1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
39
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) \
42 do { \
43 per_cpu(avc_cache_stats, get_cpu()).field++; \
44 put_cpu(); \
45 } while (0)
46 #else
47 #define avc_cache_stats_incr(field) do {} while (0)
48 #endif
49
50 struct avc_entry {
51 u32 ssid;
52 u32 tsid;
53 u16 tclass;
54 struct av_decision avd;
55 };
56
57 struct avc_node {
58 struct avc_entry ae;
59 struct hlist_node list; /* anchored in avc_cache->slots[i] */
60 struct rcu_head rhead;
61 };
62
63 struct avc_cache {
64 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
65 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
66 atomic_t lru_hint; /* LRU hint for reclaim scan */
67 atomic_t active_nodes;
68 u32 latest_notif; /* latest revocation notification */
69 };
70
71 struct avc_callback_node {
72 int (*callback) (u32 event, u32 ssid, u32 tsid,
73 u16 tclass, u32 perms,
74 u32 *out_retained);
75 u32 events;
76 u32 ssid;
77 u32 tsid;
78 u16 tclass;
79 u32 perms;
80 struct avc_callback_node *next;
81 };
82
83 /* Exported via selinufs */
84 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
85
86 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
87 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
88 #endif
89
90 static struct avc_cache avc_cache;
91 static struct avc_callback_node *avc_callbacks;
92 static struct kmem_cache *avc_node_cachep;
93
avc_hash(u32 ssid,u32 tsid,u16 tclass)94 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
95 {
96 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
97 }
98
99 /**
100 * avc_dump_av - Display an access vector in human-readable form.
101 * @tclass: target security class
102 * @av: access vector
103 */
avc_dump_av(struct audit_buffer * ab,u16 tclass,u32 av)104 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
105 {
106 const char **perms;
107 int i, perm;
108
109 if (av == 0) {
110 audit_log_format(ab, " null");
111 return;
112 }
113
114 perms = secclass_map[tclass-1].perms;
115
116 audit_log_format(ab, " {");
117 i = 0;
118 perm = 1;
119 while (i < (sizeof(av) * 8)) {
120 if ((perm & av) && perms[i]) {
121 audit_log_format(ab, " %s", perms[i]);
122 av &= ~perm;
123 }
124 i++;
125 perm <<= 1;
126 }
127
128 if (av)
129 audit_log_format(ab, " 0x%x", av);
130
131 audit_log_format(ab, " }");
132 }
133
134 /**
135 * avc_dump_query - Display a SID pair and a class in human-readable form.
136 * @ssid: source security identifier
137 * @tsid: target security identifier
138 * @tclass: target security class
139 */
avc_dump_query(struct audit_buffer * ab,u32 ssid,u32 tsid,u16 tclass)140 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
141 {
142 int rc;
143 char *scontext;
144 u32 scontext_len;
145
146 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
147 if (rc)
148 audit_log_format(ab, "ssid=%d", ssid);
149 else {
150 audit_log_format(ab, "scontext=%s", scontext);
151 kfree(scontext);
152 }
153
154 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
155 if (rc)
156 audit_log_format(ab, " tsid=%d", tsid);
157 else {
158 audit_log_format(ab, " tcontext=%s", scontext);
159 kfree(scontext);
160 }
161
162 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
163 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
164 }
165
166 /**
167 * avc_init - Initialize the AVC.
168 *
169 * Initialize the access vector cache.
170 */
avc_init(void)171 void __init avc_init(void)
172 {
173 int i;
174
175 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
176 INIT_HLIST_HEAD(&avc_cache.slots[i]);
177 spin_lock_init(&avc_cache.slots_lock[i]);
178 }
179 atomic_set(&avc_cache.active_nodes, 0);
180 atomic_set(&avc_cache.lru_hint, 0);
181
182 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
183 0, SLAB_PANIC, NULL);
184
185 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
186 }
187
avc_get_hash_stats(char * page)188 int avc_get_hash_stats(char *page)
189 {
190 int i, chain_len, max_chain_len, slots_used;
191 struct avc_node *node;
192 struct hlist_head *head;
193
194 rcu_read_lock();
195
196 slots_used = 0;
197 max_chain_len = 0;
198 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
199 head = &avc_cache.slots[i];
200 if (!hlist_empty(head)) {
201 struct hlist_node *next;
202
203 slots_used++;
204 chain_len = 0;
205 hlist_for_each_entry_rcu(node, next, head, list)
206 chain_len++;
207 if (chain_len > max_chain_len)
208 max_chain_len = chain_len;
209 }
210 }
211
212 rcu_read_unlock();
213
214 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
215 "longest chain: %d\n",
216 atomic_read(&avc_cache.active_nodes),
217 slots_used, AVC_CACHE_SLOTS, max_chain_len);
218 }
219
avc_node_free(struct rcu_head * rhead)220 static void avc_node_free(struct rcu_head *rhead)
221 {
222 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
223 kmem_cache_free(avc_node_cachep, node);
224 avc_cache_stats_incr(frees);
225 }
226
avc_node_delete(struct avc_node * node)227 static void avc_node_delete(struct avc_node *node)
228 {
229 hlist_del_rcu(&node->list);
230 call_rcu(&node->rhead, avc_node_free);
231 atomic_dec(&avc_cache.active_nodes);
232 }
233
avc_node_kill(struct avc_node * node)234 static void avc_node_kill(struct avc_node *node)
235 {
236 kmem_cache_free(avc_node_cachep, node);
237 avc_cache_stats_incr(frees);
238 atomic_dec(&avc_cache.active_nodes);
239 }
240
avc_node_replace(struct avc_node * new,struct avc_node * old)241 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
242 {
243 hlist_replace_rcu(&old->list, &new->list);
244 call_rcu(&old->rhead, avc_node_free);
245 atomic_dec(&avc_cache.active_nodes);
246 }
247
avc_reclaim_node(void)248 static inline int avc_reclaim_node(void)
249 {
250 struct avc_node *node;
251 int hvalue, try, ecx;
252 unsigned long flags;
253 struct hlist_head *head;
254 struct hlist_node *next;
255 spinlock_t *lock;
256
257 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
258 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
259 head = &avc_cache.slots[hvalue];
260 lock = &avc_cache.slots_lock[hvalue];
261
262 if (!spin_trylock_irqsave(lock, flags))
263 continue;
264
265 rcu_read_lock();
266 hlist_for_each_entry(node, next, head, list) {
267 avc_node_delete(node);
268 avc_cache_stats_incr(reclaims);
269 ecx++;
270 if (ecx >= AVC_CACHE_RECLAIM) {
271 rcu_read_unlock();
272 spin_unlock_irqrestore(lock, flags);
273 goto out;
274 }
275 }
276 rcu_read_unlock();
277 spin_unlock_irqrestore(lock, flags);
278 }
279 out:
280 return ecx;
281 }
282
avc_alloc_node(void)283 static struct avc_node *avc_alloc_node(void)
284 {
285 struct avc_node *node;
286
287 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
288 if (!node)
289 goto out;
290
291 INIT_HLIST_NODE(&node->list);
292 avc_cache_stats_incr(allocations);
293
294 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
295 avc_reclaim_node();
296
297 out:
298 return node;
299 }
300
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)301 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
302 {
303 node->ae.ssid = ssid;
304 node->ae.tsid = tsid;
305 node->ae.tclass = tclass;
306 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
307 }
308
avc_search_node(u32 ssid,u32 tsid,u16 tclass)309 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
310 {
311 struct avc_node *node, *ret = NULL;
312 int hvalue;
313 struct hlist_head *head;
314 struct hlist_node *next;
315
316 hvalue = avc_hash(ssid, tsid, tclass);
317 head = &avc_cache.slots[hvalue];
318 hlist_for_each_entry_rcu(node, next, head, list) {
319 if (ssid == node->ae.ssid &&
320 tclass == node->ae.tclass &&
321 tsid == node->ae.tsid) {
322 ret = node;
323 break;
324 }
325 }
326
327 return ret;
328 }
329
330 /**
331 * avc_lookup - Look up an AVC entry.
332 * @ssid: source security identifier
333 * @tsid: target security identifier
334 * @tclass: target security class
335 *
336 * Look up an AVC entry that is valid for the
337 * (@ssid, @tsid), interpreting the permissions
338 * based on @tclass. If a valid AVC entry exists,
339 * then this function returns the avc_node.
340 * Otherwise, this function returns NULL.
341 */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)342 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
343 {
344 struct avc_node *node;
345
346 avc_cache_stats_incr(lookups);
347 node = avc_search_node(ssid, tsid, tclass);
348
349 if (node)
350 avc_cache_stats_incr(hits);
351 else
352 avc_cache_stats_incr(misses);
353
354 return node;
355 }
356
avc_latest_notif_update(int seqno,int is_insert)357 static int avc_latest_notif_update(int seqno, int is_insert)
358 {
359 int ret = 0;
360 static DEFINE_SPINLOCK(notif_lock);
361 unsigned long flag;
362
363 spin_lock_irqsave(¬if_lock, flag);
364 if (is_insert) {
365 if (seqno < avc_cache.latest_notif) {
366 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
367 seqno, avc_cache.latest_notif);
368 ret = -EAGAIN;
369 }
370 } else {
371 if (seqno > avc_cache.latest_notif)
372 avc_cache.latest_notif = seqno;
373 }
374 spin_unlock_irqrestore(¬if_lock, flag);
375
376 return ret;
377 }
378
379 /**
380 * avc_insert - Insert an AVC entry.
381 * @ssid: source security identifier
382 * @tsid: target security identifier
383 * @tclass: target security class
384 * @avd: resulting av decision
385 *
386 * Insert an AVC entry for the SID pair
387 * (@ssid, @tsid) and class @tclass.
388 * The access vectors and the sequence number are
389 * normally provided by the security server in
390 * response to a security_compute_av() call. If the
391 * sequence number @avd->seqno is not less than the latest
392 * revocation notification, then the function copies
393 * the access vectors into a cache entry, returns
394 * avc_node inserted. Otherwise, this function returns NULL.
395 */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)396 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
397 {
398 struct avc_node *pos, *node = NULL;
399 int hvalue;
400 unsigned long flag;
401
402 if (avc_latest_notif_update(avd->seqno, 1))
403 goto out;
404
405 node = avc_alloc_node();
406 if (node) {
407 struct hlist_head *head;
408 struct hlist_node *next;
409 spinlock_t *lock;
410
411 hvalue = avc_hash(ssid, tsid, tclass);
412 avc_node_populate(node, ssid, tsid, tclass, avd);
413
414 head = &avc_cache.slots[hvalue];
415 lock = &avc_cache.slots_lock[hvalue];
416
417 spin_lock_irqsave(lock, flag);
418 hlist_for_each_entry(pos, next, head, list) {
419 if (pos->ae.ssid == ssid &&
420 pos->ae.tsid == tsid &&
421 pos->ae.tclass == tclass) {
422 avc_node_replace(node, pos);
423 goto found;
424 }
425 }
426 hlist_add_head_rcu(&node->list, head);
427 found:
428 spin_unlock_irqrestore(lock, flag);
429 }
430 out:
431 return node;
432 }
433
434 /**
435 * avc_audit_pre_callback - SELinux specific information
436 * will be called by generic audit code
437 * @ab: the audit buffer
438 * @a: audit_data
439 */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)440 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
441 {
442 struct common_audit_data *ad = a;
443 audit_log_format(ab, "avc: %s ",
444 ad->selinux_audit_data.denied ? "denied" : "granted");
445 avc_dump_av(ab, ad->selinux_audit_data.tclass,
446 ad->selinux_audit_data.audited);
447 audit_log_format(ab, " for ");
448 }
449
450 /**
451 * avc_audit_post_callback - SELinux specific information
452 * will be called by generic audit code
453 * @ab: the audit buffer
454 * @a: audit_data
455 */
avc_audit_post_callback(struct audit_buffer * ab,void * a)456 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
457 {
458 struct common_audit_data *ad = a;
459 audit_log_format(ab, " ");
460 avc_dump_query(ab, ad->selinux_audit_data.ssid,
461 ad->selinux_audit_data.tsid,
462 ad->selinux_audit_data.tclass);
463 }
464
465 /**
466 * avc_audit - Audit the granting or denial of permissions.
467 * @ssid: source security identifier
468 * @tsid: target security identifier
469 * @tclass: target security class
470 * @requested: requested permissions
471 * @avd: access vector decisions
472 * @result: result from avc_has_perm_noaudit
473 * @a: auxiliary audit data
474 * @flags: VFS walk flags
475 *
476 * Audit the granting or denial of permissions in accordance
477 * with the policy. This function is typically called by
478 * avc_has_perm() after a permission check, but can also be
479 * called directly by callers who use avc_has_perm_noaudit()
480 * in order to separate the permission check from the auditing.
481 * For example, this separation is useful when the permission check must
482 * be performed under a lock, to allow the lock to be released
483 * before calling the auditing code.
484 */
avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,int result,struct common_audit_data * a,unsigned flags)485 int avc_audit(u32 ssid, u32 tsid,
486 u16 tclass, u32 requested,
487 struct av_decision *avd, int result, struct common_audit_data *a,
488 unsigned flags)
489 {
490 struct common_audit_data stack_data;
491 u32 denied, audited;
492 denied = requested & ~avd->allowed;
493 if (denied) {
494 audited = denied & avd->auditdeny;
495 /*
496 * a->selinux_audit_data.auditdeny is TRICKY! Setting a bit in
497 * this field means that ANY denials should NOT be audited if
498 * the policy contains an explicit dontaudit rule for that
499 * permission. Take notice that this is unrelated to the
500 * actual permissions that were denied. As an example lets
501 * assume:
502 *
503 * denied == READ
504 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
505 * selinux_audit_data.auditdeny & ACCESS == 1
506 *
507 * We will NOT audit the denial even though the denied
508 * permission was READ and the auditdeny checks were for
509 * ACCESS
510 */
511 if (a &&
512 a->selinux_audit_data.auditdeny &&
513 !(a->selinux_audit_data.auditdeny & avd->auditdeny))
514 audited = 0;
515 } else if (result)
516 audited = denied = requested;
517 else
518 audited = requested & avd->auditallow;
519 if (!audited)
520 return 0;
521
522 if (!a) {
523 a = &stack_data;
524 COMMON_AUDIT_DATA_INIT(a, NONE);
525 }
526
527 /*
528 * When in a RCU walk do the audit on the RCU retry. This is because
529 * the collection of the dname in an inode audit message is not RCU
530 * safe. Note this may drop some audits when the situation changes
531 * during retry. However this is logically just as if the operation
532 * happened a little later.
533 */
534 if ((a->type == LSM_AUDIT_DATA_FS) &&
535 (flags & IPERM_FLAG_RCU))
536 return -ECHILD;
537
538 a->selinux_audit_data.tclass = tclass;
539 a->selinux_audit_data.requested = requested;
540 a->selinux_audit_data.ssid = ssid;
541 a->selinux_audit_data.tsid = tsid;
542 a->selinux_audit_data.audited = audited;
543 a->selinux_audit_data.denied = denied;
544 a->lsm_pre_audit = avc_audit_pre_callback;
545 a->lsm_post_audit = avc_audit_post_callback;
546 common_lsm_audit(a);
547 return 0;
548 }
549
550 /**
551 * avc_add_callback - Register a callback for security events.
552 * @callback: callback function
553 * @events: security events
554 * @ssid: source security identifier or %SECSID_WILD
555 * @tsid: target security identifier or %SECSID_WILD
556 * @tclass: target security class
557 * @perms: permissions
558 *
559 * Register a callback function for events in the set @events
560 * related to the SID pair (@ssid, @tsid)
561 * and the permissions @perms, interpreting
562 * @perms based on @tclass. Returns %0 on success or
563 * -%ENOMEM if insufficient memory exists to add the callback.
564 */
avc_add_callback(int (* callback)(u32 event,u32 ssid,u32 tsid,u16 tclass,u32 perms,u32 * out_retained),u32 events,u32 ssid,u32 tsid,u16 tclass,u32 perms)565 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
566 u16 tclass, u32 perms,
567 u32 *out_retained),
568 u32 events, u32 ssid, u32 tsid,
569 u16 tclass, u32 perms)
570 {
571 struct avc_callback_node *c;
572 int rc = 0;
573
574 c = kmalloc(sizeof(*c), GFP_ATOMIC);
575 if (!c) {
576 rc = -ENOMEM;
577 goto out;
578 }
579
580 c->callback = callback;
581 c->events = events;
582 c->ssid = ssid;
583 c->tsid = tsid;
584 c->perms = perms;
585 c->next = avc_callbacks;
586 avc_callbacks = c;
587 out:
588 return rc;
589 }
590
avc_sidcmp(u32 x,u32 y)591 static inline int avc_sidcmp(u32 x, u32 y)
592 {
593 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
594 }
595
596 /**
597 * avc_update_node Update an AVC entry
598 * @event : Updating event
599 * @perms : Permission mask bits
600 * @ssid,@tsid,@tclass : identifier of an AVC entry
601 * @seqno : sequence number when decision was made
602 *
603 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
604 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
605 * otherwise, this function updates the AVC entry. The original AVC-entry object
606 * will release later by RCU.
607 */
avc_update_node(u32 event,u32 perms,u32 ssid,u32 tsid,u16 tclass,u32 seqno)608 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
609 u32 seqno)
610 {
611 int hvalue, rc = 0;
612 unsigned long flag;
613 struct avc_node *pos, *node, *orig = NULL;
614 struct hlist_head *head;
615 struct hlist_node *next;
616 spinlock_t *lock;
617
618 node = avc_alloc_node();
619 if (!node) {
620 rc = -ENOMEM;
621 goto out;
622 }
623
624 /* Lock the target slot */
625 hvalue = avc_hash(ssid, tsid, tclass);
626
627 head = &avc_cache.slots[hvalue];
628 lock = &avc_cache.slots_lock[hvalue];
629
630 spin_lock_irqsave(lock, flag);
631
632 hlist_for_each_entry(pos, next, head, list) {
633 if (ssid == pos->ae.ssid &&
634 tsid == pos->ae.tsid &&
635 tclass == pos->ae.tclass &&
636 seqno == pos->ae.avd.seqno){
637 orig = pos;
638 break;
639 }
640 }
641
642 if (!orig) {
643 rc = -ENOENT;
644 avc_node_kill(node);
645 goto out_unlock;
646 }
647
648 /*
649 * Copy and replace original node.
650 */
651
652 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
653
654 switch (event) {
655 case AVC_CALLBACK_GRANT:
656 node->ae.avd.allowed |= perms;
657 break;
658 case AVC_CALLBACK_TRY_REVOKE:
659 case AVC_CALLBACK_REVOKE:
660 node->ae.avd.allowed &= ~perms;
661 break;
662 case AVC_CALLBACK_AUDITALLOW_ENABLE:
663 node->ae.avd.auditallow |= perms;
664 break;
665 case AVC_CALLBACK_AUDITALLOW_DISABLE:
666 node->ae.avd.auditallow &= ~perms;
667 break;
668 case AVC_CALLBACK_AUDITDENY_ENABLE:
669 node->ae.avd.auditdeny |= perms;
670 break;
671 case AVC_CALLBACK_AUDITDENY_DISABLE:
672 node->ae.avd.auditdeny &= ~perms;
673 break;
674 }
675 avc_node_replace(node, orig);
676 out_unlock:
677 spin_unlock_irqrestore(lock, flag);
678 out:
679 return rc;
680 }
681
682 /**
683 * avc_flush - Flush the cache
684 */
avc_flush(void)685 static void avc_flush(void)
686 {
687 struct hlist_head *head;
688 struct hlist_node *next;
689 struct avc_node *node;
690 spinlock_t *lock;
691 unsigned long flag;
692 int i;
693
694 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
695 head = &avc_cache.slots[i];
696 lock = &avc_cache.slots_lock[i];
697
698 spin_lock_irqsave(lock, flag);
699 /*
700 * With preemptable RCU, the outer spinlock does not
701 * prevent RCU grace periods from ending.
702 */
703 rcu_read_lock();
704 hlist_for_each_entry(node, next, head, list)
705 avc_node_delete(node);
706 rcu_read_unlock();
707 spin_unlock_irqrestore(lock, flag);
708 }
709 }
710
711 /**
712 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
713 * @seqno: policy sequence number
714 */
avc_ss_reset(u32 seqno)715 int avc_ss_reset(u32 seqno)
716 {
717 struct avc_callback_node *c;
718 int rc = 0, tmprc;
719
720 avc_flush();
721
722 for (c = avc_callbacks; c; c = c->next) {
723 if (c->events & AVC_CALLBACK_RESET) {
724 tmprc = c->callback(AVC_CALLBACK_RESET,
725 0, 0, 0, 0, NULL);
726 /* save the first error encountered for the return
727 value and continue processing the callbacks */
728 if (!rc)
729 rc = tmprc;
730 }
731 }
732
733 avc_latest_notif_update(seqno, 0);
734 return rc;
735 }
736
737 /**
738 * avc_has_perm_noaudit - Check permissions but perform no auditing.
739 * @ssid: source security identifier
740 * @tsid: target security identifier
741 * @tclass: target security class
742 * @requested: requested permissions, interpreted based on @tclass
743 * @flags: AVC_STRICT or 0
744 * @avd: access vector decisions
745 *
746 * Check the AVC to determine whether the @requested permissions are granted
747 * for the SID pair (@ssid, @tsid), interpreting the permissions
748 * based on @tclass, and call the security server on a cache miss to obtain
749 * a new decision and add it to the cache. Return a copy of the decisions
750 * in @avd. Return %0 if all @requested permissions are granted,
751 * -%EACCES if any permissions are denied, or another -errno upon
752 * other errors. This function is typically called by avc_has_perm(),
753 * but may also be called directly to separate permission checking from
754 * auditing, e.g. in cases where a lock must be held for the check but
755 * should be released for the auditing.
756 */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned flags,struct av_decision * in_avd)757 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
758 u16 tclass, u32 requested,
759 unsigned flags,
760 struct av_decision *in_avd)
761 {
762 struct avc_node *node;
763 struct av_decision avd_entry, *avd;
764 int rc = 0;
765 u32 denied;
766
767 BUG_ON(!requested);
768
769 rcu_read_lock();
770
771 node = avc_lookup(ssid, tsid, tclass);
772 if (!node) {
773 rcu_read_unlock();
774
775 if (in_avd)
776 avd = in_avd;
777 else
778 avd = &avd_entry;
779
780 security_compute_av(ssid, tsid, tclass, avd);
781 rcu_read_lock();
782 node = avc_insert(ssid, tsid, tclass, avd);
783 } else {
784 if (in_avd)
785 memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
786 avd = &node->ae.avd;
787 }
788
789 denied = requested & ~(avd->allowed);
790
791 if (denied) {
792 if (flags & AVC_STRICT)
793 rc = -EACCES;
794 else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
795 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
796 tsid, tclass, avd->seqno);
797 else
798 rc = -EACCES;
799 }
800
801 rcu_read_unlock();
802 return rc;
803 }
804
805 /**
806 * avc_has_perm - Check permissions and perform any appropriate auditing.
807 * @ssid: source security identifier
808 * @tsid: target security identifier
809 * @tclass: target security class
810 * @requested: requested permissions, interpreted based on @tclass
811 * @auditdata: auxiliary audit data
812 * @flags: VFS walk flags
813 *
814 * Check the AVC to determine whether the @requested permissions are granted
815 * for the SID pair (@ssid, @tsid), interpreting the permissions
816 * based on @tclass, and call the security server on a cache miss to obtain
817 * a new decision and add it to the cache. Audit the granting or denial of
818 * permissions in accordance with the policy. Return %0 if all @requested
819 * permissions are granted, -%EACCES if any permissions are denied, or
820 * another -errno upon other errors.
821 */
avc_has_perm_flags(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata,unsigned flags)822 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
823 u32 requested, struct common_audit_data *auditdata,
824 unsigned flags)
825 {
826 struct av_decision avd;
827 int rc, rc2;
828
829 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
830
831 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
832 flags);
833 if (rc2)
834 return rc2;
835 return rc;
836 }
837
avc_policy_seqno(void)838 u32 avc_policy_seqno(void)
839 {
840 return avc_cache.latest_notif;
841 }
842
avc_disable(void)843 void avc_disable(void)
844 {
845 /*
846 * If you are looking at this because you have realized that we are
847 * not destroying the avc_node_cachep it might be easy to fix, but
848 * I don't know the memory barrier semantics well enough to know. It's
849 * possible that some other task dereferenced security_ops when
850 * it still pointed to selinux operations. If that is the case it's
851 * possible that it is about to use the avc and is about to need the
852 * avc_node_cachep. I know I could wrap the security.c security_ops call
853 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
854 * the cache and get that memory back.
855 */
856 if (avc_node_cachep) {
857 avc_flush();
858 /* kmem_cache_destroy(avc_node_cachep); */
859 }
860 }
861