1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23 
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/dma-mapping.h>
27 
28 /**
29  * typedef dma_cookie_t - an opaque DMA cookie
30  *
31  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
32  */
33 typedef s32 dma_cookie_t;
34 #define DMA_MIN_COOKIE	1
35 #define DMA_MAX_COOKIE	INT_MAX
36 
37 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
38 
39 /**
40  * enum dma_status - DMA transaction status
41  * @DMA_SUCCESS: transaction completed successfully
42  * @DMA_IN_PROGRESS: transaction not yet processed
43  * @DMA_PAUSED: transaction is paused
44  * @DMA_ERROR: transaction failed
45  */
46 enum dma_status {
47 	DMA_SUCCESS,
48 	DMA_IN_PROGRESS,
49 	DMA_PAUSED,
50 	DMA_ERROR,
51 };
52 
53 /**
54  * enum dma_transaction_type - DMA transaction types/indexes
55  *
56  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
57  * automatically set as dma devices are registered.
58  */
59 enum dma_transaction_type {
60 	DMA_MEMCPY,
61 	DMA_XOR,
62 	DMA_PQ,
63 	DMA_XOR_VAL,
64 	DMA_PQ_VAL,
65 	DMA_MEMSET,
66 	DMA_INTERRUPT,
67 	DMA_SG,
68 	DMA_PRIVATE,
69 	DMA_ASYNC_TX,
70 	DMA_SLAVE,
71 	DMA_CYCLIC,
72 };
73 
74 /* last transaction type for creation of the capabilities mask */
75 #define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
76 
77 
78 /**
79  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
80  *  control completion, and communicate status.
81  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
82  *  this transaction
83  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
84  *  acknowledges receipt, i.e. has has a chance to establish any dependency
85  *  chains
86  * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
87  * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
88  * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
89  * 	(if not set, do the source dma-unmapping as page)
90  * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
91  * 	(if not set, do the destination dma-unmapping as page)
92  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
93  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
94  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
95  *  sources that were the result of a previous operation, in the case of a PQ
96  *  operation it continues the calculation with new sources
97  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
98  *  on the result of this operation
99  */
100 enum dma_ctrl_flags {
101 	DMA_PREP_INTERRUPT = (1 << 0),
102 	DMA_CTRL_ACK = (1 << 1),
103 	DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
104 	DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
105 	DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
106 	DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
107 	DMA_PREP_PQ_DISABLE_P = (1 << 6),
108 	DMA_PREP_PQ_DISABLE_Q = (1 << 7),
109 	DMA_PREP_CONTINUE = (1 << 8),
110 	DMA_PREP_FENCE = (1 << 9),
111 };
112 
113 /**
114  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
115  * on a running channel.
116  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
117  * @DMA_PAUSE: pause ongoing transfers
118  * @DMA_RESUME: resume paused transfer
119  * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
120  * that need to runtime reconfigure the slave channels (as opposed to passing
121  * configuration data in statically from the platform). An additional
122  * argument of struct dma_slave_config must be passed in with this
123  * command.
124  * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
125  * into external start mode.
126  */
127 enum dma_ctrl_cmd {
128 	DMA_TERMINATE_ALL,
129 	DMA_PAUSE,
130 	DMA_RESUME,
131 	DMA_SLAVE_CONFIG,
132 	FSLDMA_EXTERNAL_START,
133 };
134 
135 /**
136  * enum sum_check_bits - bit position of pq_check_flags
137  */
138 enum sum_check_bits {
139 	SUM_CHECK_P = 0,
140 	SUM_CHECK_Q = 1,
141 };
142 
143 /**
144  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
145  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
146  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
147  */
148 enum sum_check_flags {
149 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
150 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
151 };
152 
153 
154 /**
155  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
156  * See linux/cpumask.h
157  */
158 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
159 
160 /**
161  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
162  * @memcpy_count: transaction counter
163  * @bytes_transferred: byte counter
164  */
165 
166 struct dma_chan_percpu {
167 	/* stats */
168 	unsigned long memcpy_count;
169 	unsigned long bytes_transferred;
170 };
171 
172 /**
173  * struct dma_chan - devices supply DMA channels, clients use them
174  * @device: ptr to the dma device who supplies this channel, always !%NULL
175  * @cookie: last cookie value returned to client
176  * @chan_id: channel ID for sysfs
177  * @dev: class device for sysfs
178  * @device_node: used to add this to the device chan list
179  * @local: per-cpu pointer to a struct dma_chan_percpu
180  * @client-count: how many clients are using this channel
181  * @table_count: number of appearances in the mem-to-mem allocation table
182  * @private: private data for certain client-channel associations
183  */
184 struct dma_chan {
185 	struct dma_device *device;
186 	dma_cookie_t cookie;
187 
188 	/* sysfs */
189 	int chan_id;
190 	struct dma_chan_dev *dev;
191 
192 	struct list_head device_node;
193 	struct dma_chan_percpu __percpu *local;
194 	int client_count;
195 	int table_count;
196 	void *private;
197 };
198 
199 /**
200  * struct dma_chan_dev - relate sysfs device node to backing channel device
201  * @chan - driver channel device
202  * @device - sysfs device
203  * @dev_id - parent dma_device dev_id
204  * @idr_ref - reference count to gate release of dma_device dev_id
205  */
206 struct dma_chan_dev {
207 	struct dma_chan *chan;
208 	struct device device;
209 	int dev_id;
210 	atomic_t *idr_ref;
211 };
212 
213 /**
214  * enum dma_slave_buswidth - defines bus with of the DMA slave
215  * device, source or target buses
216  */
217 enum dma_slave_buswidth {
218 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
219 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
220 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
221 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
222 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
223 };
224 
225 /**
226  * struct dma_slave_config - dma slave channel runtime config
227  * @direction: whether the data shall go in or out on this slave
228  * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
229  * legal values, DMA_BIDIRECTIONAL is not acceptable since we
230  * need to differentiate source and target addresses.
231  * @src_addr: this is the physical address where DMA slave data
232  * should be read (RX), if the source is memory this argument is
233  * ignored.
234  * @dst_addr: this is the physical address where DMA slave data
235  * should be written (TX), if the source is memory this argument
236  * is ignored.
237  * @src_addr_width: this is the width in bytes of the source (RX)
238  * register where DMA data shall be read. If the source
239  * is memory this may be ignored depending on architecture.
240  * Legal values: 1, 2, 4, 8.
241  * @dst_addr_width: same as src_addr_width but for destination
242  * target (TX) mutatis mutandis.
243  * @src_maxburst: the maximum number of words (note: words, as in
244  * units of the src_addr_width member, not bytes) that can be sent
245  * in one burst to the device. Typically something like half the
246  * FIFO depth on I/O peripherals so you don't overflow it. This
247  * may or may not be applicable on memory sources.
248  * @dst_maxburst: same as src_maxburst but for destination target
249  * mutatis mutandis.
250  *
251  * This struct is passed in as configuration data to a DMA engine
252  * in order to set up a certain channel for DMA transport at runtime.
253  * The DMA device/engine has to provide support for an additional
254  * command in the channel config interface, DMA_SLAVE_CONFIG
255  * and this struct will then be passed in as an argument to the
256  * DMA engine device_control() function.
257  *
258  * The rationale for adding configuration information to this struct
259  * is as follows: if it is likely that most DMA slave controllers in
260  * the world will support the configuration option, then make it
261  * generic. If not: if it is fixed so that it be sent in static from
262  * the platform data, then prefer to do that. Else, if it is neither
263  * fixed at runtime, nor generic enough (such as bus mastership on
264  * some CPU family and whatnot) then create a custom slave config
265  * struct and pass that, then make this config a member of that
266  * struct, if applicable.
267  */
268 struct dma_slave_config {
269 	enum dma_data_direction direction;
270 	dma_addr_t src_addr;
271 	dma_addr_t dst_addr;
272 	enum dma_slave_buswidth src_addr_width;
273 	enum dma_slave_buswidth dst_addr_width;
274 	u32 src_maxburst;
275 	u32 dst_maxburst;
276 };
277 
dma_chan_name(struct dma_chan * chan)278 static inline const char *dma_chan_name(struct dma_chan *chan)
279 {
280 	return dev_name(&chan->dev->device);
281 }
282 
283 void dma_chan_cleanup(struct kref *kref);
284 
285 /**
286  * typedef dma_filter_fn - callback filter for dma_request_channel
287  * @chan: channel to be reviewed
288  * @filter_param: opaque parameter passed through dma_request_channel
289  *
290  * When this optional parameter is specified in a call to dma_request_channel a
291  * suitable channel is passed to this routine for further dispositioning before
292  * being returned.  Where 'suitable' indicates a non-busy channel that
293  * satisfies the given capability mask.  It returns 'true' to indicate that the
294  * channel is suitable.
295  */
296 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
297 
298 typedef void (*dma_async_tx_callback)(void *dma_async_param);
299 /**
300  * struct dma_async_tx_descriptor - async transaction descriptor
301  * ---dma generic offload fields---
302  * @cookie: tracking cookie for this transaction, set to -EBUSY if
303  *	this tx is sitting on a dependency list
304  * @flags: flags to augment operation preparation, control completion, and
305  * 	communicate status
306  * @phys: physical address of the descriptor
307  * @chan: target channel for this operation
308  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
309  * @callback: routine to call after this operation is complete
310  * @callback_param: general parameter to pass to the callback routine
311  * ---async_tx api specific fields---
312  * @next: at completion submit this descriptor
313  * @parent: pointer to the next level up in the dependency chain
314  * @lock: protect the parent and next pointers
315  */
316 struct dma_async_tx_descriptor {
317 	dma_cookie_t cookie;
318 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
319 	dma_addr_t phys;
320 	struct dma_chan *chan;
321 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
322 	dma_async_tx_callback callback;
323 	void *callback_param;
324 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
325 	struct dma_async_tx_descriptor *next;
326 	struct dma_async_tx_descriptor *parent;
327 	spinlock_t lock;
328 #endif
329 };
330 
331 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)332 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
333 {
334 }
txd_unlock(struct dma_async_tx_descriptor * txd)335 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
336 {
337 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)338 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
339 {
340 	BUG();
341 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)342 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
343 {
344 }
txd_clear_next(struct dma_async_tx_descriptor * txd)345 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
346 {
347 }
txd_next(struct dma_async_tx_descriptor * txd)348 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
349 {
350 	return NULL;
351 }
txd_parent(struct dma_async_tx_descriptor * txd)352 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
353 {
354 	return NULL;
355 }
356 
357 #else
txd_lock(struct dma_async_tx_descriptor * txd)358 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
359 {
360 	spin_lock_bh(&txd->lock);
361 }
txd_unlock(struct dma_async_tx_descriptor * txd)362 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
363 {
364 	spin_unlock_bh(&txd->lock);
365 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)366 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
367 {
368 	txd->next = next;
369 	next->parent = txd;
370 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)371 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
372 {
373 	txd->parent = NULL;
374 }
txd_clear_next(struct dma_async_tx_descriptor * txd)375 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
376 {
377 	txd->next = NULL;
378 }
txd_parent(struct dma_async_tx_descriptor * txd)379 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
380 {
381 	return txd->parent;
382 }
txd_next(struct dma_async_tx_descriptor * txd)383 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
384 {
385 	return txd->next;
386 }
387 #endif
388 
389 /**
390  * struct dma_tx_state - filled in to report the status of
391  * a transfer.
392  * @last: last completed DMA cookie
393  * @used: last issued DMA cookie (i.e. the one in progress)
394  * @residue: the remaining number of bytes left to transmit
395  *	on the selected transfer for states DMA_IN_PROGRESS and
396  *	DMA_PAUSED if this is implemented in the driver, else 0
397  */
398 struct dma_tx_state {
399 	dma_cookie_t last;
400 	dma_cookie_t used;
401 	u32 residue;
402 };
403 
404 /**
405  * struct dma_device - info on the entity supplying DMA services
406  * @chancnt: how many DMA channels are supported
407  * @privatecnt: how many DMA channels are requested by dma_request_channel
408  * @channels: the list of struct dma_chan
409  * @global_node: list_head for global dma_device_list
410  * @cap_mask: one or more dma_capability flags
411  * @max_xor: maximum number of xor sources, 0 if no capability
412  * @max_pq: maximum number of PQ sources and PQ-continue capability
413  * @copy_align: alignment shift for memcpy operations
414  * @xor_align: alignment shift for xor operations
415  * @pq_align: alignment shift for pq operations
416  * @fill_align: alignment shift for memset operations
417  * @dev_id: unique device ID
418  * @dev: struct device reference for dma mapping api
419  * @device_alloc_chan_resources: allocate resources and return the
420  *	number of allocated descriptors
421  * @device_free_chan_resources: release DMA channel's resources
422  * @device_prep_dma_memcpy: prepares a memcpy operation
423  * @device_prep_dma_xor: prepares a xor operation
424  * @device_prep_dma_xor_val: prepares a xor validation operation
425  * @device_prep_dma_pq: prepares a pq operation
426  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
427  * @device_prep_dma_memset: prepares a memset operation
428  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
429  * @device_prep_slave_sg: prepares a slave dma operation
430  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
431  *	The function takes a buffer of size buf_len. The callback function will
432  *	be called after period_len bytes have been transferred.
433  * @device_control: manipulate all pending operations on a channel, returns
434  *	zero or error code
435  * @device_tx_status: poll for transaction completion, the optional
436  *	txstate parameter can be supplied with a pointer to get a
437  *	struct with auxiliary transfer status information, otherwise the call
438  *	will just return a simple status code
439  * @device_issue_pending: push pending transactions to hardware
440  */
441 struct dma_device {
442 
443 	unsigned int chancnt;
444 	unsigned int privatecnt;
445 	struct list_head channels;
446 	struct list_head global_node;
447 	dma_cap_mask_t  cap_mask;
448 	unsigned short max_xor;
449 	unsigned short max_pq;
450 	u8 copy_align;
451 	u8 xor_align;
452 	u8 pq_align;
453 	u8 fill_align;
454 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
455 
456 	int dev_id;
457 	struct device *dev;
458 
459 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
460 	void (*device_free_chan_resources)(struct dma_chan *chan);
461 
462 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
463 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
464 		size_t len, unsigned long flags);
465 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
466 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
467 		unsigned int src_cnt, size_t len, unsigned long flags);
468 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
469 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
470 		size_t len, enum sum_check_flags *result, unsigned long flags);
471 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
472 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
473 		unsigned int src_cnt, const unsigned char *scf,
474 		size_t len, unsigned long flags);
475 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
476 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
477 		unsigned int src_cnt, const unsigned char *scf, size_t len,
478 		enum sum_check_flags *pqres, unsigned long flags);
479 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
480 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
481 		unsigned long flags);
482 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
483 		struct dma_chan *chan, unsigned long flags);
484 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
485 		struct dma_chan *chan,
486 		struct scatterlist *dst_sg, unsigned int dst_nents,
487 		struct scatterlist *src_sg, unsigned int src_nents,
488 		unsigned long flags);
489 
490 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
491 		struct dma_chan *chan, struct scatterlist *sgl,
492 		unsigned int sg_len, enum dma_data_direction direction,
493 		unsigned long flags);
494 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
495 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
496 		size_t period_len, enum dma_data_direction direction);
497 	int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
498 		unsigned long arg);
499 
500 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
501 					    dma_cookie_t cookie,
502 					    struct dma_tx_state *txstate);
503 	void (*device_issue_pending)(struct dma_chan *chan);
504 };
505 
dmaengine_device_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)506 static inline int dmaengine_device_control(struct dma_chan *chan,
507 					   enum dma_ctrl_cmd cmd,
508 					   unsigned long arg)
509 {
510 	return chan->device->device_control(chan, cmd, arg);
511 }
512 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)513 static inline int dmaengine_slave_config(struct dma_chan *chan,
514 					  struct dma_slave_config *config)
515 {
516 	return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
517 			(unsigned long)config);
518 }
519 
dmaengine_terminate_all(struct dma_chan * chan)520 static inline int dmaengine_terminate_all(struct dma_chan *chan)
521 {
522 	return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
523 }
524 
dmaengine_pause(struct dma_chan * chan)525 static inline int dmaengine_pause(struct dma_chan *chan)
526 {
527 	return dmaengine_device_control(chan, DMA_PAUSE, 0);
528 }
529 
dmaengine_resume(struct dma_chan * chan)530 static inline int dmaengine_resume(struct dma_chan *chan)
531 {
532 	return dmaengine_device_control(chan, DMA_RESUME, 0);
533 }
534 
dmaengine_submit(struct dma_async_tx_descriptor * desc)535 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
536 {
537 	return desc->tx_submit(desc);
538 }
539 
dmaengine_check_align(u8 align,size_t off1,size_t off2,size_t len)540 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
541 {
542 	size_t mask;
543 
544 	if (!align)
545 		return true;
546 	mask = (1 << align) - 1;
547 	if (mask & (off1 | off2 | len))
548 		return false;
549 	return true;
550 }
551 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)552 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
553 				       size_t off2, size_t len)
554 {
555 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
556 }
557 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)558 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
559 				      size_t off2, size_t len)
560 {
561 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
562 }
563 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)564 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
565 				     size_t off2, size_t len)
566 {
567 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
568 }
569 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)570 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
571 				       size_t off2, size_t len)
572 {
573 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
574 }
575 
576 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)577 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
578 {
579 	dma->max_pq = maxpq;
580 	if (has_pq_continue)
581 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
582 }
583 
dmaf_continue(enum dma_ctrl_flags flags)584 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
585 {
586 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
587 }
588 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)589 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
590 {
591 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
592 
593 	return (flags & mask) == mask;
594 }
595 
dma_dev_has_pq_continue(struct dma_device * dma)596 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
597 {
598 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
599 }
600 
dma_dev_to_maxpq(struct dma_device * dma)601 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
602 {
603 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
604 }
605 
606 /* dma_maxpq - reduce maxpq in the face of continued operations
607  * @dma - dma device with PQ capability
608  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
609  *
610  * When an engine does not support native continuation we need 3 extra
611  * source slots to reuse P and Q with the following coefficients:
612  * 1/ {00} * P : remove P from Q', but use it as a source for P'
613  * 2/ {01} * Q : use Q to continue Q' calculation
614  * 3/ {00} * Q : subtract Q from P' to cancel (2)
615  *
616  * In the case where P is disabled we only need 1 extra source:
617  * 1/ {01} * Q : use Q to continue Q' calculation
618  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)619 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
620 {
621 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
622 		return dma_dev_to_maxpq(dma);
623 	else if (dmaf_p_disabled_continue(flags))
624 		return dma_dev_to_maxpq(dma) - 1;
625 	else if (dmaf_continue(flags))
626 		return dma_dev_to_maxpq(dma) - 3;
627 	BUG();
628 }
629 
630 /* --- public DMA engine API --- */
631 
632 #ifdef CONFIG_DMA_ENGINE
633 void dmaengine_get(void);
634 void dmaengine_put(void);
635 #else
dmaengine_get(void)636 static inline void dmaengine_get(void)
637 {
638 }
dmaengine_put(void)639 static inline void dmaengine_put(void)
640 {
641 }
642 #endif
643 
644 #ifdef CONFIG_NET_DMA
645 #define net_dmaengine_get()	dmaengine_get()
646 #define net_dmaengine_put()	dmaengine_put()
647 #else
net_dmaengine_get(void)648 static inline void net_dmaengine_get(void)
649 {
650 }
net_dmaengine_put(void)651 static inline void net_dmaengine_put(void)
652 {
653 }
654 #endif
655 
656 #ifdef CONFIG_ASYNC_TX_DMA
657 #define async_dmaengine_get()	dmaengine_get()
658 #define async_dmaengine_put()	dmaengine_put()
659 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
660 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
661 #else
662 #define async_dma_find_channel(type) dma_find_channel(type)
663 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
664 #else
async_dmaengine_get(void)665 static inline void async_dmaengine_get(void)
666 {
667 }
async_dmaengine_put(void)668 static inline void async_dmaengine_put(void)
669 {
670 }
671 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)672 async_dma_find_channel(enum dma_transaction_type type)
673 {
674 	return NULL;
675 }
676 #endif /* CONFIG_ASYNC_TX_DMA */
677 
678 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
679 	void *dest, void *src, size_t len);
680 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
681 	struct page *page, unsigned int offset, void *kdata, size_t len);
682 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
683 	struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
684 	unsigned int src_off, size_t len);
685 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
686 	struct dma_chan *chan);
687 
async_tx_ack(struct dma_async_tx_descriptor * tx)688 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
689 {
690 	tx->flags |= DMA_CTRL_ACK;
691 }
692 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)693 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
694 {
695 	tx->flags &= ~DMA_CTRL_ACK;
696 }
697 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)698 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
699 {
700 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
701 }
702 
703 #define first_dma_cap(mask) __first_dma_cap(&(mask))
__first_dma_cap(const dma_cap_mask_t * srcp)704 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
705 {
706 	return min_t(int, DMA_TX_TYPE_END,
707 		find_first_bit(srcp->bits, DMA_TX_TYPE_END));
708 }
709 
710 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
__next_dma_cap(int n,const dma_cap_mask_t * srcp)711 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
712 {
713 	return min_t(int, DMA_TX_TYPE_END,
714 		find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
715 }
716 
717 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
718 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)719 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
720 {
721 	set_bit(tx_type, dstp->bits);
722 }
723 
724 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
725 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)726 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
727 {
728 	clear_bit(tx_type, dstp->bits);
729 }
730 
731 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)732 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
733 {
734 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
735 }
736 
737 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
738 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)739 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
740 {
741 	return test_bit(tx_type, srcp->bits);
742 }
743 
744 #define for_each_dma_cap_mask(cap, mask) \
745 	for ((cap) = first_dma_cap(mask);	\
746 		(cap) < DMA_TX_TYPE_END;	\
747 		(cap) = next_dma_cap((cap), (mask)))
748 
749 /**
750  * dma_async_issue_pending - flush pending transactions to HW
751  * @chan: target DMA channel
752  *
753  * This allows drivers to push copies to HW in batches,
754  * reducing MMIO writes where possible.
755  */
dma_async_issue_pending(struct dma_chan * chan)756 static inline void dma_async_issue_pending(struct dma_chan *chan)
757 {
758 	chan->device->device_issue_pending(chan);
759 }
760 
761 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
762 
763 /**
764  * dma_async_is_tx_complete - poll for transaction completion
765  * @chan: DMA channel
766  * @cookie: transaction identifier to check status of
767  * @last: returns last completed cookie, can be NULL
768  * @used: returns last issued cookie, can be NULL
769  *
770  * If @last and @used are passed in, upon return they reflect the driver
771  * internal state and can be used with dma_async_is_complete() to check
772  * the status of multiple cookies without re-checking hardware state.
773  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)774 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
775 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
776 {
777 	struct dma_tx_state state;
778 	enum dma_status status;
779 
780 	status = chan->device->device_tx_status(chan, cookie, &state);
781 	if (last)
782 		*last = state.last;
783 	if (used)
784 		*used = state.used;
785 	return status;
786 }
787 
788 #define dma_async_memcpy_complete(chan, cookie, last, used)\
789 	dma_async_is_tx_complete(chan, cookie, last, used)
790 
791 /**
792  * dma_async_is_complete - test a cookie against chan state
793  * @cookie: transaction identifier to test status of
794  * @last_complete: last know completed transaction
795  * @last_used: last cookie value handed out
796  *
797  * dma_async_is_complete() is used in dma_async_memcpy_complete()
798  * the test logic is separated for lightweight testing of multiple cookies
799  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)800 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
801 			dma_cookie_t last_complete, dma_cookie_t last_used)
802 {
803 	if (last_complete <= last_used) {
804 		if ((cookie <= last_complete) || (cookie > last_used))
805 			return DMA_SUCCESS;
806 	} else {
807 		if ((cookie <= last_complete) && (cookie > last_used))
808 			return DMA_SUCCESS;
809 	}
810 	return DMA_IN_PROGRESS;
811 }
812 
813 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)814 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
815 {
816 	if (st) {
817 		st->last = last;
818 		st->used = used;
819 		st->residue = residue;
820 	}
821 }
822 
823 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
824 #ifdef CONFIG_DMA_ENGINE
825 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
826 void dma_issue_pending_all(void);
827 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
828 void dma_release_channel(struct dma_chan *chan);
829 #else
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)830 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
831 {
832 	return DMA_SUCCESS;
833 }
dma_issue_pending_all(void)834 static inline void dma_issue_pending_all(void)
835 {
836 }
__dma_request_channel(dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)837 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
838 					      dma_filter_fn fn, void *fn_param)
839 {
840 	return NULL;
841 }
dma_release_channel(struct dma_chan * chan)842 static inline void dma_release_channel(struct dma_chan *chan)
843 {
844 }
845 #endif
846 
847 /* --- DMA device --- */
848 
849 int dma_async_device_register(struct dma_device *device);
850 void dma_async_device_unregister(struct dma_device *device);
851 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
852 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
853 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
854 
855 /* --- Helper iov-locking functions --- */
856 
857 struct dma_page_list {
858 	char __user *base_address;
859 	int nr_pages;
860 	struct page **pages;
861 };
862 
863 struct dma_pinned_list {
864 	int nr_iovecs;
865 	struct dma_page_list page_list[0];
866 };
867 
868 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
869 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
870 
871 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
872 	struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
873 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
874 	struct dma_pinned_list *pinned_list, struct page *page,
875 	unsigned int offset, size_t len);
876 
877 #endif /* DMAENGINE_H */
878