowed |= perms;
657 		break;
658 	case AVC_CALLBACK_TRY_REVOKE:
659 	case AVC_CALLBACK_REVOKE:
660 		node->ae.avd.allowed &= ~perms;
661 		break;
662 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
663 		node->ae.avd.auditallow |= perms;
664 		break;
665 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
666 		node->ae.avd.auditallow &= ~perms;
667 		break;
668 	case AVC_CALLBACK_AUDITDENY_ENABLE:
669 		node->ae.avd.auditdeny |= perms;
670 		break;
671 	case AVC_CALLBACK_AUDITDENY_DISABLE:
672 		node->ae.avd.auditdeny &= ~perms;
673 		break;
674 	}
675 	avc_node_replace(node, orig);
676 out_unlock:
677 	spin_unlock_irqrestore(lock, flag);
678 out:
679 	return rc;
680 }
681 
682 /**
683  * avc_flush - Flush the cache
684  */
avc_flush(void)685 static void avc_flush(void)
686 {
687 	struct hlist_head *head;
688 	struct hlist_node *next;
689 	struct avc_node *node;
690 	spinlock_t *lock;
691 	unsigned long flag;
692 	int i;
693 
694 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
695 		head = &avc_cache.slots[i];
696 		lock = &avc_cache.slots_lock[i];
697 
698 		spin_lock_irqsave(lock, flag);
699 		/*
700 		 * With preemptable RCU, the outer spinlock does not
701 		 * prevent RCU grace periods from ending.
702 		 */
703 		rcu_read_lock();
704 		hlist_for_each_entry(node, next, head, list)
705 			avc_node_delete(node);
706 		rcu_read_unlock();
707 		spin_unlock_irqrestore(lock, flag);
708 	}
709 }
710 
711 /**
712  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
713  * @seqno: policy sequence number
714  */
avc_ss_reset(u32 seqno)715 int avc_ss_reset(u32 seqno)
716 {
717 	struct avc_callback_node *c;
718 	int rc = 0, tmprc;
719 
720 	avc_flush();
721 
722 	for (c = avc_callbacks; c; c = c->next) {
723 		if (c->events & AVC_CALLBACK_RESET) {
724 			tmprc = c->callback(AVC_CALLBACK_RESET,
725 					    0, 0, 0, 0, NULL);
726 			/* save the first error encountered for the return
727 			   value and continue processing the callbacks */
728 			if (!rc)
729 				rc = tmprc;
730 		}
731 	}
732 
733 	avc_latest_notif_update(seqno, 0);
734 	return rc;
735 }
736 
737 /**
738  * avc_has_perm_noaudit - Check permissions but perform no auditing.
739  * @ssid: source security identifier
740  * @tsid: target security identifier
741  * @tclass: target security class
742  * @requested: requested permissions, interpreted based on @tclass
743  * @flags:  AVC_STRICT or 0
744  * @avd: access vector decisions
745  *
746  * Check the AVC to determine whether the @requested permissions are granted
747  * for the SID pair (@ssid, @tsid), interpreting the permissions
748  * based on @tclass, and call the security server on a cache miss to obtain
749  * a new decision and add it to the cache.  Return a copy of the decisions
750  * in @avd.  Return %0 if all @requested permissions are granted,
751  * -%EACCES if any permissions are denied, or another -errno upon
752  * other errors.  This function is typically called by avc_has_perm(),
753  * but may also be called directly to separate permission checking from
754  * auditing, e.g. in cases where a lock must be held for the check but
755  * should be released for the auditing.
756  */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned flags,struct av_decision * in_avd)757 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
758 			 u16 tclass, u32 requested,
759 			 unsigned flags,
760 			 struct av_decision *in_avd)
761 {
762 	struct avc_node *node;
763 	struct av_decision avd_entry, *avd;
764 	int rc = 0;
765 	u32 denied;
766 
767 	BUG_ON(!requested);
768 
769 	rcu_read_lock();
770 
771 	node = avc_lookup(ssid, tsid, tclass);
772 	if (!node) {
773 		rcu_read_unlock();
774 
775 		if (in_avd)
776 			avd = in_avd;
777 		else
778 			avd = &avd_entry;
779 
780 		security_compute_av(ssid, tsid, tclass, avd);
781 		rcu_read_lock();
782 		node = avc_insert(ssid, tsid, tclass, avd);
783 	} else {
784 		if (in_avd)
785 			memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
786 		avd = &node->ae.avd;
787 	}
788 
789 	denied = requested & ~(avd->allowed);
790 
791 	if (denied) {
792 		if (flags & AVC_STRICT)
793 			rc = -EACCES;
794 		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
795 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
796 					tsid, tclass, avd->seqno);
797 		else
798 			rc = -EACCES;
799 	}
800 
801 	rcu_read_unlock();
802 	return rc;
803 }
804 
805 /**
806  * avc_has_perm - Check permissions and perform any appropriate auditing.
807  * @ssid: source security identifier
808  * @tsid: target security identifier
809  * @tclass: target security class
810  * @requested: requested permissions, interpreted based on @tclass
811  * @auditdata: auxiliary audit data
812  * @flags: VFS walk flags
813  *
814  * Check the AVC to determine whether the @requested permissions are granted
815  * for the SID pair (@ssid, @tsid), interpreting the permissions
816  * based on @tclass, and call the security server on a cache miss to obtain
817  * a new decision and add it to the cache.  Audit the granting or denial of
818  * permissions in accordance with the policy.  Return %0 if all @requested
819  * permissions are granted, -%EACCES if any permissions are denied, or
820  * another -errno upon other errors.
821  */
avc_has_perm_flags(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata,unsigned flags)822 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
823 		       u32 requested, struct common_audit_data *auditdata,
824 		       unsigned flags)
825 {
826 	struct av_decision avd;
827 	int rc, rc2;
828 
829 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
830 
831 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
832 			flags);
833 	if (rc2)
834 		return rc2;
835 	return rc;
836 }
837 
avc_policy_seqno(void)838 u32 avc_policy_seqno(void)
839 {
840 	return avc_cache.latest_notif;
841 }
842 
avc_disable(void)843 void avc_disable(void)
844 {
845 	/*
846 	 * If you are looking at this because you have realized that we are
847 	 * not destroying the avc_node_cachep it might be easy to fix, but
848 	 * I don't know the memory barrier semantics well enough to know.  It's
849 	 * possible that some other task dereferenced security_ops when
850 	 * it still pointed to selinux operations.  If that is the case it's
851 	 * possible that it is about to use the avc and is about to need the
852 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
853 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
854 	 * the cache and get that memory back.
855 	 */
856 	if (avc_node_cachep) {
857 		avc_flush();
858 		/* kmem_cache_destroy(avc_node_cachep); */
859 	}
860 }
861