1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30  *
31  * NOTE: this latency value is not the same as the concept of
32  * 'timeslice length' - timeslices in CFS are of variable length
33  * and have no persistent notion like in traditional, time-slice
34  * based scheduling concepts.
35  *
36  * (to see the precise effective timeslice length of your workload,
37  *  run vmstat and monitor the context-switches (cs) field)
38  */
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
41 
42 /*
43  * The initial- and re-scaling of tunables is configurable
44  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45  *
46  * Options are:
47  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50  */
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 	= SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57  */
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
60 
61 /*
62  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63  */
64 static unsigned int sched_nr_latency = 8;
65 
66 /*
67  * After fork, child runs first. If set to 0 (default) then
68  * parent will (try to) run first.
69  */
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
71 
72 /*
73  * SCHED_OTHER wake-up granularity.
74  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  */
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
82 
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84 
85 /*
86  * The exponential sliding  window over which load is averaged for shares
87  * distribution.
88  * (default: 10msec)
89  */
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91 
92 static const struct sched_class fair_sched_class;
93 
94 /**************************************************************
95  * CFS operations on generic schedulable entities:
96  */
97 
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99 
100 /* cpu runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 	return cfs_rq->rq;
104 }
105 
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se)	(!se->my_q)
108 
task_of(struct sched_entity * se)109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 	WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 	return container_of(se, struct task_struct, se);
115 }
116 
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 		for (; se; se = se->parent)
120 
task_cfs_rq(struct task_struct * p)121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 	return p->se.cfs_rq;
124 }
125 
126 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 	return se->cfs_rq;
130 }
131 
132 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 	return grp->my_q;
136 }
137 
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139  * another cpu ('this_cpu')
140  */
cpu_cfs_rq(struct cfs_rq * cfs_rq,int this_cpu)141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 	return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)146 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
147 {
148 	if (!cfs_rq->on_list) {
149 		/*
150 		 * Ensure we either appear before our parent (if already
151 		 * enqueued) or force our parent to appear after us when it is
152 		 * enqueued.  The fact that we always enqueue bottom-up
153 		 * reduces this to two cases.
154 		 */
155 		if (cfs_rq->tg->parent &&
156 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
159 		} else {
160 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
161 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
162 		}
163 
164 		cfs_rq->on_list = 1;
165 	}
166 }
167 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)168 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
169 {
170 	if (cfs_rq->on_list) {
171 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 		cfs_rq->on_list = 0;
173 	}
174 }
175 
176 /* Iterate thr' all leaf cfs_rq's on a runqueue */
177 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
179 
180 /* Do the two (enqueued) entities belong to the same group ? */
181 static inline int
is_same_group(struct sched_entity * se,struct sched_entity * pse)182 is_same_group(struct sched_entity *se, struct sched_entity *pse)
183 {
184 	if (se->cfs_rq == pse->cfs_rq)
185 		return 1;
186 
187 	return 0;
188 }
189 
parent_entity(struct sched_entity * se)190 static inline struct sched_entity *parent_entity(struct sched_entity *se)
191 {
192 	return se->parent;
193 }
194 
195 /* return depth at which a sched entity is present in the hierarchy */
depth_se(struct sched_entity * se)196 static inline int depth_se(struct sched_entity *se)
197 {
198 	int depth = 0;
199 
200 	for_each_sched_entity(se)
201 		depth++;
202 
203 	return depth;
204 }
205 
206 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)207 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
208 {
209 	int se_depth, pse_depth;
210 
211 	/*
212 	 * preemption test can be made between sibling entities who are in the
213 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 	 * both tasks until we find their ancestors who are siblings of common
215 	 * parent.
216 	 */
217 
218 	/* First walk up until both entities are at same depth */
219 	se_depth = depth_se(*se);
220 	pse_depth = depth_se(*pse);
221 
222 	while (se_depth > pse_depth) {
223 		se_depth--;
224 		*se = parent_entity(*se);
225 	}
226 
227 	while (pse_depth > se_depth) {
228 		pse_depth--;
229 		*pse = parent_entity(*pse);
230 	}
231 
232 	while (!is_same_group(*se, *pse)) {
233 		*se = parent_entity(*se);
234 		*pse = parent_entity(*pse);
235 	}
236 }
237 
238 #else	/* !CONFIG_FAIR_GROUP_SCHED */
239 
task_of(struct sched_entity * se)240 static inline struct task_struct *task_of(struct sched_entity *se)
241 {
242 	return container_of(se, struct task_struct, se);
243 }
244 
rq_of(struct cfs_rq * cfs_rq)245 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
246 {
247 	return container_of(cfs_rq, struct rq, cfs);
248 }
249 
250 #define entity_is_task(se)	1
251 
252 #define for_each_sched_entity(se) \
253 		for (; se; se = NULL)
254 
task_cfs_rq(struct task_struct * p)255 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
256 {
257 	return &task_rq(p)->cfs;
258 }
259 
cfs_rq_of(struct sched_entity * se)260 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
261 {
262 	struct task_struct *p = task_of(se);
263 	struct rq *rq = task_rq(p);
264 
265 	return &rq->cfs;
266 }
267 
268 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)269 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
270 {
271 	return NULL;
272 }
273 
cpu_cfs_rq(struct cfs_rq * cfs_rq,int this_cpu)274 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
275 {
276 	return &cpu_rq(this_cpu)->cfs;
277 }
278 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)279 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
280 {
281 }
282 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)283 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284 {
285 }
286 
287 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
289 
290 static inline int
is_same_group(struct sched_entity * se,struct sched_entity * pse)291 is_same_group(struct sched_entity *se, struct sched_entity *pse)
292 {
293 	return 1;
294 }
295 
parent_entity(struct sched_entity * se)296 static inline struct sched_entity *parent_entity(struct sched_entity *se)
297 {
298 	return NULL;
299 }
300 
301 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)302 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
303 {
304 }
305 
306 #endif	/* CONFIG_FAIR_GROUP_SCHED */
307 
308 
309 /**************************************************************
310  * Scheduling class tree data structure manipulation methods:
311  */
312 
max_vruntime(u64 min_vruntime,u64 vruntime)313 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
314 {
315 	s64 delta = (s64)(vruntime - min_vruntime);
316 	if (delta > 0)
317 		min_vruntime = vruntime;
318 
319 	return min_vruntime;
320 }
321 
min_vruntime(u64 min_vruntime,u64 vruntime)322 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
323 {
324 	s64 delta = (s64)(vruntime - min_vruntime);
325 	if (delta < 0)
326 		min_vruntime = vruntime;
327 
328 	return min_vruntime;
329 }
330 
entity_before(struct sched_entity * a,struct sched_entity * b)331 static inline int entity_before(struct sched_entity *a,
332 				struct sched_entity *b)
333 {
334 	return (s64)(a->vruntime - b->vruntime) < 0;
335 }
336 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)337 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
338 {
339 	return se->vruntime - cfs_rq->min_vruntime;
340 }
341 
update_min_vruntime(struct cfs_rq * cfs_rq)342 static void update_min_vruntime(struct cfs_rq *cfs_rq)
343 {
344 	u64 vruntime = cfs_rq->min_vruntime;
345 
346 	if (cfs_rq->curr)
347 		vruntime = cfs_rq->curr->vruntime;
348 
349 	if (cfs_rq->rb_leftmost) {
350 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 						   struct sched_entity,
352 						   run_node);
353 
354 		if (!cfs_rq->curr)
355 			vruntime = se->vruntime;
356 		else
357 			vruntime = min_vruntime(vruntime, se->vruntime);
358 	}
359 
360 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
361 }
362 
363 /*
364  * Enqueue an entity into the rb-tree:
365  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)366 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 {
368 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
369 	struct rb_node *parent = NULL;
370 	struct sched_entity *entry;
371 	s64 key = entity_key(cfs_rq, se);
372 	int leftmost = 1;
373 
374 	/*
375 	 * Find the right place in the rbtree:
376 	 */
377 	while (*link) {
378 		parent = *link;
379 		entry = rb_entry(parent, struct sched_entity, run_node);
380 		/*
381 		 * We dont care about collisions. Nodes with
382 		 * the same key stay together.
383 		 */
384 		if (key < entity_key(cfs_rq, entry)) {
385 			link = &parent->rb_left;
386 		} else {
387 			link = &parent->rb_right;
388 			leftmost = 0;
389 		}
390 	}
391 
392 	/*
393 	 * Maintain a cache of leftmost tree entries (it is frequently
394 	 * used):
395 	 */
396 	if (leftmost)
397 		cfs_rq->rb_leftmost = &se->run_node;
398 
399 	rb_link_node(&se->run_node, parent, link);
400 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
401 }
402 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)403 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
404 {
405 	if (cfs_rq->rb_leftmost == &se->run_node) {
406 		struct rb_node *next_node;
407 
408 		next_node = rb_next(&se->run_node);
409 		cfs_rq->rb_leftmost = next_node;
410 	}
411 
412 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
413 }
414 
__pick_first_entity(struct cfs_rq * cfs_rq)415 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
416 {
417 	struct rb_node *left = cfs_rq->rb_leftmost;
418 
419 	if (!left)
420 		return NULL;
421 
422 	return rb_entry(left, struct sched_entity, run_node);
423 }
424 
__pick_next_entity(struct sched_entity * se)425 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
426 {
427 	struct rb_node *next = rb_next(&se->run_node);
428 
429 	if (!next)
430 		return NULL;
431 
432 	return rb_entry(next, struct sched_entity, run_node);
433 }
434 
435 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)436 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
437 {
438 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
439 
440 	if (!last)
441 		return NULL;
442 
443 	return rb_entry(last, struct sched_entity, run_node);
444 }
445 
446 /**************************************************************
447  * Scheduling class statistics methods:
448  */
449 
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)450 int sched_proc_update_handler(struct ctl_table *table, int write,
451 		void __user *buffer, size_t *lenp,
452 		loff_t *ppos)
453 {
454 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
455 	int factor = get_update_sysctl_factor();
456 
457 	if (ret || !write)
458 		return ret;
459 
460 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
461 					sysctl_sched_min_granularity);
462 
463 #define WRT_SYSCTL(name) \
464 	(normalized_sysctl_##name = sysctl_##name / (factor))
465 	WRT_SYSCTL(sched_min_granularity);
466 	WRT_SYSCTL(sched_latency);
467 	WRT_SYSCTL(sched_wakeup_granularity);
468 #undef WRT_SYSCTL
469 
470 	return 0;
471 }
472 #endif
473 
474 /*
475  * delta /= w
476  */
477 static inline unsigned long
calc_delta_fair(unsigned long delta,struct sched_entity * se)478 calc_delta_fair(unsigned long delta, struct sched_entity *se)
479 {
480 	if (unlikely(se->load.weight != NICE_0_LOAD))
481 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
482 
483 	return delta;
484 }
485 
486 /*
487  * The idea is to set a period in which each task runs once.
488  *
489  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
490  * this period because otherwise the slices get too small.
491  *
492  * p = (nr <= nl) ? l : l*nr/nl
493  */
__sched_period(unsigned long nr_running)494 static u64 __sched_period(unsigned long nr_running)
495 {
496 	u64 period = sysctl_sched_latency;
497 	unsigned long nr_latency = sched_nr_latency;
498 
499 	if (unlikely(nr_running > nr_latency)) {
500 		period = sysctl_sched_min_granularity;
501 		period *= nr_running;
502 	}
503 
504 	return period;
505 }
506 
507 /*
508  * We calculate the wall-time slice from the period by taking a part
509  * proportional to the weight.
510  *
511  * s = p*P[w/rw]
512  */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)513 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
514 {
515 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
516 
517 	for_each_sched_entity(se) {
518 		struct load_weight *load;
519 		struct load_weight lw;
520 
521 		cfs_rq = cfs_rq_of(se);
522 		load = &cfs_rq->load;
523 
524 		if (unlikely(!se->on_rq)) {
525 			lw = cfs_rq->load;
526 
527 			update_load_add(&lw, se->load.weight);
528 			load = &lw;
529 		}
530 		slice = calc_delta_mine(slice, se->load.weight, load);
531 	}
532 	return slice;
533 }
534 
535 /*
536  * We calculate the vruntime slice of a to be inserted task
537  *
538  * vs = s/w
539  */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)540 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
541 {
542 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
543 }
544 
545 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
546 static void update_cfs_shares(struct cfs_rq *cfs_rq);
547 
548 /*
549  * Update the current task's runtime statistics. Skip current tasks that
550  * are not in our scheduling class.
551  */
552 static inline void
__update_curr(struct cfs_rq * cfs_rq,struct sched_entity * curr,unsigned long delta_exec)553 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
554 	      unsigned long delta_exec)
555 {
556 	unsigned long delta_exec_weighted;
557 
558 	schedstat_set(curr->statistics.exec_max,
559 		      max((u64)delta_exec, curr->statistics.exec_max));
560 
561 	curr->sum_exec_runtime += delta_exec;
562 	schedstat_add(cfs_rq, exec_clock, delta_exec);
563 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
564 
565 	curr->vruntime += delta_exec_weighted;
566 	update_min_vruntime(cfs_rq);
567 
568 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
569 	cfs_rq->load_unacc_exec_time += delta_exec;
570 #endif
571 }
572 
update_curr(struct cfs_rq * cfs_rq)573 static void update_curr(struct cfs_rq *cfs_rq)
574 {
575 	struct sched_entity *curr = cfs_rq->curr;
576 	u64 now = rq_of(cfs_rq)->clock_task;
577 	unsigned long delta_exec;
578 
579 	if (unlikely(!curr))
580 		return;
581 
582 	/*
583 	 * Get the amount of time the current task was running
584 	 * since the last time we changed load (this cannot
585 	 * overflow on 32 bits):
586 	 */
587 	delta_exec = (unsigned long)(now - curr->exec_start);
588 	if (!delta_exec)
589 		return;
590 
591 	__update_curr(cfs_rq, curr, delta_exec);
592 	curr->exec_start = now;
593 
594 	if (entity_is_task(curr)) {
595 		struct task_struct *curtask = task_of(curr);
596 
597 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
598 		cpuacct_charge(curtask, delta_exec);
599 		account_group_exec_runtime(curtask, delta_exec);
600 	}
601 }
602 
603 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)604 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
605 {
606 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
607 }
608 
609 /*
610  * Task is being enqueued - update stats:
611  */
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)612 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613 {
614 	/*
615 	 * Are we enqueueing a waiting task? (for current tasks
616 	 * a dequeue/enqueue event is a NOP)
617 	 */
618 	if (se != cfs_rq->curr)
619 		update_stats_wait_start(cfs_rq, se);
620 }
621 
622 static void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)623 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
624 {
625 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
626 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
627 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
628 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
629 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
630 #ifdef CONFIG_SCHEDSTATS
631 	if (entity_is_task(se)) {
632 		trace_sched_stat_wait(task_of(se),
633 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
634 	}
635 #endif
636 	schedstat_set(se->statistics.wait_start, 0);
637 }
638 
639 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)640 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 	/*
643 	 * Mark the end of the wait period if dequeueing a
644 	 * waiting task:
645 	 */
646 	if (se != cfs_rq->curr)
647 		update_stats_wait_end(cfs_rq, se);
648 }
649 
650 /*
651  * We are picking a new current task - update its stats:
652  */
653 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)654 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 {
656 	/*
657 	 * We are starting a new run period:
658 	 */
659 	se->exec_start = rq_of(cfs_rq)->clock_task;
660 }
661 
662 /**************************************************
663  * Scheduling class queueing methods:
664  */
665 
666 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
667 static void
add_cfs_task_weight(struct cfs_rq * cfs_rq,unsigned long weight)668 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
669 {
670 	cfs_rq->task_weight += weight;
671 }
672 #else
673 static inline void
add_cfs_task_weight(struct cfs_rq * cfs_rq,unsigned long weight)674 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
675 {
676 }
677 #endif
678 
679 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
681 {
682 	update_load_add(&cfs_rq->load, se->load.weight);
683 	if (!parent_entity(se))
684 		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
685 	if (entity_is_task(se)) {
686 		add_cfs_task_weight(cfs_rq, se->load.weight);
687 		list_add(&se->group_node, &cfs_rq->tasks);
688 	}
689 	cfs_rq->nr_running++;
690 }
691 
692 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 	update_load_sub(&cfs_rq->load, se->load.weight);
696 	if (!parent_entity(se))
697 		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
698 	if (entity_is_task(se)) {
699 		add_cfs_task_weight(cfs_rq, -se->load.weight);
700 		list_del_init(&se->group_node);
701 	}
702 	cfs_rq->nr_running--;
703 }
704 
705 #ifdef CONFIG_FAIR_GROUP_SCHED
706 # ifdef CONFIG_SMP
update_cfs_rq_load_contribution(struct cfs_rq * cfs_rq,int global_update)707 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
708 					    int global_update)
709 {
710 	struct task_group *tg = cfs_rq->tg;
711 	long load_avg;
712 
713 	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
714 	load_avg -= cfs_rq->load_contribution;
715 
716 	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
717 		atomic_add(load_avg, &tg->load_weight);
718 		cfs_rq->load_contribution += load_avg;
719 	}
720 }
721 
update_cfs_load(struct cfs_rq * cfs_rq,int global_update)722 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
723 {
724 	u64 period = sysctl_sched_shares_window;
725 	u64 now, delta;
726 	unsigned long load = cfs_rq->load.weight;
727 
728 	if (cfs_rq->tg == &root_task_group)
729 		return;
730 
731 	now = rq_of(cfs_rq)->clock_task;
732 	delta = now - cfs_rq->load_stamp;
733 
734 	/* truncate load history at 4 idle periods */
735 	if (cfs_rq->load_stamp > cfs_rq->load_last &&
736 	    now - cfs_rq->load_last > 4 * period) {
737 		cfs_rq->load_period = 0;
738 		cfs_rq->load_avg = 0;
739 		delta = period - 1;
740 	}
741 
742 	cfs_rq->load_stamp = now;
743 	cfs_rq->load_unacc_exec_time = 0;
744 	cfs_rq->load_period += delta;
745 	if (load) {
746 		cfs_rq->load_last = now;
747 		cfs_rq->load_avg += delta * load;
748 	}
749 
750 	/* consider updating load contribution on each fold or truncate */
751 	if (global_update || cfs_rq->load_period > period
752 	    || !cfs_rq->load_period)
753 		update_cfs_rq_load_contribution(cfs_rq, global_update);
754 
755 	while (cfs_rq->load_period > period) {
756 		/*
757 		 * Inline assembly required to prevent the compiler
758 		 * optimising this loop into a divmod call.
759 		 * See __iter_div_u64_rem() for another example of this.
760 		 */
761 		asm("" : "+rm" (cfs_rq->load_period));
762 		cfs_rq->load_period /= 2;
763 		cfs_rq->load_avg /= 2;
764 	}
765 
766 	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
767 		list_del_leaf_cfs_rq(cfs_rq);
768 }
769 
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)770 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
771 {
772 	long load_weight, load, shares;
773 
774 	load = cfs_rq->load.weight;
775 
776 	load_weight = atomic_read(&tg->load_weight);
777 	load_weight += load;
778 	load_weight -= cfs_rq->load_contribution;
779 
780 	shares = (tg->shares * load);
781 	if (load_weight)
782 		shares /= load_weight;
783 
784 	if (shares < MIN_SHARES)
785 		shares = MIN_SHARES;
786 	if (shares > tg->shares)
787 		shares = tg->shares;
788 
789 	return shares;
790 }
791 
update_entity_shares_tick(struct cfs_rq * cfs_rq)792 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
793 {
794 	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
795 		update_cfs_load(cfs_rq, 0);
796 		update_cfs_shares(cfs_rq);
797 	}
798 }
799 # else /* CONFIG_SMP */
update_cfs_load(struct cfs_rq * cfs_rq,int global_update)800 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
801 {
802 }
803 
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)804 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
805 {
806 	return tg->shares;
807 }
808 
update_entity_shares_tick(struct cfs_rq * cfs_rq)809 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
810 {
811 }
812 # endif /* CONFIG_SMP */
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)813 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
814 			    unsigned long weight)
815 {
816 	if (se->on_rq) {
817 		/* commit outstanding execution time */
818 		if (cfs_rq->curr == se)
819 			update_curr(cfs_rq);
820 		account_entity_dequeue(cfs_rq, se);
821 	}
822 
823 	update_load_set(&se->load, weight);
824 
825 	if (se->on_rq)
826 		account_entity_enqueue(cfs_rq, se);
827 }
828 
update_cfs_shares(struct cfs_rq * cfs_rq)829 static void update_cfs_shares(struct cfs_rq *cfs_rq)
830 {
831 	struct task_group *tg;
832 	struct sched_entity *se;
833 	long shares;
834 
835 	tg = cfs_rq->tg;
836 	se = tg->se[cpu_of(rq_of(cfs_rq))];
837 	if (!se)
838 		return;
839 #ifndef CONFIG_SMP
840 	if (likely(se->load.weight == tg->shares))
841 		return;
842 #endif
843 	shares = calc_cfs_shares(cfs_rq, tg);
844 
845 	reweight_entity(cfs_rq_of(se), se, shares);
846 }
847 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_load(struct cfs_rq * cfs_rq,int global_update)848 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
849 {
850 }
851 
update_cfs_shares(struct cfs_rq * cfs_rq)852 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
853 {
854 }
855 
update_entity_shares_tick(struct cfs_rq * cfs_rq)856 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
857 {
858 }
859 #endif /* CONFIG_FAIR_GROUP_SCHED */
860 
enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)861 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 #ifdef CONFIG_SCHEDSTATS
864 	struct task_struct *tsk = NULL;
865 
866 	if (entity_is_task(se))
867 		tsk = task_of(se);
868 
869 	if (se->statistics.sleep_start) {
870 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
871 
872 		if ((s64)delta < 0)
873 			delta = 0;
874 
875 		if (unlikely(delta > se->statistics.sleep_max))
876 			se->statistics.sleep_max = delta;
877 
878 		se->statistics.sleep_start = 0;
879 		se->statistics.sum_sleep_runtime += delta;
880 
881 		if (tsk) {
882 			account_scheduler_latency(tsk, delta >> 10, 1);
883 			trace_sched_stat_sleep(tsk, delta);
884 		}
885 	}
886 	if (se->statistics.block_start) {
887 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
888 
889 		if ((s64)delta < 0)
890 			delta = 0;
891 
892 		if (unlikely(delta > se->statistics.block_max))
893 			se->statistics.block_max = delta;
894 
895 		se->statistics.block_start = 0;
896 		se->statistics.sum_sleep_runtime += delta;
897 
898 		if (tsk) {
899 			if (tsk->in_iowait) {
900 				se->statistics.iowait_sum += delta;
901 				se->statistics.iowait_count++;
902 				trace_sched_stat_iowait(tsk, delta);
903 			}
904 
905 			/*
906 			 * Blocking time is in units of nanosecs, so shift by
907 			 * 20 to get a milliseconds-range estimation of the
908 			 * amount of time that the task spent sleeping:
909 			 */
910 			if (unlikely(prof_on == SLEEP_PROFILING)) {
911 				profile_hits(SLEEP_PROFILING,
912 						(void *)get_wchan(tsk),
913 						delta >> 20);
914 			}
915 			account_scheduler_latency(tsk, delta >> 10, 0);
916 		}
917 	}
918 #endif
919 }
920 
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)921 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
922 {
923 #ifdef CONFIG_SCHED_DEBUG
924 	s64 d = se->vruntime - cfs_rq->min_vruntime;
925 
926 	if (d < 0)
927 		d = -d;
928 
929 	if (d > 3*sysctl_sched_latency)
930 		schedstat_inc(cfs_rq, nr_spread_over);
931 #endif
932 }
933 
934 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)935 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
936 {
937 	u64 vruntime = cfs_rq->min_vruntime;
938 
939 	/*
940 	 * The 'current' period is already promised to the current tasks,
941 	 * however the extra weight of the new task will slow them down a
942 	 * little, place the new task so that it fits in the slot that
943 	 * stays open at the end.
944 	 */
945 	if (initial && sched_feat(START_DEBIT))
946 		vruntime += sched_vslice(cfs_rq, se);
947 
948 	/* sleeps up to a single latency don't count. */
949 	if (!initial) {
950 		unsigned long thresh = sysctl_sched_latency;
951 
952 		/*
953 		 * Halve their sleep time's effect, to allow
954 		 * for a gentler effect of sleepers:
955 		 */
956 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
957 			thresh >>= 1;
958 
959 		vruntime -= thresh;
960 	}
961 
962 	/* ensure we never gain time by being placed backwards. */
963 	vruntime = max_vruntime(se->vruntime, vruntime);
964 
965 	se->vruntime = vruntime;
966 }
967 
968 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)969 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
970 {
971 	/*
972 	 * Update the normalized vruntime before updating min_vruntime
973 	 * through callig update_curr().
974 	 */
975 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
976 		se->vruntime += cfs_rq->min_vruntime;
977 
978 	/*
979 	 * Update run-time statistics of the 'current'.
980 	 */
981 	update_curr(cfs_rq);
982 	update_cfs_load(cfs_rq, 0);
983 	account_entity_enqueue(cfs_rq, se);
984 	update_cfs_shares(cfs_rq);
985 
986 	if (flags & ENQUEUE_WAKEUP) {
987 		place_entity(cfs_rq, se, 0);
988 		enqueue_sleeper(cfs_rq, se);
989 	}
990 
991 	update_stats_enqueue(cfs_rq, se);
992 	check_spread(cfs_rq, se);
993 	if (se != cfs_rq->curr)
994 		__enqueue_entity(cfs_rq, se);
995 	se->on_rq = 1;
996 
997 	if (cfs_rq->nr_running == 1)
998 		list_add_leaf_cfs_rq(cfs_rq);
999 }
1000 
__clear_buddies_last(struct sched_entity * se)1001 static void __clear_buddies_last(struct sched_entity *se)
1002 {
1003 	for_each_sched_entity(se) {
1004 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1005 		if (cfs_rq->last == se)
1006 			cfs_rq->last = NULL;
1007 		else
1008 			break;
1009 	}
1010 }
1011 
__clear_buddies_next(struct sched_entity * se)1012 static void __clear_buddies_next(struct sched_entity *se)
1013 {
1014 	for_each_sched_entity(se) {
1015 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1016 		if (cfs_rq->next == se)
1017 			cfs_rq->next = NULL;
1018 		else
1019 			break;
1020 	}
1021 }
1022 
__clear_buddies_skip(struct sched_entity * se)1023 static void __clear_buddies_skip(struct sched_entity *se)
1024 {
1025 	for_each_sched_entity(se) {
1026 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1027 		if (cfs_rq->skip == se)
1028 			cfs_rq->skip = NULL;
1029 		else
1030 			break;
1031 	}
1032 }
1033 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)1034 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1035 {
1036 	if (cfs_rq->last == se)
1037 		__clear_buddies_last(se);
1038 
1039 	if (cfs_rq->next == se)
1040 		__clear_buddies_next(se);
1041 
1042 	if (cfs_rq->skip == se)
1043 		__clear_buddies_skip(se);
1044 }
1045 
1046 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1047 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1048 {
1049 	/*
1050 	 * Update run-time statistics of the 'current'.
1051 	 */
1052 	update_curr(cfs_rq);
1053 
1054 	update_stats_dequeue(cfs_rq, se);
1055 	if (flags & DEQUEUE_SLEEP) {
1056 #ifdef CONFIG_SCHEDSTATS
1057 		if (entity_is_task(se)) {
1058 			struct task_struct *tsk = task_of(se);
1059 
1060 			if (tsk->state & TASK_INTERRUPTIBLE)
1061 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1062 			if (tsk->state & TASK_UNINTERRUPTIBLE)
1063 				se->statistics.block_start = rq_of(cfs_rq)->clock;
1064 		}
1065 #endif
1066 	}
1067 
1068 	clear_buddies(cfs_rq, se);
1069 
1070 	if (se != cfs_rq->curr)
1071 		__dequeue_entity(cfs_rq, se);
1072 	se->on_rq = 0;
1073 	update_cfs_load(cfs_rq, 0);
1074 	account_entity_dequeue(cfs_rq, se);
1075 	update_min_vruntime(cfs_rq);
1076 	update_cfs_shares(cfs_rq);
1077 
1078 	/*
1079 	 * Normalize the entity after updating the min_vruntime because the
1080 	 * update can refer to the ->curr item and we need to reflect this
1081 	 * movement in our normalized position.
1082 	 */
1083 	if (!(flags & DEQUEUE_SLEEP))
1084 		se->vruntime -= cfs_rq->min_vruntime;
1085 }
1086 
1087 /*
1088  * Preempt the current task with a newly woken task if needed:
1089  */
1090 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)1091 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1092 {
1093 	unsigned long ideal_runtime, delta_exec;
1094 
1095 	ideal_runtime = sched_slice(cfs_rq, curr);
1096 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1097 	if (delta_exec > ideal_runtime) {
1098 		resched_task(rq_of(cfs_rq)->curr);
1099 		/*
1100 		 * The current task ran long enough, ensure it doesn't get
1101 		 * re-elected due to buddy favours.
1102 		 */
1103 		clear_buddies(cfs_rq, curr);
1104 		return;
1105 	}
1106 
1107 	/*
1108 	 * Ensure that a task that missed wakeup preemption by a
1109 	 * narrow margin doesn't have to wait for a full slice.
1110 	 * This also mitigates buddy induced latencies under load.
1111 	 */
1112 	if (!sched_feat(WAKEUP_PREEMPT))
1113 		return;
1114 
1115 	if (delta_exec < sysctl_sched_min_granularity)
1116 		return;
1117 
1118 	if (cfs_rq->nr_running > 1) {
1119 		struct sched_entity *se = __pick_first_entity(cfs_rq);
1120 		s64 delta = curr->vruntime - se->vruntime;
1121 
1122 		if (delta < 0)
1123 			return;
1124 
1125 		if (delta > ideal_runtime)
1126 			resched_task(rq_of(cfs_rq)->curr);
1127 	}
1128 }
1129 
1130 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)1131 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1132 {
1133 	/* 'current' is not kept within the tree. */
1134 	if (se->on_rq) {
1135 		/*
1136 		 * Any task has to be enqueued before it get to execute on
1137 		 * a CPU. So account for the time it spent waiting on the
1138 		 * runqueue.
1139 		 */
1140 		update_stats_wait_end(cfs_rq, se);
1141 		__dequeue_entity(cfs_rq, se);
1142 	}
1143 
1144 	update_stats_curr_start(cfs_rq, se);
1145 	cfs_rq->curr = se;
1146 #ifdef CONFIG_SCHEDSTATS
1147 	/*
1148 	 * Track our maximum slice length, if the CPU's load is at
1149 	 * least twice that of our own weight (i.e. dont track it
1150 	 * when there are only lesser-weight tasks around):
1151 	 */
1152 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1153 		se->statistics.slice_max = max(se->statistics.slice_max,
1154 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1155 	}
1156 #endif
1157 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1158 }
1159 
1160 static int
1161 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1162 
1163 /*
1164  * Pick the next process, keeping these things in mind, in this order:
1165  * 1) keep things fair between processes/task groups
1166  * 2) pick the "next" process, since someone really wants that to run
1167  * 3) pick the "last" process, for cache locality
1168  * 4) do not run the "skip" process, if something else is available
1169  */
pick_next_entity(struct cfs_rq * cfs_rq)1170 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1171 {
1172 	struct sched_entity *se = __pick_first_entity(cfs_rq);
1173 	struct sched_entity *left = se;
1174 
1175 	/*
1176 	 * Avoid running the skip buddy, if running something else can
1177 	 * be done without getting too unfair.
1178 	 */
1179 	if (cfs_rq->skip == se) {
1180 		struct sched_entity *second = __pick_next_entity(se);
1181 		if (second && wakeup_preempt_entity(second, left) < 1)
1182 			se = second;
1183 	}
1184 
1185 	/*
1186 	 * Prefer last buddy, try to return the CPU to a preempted task.
1187 	 */
1188 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1189 		se = cfs_rq->last;
1190 
1191 	/*
1192 	 * Someone really wants this to run. If it's not unfair, run it.
1193 	 */
1194 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1195 		se = cfs_rq->next;
1196 
1197 	clear_buddies(cfs_rq, se);
1198 
1199 	return se;
1200 }
1201 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)1202 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1203 {
1204 	/*
1205 	 * If still on the runqueue then deactivate_task()
1206 	 * was not called and update_curr() has to be done:
1207 	 */
1208 	if (prev->on_rq)
1209 		update_curr(cfs_rq);
1210 
1211 	check_spread(cfs_rq, prev);
1212 	if (prev->on_rq) {
1213 		update_stats_wait_start(cfs_rq, prev);
1214 		/* Put 'current' back into the tree. */
1215 		__enqueue_entity(cfs_rq, prev);
1216 	}
1217 	cfs_rq->curr = NULL;
1218 }
1219 
1220 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)1221 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1222 {
1223 	/*
1224 	 * Update run-time statistics of the 'current'.
1225 	 */
1226 	update_curr(cfs_rq);
1227 
1228 	/*
1229 	 * Update share accounting for long-running entities.
1230 	 */
1231 	update_entity_shares_tick(cfs_rq);
1232 
1233 #ifdef CONFIG_SCHED_HRTICK
1234 	/*
1235 	 * queued ticks are scheduled to match the slice, so don't bother
1236 	 * validating it and just reschedule.
1237 	 */
1238 	if (queued) {
1239 		resched_task(rq_of(cfs_rq)->curr);
1240 		return;
1241 	}
1242 	/*
1243 	 * don't let the period tick interfere with the hrtick preemption
1244 	 */
1245 	if (!sched_feat(DOUBLE_TICK) &&
1246 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1247 		return;
1248 #endif
1249 
1250 	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1251 		check_preempt_tick(cfs_rq, curr);
1252 }
1253 
1254 /**************************************************
1255  * CFS operations on tasks:
1256  */
1257 
1258 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)1259 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1260 {
1261 	struct sched_entity *se = &p->se;
1262 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1263 
1264 	WARN_ON(task_rq(p) != rq);
1265 
1266 	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1267 		u64 slice = sched_slice(cfs_rq, se);
1268 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1269 		s64 delta = slice - ran;
1270 
1271 		if (delta < 0) {
1272 			if (rq->curr == p)
1273 				resched_task(p);
1274 			return;
1275 		}
1276 
1277 		/*
1278 		 * Don't schedule slices shorter than 10000ns, that just
1279 		 * doesn't make sense. Rely on vruntime for fairness.
1280 		 */
1281 		if (rq->curr != p)
1282 			delta = max_t(s64, 10000LL, delta);
1283 
1284 		hrtick_start(rq, delta);
1285 	}
1286 }
1287 
1288 /*
1289  * called from enqueue/dequeue and updates the hrtick when the
1290  * current task is from our class and nr_running is low enough
1291  * to matter.
1292  */
hrtick_update(struct rq * rq)1293 static void hrtick_update(struct rq *rq)
1294 {
1295 	struct task_struct *curr = rq->curr;
1296 
1297 	if (curr->sched_class != &fair_sched_class)
1298 		return;
1299 
1300 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1301 		hrtick_start_fair(rq, curr);
1302 }
1303 #else /* !CONFIG_SCHED_HRTICK */
1304 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)1305 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1306 {
1307 }
1308 
hrtick_update(struct rq * rq)1309 static inline void hrtick_update(struct rq *rq)
1310 {
1311 }
1312 #endif
1313 
1314 /*
1315  * The enqueue_task method is called before nr_running is
1316  * increased. Here we update the fair scheduling stats and
1317  * then put the task into the rbtree:
1318  */
1319 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)1320 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1321 {
1322 	struct cfs_rq *cfs_rq;
1323 	struct sched_entity *se = &p->se;
1324 
1325 	for_each_sched_entity(se) {
1326 		if (se->on_rq)
1327 			break;
1328 		cfs_rq = cfs_rq_of(se);
1329 		enqueue_entity(cfs_rq, se, flags);
1330 		flags = ENQUEUE_WAKEUP;
1331 	}
1332 
1333 	for_each_sched_entity(se) {
1334 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1335 
1336 		update_cfs_load(cfs_rq, 0);
1337 		update_cfs_shares(cfs_rq);
1338 	}
1339 
1340 	hrtick_update(rq);
1341 }
1342 
1343 /*
1344  * The dequeue_task method is called before nr_running is
1345  * decreased. We remove the task from the rbtree and
1346  * update the fair scheduling stats:
1347  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)1348 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1349 {
1350 	struct cfs_rq *cfs_rq;
1351 	struct sched_entity *se = &p->se;
1352 
1353 	for_each_sched_entity(se) {
1354 		cfs_rq = cfs_rq_of(se);
1355 		dequeue_entity(cfs_rq, se, flags);
1356 
1357 		/* Don't dequeue parent if it has other entities besides us */
1358 		if (cfs_rq->load.weight)
1359 			break;
1360 		flags |= DEQUEUE_SLEEP;
1361 	}
1362 
1363 	for_each_sched_entity(se) {
1364 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1365 
1366 		update_cfs_load(cfs_rq, 0);
1367 		update_cfs_shares(cfs_rq);
1368 	}
1369 
1370 	hrtick_update(rq);
1371 }
1372 
1373 #ifdef CONFIG_SMP
1374 
task_waking_fair(struct rq * rq,struct task_struct * p)1375 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1376 {
1377 	struct sched_entity *se = &p->se;
1378 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1379 
1380 	se->vruntime -= cfs_rq->min_vruntime;
1381 }
1382 
1383 #ifdef CONFIG_FAIR_GROUP_SCHED
1384 /*
1385  * effective_load() calculates the load change as seen from the root_task_group
1386  *
1387  * Adding load to a group doesn't make a group heavier, but can cause movement
1388  * of group shares between cpus. Assuming the shares were perfectly aligned one
1389  * can calculate the shift in shares.
1390  */
effective_load(struct task_group * tg,int cpu,long wl,long wg)1391 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1392 {
1393 	struct sched_entity *se = tg->se[cpu];
1394 
1395 	if (!tg->parent)
1396 		return wl;
1397 
1398 	for_each_sched_entity(se) {
1399 		long lw, w;
1400 
1401 		tg = se->my_q->tg;
1402 		w = se->my_q->load.weight;
1403 
1404 		/* use this cpu's instantaneous contribution */
1405 		lw = atomic_read(&tg->load_weight);
1406 		lw -= se->my_q->load_contribution;
1407 		lw += w + wg;
1408 
1409 		wl += w;
1410 
1411 		if (lw > 0 && wl < lw)
1412 			wl = (wl * tg->shares) / lw;
1413 		else
1414 			wl = tg->shares;
1415 
1416 		/* zero point is MIN_SHARES */
1417 		if (wl < MIN_SHARES)
1418 			wl = MIN_SHARES;
1419 		wl -= se->load.weight;
1420 		wg = 0;
1421 	}
1422 
1423 	return wl;
1424 }
1425 
1426 #else
1427 
effective_load(struct task_group * tg,int cpu,unsigned long wl,unsigned long wg)1428 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1429 		unsigned long wl, unsigned long wg)
1430 {
1431 	return wl;
1432 }
1433 
1434 #endif
1435 
wake_affine(struct sched_domain * sd,struct task_struct * p,int sync)1436 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1437 {
1438 	s64 this_load, load;
1439 	int idx, this_cpu, prev_cpu;
1440 	unsigned long tl_per_task;
1441 	struct task_group *tg;
1442 	unsigned long weight;
1443 	int balanced;
1444 
1445 	idx	  = sd->wake_idx;
1446 	this_cpu  = smp_processor_id();
1447 	prev_cpu  = task_cpu(p);
1448 	load	  = source_load(prev_cpu, idx);
1449 	this_load = target_load(this_cpu, idx);
1450 
1451 	/*
1452 	 * If sync wakeup then subtract the (maximum possible)
1453 	 * effect of the currently running task from the load
1454 	 * of the current CPU:
1455 	 */
1456 	rcu_read_lock();
1457 	if (sync) {
1458 		tg = task_group(current);
1459 		weight = current->se.load.weight;
1460 
1461 		this_load += effective_load(tg, this_cpu, -weight, -weight);
1462 		load += effective_load(tg, prev_cpu, 0, -weight);
1463 	}
1464 
1465 	tg = task_group(p);
1466 	weight = p->se.load.weight;
1467 
1468 	/*
1469 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1470 	 * due to the sync cause above having dropped this_load to 0, we'll
1471 	 * always have an imbalance, but there's really nothing you can do
1472 	 * about that, so that's good too.
1473 	 *
1474 	 * Otherwise check if either cpus are near enough in load to allow this
1475 	 * task to be woken on this_cpu.
1476 	 */
1477 	if (this_load > 0) {
1478 		s64 this_eff_load, prev_eff_load;
1479 
1480 		this_eff_load = 100;
1481 		this_eff_load *= power_of(prev_cpu);
1482 		this_eff_load *= this_load +
1483 			effective_load(tg, this_cpu, weight, weight);
1484 
1485 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1486 		prev_eff_load *= power_of(this_cpu);
1487 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1488 
1489 		balanced = this_eff_load <= prev_eff_load;
1490 	} else
1491 		balanced = true;
1492 	rcu_read_unlock();
1493 
1494 	/*
1495 	 * If the currently running task will sleep within
1496 	 * a reasonable amount of time then attract this newly
1497 	 * woken task:
1498 	 */
1499 	if (sync && balanced)
1500 		return 1;
1501 
1502 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1503 	tl_per_task = cpu_avg_load_per_task(this_cpu);
1504 
1505 	if (balanced ||
1506 	    (this_load <= load &&
1507 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1508 		/*
1509 		 * This domain has SD_WAKE_AFFINE and
1510 		 * p is cache cold in this domain, and
1511 		 * there is no bad imbalance.
1512 		 */
1513 		schedstat_inc(sd, ttwu_move_affine);
1514 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
1515 
1516 		return 1;
1517 	}
1518 	return 0;
1519 }
1520 
1521 /*
1522  * find_idlest_group finds and returns the least busy CPU group within the
1523  * domain.
1524  */
1525 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int load_idx)1526 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1527 		  int this_cpu, int load_idx)
1528 {
1529 	struct sched_group *idlest = NULL, *group = sd->groups;
1530 	unsigned long min_load = ULONG_MAX, this_load = 0;
1531 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1532 
1533 	do {
1534 		unsigned long load, avg_load;
1535 		int local_group;
1536 		int i;
1537 
1538 		/* Skip over this group if it has no CPUs allowed */
1539 		if (!cpumask_intersects(sched_group_cpus(group),
1540 					&p->cpus_allowed))
1541 			continue;
1542 
1543 		local_group = cpumask_test_cpu(this_cpu,
1544 					       sched_group_cpus(group));
1545 
1546 		/* Tally up the load of all CPUs in the group */
1547 		avg_load = 0;
1548 
1549 		for_each_cpu(i, sched_group_cpus(group)) {
1550 			/* Bias balancing toward cpus of our domain */
1551 			if (local_group)
1552 				load = source_load(i, load_idx);
1553 			else
1554 				load = target_load(i, load_idx);
1555 
1556 			avg_load += load;
1557 		}
1558 
1559 		/* Adjust by relative CPU power of the group */
1560 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1561 
1562 		if (local_group) {
1563 			this_load = avg_load;
1564 		} else if (avg_load < min_load) {
1565 			min_load = avg_load;
1566 			idlest = group;
1567 		}
1568 	} while (group = group->next, group != sd->groups);
1569 
1570 	if (!idlest || 100*this_load < imbalance*min_load)
1571 		return NULL;
1572 	return idlest;
1573 }
1574 
1575 /*
1576  * find_idlest_cpu - find the idlest cpu among the cpus in group.
1577  */
1578 static int
find_idlest_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)1579 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1580 {
1581 	unsigned long load, min_load = ULONG_MAX;
1582 	int idlest = -1;
1583 	int i;
1584 
1585 	/* Traverse only the allowed CPUs */
1586 	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1587 		load = weighted_cpuload(i);
1588 
1589 		if (load < min_load || (load == min_load && i == this_cpu)) {
1590 			min_load = load;
1591 			idlest = i;
1592 		}
1593 	}
1594 
1595 	return idlest;
1596 }
1597 
1598 /*
1599  * Try and locate an idle CPU in the sched_domain.
1600  */
select_idle_sibling(struct task_struct * p,int target)1601 static int select_idle_sibling(struct task_struct *p, int target)
1602 {
1603 	int cpu = smp_processor_id();
1604 	int prev_cpu = task_cpu(p);
1605 	struct sched_domain *sd;
1606 	int i;
1607 
1608 	/*
1609 	 * If the task is going to be woken-up on this cpu and if it is
1610 	 * already idle, then it is the right target.
1611 	 */
1612 	if (target == cpu && idle_cpu(cpu))
1613 		return cpu;
1614 
1615 	/*
1616 	 * If the task is going to be woken-up on the cpu where it previously
1617 	 * ran and if it is currently idle, then it the right target.
1618 	 */
1619 	if (target == prev_cpu && idle_cpu(prev_cpu))
1620 		return prev_cpu;
1621 
1622 	/*
1623 	 * Otherwise, iterate the domains and find an elegible idle cpu.
1624 	 */
1625 	for_each_domain(target, sd) {
1626 		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1627 			break;
1628 
1629 		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1630 			if (idle_cpu(i)) {
1631 				target = i;
1632 				break;
1633 			}
1634 		}
1635 
1636 		/*
1637 		 * Lets stop looking for an idle sibling when we reached
1638 		 * the domain that spans the current cpu and prev_cpu.
1639 		 */
1640 		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1641 		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1642 			break;
1643 	}
1644 
1645 	return target;
1646 }
1647 
1648 /*
1649  * sched_balance_self: balance the current task (running on cpu) in domains
1650  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1651  * SD_BALANCE_EXEC.
1652  *
1653  * Balance, ie. select the least loaded group.
1654  *
1655  * Returns the target CPU number, or the same CPU if no balancing is needed.
1656  *
1657  * preempt must be disabled.
1658  */
1659 static int
select_task_rq_fair(struct rq * rq,struct task_struct * p,int sd_flag,int wake_flags)1660 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1661 {
1662 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1663 	int cpu = smp_processor_id();
1664 	int prev_cpu = task_cpu(p);
1665 	int new_cpu = cpu;
1666 	int want_affine = 0;
1667 	int want_sd = 1;
1668 	int sync = wake_flags & WF_SYNC;
1669 
1670 	if (sd_flag & SD_BALANCE_WAKE) {
1671 		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1672 			want_affine = 1;
1673 		new_cpu = prev_cpu;
1674 	}
1675 
1676 	for_each_domain(cpu, tmp) {
1677 		if (!(tmp->flags & SD_LOAD_BALANCE))
1678 			continue;
1679 
1680 		/*
1681 		 * If power savings logic is enabled for a domain, see if we
1682 		 * are not overloaded, if so, don't balance wider.
1683 		 */
1684 		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1685 			unsigned long power = 0;
1686 			unsigned long nr_running = 0;
1687 			unsigned long capacity;
1688 			int i;
1689 
1690 			for_each_cpu(i, sched_domain_span(tmp)) {
1691 				power += power_of(i);
1692 				nr_running += cpu_rq(i)->cfs.nr_running;
1693 			}
1694 
1695 			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1696 
1697 			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1698 				nr_running /= 2;
1699 
1700 			if (nr_running < capacity)
1701 				want_sd = 0;
1702 		}
1703 
1704 		/*
1705 		 * If both cpu and prev_cpu are part of this domain,
1706 		 * cpu is a valid SD_WAKE_AFFINE target.
1707 		 */
1708 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1709 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1710 			affine_sd = tmp;
1711 			want_affine = 0;
1712 		}
1713 
1714 		if (!want_sd && !want_affine)
1715 			break;
1716 
1717 		if (!(tmp->flags & sd_flag))
1718 			continue;
1719 
1720 		if (want_sd)
1721 			sd = tmp;
1722 	}
1723 
1724 	if (affine_sd) {
1725 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1726 			return select_idle_sibling(p, cpu);
1727 		else
1728 			return select_idle_sibling(p, prev_cpu);
1729 	}
1730 
1731 	while (sd) {
1732 		int load_idx = sd->forkexec_idx;
1733 		struct sched_group *group;
1734 		int weight;
1735 
1736 		if (!(sd->flags & sd_flag)) {
1737 			sd = sd->child;
1738 			continue;
1739 		}
1740 
1741 		if (sd_flag & SD_BALANCE_WAKE)
1742 			load_idx = sd->wake_idx;
1743 
1744 		group = find_idlest_group(sd, p, cpu, load_idx);
1745 		if (!group) {
1746 			sd = sd->child;
1747 			continue;
1748 		}
1749 
1750 		new_cpu = find_idlest_cpu(group, p, cpu);
1751 		if (new_cpu == -1 || new_cpu == cpu) {
1752 			/* Now try balancing at a lower domain level of cpu */
1753 			sd = sd->child;
1754 			continue;
1755 		}
1756 
1757 		/* Now try balancing at a lower domain level of new_cpu */
1758 		cpu = new_cpu;
1759 		weight = sd->span_weight;
1760 		sd = NULL;
1761 		for_each_domain(cpu, tmp) {
1762 			if (weight <= tmp->span_weight)
1763 				break;
1764 			if (tmp->flags & sd_flag)
1765 				sd = tmp;
1766 		}
1767 		/* while loop will break here if sd == NULL */
1768 	}
1769 
1770 	return new_cpu;
1771 }
1772 #endif /* CONFIG_SMP */
1773 
1774 static unsigned long
wakeup_gran(struct sched_entity * curr,struct sched_entity * se)1775 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1776 {
1777 	unsigned long gran = sysctl_sched_wakeup_granularity;
1778 
1779 	/*
1780 	 * Since its curr running now, convert the gran from real-time
1781 	 * to virtual-time in his units.
1782 	 *
1783 	 * By using 'se' instead of 'curr' we penalize light tasks, so
1784 	 * they get preempted easier. That is, if 'se' < 'curr' then
1785 	 * the resulting gran will be larger, therefore penalizing the
1786 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1787 	 * be smaller, again penalizing the lighter task.
1788 	 *
1789 	 * This is especially important for buddies when the leftmost
1790 	 * task is higher priority than the buddy.
1791 	 */
1792 	if (unlikely(se->load.weight != NICE_0_LOAD))
1793 		gran = calc_delta_fair(gran, se);
1794 
1795 	return gran;
1796 }
1797 
1798 /*
1799  * Should 'se' preempt 'curr'.
1800  *
1801  *             |s1
1802  *        |s2
1803  *   |s3
1804  *         g
1805  *      |<--->|c
1806  *
1807  *  w(c, s1) = -1
1808  *  w(c, s2) =  0
1809  *  w(c, s3) =  1
1810  *
1811  */
1812 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)1813 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1814 {
1815 	s64 gran, vdiff = curr->vruntime - se->vruntime;
1816 
1817 	if (vdiff <= 0)
1818 		return -1;
1819 
1820 	gran = wakeup_gran(curr, se);
1821 	if (vdiff > gran)
1822 		return 1;
1823 
1824 	return 0;
1825 }
1826 
set_last_buddy(struct sched_entity * se)1827 static void set_last_buddy(struct sched_entity *se)
1828 {
1829 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
1830 		for_each_sched_entity(se)
1831 			cfs_rq_of(se)->last = se;
1832 	}
1833 }
1834 
set_next_buddy(struct sched_entity * se)1835 static void set_next_buddy(struct sched_entity *se)
1836 {
1837 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
1838 		for_each_sched_entity(se)
1839 			cfs_rq_of(se)->next = se;
1840 	}
1841 }
1842 
set_skip_buddy(struct sched_entity * se)1843 static void set_skip_buddy(struct sched_entity *se)
1844 {
1845 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
1846 		for_each_sched_entity(se)
1847 			cfs_rq_of(se)->skip = se;
1848 	}
1849 }
1850 
1851 /*
1852  * Preempt the current task with a newly woken task if needed:
1853  */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)1854 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1855 {
1856 	struct task_struct *curr = rq->curr;
1857 	struct sched_entity *se = &curr->se, *pse = &p->se;
1858 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1859 	int scale = cfs_rq->nr_running >= sched_nr_latency;
1860 
1861 	if (unlikely(se == pse))
1862 		return;
1863 
1864 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1865 		set_next_buddy(pse);
1866 
1867 	/*
1868 	 * We can come here with TIF_NEED_RESCHED already set from new task
1869 	 * wake up path.
1870 	 */
1871 	if (test_tsk_need_resched(curr))
1872 		return;
1873 
1874 	/* Idle tasks are by definition preempted by non-idle tasks. */
1875 	if (unlikely(curr->policy == SCHED_IDLE) &&
1876 	    likely(p->policy != SCHED_IDLE))
1877 		goto preempt;
1878 
1879 	/*
1880 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1881 	 * is driven by the tick):
1882 	 */
1883 	if (unlikely(p->policy != SCHED_NORMAL))
1884 		return;
1885 
1886 
1887 	if (!sched_feat(WAKEUP_PREEMPT))
1888 		return;
1889 
1890 	update_curr(cfs_rq);
1891 	find_matching_se(&se, &pse);
1892 	BUG_ON(!pse);
1893 	if (wakeup_preempt_entity(se, pse) == 1)
1894 		goto preempt;
1895 
1896 	return;
1897 
1898 preempt:
1899 	resched_task(curr);
1900 	/*
1901 	 * Only set the backward buddy when the current task is still
1902 	 * on the rq. This can happen when a wakeup gets interleaved
1903 	 * with schedule on the ->pre_schedule() or idle_balance()
1904 	 * point, either of which can * drop the rq lock.
1905 	 *
1906 	 * Also, during early boot the idle thread is in the fair class,
1907 	 * for obvious reasons its a bad idea to schedule back to it.
1908 	 */
1909 	if (unlikely(!se->on_rq || curr == rq->idle))
1910 		return;
1911 
1912 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1913 		set_last_buddy(se);
1914 }
1915 
pick_next_task_fair(struct rq * rq)1916 static struct task_struct *pick_next_task_fair(struct rq *rq)
1917 {
1918 	struct task_struct *p;
1919 	struct cfs_rq *cfs_rq = &rq->cfs;
1920 	struct sched_entity *se;
1921 
1922 	if (!cfs_rq->nr_running)
1923 		return NULL;
1924 
1925 	do {
1926 		se = pick_next_entity(cfs_rq);
1927 		set_next_entity(cfs_rq, se);
1928 		cfs_rq = group_cfs_rq(se);
1929 	} while (cfs_rq);
1930 
1931 	p = task_of(se);
1932 	hrtick_start_fair(rq, p);
1933 
1934 	return p;
1935 }
1936 
1937 /*
1938  * Account for a descheduled task:
1939  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)1940 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1941 {
1942 	struct sched_entity *se = &prev->se;
1943 	struct cfs_rq *cfs_rq;
1944 
1945 	for_each_sched_entity(se) {
1946 		cfs_rq = cfs_rq_of(se);
1947 		put_prev_entity(cfs_rq, se);
1948 	}
1949 }
1950 
1951 /*
1952  * sched_yield() is very simple
1953  *
1954  * The magic of dealing with the ->skip buddy is in pick_next_entity.
1955  */
yield_task_fair(struct rq * rq)1956 static void yield_task_fair(struct rq *rq)
1957 {
1958 	struct task_struct *curr = rq->curr;
1959 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1960 	struct sched_entity *se = &curr->se;
1961 
1962 	/*
1963 	 * Are we the only task in the tree?
1964 	 */
1965 	if (unlikely(rq->nr_running == 1))
1966 		return;
1967 
1968 	clear_buddies(cfs_rq, se);
1969 
1970 	if (curr->policy != SCHED_BATCH) {
1971 		update_rq_clock(rq);
1972 		/*
1973 		 * Update run-time statistics of the 'current'.
1974 		 */
1975 		update_curr(cfs_rq);
1976 	}
1977 
1978 	set_skip_buddy(se);
1979 }
1980 
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)1981 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
1982 {
1983 	struct sched_entity *se = &p->se;
1984 
1985 	if (!se->on_rq)
1986 		return false;
1987 
1988 	/* Tell the scheduler that we'd really like pse to run next. */
1989 	set_next_buddy(se);
1990 
1991 	yield_task_fair(rq);
1992 
1993 	return true;
1994 }
1995 
1996 #ifdef CONFIG_SMP
1997 /**************************************************
1998  * Fair scheduling class load-balancing methods:
1999  */
2000 
2001 /*
2002  * pull_task - move a task from a remote runqueue to the local runqueue.
2003  * Both runqueues must be locked.
2004  */
pull_task(struct rq * src_rq,struct task_struct * p,struct rq * this_rq,int this_cpu)2005 static void pull_task(struct rq *src_rq, struct task_struct *p,
2006 		      struct rq *this_rq, int this_cpu)
2007 {
2008 	deactivate_task(src_rq, p, 0);
2009 	set_task_cpu(p, this_cpu);
2010 	activate_task(this_rq, p, 0);
2011 	check_preempt_curr(this_rq, p, 0);
2012 }
2013 
2014 /*
2015  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2016  */
2017 static
can_migrate_task(struct task_struct * p,struct rq * rq,int this_cpu,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned)2018 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2019 		     struct sched_domain *sd, enum cpu_idle_type idle,
2020 		     int *all_pinned)
2021 {
2022 	int tsk_cache_hot = 0;
2023 	/*
2024 	 * We do not migrate tasks that are:
2025 	 * 1) running (obviously), or
2026 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2027 	 * 3) are cache-hot on their current CPU.
2028 	 */
2029 	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2030 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2031 		return 0;
2032 	}
2033 	*all_pinned = 0;
2034 
2035 	if (task_running(rq, p)) {
2036 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2037 		return 0;
2038 	}
2039 
2040 	/*
2041 	 * Aggressive migration if:
2042 	 * 1) task is cache cold, or
2043 	 * 2) too many balance attempts have failed.
2044 	 */
2045 
2046 	tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2047 	if (!tsk_cache_hot ||
2048 		sd->nr_balance_failed > sd->cache_nice_tries) {
2049 #ifdef CONFIG_SCHEDSTATS
2050 		if (tsk_cache_hot) {
2051 			schedstat_inc(sd, lb_hot_gained[idle]);
2052 			schedstat_inc(p, se.statistics.nr_forced_migrations);
2053 		}
2054 #endif
2055 		return 1;
2056 	}
2057 
2058 	if (tsk_cache_hot) {
2059 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2060 		return 0;
2061 	}
2062 	return 1;
2063 }
2064 
2065 /*
2066  * move_one_task tries to move exactly one task from busiest to this_rq, as
2067  * part of active balancing operations within "domain".
2068  * Returns 1 if successful and 0 otherwise.
2069  *
2070  * Called with both runqueues locked.
2071  */
2072 static int
move_one_task(struct rq * this_rq,int this_cpu,struct rq * busiest,struct sched_domain * sd,enum cpu_idle_type idle)2073 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2074 	      struct sched_domain *sd, enum cpu_idle_type idle)
2075 {
2076 	struct task_struct *p, *n;
2077 	struct cfs_rq *cfs_rq;
2078 	int pinned = 0;
2079 
2080 	for_each_leaf_cfs_rq(busiest, cfs_rq) {
2081 		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2082 
2083 			if (!can_migrate_task(p, busiest, this_cpu,
2084 						sd, idle, &pinned))
2085 				continue;
2086 
2087 			pull_task(busiest, p, this_rq, this_cpu);
2088 			/*
2089 			 * Right now, this is only the second place pull_task()
2090 			 * is called, so we can safely collect pull_task()
2091 			 * stats here rather than inside pull_task().
2092 			 */
2093 			schedstat_inc(sd, lb_gained[idle]);
2094 			return 1;
2095 		}
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static unsigned long
balance_tasks(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio,struct cfs_rq * busiest_cfs_rq)2102 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2103 	      unsigned long max_load_move, struct sched_domain *sd,
2104 	      enum cpu_idle_type idle, int *all_pinned,
2105 	      int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2106 {
2107 	int loops = 0, pulled = 0;
2108 	long rem_load_move = max_load_move;
2109 	struct task_struct *p, *n;
2110 
2111 	if (max_load_move == 0)
2112 		goto out;
2113 
2114 	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2115 		if (loops++ > sysctl_sched_nr_migrate)
2116 			break;
2117 
2118 		if ((p->se.load.weight >> 1) > rem_load_move ||
2119 		    !can_migrate_task(p, busiest, this_cpu, sd, idle,
2120 				      all_pinned))
2121 			continue;
2122 
2123 		pull_task(busiest, p, this_rq, this_cpu);
2124 		pulled++;
2125 		rem_load_move -= p->se.load.weight;
2126 
2127 #ifdef CONFIG_PREEMPT
2128 		/*
2129 		 * NEWIDLE balancing is a source of latency, so preemptible
2130 		 * kernels will stop after the first task is pulled to minimize
2131 		 * the critical section.
2132 		 */
2133 		if (idle == CPU_NEWLY_IDLE)
2134 			break;
2135 #endif
2136 
2137 		/*
2138 		 * We only want to steal up to the prescribed amount of
2139 		 * weighted load.
2140 		 */
2141 		if (rem_load_move <= 0)
2142 			break;
2143 
2144 		if (p->prio < *this_best_prio)
2145 			*this_best_prio = p->prio;
2146 	}
2147 out:
2148 	/*
2149 	 * Right now, this is one of only two places pull_task() is called,
2150 	 * so we can safely collect pull_task() stats here rather than
2151 	 * inside pull_task().
2152 	 */
2153 	schedstat_add(sd, lb_gained[idle], pulled);
2154 
2155 	return max_load_move - rem_load_move;
2156 }
2157 
2158 #ifdef CONFIG_FAIR_GROUP_SCHED
2159 /*
2160  * update tg->load_weight by folding this cpu's load_avg
2161  */
update_shares_cpu(struct task_group * tg,int cpu)2162 static int update_shares_cpu(struct task_group *tg, int cpu)
2163 {
2164 	struct cfs_rq *cfs_rq;
2165 	unsigned long flags;
2166 	struct rq *rq;
2167 
2168 	if (!tg->se[cpu])
2169 		return 0;
2170 
2171 	rq = cpu_rq(cpu);
2172 	cfs_rq = tg->cfs_rq[cpu];
2173 
2174 	raw_spin_lock_irqsave(&rq->lock, flags);
2175 
2176 	update_rq_clock(rq);
2177 	update_cfs_load(cfs_rq, 1);
2178 
2179 	/*
2180 	 * We need to update shares after updating tg->load_weight in
2181 	 * order to adjust the weight of groups with long running tasks.
2182 	 */
2183 	update_cfs_shares(cfs_rq);
2184 
2185 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2186 
2187 	return 0;
2188 }
2189 
update_shares(int cpu)2190 static void update_shares(int cpu)
2191 {
2192 	struct cfs_rq *cfs_rq;
2193 	struct rq *rq = cpu_rq(cpu);
2194 
2195 	rcu_read_lock();
2196 	for_each_leaf_cfs_rq(rq, cfs_rq)
2197 		update_shares_cpu(cfs_rq->tg, cpu);
2198 	rcu_read_unlock();
2199 }
2200 
2201 static unsigned long
load_balance_fair(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio)2202 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2203 		  unsigned long max_load_move,
2204 		  struct sched_domain *sd, enum cpu_idle_type idle,
2205 		  int *all_pinned, int *this_best_prio)
2206 {
2207 	long rem_load_move = max_load_move;
2208 	int busiest_cpu = cpu_of(busiest);
2209 	struct task_group *tg;
2210 
2211 	rcu_read_lock();
2212 	update_h_load(busiest_cpu);
2213 
2214 	list_for_each_entry_rcu(tg, &task_groups, list) {
2215 		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2216 		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2217 		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2218 		u64 rem_load, moved_load;
2219 
2220 		/*
2221 		 * empty group
2222 		 */
2223 		if (!busiest_cfs_rq->task_weight)
2224 			continue;
2225 
2226 		rem_load = (u64)rem_load_move * busiest_weight;
2227 		rem_load = div_u64(rem_load, busiest_h_load + 1);
2228 
2229 		moved_load = balance_tasks(this_rq, this_cpu, busiest,
2230 				rem_load, sd, idle, all_pinned, this_best_prio,
2231 				busiest_cfs_rq);
2232 
2233 		if (!moved_load)
2234 			continue;
2235 
2236 		moved_load *= busiest_h_load;
2237 		moved_load = div_u64(moved_load, busiest_weight + 1);
2238 
2239 		rem_load_move -= moved_load;
2240 		if (rem_load_move < 0)
2241 			break;
2242 	}
2243 	rcu_read_unlock();
2244 
2245 	return max_load_move - rem_load_move;
2246 }
2247 #else
update_shares(int cpu)2248 static inline void update_shares(int cpu)
2249 {
2250 }
2251 
2252 static unsigned long
load_balance_fair(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio)2253 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2254 		  unsigned long max_load_move,
2255 		  struct sched_domain *sd, enum cpu_idle_type idle,
2256 		  int *all_pinned, int *this_best_prio)
2257 {
2258 	return balance_tasks(this_rq, this_cpu, busiest,
2259 			max_load_move, sd, idle, all_pinned,
2260 			this_best_prio, &busiest->cfs);
2261 }
2262 #endif
2263 
2264 /*
2265  * move_tasks tries to move up to max_load_move weighted load from busiest to
2266  * this_rq, as part of a balancing operation within domain "sd".
2267  * Returns 1 if successful and 0 otherwise.
2268  *
2269  * Called with both runqueues locked.
2270  */
move_tasks(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned)2271 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2272 		      unsigned long max_load_move,
2273 		      struct sched_domain *sd, enum cpu_idle_type idle,
2274 		      int *all_pinned)
2275 {
2276 	unsigned long total_load_moved = 0, load_moved;
2277 	int this_best_prio = this_rq->curr->prio;
2278 
2279 	do {
2280 		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2281 				max_load_move - total_load_moved,
2282 				sd, idle, all_pinned, &this_best_prio);
2283 
2284 		total_load_moved += load_moved;
2285 
2286 #ifdef CONFIG_PREEMPT
2287 		/*
2288 		 * NEWIDLE balancing is a source of latency, so preemptible
2289 		 * kernels will stop after the first task is pulled to minimize
2290 		 * the critical section.
2291 		 */
2292 		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2293 			break;
2294 
2295 		if (raw_spin_is_contended(&this_rq->lock) ||
2296 				raw_spin_is_contended(&busiest->lock))
2297 			break;
2298 #endif
2299 	} while (load_moved && max_load_move > total_load_moved);
2300 
2301 	return total_load_moved > 0;
2302 }
2303 
2304 /********** Helpers for find_busiest_group ************************/
2305 /*
2306  * sd_lb_stats - Structure to store the statistics of a sched_domain
2307  * 		during load balancing.
2308  */
2309 struct sd_lb_stats {
2310 	struct sched_group *busiest; /* Busiest group in this sd */
2311 	struct sched_group *this;  /* Local group in this sd */
2312 	unsigned long total_load;  /* Total load of all groups in sd */
2313 	unsigned long total_pwr;   /*	Total power of all groups in sd */
2314 	unsigned long avg_load;	   /* Average load across all groups in sd */
2315 
2316 	/** Statistics of this group */
2317 	unsigned long this_load;
2318 	unsigned long this_load_per_task;
2319 	unsigned long this_nr_running;
2320 	unsigned long this_has_capacity;
2321 	unsigned int  this_idle_cpus;
2322 
2323 	/* Statistics of the busiest group */
2324 	unsigned int  busiest_idle_cpus;
2325 	unsigned long max_load;
2326 	unsigned long busiest_load_per_task;
2327 	unsigned long busiest_nr_running;
2328 	unsigned long busiest_group_capacity;
2329 	unsigned long busiest_has_capacity;
2330 	unsigned int  busiest_group_weight;
2331 
2332 	int group_imb; /* Is there imbalance in this sd */
2333 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2334 	int power_savings_balance; /* Is powersave balance needed for this sd */
2335 	struct sched_group *group_min; /* Least loaded group in sd */
2336 	struct sched_group *group_leader; /* Group which relieves group_min */
2337 	unsigned long min_load_per_task; /* load_per_task in group_min */
2338 	unsigned long leader_nr_running; /* Nr running of group_leader */
2339 	unsigned long min_nr_running; /* Nr running of group_min */
2340 #endif
2341 };
2342 
2343 /*
2344  * sg_lb_stats - stats of a sched_group required for load_balancing
2345  */
2346 struct sg_lb_stats {
2347 	unsigned long avg_load; /*Avg load across the CPUs of the group */
2348 	unsigned long group_load; /* Total load over the CPUs of the group */
2349 	unsigned long sum_nr_running; /* Nr tasks running in the group */
2350 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2351 	unsigned long group_capacity;
2352 	unsigned long idle_cpus;
2353 	unsigned long group_weight;
2354 	int group_imb; /* Is there an imbalance in the group ? */
2355 	int group_has_capacity; /* Is there extra capacity in the group? */
2356 };
2357 
2358 /**
2359  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2360  * @group: The group whose first cpu is to be returned.
2361  */
group_first_cpu(struct sched_group * group)2362 static inline unsigned int group_first_cpu(struct sched_group *group)
2363 {
2364 	return cpumask_first(sched_group_cpus(group));
2365 }
2366 
2367 /**
2368  * get_sd_load_idx - Obtain the load index for a given sched domain.
2369  * @sd: The sched_domain whose load_idx is to be obtained.
2370  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2371  */
get_sd_load_idx(struct sched_domain * sd,enum cpu_idle_type idle)2372 static inline int get_sd_load_idx(struct sched_domain *sd,
2373 					enum cpu_idle_type idle)
2374 {
2375 	int load_idx;
2376 
2377 	switch (idle) {
2378 	case CPU_NOT_IDLE:
2379 		load_idx = sd->busy_idx;
2380 		break;
2381 
2382 	case CPU_NEWLY_IDLE:
2383 		load_idx = sd->newidle_idx;
2384 		break;
2385 	default:
2386 		load_idx = sd->idle_idx;
2387 		break;
2388 	}
2389 
2390 	return load_idx;
2391 }
2392 
2393 
2394 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2395 /**
2396  * init_sd_power_savings_stats - Initialize power savings statistics for
2397  * the given sched_domain, during load balancing.
2398  *
2399  * @sd: Sched domain whose power-savings statistics are to be initialized.
2400  * @sds: Variable containing the statistics for sd.
2401  * @idle: Idle status of the CPU at which we're performing load-balancing.
2402  */
init_sd_power_savings_stats(struct sched_domain * sd,struct sd_lb_stats * sds,enum cpu_idle_type idle)2403 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2404 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
2405 {
2406 	/*
2407 	 * Busy processors will not participate in power savings
2408 	 * balance.
2409 	 */
2410 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2411 		sds->power_savings_balance = 0;
2412 	else {
2413 		sds->power_savings_balance = 1;
2414 		sds->min_nr_running = ULONG_MAX;
2415 		sds->leader_nr_running = 0;
2416 	}
2417 }
2418 
2419 /**
2420  * update_sd_power_savings_stats - Update the power saving stats for a
2421  * sched_domain while performing load balancing.
2422  *
2423  * @group: sched_group belonging to the sched_domain under consideration.
2424  * @sds: Variable containing the statistics of the sched_domain
2425  * @local_group: Does group contain the CPU for which we're performing
2426  * 		load balancing ?
2427  * @sgs: Variable containing the statistics of the group.
2428  */
update_sd_power_savings_stats(struct sched_group * group,struct sd_lb_stats * sds,int local_group,struct sg_lb_stats * sgs)2429 static inline void update_sd_power_savings_stats(struct sched_group *group,
2430 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2431 {
2432 
2433 	if (!sds->power_savings_balance)
2434 		return;
2435 
2436 	/*
2437 	 * If the local group is idle or completely loaded
2438 	 * no need to do power savings balance at this domain
2439 	 */
2440 	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2441 				!sds->this_nr_running))
2442 		sds->power_savings_balance = 0;
2443 
2444 	/*
2445 	 * If a group is already running at full capacity or idle,
2446 	 * don't include that group in power savings calculations
2447 	 */
2448 	if (!sds->power_savings_balance ||
2449 		sgs->sum_nr_running >= sgs->group_capacity ||
2450 		!sgs->sum_nr_running)
2451 		return;
2452 
2453 	/*
2454 	 * Calculate the group which has the least non-idle load.
2455 	 * This is the group from where we need to pick up the load
2456 	 * for saving power
2457 	 */
2458 	if ((sgs->sum_nr_running < sds->min_nr_running) ||
2459 	    (sgs->sum_nr_running == sds->min_nr_running &&
2460 	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2461 		sds->group_min = group;
2462 		sds->min_nr_running = sgs->sum_nr_running;
2463 		sds->min_load_per_task = sgs->sum_weighted_load /
2464 						sgs->sum_nr_running;
2465 	}
2466 
2467 	/*
2468 	 * Calculate the group which is almost near its
2469 	 * capacity but still has some space to pick up some load
2470 	 * from other group and save more power
2471 	 */
2472 	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2473 		return;
2474 
2475 	if (sgs->sum_nr_running > sds->leader_nr_running ||
2476 	    (sgs->sum_nr_running == sds->leader_nr_running &&
2477 	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2478 		sds->group_leader = group;
2479 		sds->leader_nr_running = sgs->sum_nr_running;
2480 	}
2481 }
2482 
2483 /**
2484  * check_power_save_busiest_group - see if there is potential for some power-savings balance
2485  * @sds: Variable containing the statistics of the sched_domain
2486  *	under consideration.
2487  * @this_cpu: Cpu at which we're currently performing load-balancing.
2488  * @imbalance: Variable to store the imbalance.
2489  *
2490  * Description:
2491  * Check if we have potential to perform some power-savings balance.
2492  * If yes, set the busiest group to be the least loaded group in the
2493  * sched_domain, so that it's CPUs can be put to idle.
2494  *
2495  * Returns 1 if there is potential to perform power-savings balance.
2496  * Else returns 0.
2497  */
check_power_save_busiest_group(struct sd_lb_stats * sds,int this_cpu,unsigned long * imbalance)2498 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2499 					int this_cpu, unsigned long *imbalance)
2500 {
2501 	if (!sds->power_savings_balance)
2502 		return 0;
2503 
2504 	if (sds->this != sds->group_leader ||
2505 			sds->group_leader == sds->group_min)
2506 		return 0;
2507 
2508 	*imbalance = sds->min_load_per_task;
2509 	sds->busiest = sds->group_min;
2510 
2511 	return 1;
2512 
2513 }
2514 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
init_sd_power_savings_stats(struct sched_domain * sd,struct sd_lb_stats * sds,enum cpu_idle_type idle)2515 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2516 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
2517 {
2518 	return;
2519 }
2520 
update_sd_power_savings_stats(struct sched_group * group,struct sd_lb_stats * sds,int local_group,struct sg_lb_stats * sgs)2521 static inline void update_sd_power_savings_stats(struct sched_group *group,
2522 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2523 {
2524 	return;
2525 }
2526 
check_power_save_busiest_group(struct sd_lb_stats * sds,int this_cpu,unsigned long * imbalance)2527 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2528 					int this_cpu, unsigned long *imbalance)
2529 {
2530 	return 0;
2531 }
2532 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2533 
2534 
default_scale_freq_power(struct sched_domain * sd,int cpu)2535 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2536 {
2537 	return SCHED_LOAD_SCALE;
2538 }
2539 
arch_scale_freq_power(struct sched_domain * sd,int cpu)2540 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2541 {
2542 	return default_scale_freq_power(sd, cpu);
2543 }
2544 
default_scale_smt_power(struct sched_domain * sd,int cpu)2545 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2546 {
2547 	unsigned long weight = sd->span_weight;
2548 	unsigned long smt_gain = sd->smt_gain;
2549 
2550 	smt_gain /= weight;
2551 
2552 	return smt_gain;
2553 }
2554 
arch_scale_smt_power(struct sched_domain * sd,int cpu)2555 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2556 {
2557 	return default_scale_smt_power(sd, cpu);
2558 }
2559 
scale_rt_power(int cpu)2560 unsigned long scale_rt_power(int cpu)
2561 {
2562 	struct rq *rq = cpu_rq(cpu);
2563 	u64 total, available;
2564 
2565 	total = sched_avg_period() + (rq->clock - rq->age_stamp);
2566 
2567 	if (unlikely(total < rq->rt_avg)) {
2568 		/* Ensures that power won't end up being negative */
2569 		available = 0;
2570 	} else {
2571 		available = total - rq->rt_avg;
2572 	}
2573 
2574 	if (unlikely((s64)total < SCHED_LOAD_SCALE))
2575 		total = SCHED_LOAD_SCALE;
2576 
2577 	total >>= SCHED_LOAD_SHIFT;
2578 
2579 	return div_u64(available, total);
2580 }
2581 
update_cpu_power(struct sched_domain * sd,int cpu)2582 static void update_cpu_power(struct sched_domain *sd, int cpu)
2583 {
2584 	unsigned long weight = sd->span_weight;
2585 	unsigned long power = SCHED_LOAD_SCALE;
2586 	struct sched_group *sdg = sd->groups;
2587 
2588 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2589 		if (sched_feat(ARCH_POWER))
2590 			power *= arch_scale_smt_power(sd, cpu);
2591 		else
2592 			power *= default_scale_smt_power(sd, cpu);
2593 
2594 		power >>= SCHED_LOAD_SHIFT;
2595 	}
2596 
2597 	sdg->cpu_power_orig = power;
2598 
2599 	if (sched_feat(ARCH_POWER))
2600 		power *= arch_scale_freq_power(sd, cpu);
2601 	else
2602 		power *= default_scale_freq_power(sd, cpu);
2603 
2604 	power >>= SCHED_LOAD_SHIFT;
2605 
2606 	power *= scale_rt_power(cpu);
2607 	power >>= SCHED_LOAD_SHIFT;
2608 
2609 	if (!power)
2610 		power = 1;
2611 
2612 	cpu_rq(cpu)->cpu_power = power;
2613 	sdg->cpu_power = power;
2614 }
2615 
update_group_power(struct sched_domain * sd,int cpu)2616 static void update_group_power(struct sched_domain *sd, int cpu)
2617 {
2618 	struct sched_domain *child = sd->child;
2619 	struct sched_group *group, *sdg = sd->groups;
2620 	unsigned long power;
2621 
2622 	if (!child) {
2623 		update_cpu_power(sd, cpu);
2624 		return;
2625 	}
2626 
2627 	power = 0;
2628 
2629 	group = child->groups;
2630 	do {
2631 		power += group->cpu_power;
2632 		group = group->next;
2633 	} while (group != child->groups);
2634 
2635 	sdg->cpu_power = power;
2636 }
2637 
2638 /*
2639  * Try and fix up capacity for tiny siblings, this is needed when
2640  * things like SD_ASYM_PACKING need f_b_g to select another sibling
2641  * which on its own isn't powerful enough.
2642  *
2643  * See update_sd_pick_busiest() and check_asym_packing().
2644  */
2645 static inline int
fix_small_capacity(struct sched_domain * sd,struct sched_group * group)2646 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2647 {
2648 	/*
2649 	 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2650 	 */
2651 	if (sd->level != SD_LV_SIBLING)
2652 		return 0;
2653 
2654 	/*
2655 	 * If ~90% of the cpu_power is still there, we're good.
2656 	 */
2657 	if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2658 		return 1;
2659 
2660 	return 0;
2661 }
2662 
2663 /**
2664  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2665  * @sd: The sched_domain whose statistics are to be updated.
2666  * @group: sched_group whose statistics are to be updated.
2667  * @this_cpu: Cpu for which load balance is currently performed.
2668  * @idle: Idle status of this_cpu
2669  * @load_idx: Load index of sched_domain of this_cpu for load calc.
2670  * @local_group: Does group contain this_cpu.
2671  * @cpus: Set of cpus considered for load balancing.
2672  * @balance: Should we balance.
2673  * @sgs: variable to hold the statistics for this group.
2674  */
update_sg_lb_stats(struct sched_domain * sd,struct sched_group * group,int this_cpu,enum cpu_idle_type idle,int load_idx,int local_group,const struct cpumask * cpus,int * balance,struct sg_lb_stats * sgs)2675 static inline void update_sg_lb_stats(struct sched_domain *sd,
2676 			struct sched_group *group, int this_cpu,
2677 			enum cpu_idle_type idle, int load_idx,
2678 			int local_group, const struct cpumask *cpus,
2679 			int *balance, struct sg_lb_stats *sgs)
2680 {
2681 	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2682 	int i;
2683 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
2684 	unsigned long avg_load_per_task = 0;
2685 
2686 	if (local_group)
2687 		balance_cpu = group_first_cpu(group);
2688 
2689 	/* Tally up the load of all CPUs in the group */
2690 	max_cpu_load = 0;
2691 	min_cpu_load = ~0UL;
2692 	max_nr_running = 0;
2693 
2694 	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2695 		struct rq *rq = cpu_rq(i);
2696 
2697 		/* Bias balancing toward cpus of our domain */
2698 		if (local_group) {
2699 			if (idle_cpu(i) && !first_idle_cpu) {
2700 				first_idle_cpu = 1;
2701 				balance_cpu = i;
2702 			}
2703 
2704 			load = target_load(i, load_idx);
2705 		} else {
2706 			load = source_load(i, load_idx);
2707 			if (load > max_cpu_load) {
2708 				max_cpu_load = load;
2709 				max_nr_running = rq->nr_running;
2710 			}
2711 			if (min_cpu_load > load)
2712 				min_cpu_load = load;
2713 		}
2714 
2715 		sgs->group_load += load;
2716 		sgs->sum_nr_running += rq->nr_running;
2717 		sgs->sum_weighted_load += weighted_cpuload(i);
2718 		if (idle_cpu(i))
2719 			sgs->idle_cpus++;
2720 	}
2721 
2722 	/*
2723 	 * First idle cpu or the first cpu(busiest) in this sched group
2724 	 * is eligible for doing load balancing at this and above
2725 	 * domains. In the newly idle case, we will allow all the cpu's
2726 	 * to do the newly idle load balance.
2727 	 */
2728 	if (idle != CPU_NEWLY_IDLE && local_group) {
2729 		if (balance_cpu != this_cpu) {
2730 			*balance = 0;
2731 			return;
2732 		}
2733 		update_group_power(sd, this_cpu);
2734 	}
2735 
2736 	/* Adjust by relative CPU power of the group */
2737 	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2738 
2739 	/*
2740 	 * Consider the group unbalanced when the imbalance is larger
2741 	 * than the average weight of a task.
2742 	 *
2743 	 * APZ: with cgroup the avg task weight can vary wildly and
2744 	 *      might not be a suitable number - should we keep a
2745 	 *      normalized nr_running number somewhere that negates
2746 	 *      the hierarchy?
2747 	 */
2748 	if (sgs->sum_nr_running)
2749 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2750 
2751 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2752 		sgs->group_imb = 1;
2753 
2754 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2755 	if (!sgs->group_capacity)
2756 		sgs->group_capacity = fix_small_capacity(sd, group);
2757 	sgs->group_weight = group->group_weight;
2758 
2759 	if (sgs->group_capacity > sgs->sum_nr_running)
2760 		sgs->group_has_capacity = 1;
2761 }
2762 
2763 /**
2764  * update_sd_pick_busiest - return 1 on busiest group
2765  * @sd: sched_domain whose statistics are to be checked
2766  * @sds: sched_domain statistics
2767  * @sg: sched_group candidate to be checked for being the busiest
2768  * @sgs: sched_group statistics
2769  * @this_cpu: the current cpu
2770  *
2771  * Determine if @sg is a busier group than the previously selected
2772  * busiest group.
2773  */
update_sd_pick_busiest(struct sched_domain * sd,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs,int this_cpu)2774 static bool update_sd_pick_busiest(struct sched_domain *sd,
2775 				   struct sd_lb_stats *sds,
2776 				   struct sched_group *sg,
2777 				   struct sg_lb_stats *sgs,
2778 				   int this_cpu)
2779 {
2780 	if (sgs->avg_load <= sds->max_load)
2781 		return false;
2782 
2783 	if (sgs->sum_nr_running > sgs->group_capacity)
2784 		return true;
2785 
2786 	if (sgs->group_imb)
2787 		return true;
2788 
2789 	/*
2790 	 * ASYM_PACKING needs to move all the work to the lowest
2791 	 * numbered CPUs in the group, therefore mark all groups
2792 	 * higher than ourself as busy.
2793 	 */
2794 	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2795 	    this_cpu < group_first_cpu(sg)) {
2796 		if (!sds->busiest)
2797 			return true;
2798 
2799 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2800 			return true;
2801 	}
2802 
2803 	return false;
2804 }
2805 
2806 /**
2807  * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2808  * @sd: sched_domain whose statistics are to be updated.
2809  * @this_cpu: Cpu for which load balance is currently performed.
2810  * @idle: Idle status of this_cpu
2811  * @cpus: Set of cpus considered for load balancing.
2812  * @balance: Should we balance.
2813  * @sds: variable to hold the statistics for this sched_domain.
2814  */
update_sd_lb_stats(struct sched_domain * sd,int this_cpu,enum cpu_idle_type idle,const struct cpumask * cpus,int * balance,struct sd_lb_stats * sds)2815 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2816 			enum cpu_idle_type idle, const struct cpumask *cpus,
2817 			int *balance, struct sd_lb_stats *sds)
2818 {
2819 	struct sched_domain *child = sd->child;
2820 	struct sched_group *sg = sd->groups;
2821 	struct sg_lb_stats sgs;
2822 	int load_idx, prefer_sibling = 0;
2823 
2824 	if (child && child->flags & SD_PREFER_SIBLING)
2825 		prefer_sibling = 1;
2826 
2827 	init_sd_power_savings_stats(sd, sds, idle);
2828 	load_idx = get_sd_load_idx(sd, idle);
2829 
2830 	do {
2831 		int local_group;
2832 
2833 		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2834 		memset(&sgs, 0, sizeof(sgs));
2835 		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
2836 				local_group, cpus, balance, &sgs);
2837 
2838 		if (local_group && !(*balance))
2839 			return;
2840 
2841 		sds->total_load += sgs.group_load;
2842 		sds->total_pwr += sg->cpu_power;
2843 
2844 		/*
2845 		 * In case the child domain prefers tasks go to siblings
2846 		 * first, lower the sg capacity to one so that we'll try
2847 		 * and move all the excess tasks away. We lower the capacity
2848 		 * of a group only if the local group has the capacity to fit
2849 		 * these excess tasks, i.e. nr_running < group_capacity. The
2850 		 * extra check prevents the case where you always pull from the
2851 		 * heaviest group when it is already under-utilized (possible
2852 		 * with a large weight task outweighs the tasks on the system).
2853 		 */
2854 		if (prefer_sibling && !local_group && sds->this_has_capacity)
2855 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
2856 
2857 		if (local_group) {
2858 			sds->this_load = sgs.avg_load;
2859 			sds->this = sg;
2860 			sds->this_nr_running = sgs.sum_nr_running;
2861 			sds->this_load_per_task = sgs.sum_weighted_load;
2862 			sds->this_has_capacity = sgs.group_has_capacity;
2863 			sds->this_idle_cpus = sgs.idle_cpus;
2864 		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2865 			sds->max_load = sgs.avg_load;
2866 			sds->busiest = sg;
2867 			sds->busiest_nr_running = sgs.sum_nr_running;
2868 			sds->busiest_idle_cpus = sgs.idle_cpus;
2869 			sds->busiest_group_capacity = sgs.group_capacity;
2870 			sds->busiest_load_per_task = sgs.sum_weighted_load;
2871 			sds->busiest_has_capacity = sgs.group_has_capacity;
2872 			sds->busiest_group_weight = sgs.group_weight;
2873 			sds->group_imb = sgs.group_imb;
2874 		}
2875 
2876 		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2877 		sg = sg->next;
2878 	} while (sg != sd->groups);
2879 }
2880 
arch_sd_sibling_asym_packing(void)2881 int __weak arch_sd_sibling_asym_packing(void)
2882 {
2883        return 0*SD_ASYM_PACKING;
2884 }
2885 
2886 /**
2887  * check_asym_packing - Check to see if the group is packed into the
2888  *			sched doman.
2889  *
2890  * This is primarily intended to used at the sibling level.  Some
2891  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
2892  * case of POWER7, it can move to lower SMT modes only when higher
2893  * threads are idle.  When in lower SMT modes, the threads will
2894  * perform better since they share less core resources.  Hence when we
2895  * have idle threads, we want them to be the higher ones.
2896  *
2897  * This packing function is run on idle threads.  It checks to see if
2898  * the busiest CPU in this domain (core in the P7 case) has a higher
2899  * CPU number than the packing function is being run on.  Here we are
2900  * assuming lower CPU number will be equivalent to lower a SMT thread
2901  * number.
2902  *
2903  * Returns 1 when packing is required and a task should be moved to
2904  * this CPU.  The amount of the imbalance is returned in *imbalance.
2905  *
2906  * @sd: The sched_domain whose packing is to be checked.
2907  * @sds: Statistics of the sched_domain which is to be packed
2908  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2909  * @imbalance: returns amount of imbalanced due to packing.
2910  */
check_asym_packing(struct sched_domain * sd,struct sd_lb_stats * sds,int this_cpu,unsigned long * imbalance)2911 static int check_asym_packing(struct sched_domain *sd,
2912 			      struct sd_lb_stats *sds,
2913 			      int this_cpu, unsigned long *imbalance)
2914 {
2915 	int busiest_cpu;
2916 
2917 	if (!(sd->flags & SD_ASYM_PACKING))
2918 		return 0;
2919 
2920 	if (!sds->busiest)
2921 		return 0;
2922 
2923 	busiest_cpu = group_first_cpu(sds->busiest);
2924 	if (this_cpu > busiest_cpu)
2925 		return 0;
2926 
2927 	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2928 				       SCHED_LOAD_SCALE);
2929 	return 1;
2930 }
2931 
2932 /**
2933  * fix_small_imbalance - Calculate the minor imbalance that exists
2934  *			amongst the groups of a sched_domain, during
2935  *			load balancing.
2936  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2937  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2938  * @imbalance: Variable to store the imbalance.
2939  */
fix_small_imbalance(struct sd_lb_stats * sds,int this_cpu,unsigned long * imbalance)2940 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2941 				int this_cpu, unsigned long *imbalance)
2942 {
2943 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
2944 	unsigned int imbn = 2;
2945 	unsigned long scaled_busy_load_per_task;
2946 
2947 	if (sds->this_nr_running) {
2948 		sds->this_load_per_task /= sds->this_nr_running;
2949 		if (sds->busiest_load_per_task >
2950 				sds->this_load_per_task)
2951 			imbn = 1;
2952 	} else
2953 		sds->this_load_per_task =
2954 			cpu_avg_load_per_task(this_cpu);
2955 
2956 	scaled_busy_load_per_task = sds->busiest_load_per_task
2957 						 * SCHED_LOAD_SCALE;
2958 	scaled_busy_load_per_task /= sds->busiest->cpu_power;
2959 
2960 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2961 			(scaled_busy_load_per_task * imbn)) {
2962 		*imbalance = sds->busiest_load_per_task;
2963 		return;
2964 	}
2965 
2966 	/*
2967 	 * OK, we don't have enough imbalance to justify moving tasks,
2968 	 * however we may be able to increase total CPU power used by
2969 	 * moving them.
2970 	 */
2971 
2972 	pwr_now += sds->busiest->cpu_power *
2973 			min(sds->busiest_load_per_task, sds->max_load);
2974 	pwr_now += sds->this->cpu_power *
2975 			min(sds->this_load_per_task, sds->this_load);
2976 	pwr_now /= SCHED_LOAD_SCALE;
2977 
2978 	/* Amount of load we'd subtract */
2979 	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2980 		sds->busiest->cpu_power;
2981 	if (sds->max_load > tmp)
2982 		pwr_move += sds->busiest->cpu_power *
2983 			min(sds->busiest_load_per_task, sds->max_load - tmp);
2984 
2985 	/* Amount of load we'd add */
2986 	if (sds->max_load * sds->busiest->cpu_power <
2987 		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2988 		tmp = (sds->max_load * sds->busiest->cpu_power) /
2989 			sds->this->cpu_power;
2990 	else
2991 		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2992 			sds->this->cpu_power;
2993 	pwr_move += sds->this->cpu_power *
2994 			min(sds->this_load_per_task, sds->this_load + tmp);
2995 	pwr_move /= SCHED_LOAD_SCALE;
2996 
2997 	/* Move if we gain throughput */
2998 	if (pwr_move > pwr_now)
2999 		*imbalance = sds->busiest_load_per_task;
3000 }
3001 
3002 /**
3003  * calculate_imbalance - Calculate the amount of imbalance present within the
3004  *			 groups of a given sched_domain during load balance.
3005  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3006  * @this_cpu: Cpu for which currently load balance is being performed.
3007  * @imbalance: The variable to store the imbalance.
3008  */
calculate_imbalance(struct sd_lb_stats * sds,int this_cpu,unsigned long * imbalance)3009 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3010 		unsigned long *imbalance)
3011 {
3012 	unsigned long max_pull, load_above_capacity = ~0UL;
3013 
3014 	sds->busiest_load_per_task /= sds->busiest_nr_running;
3015 	if (sds->group_imb) {
3016 		sds->busiest_load_per_task =
3017 			min(sds->busiest_load_per_task, sds->avg_load);
3018 	}
3019 
3020 	/*
3021 	 * In the presence of smp nice balancing, certain scenarios can have
3022 	 * max load less than avg load(as we skip the groups at or below
3023 	 * its cpu_power, while calculating max_load..)
3024 	 */
3025 	if (sds->max_load < sds->avg_load) {
3026 		*imbalance = 0;
3027 		return fix_small_imbalance(sds, this_cpu, imbalance);
3028 	}
3029 
3030 	if (!sds->group_imb) {
3031 		/*
3032 		 * Don't want to pull so many tasks that a group would go idle.
3033 		 */
3034 		load_above_capacity = (sds->busiest_nr_running -
3035 						sds->busiest_group_capacity);
3036 
3037 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3038 
3039 		load_above_capacity /= sds->busiest->cpu_power;
3040 	}
3041 
3042 	/*
3043 	 * We're trying to get all the cpus to the average_load, so we don't
3044 	 * want to push ourselves above the average load, nor do we wish to
3045 	 * reduce the max loaded cpu below the average load. At the same time,
3046 	 * we also don't want to reduce the group load below the group capacity
3047 	 * (so that we can implement power-savings policies etc). Thus we look
3048 	 * for the minimum possible imbalance.
3049 	 * Be careful of negative numbers as they'll appear as very large values
3050 	 * with unsigned longs.
3051 	 */
3052 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3053 
3054 	/* How much load to actually move to equalise the imbalance */
3055 	*imbalance = min(max_pull * sds->busiest->cpu_power,
3056 		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
3057 			/ SCHED_LOAD_SCALE;
3058 
3059 	/*
3060 	 * if *imbalance is less than the average load per runnable task
3061 	 * there is no guarantee that any tasks will be moved so we'll have
3062 	 * a think about bumping its value to force at least one task to be
3063 	 * moved
3064 	 */
3065 	if (*imbalance < sds->busiest_load_per_task)
3066 		return fix_small_imbalance(sds, this_cpu, imbalance);
3067 
3068 }
3069 
3070 /******* find_busiest_group() helpers end here *********************/
3071 
3072 /**
3073  * find_busiest_group - Returns the busiest group within the sched_domain
3074  * if there is an imbalance. If there isn't an imbalance, and
3075  * the user has opted for power-savings, it returns a group whose
3076  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3077  * such a group exists.
3078  *
3079  * Also calculates the amount of weighted load which should be moved
3080  * to restore balance.
3081  *
3082  * @sd: The sched_domain whose busiest group is to be returned.
3083  * @this_cpu: The cpu for which load balancing is currently being performed.
3084  * @imbalance: Variable which stores amount of weighted load which should
3085  *		be moved to restore balance/put a group to idle.
3086  * @idle: The idle status of this_cpu.
3087  * @cpus: The set of CPUs under consideration for load-balancing.
3088  * @balance: Pointer to a variable indicating if this_cpu
3089  *	is the appropriate cpu to perform load balancing at this_level.
3090  *
3091  * Returns:	- the busiest group if imbalance exists.
3092  *		- If no imbalance and user has opted for power-savings balance,
3093  *		   return the least loaded group whose CPUs can be
3094  *		   put to idle by rebalancing its tasks onto our group.
3095  */
3096 static struct sched_group *
find_busiest_group(struct sched_domain * sd,int this_cpu,unsigned long * imbalance,enum cpu_idle_type idle,const struct cpumask * cpus,int * balance)3097 find_busiest_group(struct sched_domain *sd, int this_cpu,
3098 		   unsigned long *imbalance, enum cpu_idle_type idle,
3099 		   const struct cpumask *cpus, int *balance)
3100 {
3101 	struct sd_lb_stats sds;
3102 
3103 	memset(&sds, 0, sizeof(sds));
3104 
3105 	/*
3106 	 * Compute the various statistics relavent for load balancing at
3107 	 * this level.
3108 	 */
3109 	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3110 
3111 	/*
3112 	 * this_cpu is not the appropriate cpu to perform load balancing at
3113 	 * this level.
3114 	 */
3115 	if (!(*balance))
3116 		goto ret;
3117 
3118 	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3119 	    check_asym_packing(sd, &sds, this_cpu, imbalance))
3120 		return sds.busiest;
3121 
3122 	/* There is no busy sibling group to pull tasks from */
3123 	if (!sds.busiest || sds.busiest_nr_running == 0)
3124 		goto out_balanced;
3125 
3126 	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3127 
3128 	/*
3129 	 * If the busiest group is imbalanced the below checks don't
3130 	 * work because they assumes all things are equal, which typically
3131 	 * isn't true due to cpus_allowed constraints and the like.
3132 	 */
3133 	if (sds.group_imb)
3134 		goto force_balance;
3135 
3136 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3137 	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3138 			!sds.busiest_has_capacity)
3139 		goto force_balance;
3140 
3141 	/*
3142 	 * If the local group is more busy than the selected busiest group
3143 	 * don't try and pull any tasks.
3144 	 */
3145 	if (sds.this_load >= sds.max_load)
3146 		goto out_balanced;
3147 
3148 	/*
3149 	 * Don't pull any tasks if this group is already above the domain
3150 	 * average load.
3151 	 */
3152 	if (sds.this_load >= sds.avg_load)
3153 		goto out_balanced;
3154 
3155 	if (idle == CPU_IDLE) {
3156 		/*
3157 		 * This cpu is idle. If the busiest group load doesn't
3158 		 * have more tasks than the number of available cpu's and
3159 		 * there is no imbalance between this and busiest group
3160 		 * wrt to idle cpu's, it is balanced.
3161 		 */
3162 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3163 		    sds.busiest_nr_running <= sds.busiest_group_weight)
3164 			goto out_balanced;
3165 	} else {
3166 		/*
3167 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3168 		 * imbalance_pct to be conservative.
3169 		 */
3170 		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3171 			goto out_balanced;
3172 	}
3173 
3174 force_balance:
3175 	/* Looks like there is an imbalance. Compute it */
3176 	calculate_imbalance(&sds, this_cpu, imbalance);
3177 	return sds.busiest;
3178 
3179 out_balanced:
3180 	/*
3181 	 * There is no obvious imbalance. But check if we can do some balancing
3182 	 * to save power.
3183 	 */
3184 	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3185 		return sds.busiest;
3186 ret:
3187 	*imbalance = 0;
3188 	return NULL;
3189 }
3190 
3191 /*
3192  * find_busiest_queue - find the busiest runqueue among the cpus in group.
3193  */
3194 static struct rq *
find_busiest_queue(struct sched_domain * sd,struct sched_group * group,enum cpu_idle_type idle,unsigned long imbalance,const struct cpumask * cpus)3195 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3196 		   enum cpu_idle_type idle, unsigned long imbalance,
3197 		   const struct cpumask *cpus)
3198 {
3199 	struct rq *busiest = NULL, *rq;
3200 	unsigned long max_load = 0;
3201 	int i;
3202 
3203 	for_each_cpu(i, sched_group_cpus(group)) {
3204 		unsigned long power = power_of(i);
3205 		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3206 		unsigned long wl;
3207 
3208 		if (!capacity)
3209 			capacity = fix_small_capacity(sd, group);
3210 
3211 		if (!cpumask_test_cpu(i, cpus))
3212 			continue;
3213 
3214 		rq = cpu_rq(i);
3215 		wl = weighted_cpuload(i);
3216 
3217 		/*
3218 		 * When comparing with imbalance, use weighted_cpuload()
3219 		 * which is not scaled with the cpu power.
3220 		 */
3221 		if (capacity && rq->nr_running == 1 && wl > imbalance)
3222 			continue;
3223 
3224 		/*
3225 		 * For the load comparisons with the other cpu's, consider
3226 		 * the weighted_cpuload() scaled with the cpu power, so that
3227 		 * the load can be moved away from the cpu that is potentially
3228 		 * running at a lower capacity.
3229 		 */
3230 		wl = (wl * SCHED_LOAD_SCALE) / power;
3231 
3232 		if (wl > max_load) {
3233 			max_load = wl;
3234 			busiest = rq;
3235 		}
3236 	}
3237 
3238 	return busiest;
3239 }
3240 
3241 /*
3242  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3243  * so long as it is large enough.
3244  */
3245 #define MAX_PINNED_INTERVAL	512
3246 
3247 /* Working cpumask for load_balance and load_balance_newidle. */
3248 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3249 
need_active_balance(struct sched_domain * sd,int idle,int busiest_cpu,int this_cpu)3250 static int need_active_balance(struct sched_domain *sd, int idle,
3251 			       int busiest_cpu, int this_cpu)
3252 {
3253 	if (idle == CPU_NEWLY_IDLE) {
3254 
3255 		/*
3256 		 * ASYM_PACKING needs to force migrate tasks from busy but
3257 		 * higher numbered CPUs in order to pack all tasks in the
3258 		 * lowest numbered CPUs.
3259 		 */
3260 		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3261 			return 1;
3262 
3263 		/*
3264 		 * The only task running in a non-idle cpu can be moved to this
3265 		 * cpu in an attempt to completely freeup the other CPU
3266 		 * package.
3267 		 *
3268 		 * The package power saving logic comes from
3269 		 * find_busiest_group(). If there are no imbalance, then
3270 		 * f_b_g() will return NULL. However when sched_mc={1,2} then
3271 		 * f_b_g() will select a group from which a running task may be
3272 		 * pulled to this cpu in order to make the other package idle.
3273 		 * If there is no opportunity to make a package idle and if
3274 		 * there are no imbalance, then f_b_g() will return NULL and no
3275 		 * action will be taken in load_balance_newidle().
3276 		 *
3277 		 * Under normal task pull operation due to imbalance, there
3278 		 * will be more than one task in the source run queue and
3279 		 * move_tasks() will succeed.  ld_moved will be true and this
3280 		 * active balance code will not be triggered.
3281 		 */
3282 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3283 			return 0;
3284 	}
3285 
3286 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3287 }
3288 
3289 static int active_load_balance_cpu_stop(void *data);
3290 
3291 /*
3292  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3293  * tasks if there is an imbalance.
3294  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * balance)3295 static int load_balance(int this_cpu, struct rq *this_rq,
3296 			struct sched_domain *sd, enum cpu_idle_type idle,
3297 			int *balance)
3298 {
3299 	int ld_moved, all_pinned = 0, active_balance = 0;
3300 	struct sched_group *group;
3301 	unsigned long imbalance;
3302 	struct rq *busiest;
3303 	unsigned long flags;
3304 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3305 
3306 	cpumask_copy(cpus, cpu_active_mask);
3307 
3308 	schedstat_inc(sd, lb_count[idle]);
3309 
3310 redo:
3311 	group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3312 				   cpus, balance);
3313 
3314 	if (*balance == 0)
3315 		goto out_balanced;
3316 
3317 	if (!group) {
3318 		schedstat_inc(sd, lb_nobusyg[idle]);
3319 		goto out_balanced;
3320 	}
3321 
3322 	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3323 	if (!busiest) {
3324 		schedstat_inc(sd, lb_nobusyq[idle]);
3325 		goto out_balanced;
3326 	}
3327 
3328 	BUG_ON(busiest == this_rq);
3329 
3330 	schedstat_add(sd, lb_imbalance[idle], imbalance);
3331 
3332 	ld_moved = 0;
3333 	if (busiest->nr_running > 1) {
3334 		/*
3335 		 * Attempt to move tasks. If find_busiest_group has found
3336 		 * an imbalance but busiest->nr_running <= 1, the group is
3337 		 * still unbalanced. ld_moved simply stays zero, so it is
3338 		 * correctly treated as an imbalance.
3339 		 */
3340 		all_pinned = 1;
3341 		local_irq_save(flags);
3342 		double_rq_lock(this_rq, busiest);
3343 		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3344 				      imbalance, sd, idle, &all_pinned);
3345 		double_rq_unlock(this_rq, busiest);
3346 		local_irq_restore(flags);
3347 
3348 		/*
3349 		 * some other cpu did the load balance for us.
3350 		 */
3351 		if (ld_moved && this_cpu != smp_processor_id())
3352 			resched_cpu(this_cpu);
3353 
3354 		/* All tasks on this runqueue were pinned by CPU affinity */
3355 		if (unlikely(all_pinned)) {
3356 			cpumask_clear_cpu(cpu_of(busiest), cpus);
3357 			if (!cpumask_empty(cpus))
3358 				goto redo;
3359 			goto out_balanced;
3360 		}
3361 	}
3362 
3363 	if (!ld_moved) {
3364 		schedstat_inc(sd, lb_failed[idle]);
3365 		/*
3366 		 * Increment the failure counter only on periodic balance.
3367 		 * We do not want newidle balance, which can be very
3368 		 * frequent, pollute the failure counter causing
3369 		 * excessive cache_hot migrations and active balances.
3370 		 */
3371 		if (idle != CPU_NEWLY_IDLE)
3372 			sd->nr_balance_failed++;
3373 
3374 		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3375 			raw_spin_lock_irqsave(&busiest->lock, flags);
3376 
3377 			/* don't kick the active_load_balance_cpu_stop,
3378 			 * if the curr task on busiest cpu can't be
3379 			 * moved to this_cpu
3380 			 */
3381 			if (!cpumask_test_cpu(this_cpu,
3382 					      &busiest->curr->cpus_allowed)) {
3383 				raw_spin_unlock_irqrestore(&busiest->lock,
3384 							    flags);
3385 				all_pinned = 1;
3386 				goto out_one_pinned;
3387 			}
3388 
3389 			/*
3390 			 * ->active_balance synchronizes accesses to
3391 			 * ->active_balance_work.  Once set, it's cleared
3392 			 * only after active load balance is finished.
3393 			 */
3394 			if (!busiest->active_balance) {
3395 				busiest->active_balance = 1;
3396 				busiest->push_cpu = this_cpu;
3397 				active_balance = 1;
3398 			}
3399 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
3400 
3401 			if (active_balance)
3402 				stop_one_cpu_nowait(cpu_of(busiest),
3403 					active_load_balance_cpu_stop, busiest,
3404 					&busiest->active_balance_work);
3405 
3406 			/*
3407 			 * We've kicked active balancing, reset the failure
3408 			 * counter.
3409 			 */
3410 			sd->nr_balance_failed = sd->cache_nice_tries+1;
3411 		}
3412 	} else
3413 		sd->nr_balance_failed = 0;
3414 
3415 	if (likely(!active_balance)) {
3416 		/* We were unbalanced, so reset the balancing interval */
3417 		sd->balance_interval = sd->min_interval;
3418 	} else {
3419 		/*
3420 		 * If we've begun active balancing, start to back off. This
3421 		 * case may not be covered by the all_pinned logic if there
3422 		 * is only 1 task on the busy runqueue (because we don't call
3423 		 * move_tasks).
3424 		 */
3425 		if (sd->balance_interval < sd->max_interval)
3426 			sd->balance_interval *= 2;
3427 	}
3428 
3429 	goto out;
3430 
3431 out_balanced:
3432 	schedstat_inc(sd, lb_balanced[idle]);
3433 
3434 	sd->nr_balance_failed = 0;
3435 
3436 out_one_pinned:
3437 	/* tune up the balancing interval */
3438 	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3439 			(sd->balance_interval < sd->max_interval))
3440 		sd->balance_interval *= 2;
3441 
3442 	ld_moved = 0;
3443 out:
3444 	return ld_moved;
3445 }
3446 
3447 /*
3448  * idle_balance is called by schedule() if this_cpu is about to become
3449  * idle. Attempts to pull tasks from other CPUs.
3450  */
idle_balance(int this_cpu,struct rq * this_rq)3451 static void idle_balance(int this_cpu, struct rq *this_rq)
3452 {
3453 	struct sched_domain *sd;
3454 	int pulled_task = 0;
3455 	unsigned long next_balance = jiffies + HZ;
3456 
3457 	this_rq->idle_stamp = this_rq->clock;
3458 
3459 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
3460 		return;
3461 
3462 	/*
3463 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
3464 	 */
3465 	raw_spin_unlock(&this_rq->lock);
3466 
3467 	update_shares(this_cpu);
3468 	for_each_domain(this_cpu, sd) {
3469 		unsigned long interval;
3470 		int balance = 1;
3471 
3472 		if (!(sd->flags & SD_LOAD_BALANCE))
3473 			continue;
3474 
3475 		if (sd->flags & SD_BALANCE_NEWIDLE) {
3476 			/* If we've pulled tasks over stop searching: */
3477 			pulled_task = load_balance(this_cpu, this_rq,
3478 						   sd, CPU_NEWLY_IDLE, &balance);
3479 		}
3480 
3481 		interval = msecs_to_jiffies(sd->balance_interval);
3482 		if (time_after(next_balance, sd->last_balance + interval))
3483 			next_balance = sd->last_balance + interval;
3484 		if (pulled_task) {
3485 			this_rq->idle_stamp = 0;
3486 			break;
3487 		}
3488 	}
3489 
3490 	raw_spin_lock(&this_rq->lock);
3491 
3492 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3493 		/*
3494 		 * We are going idle. next_balance may be set based on
3495 		 * a busy processor. So reset next_balance.
3496 		 */
3497 		this_rq->next_balance = next_balance;
3498 	}
3499 }
3500 
3501 /*
3502  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3503  * running tasks off the busiest CPU onto idle CPUs. It requires at
3504  * least 1 task to be running on each physical CPU where possible, and
3505  * avoids physical / logical imbalances.
3506  */
active_load_balance_cpu_stop(void * data)3507 static int active_load_balance_cpu_stop(void *data)
3508 {
3509 	struct rq *busiest_rq = data;
3510 	int busiest_cpu = cpu_of(busiest_rq);
3511 	int target_cpu = busiest_rq->push_cpu;
3512 	struct rq *target_rq = cpu_rq(target_cpu);
3513 	struct sched_domain *sd;
3514 
3515 	raw_spin_lock_irq(&busiest_rq->lock);
3516 
3517 	/* make sure the requested cpu hasn't gone down in the meantime */
3518 	if (unlikely(busiest_cpu != smp_processor_id() ||
3519 		     !busiest_rq->active_balance))
3520 		goto out_unlock;
3521 
3522 	/* Is there any task to move? */
3523 	if (busiest_rq->nr_running <= 1)
3524 		goto out_unlock;
3525 
3526 	/*
3527 	 * This condition is "impossible", if it occurs
3528 	 * we need to fix it. Originally reported by
3529 	 * Bjorn Helgaas on a 128-cpu setup.
3530 	 */
3531 	BUG_ON(busiest_rq == target_rq);
3532 
3533 	/* move a task from busiest_rq to target_rq */
3534 	double_lock_balance(busiest_rq, target_rq);
3535 
3536 	/* Search for an sd spanning us and the target CPU. */
3537 	for_each_domain(target_cpu, sd) {
3538 		if ((sd->flags & SD_LOAD_BALANCE) &&
3539 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3540 				break;
3541 	}
3542 
3543 	if (likely(sd)) {
3544 		schedstat_inc(sd, alb_count);
3545 
3546 		if (move_one_task(target_rq, target_cpu, busiest_rq,
3547 				  sd, CPU_IDLE))
3548 			schedstat_inc(sd, alb_pushed);
3549 		else
3550 			schedstat_inc(sd, alb_failed);
3551 	}
3552 	double_unlock_balance(busiest_rq, target_rq);
3553 out_unlock:
3554 	busiest_rq->active_balance = 0;
3555 	raw_spin_unlock_irq(&busiest_rq->lock);
3556 	return 0;
3557 }
3558 
3559 #ifdef CONFIG_NO_HZ
3560 
3561 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3562 
trigger_sched_softirq(void * data)3563 static void trigger_sched_softirq(void *data)
3564 {
3565 	raise_softirq_irqoff(SCHED_SOFTIRQ);
3566 }
3567 
init_sched_softirq_csd(struct call_single_data * csd)3568 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3569 {
3570 	csd->func = trigger_sched_softirq;
3571 	csd->info = NULL;
3572 	csd->flags = 0;
3573 	csd->priv = 0;
3574 }
3575 
3576 /*
3577  * idle load balancing details
3578  * - One of the idle CPUs nominates itself as idle load_balancer, while
3579  *   entering idle.
3580  * - This idle load balancer CPU will also go into tickless mode when
3581  *   it is idle, just like all other idle CPUs
3582  * - When one of the busy CPUs notice that there may be an idle rebalancing
3583  *   needed, they will kick the idle load balancer, which then does idle
3584  *   load balancing for all the idle CPUs.
3585  */
3586 static struct {
3587 	atomic_t load_balancer;
3588 	atomic_t first_pick_cpu;
3589 	atomic_t second_pick_cpu;
3590 	cpumask_var_t idle_cpus_mask;
3591 	cpumask_var_t grp_idle_mask;
3592 	unsigned long next_balance;     /* in jiffy units */
3593 } nohz ____cacheline_aligned;
3594 
get_nohz_load_balancer(void)3595 int get_nohz_load_balancer(void)
3596 {
3597 	return atomic_read(&nohz.load_balancer);
3598 }
3599 
3600 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3601 /**
3602  * lowest_flag_domain - Return lowest sched_domain containing flag.
3603  * @cpu:	The cpu whose lowest level of sched domain is to
3604  *		be returned.
3605  * @flag:	The flag to check for the lowest sched_domain
3606  *		for the given cpu.
3607  *
3608  * Returns the lowest sched_domain of a cpu which contains the given flag.
3609  */
lowest_flag_domain(int cpu,int flag)3610 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3611 {
3612 	struct sched_domain *sd;
3613 
3614 	for_each_domain(cpu, sd)
3615 		if (sd && (sd->flags & flag))
3616 			break;
3617 
3618 	return sd;
3619 }
3620 
3621 /**
3622  * for_each_flag_domain - Iterates over sched_domains containing the flag.
3623  * @cpu:	The cpu whose domains we're iterating over.
3624  * @sd:		variable holding the value of the power_savings_sd
3625  *		for cpu.
3626  * @flag:	The flag to filter the sched_domains to be iterated.
3627  *
3628  * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3629  * set, starting from the lowest sched_domain to the highest.
3630  */
3631 #define for_each_flag_domain(cpu, sd, flag) \
3632 	for (sd = lowest_flag_domain(cpu, flag); \
3633 		(sd && (sd->flags & flag)); sd = sd->parent)
3634 
3635 /**
3636  * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3637  * @ilb_group:	group to be checked for semi-idleness
3638  *
3639  * Returns:	1 if the group is semi-idle. 0 otherwise.
3640  *
3641  * We define a sched_group to be semi idle if it has atleast one idle-CPU
3642  * and atleast one non-idle CPU. This helper function checks if the given
3643  * sched_group is semi-idle or not.
3644  */
is_semi_idle_group(struct sched_group * ilb_group)3645 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3646 {
3647 	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3648 					sched_group_cpus(ilb_group));
3649 
3650 	/*
3651 	 * A sched_group is semi-idle when it has atleast one busy cpu
3652 	 * and atleast one idle cpu.
3653 	 */
3654 	if (cpumask_empty(nohz.grp_idle_mask))
3655 		return 0;
3656 
3657 	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3658 		return 0;
3659 
3660 	return 1;
3661 }
3662 /**
3663  * find_new_ilb - Finds the optimum idle load balancer for nomination.
3664  * @cpu:	The cpu which is nominating a new idle_load_balancer.
3665  *
3666  * Returns:	Returns the id of the idle load balancer if it exists,
3667  *		Else, returns >= nr_cpu_ids.
3668  *
3669  * This algorithm picks the idle load balancer such that it belongs to a
3670  * semi-idle powersavings sched_domain. The idea is to try and avoid
3671  * completely idle packages/cores just for the purpose of idle load balancing
3672  * when there are other idle cpu's which are better suited for that job.
3673  */
find_new_ilb(int cpu)3674 static int find_new_ilb(int cpu)
3675 {
3676 	struct sched_domain *sd;
3677 	struct sched_group *ilb_group;
3678 
3679 	/*
3680 	 * Have idle load balancer selection from semi-idle packages only
3681 	 * when power-aware load balancing is enabled
3682 	 */
3683 	if (!(sched_smt_power_savings || sched_mc_power_savings))
3684 		goto out_done;
3685 
3686 	/*
3687 	 * Optimize for the case when we have no idle CPUs or only one
3688 	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3689 	 */
3690 	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3691 		goto out_done;
3692 
3693 	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3694 		ilb_group = sd->groups;
3695 
3696 		do {
3697 			if (is_semi_idle_group(ilb_group))
3698 				return cpumask_first(nohz.grp_idle_mask);
3699 
3700 			ilb_group = ilb_group->next;
3701 
3702 		} while (ilb_group != sd->groups);
3703 	}
3704 
3705 out_done:
3706 	return nr_cpu_ids;
3707 }
3708 #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
find_new_ilb(int call_cpu)3709 static inline int find_new_ilb(int call_cpu)
3710 {
3711 	return nr_cpu_ids;
3712 }
3713 #endif
3714 
3715 /*
3716  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3717  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3718  * CPU (if there is one).
3719  */
nohz_balancer_kick(int cpu)3720 static void nohz_balancer_kick(int cpu)
3721 {
3722 	int ilb_cpu;
3723 
3724 	nohz.next_balance++;
3725 
3726 	ilb_cpu = get_nohz_load_balancer();
3727 
3728 	if (ilb_cpu >= nr_cpu_ids) {
3729 		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3730 		if (ilb_cpu >= nr_cpu_ids)
3731 			return;
3732 	}
3733 
3734 	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3735 		struct call_single_data *cp;
3736 
3737 		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3738 		cp = &per_cpu(remote_sched_softirq_cb, cpu);
3739 		__smp_call_function_single(ilb_cpu, cp, 0);
3740 	}
3741 	return;
3742 }
3743 
3744 /*
3745  * This routine will try to nominate the ilb (idle load balancing)
3746  * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3747  * load balancing on behalf of all those cpus.
3748  *
3749  * When the ilb owner becomes busy, we will not have new ilb owner until some
3750  * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3751  * idle load balancing by kicking one of the idle CPUs.
3752  *
3753  * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3754  * ilb owner CPU in future (when there is a need for idle load balancing on
3755  * behalf of all idle CPUs).
3756  */
select_nohz_load_balancer(int stop_tick)3757 void select_nohz_load_balancer(int stop_tick)
3758 {
3759 	int cpu = smp_processor_id();
3760 
3761 	if (stop_tick) {
3762 		if (!cpu_active(cpu)) {
3763 			if (atomic_read(&nohz.load_balancer) != cpu)
3764 				return;
3765 
3766 			/*
3767 			 * If we are going offline and still the leader,
3768 			 * give up!
3769 			 */
3770 			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3771 					   nr_cpu_ids) != cpu)
3772 				BUG();
3773 
3774 			return;
3775 		}
3776 
3777 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3778 
3779 		if (atomic_read(&nohz.first_pick_cpu) == cpu)
3780 			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3781 		if (atomic_read(&nohz.second_pick_cpu) == cpu)
3782 			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3783 
3784 		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3785 			int new_ilb;
3786 
3787 			/* make me the ilb owner */
3788 			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3789 					   cpu) != nr_cpu_ids)
3790 				return;
3791 
3792 			/*
3793 			 * Check to see if there is a more power-efficient
3794 			 * ilb.
3795 			 */
3796 			new_ilb = find_new_ilb(cpu);
3797 			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3798 				atomic_set(&nohz.load_balancer, nr_cpu_ids);
3799 				resched_cpu(new_ilb);
3800 				return;
3801 			}
3802 			return;
3803 		}
3804 	} else {
3805 		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3806 			return;
3807 
3808 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3809 
3810 		if (atomic_read(&nohz.load_balancer) == cpu)
3811 			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3812 					   nr_cpu_ids) != cpu)
3813 				BUG();
3814 	}
3815 	return;
3816 }
3817 #endif
3818 
3819 static DEFINE_SPINLOCK(balancing);
3820 
3821 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3822 
3823 /*
3824  * Scale the max load_balance interval with the number of CPUs in the system.
3825  * This trades load-balance latency on larger machines for less cross talk.
3826  */
update_max_interval(void)3827 static void update_max_interval(void)
3828 {
3829 	max_load_balance_interval = HZ*num_online_cpus()/10;
3830 }
3831 
3832 /*
3833  * It checks each scheduling domain to see if it is due to be balanced,
3834  * and initiates a balancing operation if so.
3835  *
3836  * Balancing parameters are set up in arch_init_sched_domains.
3837  */
rebalance_domains(int cpu,enum cpu_idle_type idle)3838 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3839 {
3840 	int balance = 1;
3841 	struct rq *rq = cpu_rq(cpu);
3842 	unsigned long interval;
3843 	struct sched_domain *sd;
3844 	/* Earliest time when we have to do rebalance again */
3845 	unsigned long next_balance = jiffies + 60*HZ;
3846 	int update_next_balance = 0;
3847 	int need_serialize;
3848 
3849 	update_shares(cpu);
3850 
3851 	for_each_domain(cpu, sd) {
3852 		if (!(sd->flags & SD_LOAD_BALANCE))
3853 			continue;
3854 
3855 		interval = sd->balance_interval;
3856 		if (idle != CPU_IDLE)
3857 			interval *= sd->busy_factor;
3858 
3859 		/* scale ms to jiffies */
3860 		interval = msecs_to_jiffies(interval);
3861 		interval = clamp(interval, 1UL, max_load_balance_interval);
3862 
3863 		need_serialize = sd->flags & SD_SERIALIZE;
3864 
3865 		if (need_serialize) {
3866 			if (!spin_trylock(&balancing))
3867 				goto out;
3868 		}
3869 
3870 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3871 			if (load_balance(cpu, rq, sd, idle, &balance)) {
3872 				/*
3873 				 * We've pulled tasks over so either we're no
3874 				 * longer idle.
3875 				 */
3876 				idle = CPU_NOT_IDLE;
3877 			}
3878 			sd->last_balance = jiffies;
3879 		}
3880 		if (need_serialize)
3881 			spin_unlock(&balancing);
3882 out:
3883 		if (time_after(next_balance, sd->last_balance + interval)) {
3884 			next_balance = sd->last_balance + interval;
3885 			update_next_balance = 1;
3886 		}
3887 
3888 		/*
3889 		 * Stop the load balance at this level. There is another
3890 		 * CPU in our sched group which is doing load balancing more
3891 		 * actively.
3892 		 */
3893 		if (!balance)
3894 			break;
3895 	}
3896 
3897 	/*
3898 	 * next_balance will be updated only when there is a need.
3899 	 * When the cpu is attached to null domain for ex, it will not be
3900 	 * updated.
3901 	 */
3902 	if (likely(update_next_balance))
3903 		rq->next_balance = next_balance;
3904 }
3905 
3906 #ifdef CONFIG_NO_HZ
3907 /*
3908  * In CONFIG_NO_HZ case, the idle balance kickee will do the
3909  * rebalancing for all the cpus for whom scheduler ticks are stopped.
3910  */
nohz_idle_balance(int this_cpu,enum cpu_idle_type idle)3911 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3912 {
3913 	struct rq *this_rq = cpu_rq(this_cpu);
3914 	struct rq *rq;
3915 	int balance_cpu;
3916 
3917 	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3918 		return;
3919 
3920 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3921 		if (balance_cpu == this_cpu)
3922 			continue;
3923 
3924 		/*
3925 		 * If this cpu gets work to do, stop the load balancing
3926 		 * work being done for other cpus. Next load
3927 		 * balancing owner will pick it up.
3928 		 */
3929 		if (need_resched()) {
3930 			this_rq->nohz_balance_kick = 0;
3931 			break;
3932 		}
3933 
3934 		raw_spin_lock_irq(&this_rq->lock);
3935 		update_rq_clock(this_rq);
3936 		update_cpu_load(this_rq);
3937 		raw_spin_unlock_irq(&this_rq->lock);
3938 
3939 		rebalance_domains(balance_cpu, CPU_IDLE);
3940 
3941 		rq = cpu_rq(balance_cpu);
3942 		if (time_after(this_rq->next_balance, rq->next_balance))
3943 			this_rq->next_balance = rq->next_balance;
3944 	}
3945 	nohz.next_balance = this_rq->next_balance;
3946 	this_rq->nohz_balance_kick = 0;
3947 }
3948 
3949 /*
3950  * Current heuristic for kicking the idle load balancer
3951  * - first_pick_cpu is the one of the busy CPUs. It will kick
3952  *   idle load balancer when it has more than one process active. This
3953  *   eliminates the need for idle load balancing altogether when we have
3954  *   only one running process in the system (common case).
3955  * - If there are more than one busy CPU, idle load balancer may have
3956  *   to run for active_load_balance to happen (i.e., two busy CPUs are
3957  *   SMT or core siblings and can run better if they move to different
3958  *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3959  *   which will kick idle load balancer as soon as it has any load.
3960  */
nohz_kick_needed(struct rq * rq,int cpu)3961 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3962 {
3963 	unsigned long now = jiffies;
3964 	int ret;
3965 	int first_pick_cpu, second_pick_cpu;
3966 
3967 	if (time_before(now, nohz.next_balance))
3968 		return 0;
3969 
3970 	if (rq->idle_at_tick)
3971 		return 0;
3972 
3973 	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3974 	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3975 
3976 	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3977 	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3978 		return 0;
3979 
3980 	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3981 	if (ret == nr_cpu_ids || ret == cpu) {
3982 		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3983 		if (rq->nr_running > 1)
3984 			return 1;
3985 	} else {
3986 		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3987 		if (ret == nr_cpu_ids || ret == cpu) {
3988 			if (rq->nr_running)
3989 				return 1;
3990 		}
3991 	}
3992 	return 0;
3993 }
3994 #else
nohz_idle_balance(int this_cpu,enum cpu_idle_type idle)3995 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3996 #endif
3997 
3998 /*
3999  * run_rebalance_domains is triggered when needed from the scheduler tick.
4000  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4001  */
run_rebalance_domains(struct softirq_action * h)4002 static void run_rebalance_domains(struct softirq_action *h)
4003 {
4004 	int this_cpu = smp_processor_id();
4005 	struct rq *this_rq = cpu_rq(this_cpu);
4006 	enum cpu_idle_type idle = this_rq->idle_at_tick ?
4007 						CPU_IDLE : CPU_NOT_IDLE;
4008 
4009 	rebalance_domains(this_cpu, idle);
4010 
4011 	/*
4012 	 * If this cpu has a pending nohz_balance_kick, then do the
4013 	 * balancing on behalf of the other idle cpus whose ticks are
4014 	 * stopped.
4015 	 */
4016 	nohz_idle_balance(this_cpu, idle);
4017 }
4018 
on_null_domain(int cpu)4019 static inline int on_null_domain(int cpu)
4020 {
4021 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4022 }
4023 
4024 /*
4025  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4026  */
trigger_load_balance(struct rq * rq,int cpu)4027 static inline void trigger_load_balance(struct rq *rq, int cpu)
4028 {
4029 	/* Don't need to rebalance while attached to NULL domain */
4030 	if (time_after_eq(jiffies, rq->next_balance) &&
4031 	    likely(!on_null_domain(cpu)))
4032 		raise_softirq(SCHED_SOFTIRQ);
4033 #ifdef CONFIG_NO_HZ
4034 	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4035 		nohz_balancer_kick(cpu);
4036 #endif
4037 }
4038 
rq_online_fair(struct rq * rq)4039 static void rq_online_fair(struct rq *rq)
4040 {
4041 	update_sysctl();
4042 }
4043 
rq_offline_fair(struct rq * rq)4044 static void rq_offline_fair(struct rq *rq)
4045 {
4046 	update_sysctl();
4047 }
4048 
4049 #else	/* CONFIG_SMP */
4050 
4051 /*
4052  * on UP we do not need to balance between CPUs:
4053  */
idle_balance(int cpu,struct rq * rq)4054 static inline void idle_balance(int cpu, struct rq *rq)
4055 {
4056 }
4057 
4058 #endif /* CONFIG_SMP */
4059 
4060 /*
4061  * scheduler tick hitting a task of our scheduling class:
4062  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)4063 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4064 {
4065 	struct cfs_rq *cfs_rq;
4066 	struct sched_entity *se = &curr->se;
4067 
4068 	for_each_sched_entity(se) {
4069 		cfs_rq = cfs_rq_of(se);
4070 		entity_tick(cfs_rq, se, queued);
4071 	}
4072 }
4073 
4074 /*
4075  * called on fork with the child task as argument from the parent's context
4076  *  - child not yet on the tasklist
4077  *  - preemption disabled
4078  */
task_fork_fair(struct task_struct * p)4079 static void task_fork_fair(struct task_struct *p)
4080 {
4081 	struct cfs_rq *cfs_rq = task_cfs_rq(current);
4082 	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4083 	int this_cpu = smp_processor_id();
4084 	struct rq *rq = this_rq();
4085 	unsigned long flags;
4086 
4087 	raw_spin_lock_irqsave(&rq->lock, flags);
4088 
4089 	update_rq_clock(rq);
4090 
4091 	if (unlikely(task_cpu(p) != this_cpu)) {
4092 		rcu_read_lock();
4093 		__set_task_cpu(p, this_cpu);
4094 		rcu_read_unlock();
4095 	}
4096 
4097 	update_curr(cfs_rq);
4098 
4099 	if (curr)
4100 		se->vruntime = curr->vruntime;
4101 	place_entity(cfs_rq, se, 1);
4102 
4103 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4104 		/*
4105 		 * Upon rescheduling, sched_class::put_prev_task() will place
4106 		 * 'current' within the tree based on its new key value.
4107 		 */
4108 		swap(curr->vruntime, se->vruntime);
4109 		resched_task(rq->curr);
4110 	}
4111 
4112 	se->vruntime -= cfs_rq->min_vruntime;
4113 
4114 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4115 }
4116 
4117 /*
4118  * Priority of the task has changed. Check to see if we preempt
4119  * the current task.
4120  */
4121 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)4122 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4123 {
4124 	if (!p->se.on_rq)
4125 		return;
4126 
4127 	/*
4128 	 * Reschedule if we are currently running on this runqueue and
4129 	 * our priority decreased, or if we are not currently running on
4130 	 * this runqueue and our priority is higher than the current's
4131 	 */
4132 	if (rq->curr == p) {
4133 		if (p->prio > oldprio)
4134 			resched_task(rq->curr);
4135 	} else
4136 		check_preempt_curr(rq, p, 0);
4137 }
4138 
switched_from_fair(struct rq * rq,struct task_struct * p)4139 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4140 {
4141 	struct sched_entity *se = &p->se;
4142 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4143 
4144 	/*
4145 	 * Ensure the task's vruntime is normalized, so that when its
4146 	 * switched back to the fair class the enqueue_entity(.flags=0) will
4147 	 * do the right thing.
4148 	 *
4149 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4150 	 * have normalized the vruntime, if it was !on_rq, then only when
4151 	 * the task is sleeping will it still have non-normalized vruntime.
4152 	 */
4153 	if (!se->on_rq && p->state != TASK_RUNNING) {
4154 		/*
4155 		 * Fix up our vruntime so that the current sleep doesn't
4156 		 * cause 'unlimited' sleep bonus.
4157 		 */
4158 		place_entity(cfs_rq, se, 0);
4159 		se->vruntime -= cfs_rq->min_vruntime;
4160 	}
4161 }
4162 
4163 /*
4164  * We switched to the sched_fair class.
4165  */
switched_to_fair(struct rq * rq,struct task_struct * p)4166 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4167 {
4168 	if (!p->se.on_rq)
4169 		return;
4170 
4171 	/*
4172 	 * We were most likely switched from sched_rt, so
4173 	 * kick off the schedule if running, otherwise just see
4174 	 * if we can still preempt the current task.
4175 	 */
4176 	if (rq->curr == p)
4177 		resched_task(rq->curr);
4178 	else
4179 		check_preempt_curr(rq, p, 0);
4180 }
4181 
4182 /* Account for a task changing its policy or group.
4183  *
4184  * This routine is mostly called to set cfs_rq->curr field when a task
4185  * migrates between groups/classes.
4186  */
set_curr_task_fair(struct rq * rq)4187 static void set_curr_task_fair(struct rq *rq)
4188 {
4189 	struct sched_entity *se = &rq->curr->se;
4190 
4191 	for_each_sched_entity(se)
4192 		set_next_entity(cfs_rq_of(se), se);
4193 }
4194 
4195 #ifdef CONFIG_FAIR_GROUP_SCHED
task_move_group_fair(struct task_struct * p,int on_rq)4196 static void task_move_group_fair(struct task_struct *p, int on_rq)
4197 {
4198 	/*
4199 	 * If the task was not on the rq at the time of this cgroup movement
4200 	 * it must have been asleep, sleeping tasks keep their ->vruntime
4201 	 * absolute on their old rq until wakeup (needed for the fair sleeper
4202 	 * bonus in place_entity()).
4203 	 *
4204 	 * If it was on the rq, we've just 'preempted' it, which does convert
4205 	 * ->vruntime to a relative base.
4206 	 *
4207 	 * Make sure both cases convert their relative position when migrating
4208 	 * to another cgroup's rq. This does somewhat interfere with the
4209 	 * fair sleeper stuff for the first placement, but who cares.
4210 	 */
4211 	if (!on_rq)
4212 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4213 	set_task_rq(p, task_cpu(p));
4214 	if (!on_rq)
4215 		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4216 }
4217 #endif
4218 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)4219 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4220 {
4221 	struct sched_entity *se = &task->se;
4222 	unsigned int rr_interval = 0;
4223 
4224 	/*
4225 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4226 	 * idle runqueue:
4227 	 */
4228 	if (rq->cfs.load.weight)
4229 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4230 
4231 	return rr_interval;
4232 }
4233 
4234 /*
4235  * All the scheduling class methods:
4236  */
4237 static const struct sched_class fair_sched_class = {
4238 	.next			= &idle_sched_class,
4239 	.enqueue_task		= enqueue_task_fair,
4240 	.dequeue_task		= dequeue_task_fair,
4241 	.yield_task		= yield_task_fair,
4242 	.yield_to_task		= yield_to_task_fair,
4243 
4244 	.check_preempt_curr	= check_preempt_wakeup,
4245 
4246 	.pick_next_task		= pick_next_task_fair,
4247 	.put_prev_task		= put_prev_task_fair,
4248 
4249 #ifdef CONFIG_SMP
4250 	.select_task_rq		= select_task_rq_fair,
4251 
4252 	.rq_online		= rq_online_fair,
4253 	.rq_offline		= rq_offline_fair,
4254 
4255 	.task_waking		= task_waking_fair,
4256 #endif
4257 
4258 	.set_curr_task          = set_curr_task_fair,
4259 	.task_tick		= task_tick_fair,
4260 	.task_fork		= task_fork_fair,
4261 
4262 	.prio_changed		= prio_changed_fair,
4263 	.switched_from		= switched_from_fair,
4264 	.switched_to		= switched_to_fair,
4265 
4266 	.get_rr_interval	= get_rr_interval_fair,
4267 
4268 #ifdef CONFIG_FAIR_GROUP_SCHED
4269 	.task_move_group	= task_move_group_fair,
4270 #endif
4271 };
4272 
4273 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)4274 static void print_cfs_stats(struct seq_file *m, int cpu)
4275 {
4276 	struct cfs_rq *cfs_rq;
4277 
4278 	rcu_read_lock();
4279 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4280 		print_cfs_rq(m, cpu, cfs_rq);
4281 	rcu_read_unlock();
4282 }
4283 #endif
4284