1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67
68 /* Keep track of the new idr low so that we don't re-use association id
69 * numbers too fast. It is protected by they idr spin lock is in the
70 * range of 1 - INT_MAX.
71 */
72 static u32 idr_low = 1;
73
74
75 /* 1st Level Abstractions. */
76
77 /* Initialize a new association from provided memory. */
sctp_association_init(struct sctp_association * asoc,const struct sctp_endpoint * ep,const struct sock * sk,sctp_scope_t scope,gfp_t gfp)78 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
79 const struct sctp_endpoint *ep,
80 const struct sock *sk,
81 sctp_scope_t scope,
82 gfp_t gfp)
83 {
84 struct sctp_sock *sp;
85 int i;
86 sctp_paramhdr_t *p;
87 int err;
88
89 /* Retrieve the SCTP per socket area. */
90 sp = sctp_sk((struct sock *)sk);
91
92 /* Discarding const is appropriate here. */
93 asoc->ep = (struct sctp_endpoint *)ep;
94 sctp_endpoint_hold(asoc->ep);
95
96 /* Hold the sock. */
97 asoc->base.sk = (struct sock *)sk;
98 sock_hold(asoc->base.sk);
99
100 /* Initialize the common base substructure. */
101 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
102
103 /* Initialize the object handling fields. */
104 atomic_set(&asoc->base.refcnt, 1);
105 asoc->base.dead = 0;
106 asoc->base.malloced = 0;
107
108 /* Initialize the bind addr area. */
109 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
110
111 asoc->state = SCTP_STATE_CLOSED;
112
113 /* Set these values from the socket values, a conversion between
114 * millsecons to seconds/microseconds must also be done.
115 */
116 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
117 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
118 * 1000;
119 asoc->frag_point = 0;
120 asoc->user_frag = sp->user_frag;
121
122 /* Set the association max_retrans and RTO values from the
123 * socket values.
124 */
125 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
126 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
127 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
128 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
129
130 asoc->overall_error_count = 0;
131
132 /* Initialize the association's heartbeat interval based on the
133 * sock configured value.
134 */
135 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
136
137 /* Initialize path max retrans value. */
138 asoc->pathmaxrxt = sp->pathmaxrxt;
139
140 /* Initialize default path MTU. */
141 asoc->pathmtu = sp->pathmtu;
142
143 /* Set association default SACK delay */
144 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
145 asoc->sackfreq = sp->sackfreq;
146
147 /* Set the association default flags controlling
148 * Heartbeat, SACK delay, and Path MTU Discovery.
149 */
150 asoc->param_flags = sp->param_flags;
151
152 /* Initialize the maximum mumber of new data packets that can be sent
153 * in a burst.
154 */
155 asoc->max_burst = sp->max_burst;
156
157 /* initialize association timers */
158 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
159 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
164
165 /* sctpimpguide Section 2.12.2
166 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
167 * recommended value of 5 times 'RTO.Max'.
168 */
169 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
170 = 5 * asoc->rto_max;
171
172 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
173 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
174 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
175 (unsigned long)sp->autoclose * HZ;
176
177 /* Initializes the timers */
178 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
179 setup_timer(&asoc->timers[i], sctp_timer_events[i],
180 (unsigned long)asoc);
181
182 /* Pull default initialization values from the sock options.
183 * Note: This assumes that the values have already been
184 * validated in the sock.
185 */
186 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
187 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
188 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
189
190 asoc->max_init_timeo =
191 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
192
193 /* Allocate storage for the ssnmap after the inbound and outbound
194 * streams have been negotiated during Init.
195 */
196 asoc->ssnmap = NULL;
197
198 /* Set the local window size for receive.
199 * This is also the rcvbuf space per association.
200 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
201 * 1500 bytes in one SCTP packet.
202 */
203 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
204 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
205 else
206 asoc->rwnd = sk->sk_rcvbuf/2;
207
208 asoc->a_rwnd = asoc->rwnd;
209
210 asoc->rwnd_over = 0;
211 asoc->rwnd_press = 0;
212
213 /* Use my own max window until I learn something better. */
214 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
215
216 /* Set the sndbuf size for transmit. */
217 asoc->sndbuf_used = 0;
218
219 /* Initialize the receive memory counter */
220 atomic_set(&asoc->rmem_alloc, 0);
221
222 init_waitqueue_head(&asoc->wait);
223
224 asoc->c.my_vtag = sctp_generate_tag(ep);
225 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
226 asoc->c.peer_vtag = 0;
227 asoc->c.my_ttag = 0;
228 asoc->c.peer_ttag = 0;
229 asoc->c.my_port = ep->base.bind_addr.port;
230
231 asoc->c.initial_tsn = sctp_generate_tsn(ep);
232
233 asoc->next_tsn = asoc->c.initial_tsn;
234
235 asoc->ctsn_ack_point = asoc->next_tsn - 1;
236 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
237 asoc->highest_sacked = asoc->ctsn_ack_point;
238 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
239 asoc->unack_data = 0;
240
241 /* ADDIP Section 4.1 Asconf Chunk Procedures
242 *
243 * When an endpoint has an ASCONF signaled change to be sent to the
244 * remote endpoint it should do the following:
245 * ...
246 * A2) a serial number should be assigned to the chunk. The serial
247 * number SHOULD be a monotonically increasing number. The serial
248 * numbers SHOULD be initialized at the start of the
249 * association to the same value as the initial TSN.
250 */
251 asoc->addip_serial = asoc->c.initial_tsn;
252
253 INIT_LIST_HEAD(&asoc->addip_chunk_list);
254 INIT_LIST_HEAD(&asoc->asconf_ack_list);
255
256 /* Make an empty list of remote transport addresses. */
257 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
258 asoc->peer.transport_count = 0;
259
260 /* RFC 2960 5.1 Normal Establishment of an Association
261 *
262 * After the reception of the first data chunk in an
263 * association the endpoint must immediately respond with a
264 * sack to acknowledge the data chunk. Subsequent
265 * acknowledgements should be done as described in Section
266 * 6.2.
267 *
268 * [We implement this by telling a new association that it
269 * already received one packet.]
270 */
271 asoc->peer.sack_needed = 1;
272 asoc->peer.sack_cnt = 0;
273
274 /* Assume that the peer will tell us if he recognizes ASCONF
275 * as part of INIT exchange.
276 * The sctp_addip_noauth option is there for backward compatibilty
277 * and will revert old behavior.
278 */
279 asoc->peer.asconf_capable = 0;
280 if (sctp_addip_noauth)
281 asoc->peer.asconf_capable = 1;
282
283 /* Create an input queue. */
284 sctp_inq_init(&asoc->base.inqueue);
285 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
286
287 /* Create an output queue. */
288 sctp_outq_init(asoc, &asoc->outqueue);
289
290 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
291 goto fail_init;
292
293 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
294
295 asoc->need_ecne = 0;
296
297 asoc->assoc_id = 0;
298
299 /* Assume that peer would support both address types unless we are
300 * told otherwise.
301 */
302 asoc->peer.ipv4_address = 1;
303 if (asoc->base.sk->sk_family == PF_INET6)
304 asoc->peer.ipv6_address = 1;
305 INIT_LIST_HEAD(&asoc->asocs);
306
307 asoc->autoclose = sp->autoclose;
308
309 asoc->default_stream = sp->default_stream;
310 asoc->default_ppid = sp->default_ppid;
311 asoc->default_flags = sp->default_flags;
312 asoc->default_context = sp->default_context;
313 asoc->default_timetolive = sp->default_timetolive;
314 asoc->default_rcv_context = sp->default_rcv_context;
315
316 /* AUTH related initializations */
317 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
318 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
319 if (err)
320 goto fail_init;
321
322 asoc->active_key_id = ep->active_key_id;
323 asoc->asoc_shared_key = NULL;
324
325 asoc->default_hmac_id = 0;
326 /* Save the hmacs and chunks list into this association */
327 if (ep->auth_hmacs_list)
328 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
329 ntohs(ep->auth_hmacs_list->param_hdr.length));
330 if (ep->auth_chunk_list)
331 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
332 ntohs(ep->auth_chunk_list->param_hdr.length));
333
334 /* Get the AUTH random number for this association */
335 p = (sctp_paramhdr_t *)asoc->c.auth_random;
336 p->type = SCTP_PARAM_RANDOM;
337 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
338 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
339
340 return asoc;
341
342 fail_init:
343 sctp_endpoint_put(asoc->ep);
344 sock_put(asoc->base.sk);
345 return NULL;
346 }
347
348 /* Allocate and initialize a new association */
sctp_association_new(const struct sctp_endpoint * ep,const struct sock * sk,sctp_scope_t scope,gfp_t gfp)349 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
350 const struct sock *sk,
351 sctp_scope_t scope,
352 gfp_t gfp)
353 {
354 struct sctp_association *asoc;
355
356 asoc = t_new(struct sctp_association, gfp);
357 if (!asoc)
358 goto fail;
359
360 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
361 goto fail_init;
362
363 asoc->base.malloced = 1;
364 SCTP_DBG_OBJCNT_INC(assoc);
365 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
366
367 return asoc;
368
369 fail_init:
370 kfree(asoc);
371 fail:
372 return NULL;
373 }
374
375 /* Free this association if possible. There may still be users, so
376 * the actual deallocation may be delayed.
377 */
sctp_association_free(struct sctp_association * asoc)378 void sctp_association_free(struct sctp_association *asoc)
379 {
380 struct sock *sk = asoc->base.sk;
381 struct sctp_transport *transport;
382 struct list_head *pos, *temp;
383 int i;
384
385 /* Only real associations count against the endpoint, so
386 * don't bother for if this is a temporary association.
387 */
388 if (!asoc->temp) {
389 list_del(&asoc->asocs);
390
391 /* Decrement the backlog value for a TCP-style listening
392 * socket.
393 */
394 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
395 sk->sk_ack_backlog--;
396 }
397
398 /* Mark as dead, so other users can know this structure is
399 * going away.
400 */
401 asoc->base.dead = 1;
402
403 /* Dispose of any data lying around in the outqueue. */
404 sctp_outq_free(&asoc->outqueue);
405
406 /* Dispose of any pending messages for the upper layer. */
407 sctp_ulpq_free(&asoc->ulpq);
408
409 /* Dispose of any pending chunks on the inqueue. */
410 sctp_inq_free(&asoc->base.inqueue);
411
412 sctp_tsnmap_free(&asoc->peer.tsn_map);
413
414 /* Free ssnmap storage. */
415 sctp_ssnmap_free(asoc->ssnmap);
416
417 /* Clean up the bound address list. */
418 sctp_bind_addr_free(&asoc->base.bind_addr);
419
420 /* Do we need to go through all of our timers and
421 * delete them? To be safe we will try to delete all, but we
422 * should be able to go through and make a guess based
423 * on our state.
424 */
425 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
426 if (timer_pending(&asoc->timers[i]) &&
427 del_timer(&asoc->timers[i]))
428 sctp_association_put(asoc);
429 }
430
431 /* Free peer's cached cookie. */
432 kfree(asoc->peer.cookie);
433 kfree(asoc->peer.peer_random);
434 kfree(asoc->peer.peer_chunks);
435 kfree(asoc->peer.peer_hmacs);
436
437 /* Release the transport structures. */
438 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
439 transport = list_entry(pos, struct sctp_transport, transports);
440 list_del(pos);
441 sctp_transport_free(transport);
442 }
443
444 asoc->peer.transport_count = 0;
445
446 /* Free any cached ASCONF_ACK chunk. */
447 sctp_assoc_free_asconf_acks(asoc);
448
449 /* Free any cached ASCONF chunk. */
450 if (asoc->addip_last_asconf)
451 sctp_chunk_free(asoc->addip_last_asconf);
452
453 /* AUTH - Free the endpoint shared keys */
454 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
455
456 /* AUTH - Free the association shared key */
457 sctp_auth_key_put(asoc->asoc_shared_key);
458
459 sctp_association_put(asoc);
460 }
461
462 /* Cleanup and free up an association. */
sctp_association_destroy(struct sctp_association * asoc)463 static void sctp_association_destroy(struct sctp_association *asoc)
464 {
465 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
466
467 sctp_endpoint_put(asoc->ep);
468 sock_put(asoc->base.sk);
469
470 if (asoc->assoc_id != 0) {
471 spin_lock_bh(&sctp_assocs_id_lock);
472 idr_remove(&sctp_assocs_id, asoc->assoc_id);
473 spin_unlock_bh(&sctp_assocs_id_lock);
474 }
475
476 WARN_ON(atomic_read(&asoc->rmem_alloc));
477
478 if (asoc->base.malloced) {
479 kfree(asoc);
480 SCTP_DBG_OBJCNT_DEC(assoc);
481 }
482 }
483
484 /* Change the primary destination address for the peer. */
sctp_assoc_set_primary(struct sctp_association * asoc,struct sctp_transport * transport)485 void sctp_assoc_set_primary(struct sctp_association *asoc,
486 struct sctp_transport *transport)
487 {
488 int changeover = 0;
489
490 /* it's a changeover only if we already have a primary path
491 * that we are changing
492 */
493 if (asoc->peer.primary_path != NULL &&
494 asoc->peer.primary_path != transport)
495 changeover = 1 ;
496
497 asoc->peer.primary_path = transport;
498
499 /* Set a default msg_name for events. */
500 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
501 sizeof(union sctp_addr));
502
503 /* If the primary path is changing, assume that the
504 * user wants to use this new path.
505 */
506 if ((transport->state == SCTP_ACTIVE) ||
507 (transport->state == SCTP_UNKNOWN))
508 asoc->peer.active_path = transport;
509
510 /*
511 * SFR-CACC algorithm:
512 * Upon the receipt of a request to change the primary
513 * destination address, on the data structure for the new
514 * primary destination, the sender MUST do the following:
515 *
516 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
517 * to this destination address earlier. The sender MUST set
518 * CYCLING_CHANGEOVER to indicate that this switch is a
519 * double switch to the same destination address.
520 *
521 * Really, only bother is we have data queued or outstanding on
522 * the association.
523 */
524 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
525 return;
526
527 if (transport->cacc.changeover_active)
528 transport->cacc.cycling_changeover = changeover;
529
530 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
531 * a changeover has occurred.
532 */
533 transport->cacc.changeover_active = changeover;
534
535 /* 3) The sender MUST store the next TSN to be sent in
536 * next_tsn_at_change.
537 */
538 transport->cacc.next_tsn_at_change = asoc->next_tsn;
539 }
540
541 /* Remove a transport from an association. */
sctp_assoc_rm_peer(struct sctp_association * asoc,struct sctp_transport * peer)542 void sctp_assoc_rm_peer(struct sctp_association *asoc,
543 struct sctp_transport *peer)
544 {
545 struct list_head *pos;
546 struct sctp_transport *transport;
547
548 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
549 " port: %d\n",
550 asoc,
551 (&peer->ipaddr),
552 ntohs(peer->ipaddr.v4.sin_port));
553
554 /* If we are to remove the current retran_path, update it
555 * to the next peer before removing this peer from the list.
556 */
557 if (asoc->peer.retran_path == peer)
558 sctp_assoc_update_retran_path(asoc);
559
560 /* Remove this peer from the list. */
561 list_del(&peer->transports);
562
563 /* Get the first transport of asoc. */
564 pos = asoc->peer.transport_addr_list.next;
565 transport = list_entry(pos, struct sctp_transport, transports);
566
567 /* Update any entries that match the peer to be deleted. */
568 if (asoc->peer.primary_path == peer)
569 sctp_assoc_set_primary(asoc, transport);
570 if (asoc->peer.active_path == peer)
571 asoc->peer.active_path = transport;
572 if (asoc->peer.retran_path == peer)
573 asoc->peer.retran_path = transport;
574 if (asoc->peer.last_data_from == peer)
575 asoc->peer.last_data_from = transport;
576
577 /* If we remove the transport an INIT was last sent to, set it to
578 * NULL. Combined with the update of the retran path above, this
579 * will cause the next INIT to be sent to the next available
580 * transport, maintaining the cycle.
581 */
582 if (asoc->init_last_sent_to == peer)
583 asoc->init_last_sent_to = NULL;
584
585 /* If we remove the transport an SHUTDOWN was last sent to, set it
586 * to NULL. Combined with the update of the retran path above, this
587 * will cause the next SHUTDOWN to be sent to the next available
588 * transport, maintaining the cycle.
589 */
590 if (asoc->shutdown_last_sent_to == peer)
591 asoc->shutdown_last_sent_to = NULL;
592
593 /* If we remove the transport an ASCONF was last sent to, set it to
594 * NULL.
595 */
596 if (asoc->addip_last_asconf &&
597 asoc->addip_last_asconf->transport == peer)
598 asoc->addip_last_asconf->transport = NULL;
599
600 /* If we have something on the transmitted list, we have to
601 * save it off. The best place is the active path.
602 */
603 if (!list_empty(&peer->transmitted)) {
604 struct sctp_transport *active = asoc->peer.active_path;
605 struct sctp_chunk *ch;
606
607 /* Reset the transport of each chunk on this list */
608 list_for_each_entry(ch, &peer->transmitted,
609 transmitted_list) {
610 ch->transport = NULL;
611 ch->rtt_in_progress = 0;
612 }
613
614 list_splice_tail_init(&peer->transmitted,
615 &active->transmitted);
616
617 /* Start a T3 timer here in case it wasn't running so
618 * that these migrated packets have a chance to get
619 * retrnasmitted.
620 */
621 if (!timer_pending(&active->T3_rtx_timer))
622 if (!mod_timer(&active->T3_rtx_timer,
623 jiffies + active->rto))
624 sctp_transport_hold(active);
625 }
626
627 asoc->peer.transport_count--;
628
629 sctp_transport_free(peer);
630 }
631
632 /* Add a transport address to an association. */
sctp_assoc_add_peer(struct sctp_association * asoc,const union sctp_addr * addr,const gfp_t gfp,const int peer_state)633 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
634 const union sctp_addr *addr,
635 const gfp_t gfp,
636 const int peer_state)
637 {
638 struct sctp_transport *peer;
639 struct sctp_sock *sp;
640 unsigned short port;
641
642 sp = sctp_sk(asoc->base.sk);
643
644 /* AF_INET and AF_INET6 share common port field. */
645 port = ntohs(addr->v4.sin_port);
646
647 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
648 " port: %d state:%d\n",
649 asoc,
650 addr,
651 port,
652 peer_state);
653
654 /* Set the port if it has not been set yet. */
655 if (0 == asoc->peer.port)
656 asoc->peer.port = port;
657
658 /* Check to see if this is a duplicate. */
659 peer = sctp_assoc_lookup_paddr(asoc, addr);
660 if (peer) {
661 /* An UNKNOWN state is only set on transports added by
662 * user in sctp_connectx() call. Such transports should be
663 * considered CONFIRMED per RFC 4960, Section 5.4.
664 */
665 if (peer->state == SCTP_UNKNOWN) {
666 peer->state = SCTP_ACTIVE;
667 }
668 return peer;
669 }
670
671 peer = sctp_transport_new(addr, gfp);
672 if (!peer)
673 return NULL;
674
675 sctp_transport_set_owner(peer, asoc);
676
677 /* Initialize the peer's heartbeat interval based on the
678 * association configured value.
679 */
680 peer->hbinterval = asoc->hbinterval;
681
682 /* Set the path max_retrans. */
683 peer->pathmaxrxt = asoc->pathmaxrxt;
684
685 /* Initialize the peer's SACK delay timeout based on the
686 * association configured value.
687 */
688 peer->sackdelay = asoc->sackdelay;
689 peer->sackfreq = asoc->sackfreq;
690
691 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
692 * based on association setting.
693 */
694 peer->param_flags = asoc->param_flags;
695
696 sctp_transport_route(peer, NULL, sp);
697
698 /* Initialize the pmtu of the transport. */
699 if (peer->param_flags & SPP_PMTUD_DISABLE) {
700 if (asoc->pathmtu)
701 peer->pathmtu = asoc->pathmtu;
702 else
703 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
704 }
705
706 /* If this is the first transport addr on this association,
707 * initialize the association PMTU to the peer's PMTU.
708 * If not and the current association PMTU is higher than the new
709 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
710 */
711 if (asoc->pathmtu)
712 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
713 else
714 asoc->pathmtu = peer->pathmtu;
715
716 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
717 "%d\n", asoc, asoc->pathmtu);
718 peer->pmtu_pending = 0;
719
720 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
721
722 /* The asoc->peer.port might not be meaningful yet, but
723 * initialize the packet structure anyway.
724 */
725 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
726 asoc->peer.port);
727
728 /* 7.2.1 Slow-Start
729 *
730 * o The initial cwnd before DATA transmission or after a sufficiently
731 * long idle period MUST be set to
732 * min(4*MTU, max(2*MTU, 4380 bytes))
733 *
734 * o The initial value of ssthresh MAY be arbitrarily high
735 * (for example, implementations MAY use the size of the
736 * receiver advertised window).
737 */
738 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
739
740 /* At this point, we may not have the receiver's advertised window,
741 * so initialize ssthresh to the default value and it will be set
742 * later when we process the INIT.
743 */
744 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
745
746 peer->partial_bytes_acked = 0;
747 peer->flight_size = 0;
748 peer->burst_limited = 0;
749
750 /* Set the transport's RTO.initial value */
751 peer->rto = asoc->rto_initial;
752
753 /* Set the peer's active state. */
754 peer->state = peer_state;
755
756 /* Attach the remote transport to our asoc. */
757 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
758 asoc->peer.transport_count++;
759
760 /* If we do not yet have a primary path, set one. */
761 if (!asoc->peer.primary_path) {
762 sctp_assoc_set_primary(asoc, peer);
763 asoc->peer.retran_path = peer;
764 }
765
766 if (asoc->peer.active_path == asoc->peer.retran_path &&
767 peer->state != SCTP_UNCONFIRMED) {
768 asoc->peer.retran_path = peer;
769 }
770
771 return peer;
772 }
773
774 /* Delete a transport address from an association. */
sctp_assoc_del_peer(struct sctp_association * asoc,const union sctp_addr * addr)775 void sctp_assoc_del_peer(struct sctp_association *asoc,
776 const union sctp_addr *addr)
777 {
778 struct list_head *pos;
779 struct list_head *temp;
780 struct sctp_transport *transport;
781
782 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
783 transport = list_entry(pos, struct sctp_transport, transports);
784 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
785 /* Do book keeping for removing the peer and free it. */
786 sctp_assoc_rm_peer(asoc, transport);
787 break;
788 }
789 }
790 }
791
792 /* Lookup a transport by address. */
sctp_assoc_lookup_paddr(const struct sctp_association * asoc,const union sctp_addr * address)793 struct sctp_transport *sctp_assoc_lookup_paddr(
794 const struct sctp_association *asoc,
795 const union sctp_addr *address)
796 {
797 struct sctp_transport *t;
798
799 /* Cycle through all transports searching for a peer address. */
800
801 list_for_each_entry(t, &asoc->peer.transport_addr_list,
802 transports) {
803 if (sctp_cmp_addr_exact(address, &t->ipaddr))
804 return t;
805 }
806
807 return NULL;
808 }
809
810 /* Remove all transports except a give one */
sctp_assoc_del_nonprimary_peers(struct sctp_association * asoc,struct sctp_transport * primary)811 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
812 struct sctp_transport *primary)
813 {
814 struct sctp_transport *temp;
815 struct sctp_transport *t;
816
817 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
818 transports) {
819 /* if the current transport is not the primary one, delete it */
820 if (t != primary)
821 sctp_assoc_rm_peer(asoc, t);
822 }
823 }
824
825 /* Engage in transport control operations.
826 * Mark the transport up or down and send a notification to the user.
827 * Select and update the new active and retran paths.
828 */
sctp_assoc_control_transport(struct sctp_association * asoc,struct sctp_transport * transport,sctp_transport_cmd_t command,sctp_sn_error_t error)829 void sctp_assoc_control_transport(struct sctp_association *asoc,
830 struct sctp_transport *transport,
831 sctp_transport_cmd_t command,
832 sctp_sn_error_t error)
833 {
834 struct sctp_transport *t = NULL;
835 struct sctp_transport *first;
836 struct sctp_transport *second;
837 struct sctp_ulpevent *event;
838 struct sockaddr_storage addr;
839 int spc_state = 0;
840
841 /* Record the transition on the transport. */
842 switch (command) {
843 case SCTP_TRANSPORT_UP:
844 /* If we are moving from UNCONFIRMED state due
845 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
846 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
847 */
848 if (SCTP_UNCONFIRMED == transport->state &&
849 SCTP_HEARTBEAT_SUCCESS == error)
850 spc_state = SCTP_ADDR_CONFIRMED;
851 else
852 spc_state = SCTP_ADDR_AVAILABLE;
853 transport->state = SCTP_ACTIVE;
854 break;
855
856 case SCTP_TRANSPORT_DOWN:
857 /* If the transport was never confirmed, do not transition it
858 * to inactive state. Also, release the cached route since
859 * there may be a better route next time.
860 */
861 if (transport->state != SCTP_UNCONFIRMED)
862 transport->state = SCTP_INACTIVE;
863 else {
864 dst_release(transport->dst);
865 transport->dst = NULL;
866 }
867
868 spc_state = SCTP_ADDR_UNREACHABLE;
869 break;
870
871 default:
872 return;
873 }
874
875 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
876 * user.
877 */
878 memset(&addr, 0, sizeof(struct sockaddr_storage));
879 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
880 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
881 0, spc_state, error, GFP_ATOMIC);
882 if (event)
883 sctp_ulpq_tail_event(&asoc->ulpq, event);
884
885 /* Select new active and retran paths. */
886
887 /* Look for the two most recently used active transports.
888 *
889 * This code produces the wrong ordering whenever jiffies
890 * rolls over, but we still get usable transports, so we don't
891 * worry about it.
892 */
893 first = NULL; second = NULL;
894
895 list_for_each_entry(t, &asoc->peer.transport_addr_list,
896 transports) {
897
898 if ((t->state == SCTP_INACTIVE) ||
899 (t->state == SCTP_UNCONFIRMED))
900 continue;
901 if (!first || t->last_time_heard > first->last_time_heard) {
902 second = first;
903 first = t;
904 }
905 if (!second || t->last_time_heard > second->last_time_heard)
906 second = t;
907 }
908
909 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
910 *
911 * By default, an endpoint should always transmit to the
912 * primary path, unless the SCTP user explicitly specifies the
913 * destination transport address (and possibly source
914 * transport address) to use.
915 *
916 * [If the primary is active but not most recent, bump the most
917 * recently used transport.]
918 */
919 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
920 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
921 first != asoc->peer.primary_path) {
922 second = first;
923 first = asoc->peer.primary_path;
924 }
925
926 /* If we failed to find a usable transport, just camp on the
927 * primary, even if it is inactive.
928 */
929 if (!first) {
930 first = asoc->peer.primary_path;
931 second = asoc->peer.primary_path;
932 }
933
934 /* Set the active and retran transports. */
935 asoc->peer.active_path = first;
936 asoc->peer.retran_path = second;
937 }
938
939 /* Hold a reference to an association. */
sctp_association_hold(struct sctp_association * asoc)940 void sctp_association_hold(struct sctp_association *asoc)
941 {
942 atomic_inc(&asoc->base.refcnt);
943 }
944
945 /* Release a reference to an association and cleanup
946 * if there are no more references.
947 */
sctp_association_put(struct sctp_association * asoc)948 void sctp_association_put(struct sctp_association *asoc)
949 {
950 if (atomic_dec_and_test(&asoc->base.refcnt))
951 sctp_association_destroy(asoc);
952 }
953
954 /* Allocate the next TSN, Transmission Sequence Number, for the given
955 * association.
956 */
sctp_association_get_next_tsn(struct sctp_association * asoc)957 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
958 {
959 /* From Section 1.6 Serial Number Arithmetic:
960 * Transmission Sequence Numbers wrap around when they reach
961 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
962 * after transmitting TSN = 2*32 - 1 is TSN = 0.
963 */
964 __u32 retval = asoc->next_tsn;
965 asoc->next_tsn++;
966 asoc->unack_data++;
967
968 return retval;
969 }
970
971 /* Compare two addresses to see if they match. Wildcard addresses
972 * only match themselves.
973 */
sctp_cmp_addr_exact(const union sctp_addr * ss1,const union sctp_addr * ss2)974 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
975 const union sctp_addr *ss2)
976 {
977 struct sctp_af *af;
978
979 af = sctp_get_af_specific(ss1->sa.sa_family);
980 if (unlikely(!af))
981 return 0;
982
983 return af->cmp_addr(ss1, ss2);
984 }
985
986 /* Return an ecne chunk to get prepended to a packet.
987 * Note: We are sly and return a shared, prealloced chunk. FIXME:
988 * No we don't, but we could/should.
989 */
sctp_get_ecne_prepend(struct sctp_association * asoc)990 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
991 {
992 struct sctp_chunk *chunk;
993
994 /* Send ECNE if needed.
995 * Not being able to allocate a chunk here is not deadly.
996 */
997 if (asoc->need_ecne)
998 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
999 else
1000 chunk = NULL;
1001
1002 return chunk;
1003 }
1004
1005 /*
1006 * Find which transport this TSN was sent on.
1007 */
sctp_assoc_lookup_tsn(struct sctp_association * asoc,__u32 tsn)1008 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1009 __u32 tsn)
1010 {
1011 struct sctp_transport *active;
1012 struct sctp_transport *match;
1013 struct sctp_transport *transport;
1014 struct sctp_chunk *chunk;
1015 __be32 key = htonl(tsn);
1016
1017 match = NULL;
1018
1019 /*
1020 * FIXME: In general, find a more efficient data structure for
1021 * searching.
1022 */
1023
1024 /*
1025 * The general strategy is to search each transport's transmitted
1026 * list. Return which transport this TSN lives on.
1027 *
1028 * Let's be hopeful and check the active_path first.
1029 * Another optimization would be to know if there is only one
1030 * outbound path and not have to look for the TSN at all.
1031 *
1032 */
1033
1034 active = asoc->peer.active_path;
1035
1036 list_for_each_entry(chunk, &active->transmitted,
1037 transmitted_list) {
1038
1039 if (key == chunk->subh.data_hdr->tsn) {
1040 match = active;
1041 goto out;
1042 }
1043 }
1044
1045 /* If not found, go search all the other transports. */
1046 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1047 transports) {
1048
1049 if (transport == active)
1050 break;
1051 list_for_each_entry(chunk, &transport->transmitted,
1052 transmitted_list) {
1053 if (key == chunk->subh.data_hdr->tsn) {
1054 match = transport;
1055 goto out;
1056 }
1057 }
1058 }
1059 out:
1060 return match;
1061 }
1062
1063 /* Is this the association we are looking for? */
sctp_assoc_is_match(struct sctp_association * asoc,const union sctp_addr * laddr,const union sctp_addr * paddr)1064 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1065 const union sctp_addr *laddr,
1066 const union sctp_addr *paddr)
1067 {
1068 struct sctp_transport *transport;
1069
1070 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1071 (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1072 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1073 if (!transport)
1074 goto out;
1075
1076 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1077 sctp_sk(asoc->base.sk)))
1078 goto out;
1079 }
1080 transport = NULL;
1081
1082 out:
1083 return transport;
1084 }
1085
1086 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
sctp_assoc_bh_rcv(struct work_struct * work)1087 static void sctp_assoc_bh_rcv(struct work_struct *work)
1088 {
1089 struct sctp_association *asoc =
1090 container_of(work, struct sctp_association,
1091 base.inqueue.immediate);
1092 struct sctp_endpoint *ep;
1093 struct sctp_chunk *chunk;
1094 struct sctp_inq *inqueue;
1095 int state;
1096 sctp_subtype_t subtype;
1097 int error = 0;
1098
1099 /* The association should be held so we should be safe. */
1100 ep = asoc->ep;
1101
1102 inqueue = &asoc->base.inqueue;
1103 sctp_association_hold(asoc);
1104 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1105 state = asoc->state;
1106 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1107
1108 /* SCTP-AUTH, Section 6.3:
1109 * The receiver has a list of chunk types which it expects
1110 * to be received only after an AUTH-chunk. This list has
1111 * been sent to the peer during the association setup. It
1112 * MUST silently discard these chunks if they are not placed
1113 * after an AUTH chunk in the packet.
1114 */
1115 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1116 continue;
1117
1118 /* Remember where the last DATA chunk came from so we
1119 * know where to send the SACK.
1120 */
1121 if (sctp_chunk_is_data(chunk))
1122 asoc->peer.last_data_from = chunk->transport;
1123 else
1124 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1125
1126 if (chunk->transport)
1127 chunk->transport->last_time_heard = jiffies;
1128
1129 /* Run through the state machine. */
1130 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1131 state, ep, asoc, chunk, GFP_ATOMIC);
1132
1133 /* Check to see if the association is freed in response to
1134 * the incoming chunk. If so, get out of the while loop.
1135 */
1136 if (asoc->base.dead)
1137 break;
1138
1139 /* If there is an error on chunk, discard this packet. */
1140 if (error && chunk)
1141 chunk->pdiscard = 1;
1142 }
1143 sctp_association_put(asoc);
1144 }
1145
1146 /* This routine moves an association from its old sk to a new sk. */
sctp_assoc_migrate(struct sctp_association * assoc,struct sock * newsk)1147 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1148 {
1149 struct sctp_sock *newsp = sctp_sk(newsk);
1150 struct sock *oldsk = assoc->base.sk;
1151
1152 /* Delete the association from the old endpoint's list of
1153 * associations.
1154 */
1155 list_del_init(&assoc->asocs);
1156
1157 /* Decrement the backlog value for a TCP-style socket. */
1158 if (sctp_style(oldsk, TCP))
1159 oldsk->sk_ack_backlog--;
1160
1161 /* Release references to the old endpoint and the sock. */
1162 sctp_endpoint_put(assoc->ep);
1163 sock_put(assoc->base.sk);
1164
1165 /* Get a reference to the new endpoint. */
1166 assoc->ep = newsp->ep;
1167 sctp_endpoint_hold(assoc->ep);
1168
1169 /* Get a reference to the new sock. */
1170 assoc->base.sk = newsk;
1171 sock_hold(assoc->base.sk);
1172
1173 /* Add the association to the new endpoint's list of associations. */
1174 sctp_endpoint_add_asoc(newsp->ep, assoc);
1175 }
1176
1177 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
sctp_assoc_update(struct sctp_association * asoc,struct sctp_association * new)1178 void sctp_assoc_update(struct sctp_association *asoc,
1179 struct sctp_association *new)
1180 {
1181 struct sctp_transport *trans;
1182 struct list_head *pos, *temp;
1183
1184 /* Copy in new parameters of peer. */
1185 asoc->c = new->c;
1186 asoc->peer.rwnd = new->peer.rwnd;
1187 asoc->peer.sack_needed = new->peer.sack_needed;
1188 asoc->peer.i = new->peer.i;
1189 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1190 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1191
1192 /* Remove any peer addresses not present in the new association. */
1193 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1194 trans = list_entry(pos, struct sctp_transport, transports);
1195 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1196 sctp_assoc_rm_peer(asoc, trans);
1197 continue;
1198 }
1199
1200 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1201 sctp_transport_reset(trans);
1202 }
1203
1204 /* If the case is A (association restart), use
1205 * initial_tsn as next_tsn. If the case is B, use
1206 * current next_tsn in case data sent to peer
1207 * has been discarded and needs retransmission.
1208 */
1209 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1210 asoc->next_tsn = new->next_tsn;
1211 asoc->ctsn_ack_point = new->ctsn_ack_point;
1212 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1213
1214 /* Reinitialize SSN for both local streams
1215 * and peer's streams.
1216 */
1217 sctp_ssnmap_clear(asoc->ssnmap);
1218
1219 /* Flush the ULP reassembly and ordered queue.
1220 * Any data there will now be stale and will
1221 * cause problems.
1222 */
1223 sctp_ulpq_flush(&asoc->ulpq);
1224
1225 /* reset the overall association error count so
1226 * that the restarted association doesn't get torn
1227 * down on the next retransmission timer.
1228 */
1229 asoc->overall_error_count = 0;
1230
1231 } else {
1232 /* Add any peer addresses from the new association. */
1233 list_for_each_entry(trans, &new->peer.transport_addr_list,
1234 transports) {
1235 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1236 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1237 GFP_ATOMIC, trans->state);
1238 }
1239
1240 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1241 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1242 if (!asoc->ssnmap) {
1243 /* Move the ssnmap. */
1244 asoc->ssnmap = new->ssnmap;
1245 new->ssnmap = NULL;
1246 }
1247
1248 if (!asoc->assoc_id) {
1249 /* get a new association id since we don't have one
1250 * yet.
1251 */
1252 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1253 }
1254 }
1255
1256 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1257 * and also move the association shared keys over
1258 */
1259 kfree(asoc->peer.peer_random);
1260 asoc->peer.peer_random = new->peer.peer_random;
1261 new->peer.peer_random = NULL;
1262
1263 kfree(asoc->peer.peer_chunks);
1264 asoc->peer.peer_chunks = new->peer.peer_chunks;
1265 new->peer.peer_chunks = NULL;
1266
1267 kfree(asoc->peer.peer_hmacs);
1268 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1269 new->peer.peer_hmacs = NULL;
1270
1271 sctp_auth_key_put(asoc->asoc_shared_key);
1272 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1273 }
1274
1275 /* Update the retran path for sending a retransmitted packet.
1276 * Round-robin through the active transports, else round-robin
1277 * through the inactive transports as this is the next best thing
1278 * we can try.
1279 */
sctp_assoc_update_retran_path(struct sctp_association * asoc)1280 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1281 {
1282 struct sctp_transport *t, *next;
1283 struct list_head *head = &asoc->peer.transport_addr_list;
1284 struct list_head *pos;
1285
1286 if (asoc->peer.transport_count == 1)
1287 return;
1288
1289 /* Find the next transport in a round-robin fashion. */
1290 t = asoc->peer.retran_path;
1291 pos = &t->transports;
1292 next = NULL;
1293
1294 while (1) {
1295 /* Skip the head. */
1296 if (pos->next == head)
1297 pos = head->next;
1298 else
1299 pos = pos->next;
1300
1301 t = list_entry(pos, struct sctp_transport, transports);
1302
1303 /* We have exhausted the list, but didn't find any
1304 * other active transports. If so, use the next
1305 * transport.
1306 */
1307 if (t == asoc->peer.retran_path) {
1308 t = next;
1309 break;
1310 }
1311
1312 /* Try to find an active transport. */
1313
1314 if ((t->state == SCTP_ACTIVE) ||
1315 (t->state == SCTP_UNKNOWN)) {
1316 break;
1317 } else {
1318 /* Keep track of the next transport in case
1319 * we don't find any active transport.
1320 */
1321 if (t->state != SCTP_UNCONFIRMED && !next)
1322 next = t;
1323 }
1324 }
1325
1326 if (t)
1327 asoc->peer.retran_path = t;
1328 else
1329 t = asoc->peer.retran_path;
1330
1331 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1332 " %p addr: ",
1333 " port: %d\n",
1334 asoc,
1335 (&t->ipaddr),
1336 ntohs(t->ipaddr.v4.sin_port));
1337 }
1338
1339 /* Choose the transport for sending retransmit packet. */
sctp_assoc_choose_alter_transport(struct sctp_association * asoc,struct sctp_transport * last_sent_to)1340 struct sctp_transport *sctp_assoc_choose_alter_transport(
1341 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1342 {
1343 /* If this is the first time packet is sent, use the active path,
1344 * else use the retran path. If the last packet was sent over the
1345 * retran path, update the retran path and use it.
1346 */
1347 if (!last_sent_to)
1348 return asoc->peer.active_path;
1349 else {
1350 if (last_sent_to == asoc->peer.retran_path)
1351 sctp_assoc_update_retran_path(asoc);
1352 return asoc->peer.retran_path;
1353 }
1354 }
1355
1356 /* Update the association's pmtu and frag_point by going through all the
1357 * transports. This routine is called when a transport's PMTU has changed.
1358 */
sctp_assoc_sync_pmtu(struct sctp_association * asoc)1359 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1360 {
1361 struct sctp_transport *t;
1362 __u32 pmtu = 0;
1363
1364 if (!asoc)
1365 return;
1366
1367 /* Get the lowest pmtu of all the transports. */
1368 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1369 transports) {
1370 if (t->pmtu_pending && t->dst) {
1371 sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1372 t->pmtu_pending = 0;
1373 }
1374 if (!pmtu || (t->pathmtu < pmtu))
1375 pmtu = t->pathmtu;
1376 }
1377
1378 if (pmtu) {
1379 asoc->pathmtu = pmtu;
1380 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1381 }
1382
1383 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1384 __func__, asoc, asoc->pathmtu, asoc->frag_point);
1385 }
1386
1387 /* Should we send a SACK to update our peer? */
sctp_peer_needs_update(struct sctp_association * asoc)1388 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1389 {
1390 switch (asoc->state) {
1391 case SCTP_STATE_ESTABLISHED:
1392 case SCTP_STATE_SHUTDOWN_PENDING:
1393 case SCTP_STATE_SHUTDOWN_RECEIVED:
1394 case SCTP_STATE_SHUTDOWN_SENT:
1395 if ((asoc->rwnd > asoc->a_rwnd) &&
1396 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1397 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1398 asoc->pathmtu)))
1399 return 1;
1400 break;
1401 default:
1402 break;
1403 }
1404 return 0;
1405 }
1406
1407 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
sctp_assoc_rwnd_increase(struct sctp_association * asoc,unsigned len)1408 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1409 {
1410 struct sctp_chunk *sack;
1411 struct timer_list *timer;
1412
1413 if (asoc->rwnd_over) {
1414 if (asoc->rwnd_over >= len) {
1415 asoc->rwnd_over -= len;
1416 } else {
1417 asoc->rwnd += (len - asoc->rwnd_over);
1418 asoc->rwnd_over = 0;
1419 }
1420 } else {
1421 asoc->rwnd += len;
1422 }
1423
1424 /* If we had window pressure, start recovering it
1425 * once our rwnd had reached the accumulated pressure
1426 * threshold. The idea is to recover slowly, but up
1427 * to the initial advertised window.
1428 */
1429 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1430 int change = min(asoc->pathmtu, asoc->rwnd_press);
1431 asoc->rwnd += change;
1432 asoc->rwnd_press -= change;
1433 }
1434
1435 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1436 "- %u\n", __func__, asoc, len, asoc->rwnd,
1437 asoc->rwnd_over, asoc->a_rwnd);
1438
1439 /* Send a window update SACK if the rwnd has increased by at least the
1440 * minimum of the association's PMTU and half of the receive buffer.
1441 * The algorithm used is similar to the one described in
1442 * Section 4.2.3.3 of RFC 1122.
1443 */
1444 if (sctp_peer_needs_update(asoc)) {
1445 asoc->a_rwnd = asoc->rwnd;
1446 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1447 "rwnd: %u a_rwnd: %u\n", __func__,
1448 asoc, asoc->rwnd, asoc->a_rwnd);
1449 sack = sctp_make_sack(asoc);
1450 if (!sack)
1451 return;
1452
1453 asoc->peer.sack_needed = 0;
1454
1455 sctp_outq_tail(&asoc->outqueue, sack);
1456
1457 /* Stop the SACK timer. */
1458 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1459 if (timer_pending(timer) && del_timer(timer))
1460 sctp_association_put(asoc);
1461 }
1462 }
1463
1464 /* Decrease asoc's rwnd by len. */
sctp_assoc_rwnd_decrease(struct sctp_association * asoc,unsigned len)1465 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1466 {
1467 int rx_count;
1468 int over = 0;
1469
1470 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1471 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1472
1473 if (asoc->ep->rcvbuf_policy)
1474 rx_count = atomic_read(&asoc->rmem_alloc);
1475 else
1476 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1477
1478 /* If we've reached or overflowed our receive buffer, announce
1479 * a 0 rwnd if rwnd would still be positive. Store the
1480 * the pottential pressure overflow so that the window can be restored
1481 * back to original value.
1482 */
1483 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1484 over = 1;
1485
1486 if (asoc->rwnd >= len) {
1487 asoc->rwnd -= len;
1488 if (over) {
1489 asoc->rwnd_press += asoc->rwnd;
1490 asoc->rwnd = 0;
1491 }
1492 } else {
1493 asoc->rwnd_over = len - asoc->rwnd;
1494 asoc->rwnd = 0;
1495 }
1496 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1497 __func__, asoc, len, asoc->rwnd,
1498 asoc->rwnd_over, asoc->rwnd_press);
1499 }
1500
1501 /* Build the bind address list for the association based on info from the
1502 * local endpoint and the remote peer.
1503 */
sctp_assoc_set_bind_addr_from_ep(struct sctp_association * asoc,sctp_scope_t scope,gfp_t gfp)1504 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1505 sctp_scope_t scope, gfp_t gfp)
1506 {
1507 int flags;
1508
1509 /* Use scoping rules to determine the subset of addresses from
1510 * the endpoint.
1511 */
1512 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1513 if (asoc->peer.ipv4_address)
1514 flags |= SCTP_ADDR4_PEERSUPP;
1515 if (asoc->peer.ipv6_address)
1516 flags |= SCTP_ADDR6_PEERSUPP;
1517
1518 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1519 &asoc->ep->base.bind_addr,
1520 scope, gfp, flags);
1521 }
1522
1523 /* Build the association's bind address list from the cookie. */
sctp_assoc_set_bind_addr_from_cookie(struct sctp_association * asoc,struct sctp_cookie * cookie,gfp_t gfp)1524 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1525 struct sctp_cookie *cookie,
1526 gfp_t gfp)
1527 {
1528 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1529 int var_size3 = cookie->raw_addr_list_len;
1530 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1531
1532 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1533 asoc->ep->base.bind_addr.port, gfp);
1534 }
1535
1536 /* Lookup laddr in the bind address list of an association. */
sctp_assoc_lookup_laddr(struct sctp_association * asoc,const union sctp_addr * laddr)1537 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1538 const union sctp_addr *laddr)
1539 {
1540 int found = 0;
1541
1542 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1543 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1544 sctp_sk(asoc->base.sk)))
1545 found = 1;
1546
1547 return found;
1548 }
1549
1550 /* Set an association id for a given association */
sctp_assoc_set_id(struct sctp_association * asoc,gfp_t gfp)1551 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1552 {
1553 int assoc_id;
1554 int error = 0;
1555
1556 /* If the id is already assigned, keep it. */
1557 if (asoc->assoc_id)
1558 return error;
1559 retry:
1560 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1561 return -ENOMEM;
1562
1563 spin_lock_bh(&sctp_assocs_id_lock);
1564 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1565 idr_low, &assoc_id);
1566 if (!error) {
1567 idr_low = assoc_id + 1;
1568 if (idr_low == INT_MAX)
1569 idr_low = 1;
1570 }
1571 spin_unlock_bh(&sctp_assocs_id_lock);
1572 if (error == -EAGAIN)
1573 goto retry;
1574 else if (error)
1575 return error;
1576
1577 asoc->assoc_id = (sctp_assoc_t) assoc_id;
1578 return error;
1579 }
1580
1581 /* Free asconf_ack cache */
sctp_assoc_free_asconf_acks(struct sctp_association * asoc)1582 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1583 {
1584 struct sctp_chunk *ack;
1585 struct sctp_chunk *tmp;
1586
1587 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1588 transmitted_list) {
1589 list_del_init(&ack->transmitted_list);
1590 sctp_chunk_free(ack);
1591 }
1592 }
1593
1594 /* Clean up the ASCONF_ACK queue */
sctp_assoc_clean_asconf_ack_cache(const struct sctp_association * asoc)1595 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1596 {
1597 struct sctp_chunk *ack;
1598 struct sctp_chunk *tmp;
1599
1600 /* We can remove all the entries from the queue up to
1601 * the "Peer-Sequence-Number".
1602 */
1603 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1604 transmitted_list) {
1605 if (ack->subh.addip_hdr->serial ==
1606 htonl(asoc->peer.addip_serial))
1607 break;
1608
1609 list_del_init(&ack->transmitted_list);
1610 sctp_chunk_free(ack);
1611 }
1612 }
1613
1614 /* Find the ASCONF_ACK whose serial number matches ASCONF */
sctp_assoc_lookup_asconf_ack(const struct sctp_association * asoc,__be32 serial)1615 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1616 const struct sctp_association *asoc,
1617 __be32 serial)
1618 {
1619 struct sctp_chunk *ack;
1620
1621 /* Walk through the list of cached ASCONF-ACKs and find the
1622 * ack chunk whose serial number matches that of the request.
1623 */
1624 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1625 if (ack->subh.addip_hdr->serial == serial) {
1626 sctp_chunk_hold(ack);
1627 return ack;
1628 }
1629 }
1630
1631 return NULL;
1632 }
1633