1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_error.h"
36 #include "xfs_rw.h"
37 #include "xfs_trace.h"
38 
39 /*
40  * Check to see if a buffer matching the given parameters is already
41  * a part of the given transaction.
42  */
43 STATIC struct xfs_buf *
xfs_trans_buf_item_match(struct xfs_trans * tp,struct xfs_buftarg * target,xfs_daddr_t blkno,int len)44 xfs_trans_buf_item_match(
45 	struct xfs_trans	*tp,
46 	struct xfs_buftarg	*target,
47 	xfs_daddr_t		blkno,
48 	int			len)
49 {
50 	struct xfs_log_item_desc *lidp;
51 	struct xfs_buf_log_item	*blip;
52 
53 	len = BBTOB(len);
54 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
55 		blip = (struct xfs_buf_log_item *)lidp->lid_item;
56 		if (blip->bli_item.li_type == XFS_LI_BUF &&
57 		    XFS_BUF_TARGET(blip->bli_buf) == target &&
58 		    XFS_BUF_ADDR(blip->bli_buf) == blkno &&
59 		    XFS_BUF_COUNT(blip->bli_buf) == len)
60 			return blip->bli_buf;
61 	}
62 
63 	return NULL;
64 }
65 
66 /*
67  * Add the locked buffer to the transaction.
68  *
69  * The buffer must be locked, and it cannot be associated with any
70  * transaction.
71  *
72  * If the buffer does not yet have a buf log item associated with it,
73  * then allocate one for it.  Then add the buf item to the transaction.
74  */
75 STATIC void
_xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp,int reset_recur)76 _xfs_trans_bjoin(
77 	struct xfs_trans	*tp,
78 	struct xfs_buf		*bp,
79 	int			reset_recur)
80 {
81 	struct xfs_buf_log_item	*bip;
82 
83 	ASSERT(XFS_BUF_ISBUSY(bp));
84 	ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
85 
86 	/*
87 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
88 	 * it doesn't have one yet, then allocate one and initialize it.
89 	 * The checks to see if one is there are in xfs_buf_item_init().
90 	 */
91 	xfs_buf_item_init(bp, tp->t_mountp);
92 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
93 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
94 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
95 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
96 	if (reset_recur)
97 		bip->bli_recur = 0;
98 
99 	/*
100 	 * Take a reference for this transaction on the buf item.
101 	 */
102 	atomic_inc(&bip->bli_refcount);
103 
104 	/*
105 	 * Get a log_item_desc to point at the new item.
106 	 */
107 	xfs_trans_add_item(tp, &bip->bli_item);
108 
109 	/*
110 	 * Initialize b_fsprivate2 so we can find it with incore_match()
111 	 * in xfs_trans_get_buf() and friends above.
112 	 */
113 	XFS_BUF_SET_FSPRIVATE2(bp, tp);
114 
115 }
116 
117 void
xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp)118 xfs_trans_bjoin(
119 	struct xfs_trans	*tp,
120 	struct xfs_buf		*bp)
121 {
122 	_xfs_trans_bjoin(tp, bp, 0);
123 	trace_xfs_trans_bjoin(bp->b_fspriv);
124 }
125 
126 /*
127  * Get and lock the buffer for the caller if it is not already
128  * locked within the given transaction.  If it is already locked
129  * within the transaction, just increment its lock recursion count
130  * and return a pointer to it.
131  *
132  * If the transaction pointer is NULL, make this just a normal
133  * get_buf() call.
134  */
135 xfs_buf_t *
xfs_trans_get_buf(xfs_trans_t * tp,xfs_buftarg_t * target_dev,xfs_daddr_t blkno,int len,uint flags)136 xfs_trans_get_buf(xfs_trans_t	*tp,
137 		  xfs_buftarg_t	*target_dev,
138 		  xfs_daddr_t	blkno,
139 		  int		len,
140 		  uint		flags)
141 {
142 	xfs_buf_t		*bp;
143 	xfs_buf_log_item_t	*bip;
144 
145 	if (flags == 0)
146 		flags = XBF_LOCK | XBF_MAPPED;
147 
148 	/*
149 	 * Default to a normal get_buf() call if the tp is NULL.
150 	 */
151 	if (tp == NULL)
152 		return xfs_buf_get(target_dev, blkno, len,
153 				   flags | XBF_DONT_BLOCK);
154 
155 	/*
156 	 * If we find the buffer in the cache with this transaction
157 	 * pointer in its b_fsprivate2 field, then we know we already
158 	 * have it locked.  In this case we just increment the lock
159 	 * recursion count and return the buffer to the caller.
160 	 */
161 	bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
162 	if (bp != NULL) {
163 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
164 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp))
165 			XFS_BUF_SUPER_STALE(bp);
166 
167 		/*
168 		 * If the buffer is stale then it was binval'ed
169 		 * since last read.  This doesn't matter since the
170 		 * caller isn't allowed to use the data anyway.
171 		 */
172 		else if (XFS_BUF_ISSTALE(bp))
173 			ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
174 
175 		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
176 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
177 		ASSERT(bip != NULL);
178 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
179 		bip->bli_recur++;
180 		trace_xfs_trans_get_buf_recur(bip);
181 		return (bp);
182 	}
183 
184 	/*
185 	 * We always specify the XBF_DONT_BLOCK flag within a transaction
186 	 * so that get_buf does not try to push out a delayed write buffer
187 	 * which might cause another transaction to take place (if the
188 	 * buffer was delayed alloc).  Such recursive transactions can
189 	 * easily deadlock with our current transaction as well as cause
190 	 * us to run out of stack space.
191 	 */
192 	bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
193 	if (bp == NULL) {
194 		return NULL;
195 	}
196 
197 	ASSERT(!XFS_BUF_GETERROR(bp));
198 
199 	_xfs_trans_bjoin(tp, bp, 1);
200 	trace_xfs_trans_get_buf(bp->b_fspriv);
201 	return (bp);
202 }
203 
204 /*
205  * Get and lock the superblock buffer of this file system for the
206  * given transaction.
207  *
208  * We don't need to use incore_match() here, because the superblock
209  * buffer is a private buffer which we keep a pointer to in the
210  * mount structure.
211  */
212 xfs_buf_t *
xfs_trans_getsb(xfs_trans_t * tp,struct xfs_mount * mp,int flags)213 xfs_trans_getsb(xfs_trans_t	*tp,
214 		struct xfs_mount *mp,
215 		int		flags)
216 {
217 	xfs_buf_t		*bp;
218 	xfs_buf_log_item_t	*bip;
219 
220 	/*
221 	 * Default to just trying to lock the superblock buffer
222 	 * if tp is NULL.
223 	 */
224 	if (tp == NULL) {
225 		return (xfs_getsb(mp, flags));
226 	}
227 
228 	/*
229 	 * If the superblock buffer already has this transaction
230 	 * pointer in its b_fsprivate2 field, then we know we already
231 	 * have it locked.  In this case we just increment the lock
232 	 * recursion count and return the buffer to the caller.
233 	 */
234 	bp = mp->m_sb_bp;
235 	if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) {
236 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
237 		ASSERT(bip != NULL);
238 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
239 		bip->bli_recur++;
240 		trace_xfs_trans_getsb_recur(bip);
241 		return (bp);
242 	}
243 
244 	bp = xfs_getsb(mp, flags);
245 	if (bp == NULL)
246 		return NULL;
247 
248 	_xfs_trans_bjoin(tp, bp, 1);
249 	trace_xfs_trans_getsb(bp->b_fspriv);
250 	return (bp);
251 }
252 
253 #ifdef DEBUG
254 xfs_buftarg_t *xfs_error_target;
255 int	xfs_do_error;
256 int	xfs_req_num;
257 int	xfs_error_mod = 33;
258 #endif
259 
260 /*
261  * Get and lock the buffer for the caller if it is not already
262  * locked within the given transaction.  If it has not yet been
263  * read in, read it from disk. If it is already locked
264  * within the transaction and already read in, just increment its
265  * lock recursion count and return a pointer to it.
266  *
267  * If the transaction pointer is NULL, make this just a normal
268  * read_buf() call.
269  */
270 int
xfs_trans_read_buf(xfs_mount_t * mp,xfs_trans_t * tp,xfs_buftarg_t * target,xfs_daddr_t blkno,int len,uint flags,xfs_buf_t ** bpp)271 xfs_trans_read_buf(
272 	xfs_mount_t	*mp,
273 	xfs_trans_t	*tp,
274 	xfs_buftarg_t	*target,
275 	xfs_daddr_t	blkno,
276 	int		len,
277 	uint		flags,
278 	xfs_buf_t	**bpp)
279 {
280 	xfs_buf_t		*bp;
281 	xfs_buf_log_item_t	*bip;
282 	int			error;
283 
284 	if (flags == 0)
285 		flags = XBF_LOCK | XBF_MAPPED;
286 
287 	/*
288 	 * Default to a normal get_buf() call if the tp is NULL.
289 	 */
290 	if (tp == NULL) {
291 		bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
292 		if (!bp)
293 			return (flags & XBF_TRYLOCK) ?
294 					EAGAIN : XFS_ERROR(ENOMEM);
295 
296 		if (XFS_BUF_GETERROR(bp) != 0) {
297 			xfs_ioerror_alert("xfs_trans_read_buf", mp,
298 					  bp, blkno);
299 			error = XFS_BUF_GETERROR(bp);
300 			xfs_buf_relse(bp);
301 			return error;
302 		}
303 #ifdef DEBUG
304 		if (xfs_do_error) {
305 			if (xfs_error_target == target) {
306 				if (((xfs_req_num++) % xfs_error_mod) == 0) {
307 					xfs_buf_relse(bp);
308 					xfs_debug(mp, "Returning error!");
309 					return XFS_ERROR(EIO);
310 				}
311 			}
312 		}
313 #endif
314 		if (XFS_FORCED_SHUTDOWN(mp))
315 			goto shutdown_abort;
316 		*bpp = bp;
317 		return 0;
318 	}
319 
320 	/*
321 	 * If we find the buffer in the cache with this transaction
322 	 * pointer in its b_fsprivate2 field, then we know we already
323 	 * have it locked.  If it is already read in we just increment
324 	 * the lock recursion count and return the buffer to the caller.
325 	 * If the buffer is not yet read in, then we read it in, increment
326 	 * the lock recursion count, and return it to the caller.
327 	 */
328 	bp = xfs_trans_buf_item_match(tp, target, blkno, len);
329 	if (bp != NULL) {
330 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
331 		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
332 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
333 		ASSERT((XFS_BUF_ISERROR(bp)) == 0);
334 		if (!(XFS_BUF_ISDONE(bp))) {
335 			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
336 			ASSERT(!XFS_BUF_ISASYNC(bp));
337 			XFS_BUF_READ(bp);
338 			xfsbdstrat(tp->t_mountp, bp);
339 			error = xfs_buf_iowait(bp);
340 			if (error) {
341 				xfs_ioerror_alert("xfs_trans_read_buf", mp,
342 						  bp, blkno);
343 				xfs_buf_relse(bp);
344 				/*
345 				 * We can gracefully recover from most read
346 				 * errors. Ones we can't are those that happen
347 				 * after the transaction's already dirty.
348 				 */
349 				if (tp->t_flags & XFS_TRANS_DIRTY)
350 					xfs_force_shutdown(tp->t_mountp,
351 							SHUTDOWN_META_IO_ERROR);
352 				return error;
353 			}
354 		}
355 		/*
356 		 * We never locked this buf ourselves, so we shouldn't
357 		 * brelse it either. Just get out.
358 		 */
359 		if (XFS_FORCED_SHUTDOWN(mp)) {
360 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
361 			*bpp = NULL;
362 			return XFS_ERROR(EIO);
363 		}
364 
365 
366 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
367 		bip->bli_recur++;
368 
369 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
370 		trace_xfs_trans_read_buf_recur(bip);
371 		*bpp = bp;
372 		return 0;
373 	}
374 
375 	/*
376 	 * We always specify the XBF_DONT_BLOCK flag within a transaction
377 	 * so that get_buf does not try to push out a delayed write buffer
378 	 * which might cause another transaction to take place (if the
379 	 * buffer was delayed alloc).  Such recursive transactions can
380 	 * easily deadlock with our current transaction as well as cause
381 	 * us to run out of stack space.
382 	 */
383 	bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
384 	if (bp == NULL) {
385 		*bpp = NULL;
386 		return (flags & XBF_TRYLOCK) ?
387 					0 : XFS_ERROR(ENOMEM);
388 	}
389 	if (XFS_BUF_GETERROR(bp) != 0) {
390 	    XFS_BUF_SUPER_STALE(bp);
391 		error = XFS_BUF_GETERROR(bp);
392 
393 		xfs_ioerror_alert("xfs_trans_read_buf", mp,
394 				  bp, blkno);
395 		if (tp->t_flags & XFS_TRANS_DIRTY)
396 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
397 		xfs_buf_relse(bp);
398 		return error;
399 	}
400 #ifdef DEBUG
401 	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
402 		if (xfs_error_target == target) {
403 			if (((xfs_req_num++) % xfs_error_mod) == 0) {
404 				xfs_force_shutdown(tp->t_mountp,
405 						   SHUTDOWN_META_IO_ERROR);
406 				xfs_buf_relse(bp);
407 				xfs_debug(mp, "Returning trans error!");
408 				return XFS_ERROR(EIO);
409 			}
410 		}
411 	}
412 #endif
413 	if (XFS_FORCED_SHUTDOWN(mp))
414 		goto shutdown_abort;
415 
416 	_xfs_trans_bjoin(tp, bp, 1);
417 	trace_xfs_trans_read_buf(bp->b_fspriv);
418 
419 	*bpp = bp;
420 	return 0;
421 
422 shutdown_abort:
423 	/*
424 	 * the theory here is that buffer is good but we're
425 	 * bailing out because the filesystem is being forcibly
426 	 * shut down.  So we should leave the b_flags alone since
427 	 * the buffer's not staled and just get out.
428 	 */
429 #if defined(DEBUG)
430 	if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
431 		xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
432 #endif
433 	ASSERT((XFS_BUF_BFLAGS(bp) & (XBF_STALE|XBF_DELWRI)) !=
434 				     (XBF_STALE|XBF_DELWRI));
435 
436 	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
437 	xfs_buf_relse(bp);
438 	*bpp = NULL;
439 	return XFS_ERROR(EIO);
440 }
441 
442 
443 /*
444  * Release the buffer bp which was previously acquired with one of the
445  * xfs_trans_... buffer allocation routines if the buffer has not
446  * been modified within this transaction.  If the buffer is modified
447  * within this transaction, do decrement the recursion count but do
448  * not release the buffer even if the count goes to 0.  If the buffer is not
449  * modified within the transaction, decrement the recursion count and
450  * release the buffer if the recursion count goes to 0.
451  *
452  * If the buffer is to be released and it was not modified before
453  * this transaction began, then free the buf_log_item associated with it.
454  *
455  * If the transaction pointer is NULL, make this just a normal
456  * brelse() call.
457  */
458 void
xfs_trans_brelse(xfs_trans_t * tp,xfs_buf_t * bp)459 xfs_trans_brelse(xfs_trans_t	*tp,
460 		 xfs_buf_t	*bp)
461 {
462 	xfs_buf_log_item_t	*bip;
463 	xfs_log_item_t		*lip;
464 
465 	/*
466 	 * Default to a normal brelse() call if the tp is NULL.
467 	 */
468 	if (tp == NULL) {
469 		ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
470 		/*
471 		 * If there's a buf log item attached to the buffer,
472 		 * then let the AIL know that the buffer is being
473 		 * unlocked.
474 		 */
475 		if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
476 			lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
477 			if (lip->li_type == XFS_LI_BUF) {
478 				bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
479 				xfs_trans_unlocked_item(bip->bli_item.li_ailp,
480 							lip);
481 			}
482 		}
483 		xfs_buf_relse(bp);
484 		return;
485 	}
486 
487 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
488 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
489 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
490 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
491 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
492 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
493 
494 	trace_xfs_trans_brelse(bip);
495 
496 	/*
497 	 * If the release is just for a recursive lock,
498 	 * then decrement the count and return.
499 	 */
500 	if (bip->bli_recur > 0) {
501 		bip->bli_recur--;
502 		return;
503 	}
504 
505 	/*
506 	 * If the buffer is dirty within this transaction, we can't
507 	 * release it until we commit.
508 	 */
509 	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
510 		return;
511 
512 	/*
513 	 * If the buffer has been invalidated, then we can't release
514 	 * it until the transaction commits to disk unless it is re-dirtied
515 	 * as part of this transaction.  This prevents us from pulling
516 	 * the item from the AIL before we should.
517 	 */
518 	if (bip->bli_flags & XFS_BLI_STALE)
519 		return;
520 
521 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
522 
523 	/*
524 	 * Free up the log item descriptor tracking the released item.
525 	 */
526 	xfs_trans_del_item(&bip->bli_item);
527 
528 	/*
529 	 * Clear the hold flag in the buf log item if it is set.
530 	 * We wouldn't want the next user of the buffer to
531 	 * get confused.
532 	 */
533 	if (bip->bli_flags & XFS_BLI_HOLD) {
534 		bip->bli_flags &= ~XFS_BLI_HOLD;
535 	}
536 
537 	/*
538 	 * Drop our reference to the buf log item.
539 	 */
540 	atomic_dec(&bip->bli_refcount);
541 
542 	/*
543 	 * If the buf item is not tracking data in the log, then
544 	 * we must free it before releasing the buffer back to the
545 	 * free pool.  Before releasing the buffer to the free pool,
546 	 * clear the transaction pointer in b_fsprivate2 to dissolve
547 	 * its relation to this transaction.
548 	 */
549 	if (!xfs_buf_item_dirty(bip)) {
550 /***
551 		ASSERT(bp->b_pincount == 0);
552 ***/
553 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
554 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
555 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
556 		xfs_buf_item_relse(bp);
557 		bip = NULL;
558 	}
559 	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
560 
561 	/*
562 	 * If we've still got a buf log item on the buffer, then
563 	 * tell the AIL that the buffer is being unlocked.
564 	 */
565 	if (bip != NULL) {
566 		xfs_trans_unlocked_item(bip->bli_item.li_ailp,
567 					(xfs_log_item_t*)bip);
568 	}
569 
570 	xfs_buf_relse(bp);
571 	return;
572 }
573 
574 /*
575  * Mark the buffer as not needing to be unlocked when the buf item's
576  * IOP_UNLOCK() routine is called.  The buffer must already be locked
577  * and associated with the given transaction.
578  */
579 /* ARGSUSED */
580 void
xfs_trans_bhold(xfs_trans_t * tp,xfs_buf_t * bp)581 xfs_trans_bhold(xfs_trans_t	*tp,
582 		xfs_buf_t	*bp)
583 {
584 	xfs_buf_log_item_t	*bip;
585 
586 	ASSERT(XFS_BUF_ISBUSY(bp));
587 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
588 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
589 
590 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
591 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
592 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
593 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
594 	bip->bli_flags |= XFS_BLI_HOLD;
595 	trace_xfs_trans_bhold(bip);
596 }
597 
598 /*
599  * Cancel the previous buffer hold request made on this buffer
600  * for this transaction.
601  */
602 void
xfs_trans_bhold_release(xfs_trans_t * tp,xfs_buf_t * bp)603 xfs_trans_bhold_release(xfs_trans_t	*tp,
604 			xfs_buf_t	*bp)
605 {
606 	xfs_buf_log_item_t	*bip;
607 
608 	ASSERT(XFS_BUF_ISBUSY(bp));
609 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
610 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
611 
612 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
613 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
614 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
615 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
616 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
617 	bip->bli_flags &= ~XFS_BLI_HOLD;
618 
619 	trace_xfs_trans_bhold_release(bip);
620 }
621 
622 /*
623  * This is called to mark bytes first through last inclusive of the given
624  * buffer as needing to be logged when the transaction is committed.
625  * The buffer must already be associated with the given transaction.
626  *
627  * First and last are numbers relative to the beginning of this buffer,
628  * so the first byte in the buffer is numbered 0 regardless of the
629  * value of b_blkno.
630  */
631 void
xfs_trans_log_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint first,uint last)632 xfs_trans_log_buf(xfs_trans_t	*tp,
633 		  xfs_buf_t	*bp,
634 		  uint		first,
635 		  uint		last)
636 {
637 	xfs_buf_log_item_t	*bip;
638 
639 	ASSERT(XFS_BUF_ISBUSY(bp));
640 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
641 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
642 	ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
643 	ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) ||
644 	       (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks));
645 
646 	/*
647 	 * Mark the buffer as needing to be written out eventually,
648 	 * and set its iodone function to remove the buffer's buf log
649 	 * item from the AIL and free it when the buffer is flushed
650 	 * to disk.  See xfs_buf_attach_iodone() for more details
651 	 * on li_cb and xfs_buf_iodone_callbacks().
652 	 * If we end up aborting this transaction, we trap this buffer
653 	 * inside the b_bdstrat callback so that this won't get written to
654 	 * disk.
655 	 */
656 	XFS_BUF_DELAYWRITE(bp);
657 	XFS_BUF_DONE(bp);
658 
659 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
660 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
661 	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
662 	bip->bli_item.li_cb = xfs_buf_iodone;
663 
664 	trace_xfs_trans_log_buf(bip);
665 
666 	/*
667 	 * If we invalidated the buffer within this transaction, then
668 	 * cancel the invalidation now that we're dirtying the buffer
669 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
670 	 * because we have a reference to the buffer this entire time.
671 	 */
672 	if (bip->bli_flags & XFS_BLI_STALE) {
673 		bip->bli_flags &= ~XFS_BLI_STALE;
674 		ASSERT(XFS_BUF_ISSTALE(bp));
675 		XFS_BUF_UNSTALE(bp);
676 		bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
677 	}
678 
679 	tp->t_flags |= XFS_TRANS_DIRTY;
680 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
681 	bip->bli_flags |= XFS_BLI_LOGGED;
682 	xfs_buf_item_log(bip, first, last);
683 }
684 
685 
686 /*
687  * This called to invalidate a buffer that is being used within
688  * a transaction.  Typically this is because the blocks in the
689  * buffer are being freed, so we need to prevent it from being
690  * written out when we're done.  Allowing it to be written again
691  * might overwrite data in the free blocks if they are reallocated
692  * to a file.
693  *
694  * We prevent the buffer from being written out by clearing the
695  * B_DELWRI flag.  We can't always
696  * get rid of the buf log item at this point, though, because
697  * the buffer may still be pinned by another transaction.  If that
698  * is the case, then we'll wait until the buffer is committed to
699  * disk for the last time (we can tell by the ref count) and
700  * free it in xfs_buf_item_unpin().  Until it is cleaned up we
701  * will keep the buffer locked so that the buffer and buf log item
702  * are not reused.
703  */
704 void
xfs_trans_binval(xfs_trans_t * tp,xfs_buf_t * bp)705 xfs_trans_binval(
706 	xfs_trans_t	*tp,
707 	xfs_buf_t	*bp)
708 {
709 	xfs_buf_log_item_t	*bip;
710 
711 	ASSERT(XFS_BUF_ISBUSY(bp));
712 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
713 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
714 
715 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
716 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
717 
718 	trace_xfs_trans_binval(bip);
719 
720 	if (bip->bli_flags & XFS_BLI_STALE) {
721 		/*
722 		 * If the buffer is already invalidated, then
723 		 * just return.
724 		 */
725 		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
726 		ASSERT(XFS_BUF_ISSTALE(bp));
727 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
728 		ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
729 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
730 		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
731 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
732 		return;
733 	}
734 
735 	/*
736 	 * Clear the dirty bit in the buffer and set the STALE flag
737 	 * in the buf log item.  The STALE flag will be used in
738 	 * xfs_buf_item_unpin() to determine if it should clean up
739 	 * when the last reference to the buf item is given up.
740 	 * We set the XFS_BLF_CANCEL flag in the buf log format structure
741 	 * and log the buf item.  This will be used at recovery time
742 	 * to determine that copies of the buffer in the log before
743 	 * this should not be replayed.
744 	 * We mark the item descriptor and the transaction dirty so
745 	 * that we'll hold the buffer until after the commit.
746 	 *
747 	 * Since we're invalidating the buffer, we also clear the state
748 	 * about which parts of the buffer have been logged.  We also
749 	 * clear the flag indicating that this is an inode buffer since
750 	 * the data in the buffer will no longer be valid.
751 	 *
752 	 * We set the stale bit in the buffer as well since we're getting
753 	 * rid of it.
754 	 */
755 	XFS_BUF_UNDELAYWRITE(bp);
756 	XFS_BUF_STALE(bp);
757 	bip->bli_flags |= XFS_BLI_STALE;
758 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
759 	bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
760 	bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
761 	memset((char *)(bip->bli_format.blf_data_map), 0,
762 	      (bip->bli_format.blf_map_size * sizeof(uint)));
763 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
764 	tp->t_flags |= XFS_TRANS_DIRTY;
765 }
766 
767 /*
768  * This call is used to indicate that the buffer contains on-disk inodes which
769  * must be handled specially during recovery.  They require special handling
770  * because only the di_next_unlinked from the inodes in the buffer should be
771  * recovered.  The rest of the data in the buffer is logged via the inodes
772  * themselves.
773  *
774  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
775  * transferred to the buffer's log format structure so that we'll know what to
776  * do at recovery time.
777  */
778 void
xfs_trans_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)779 xfs_trans_inode_buf(
780 	xfs_trans_t	*tp,
781 	xfs_buf_t	*bp)
782 {
783 	xfs_buf_log_item_t	*bip;
784 
785 	ASSERT(XFS_BUF_ISBUSY(bp));
786 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
787 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
788 
789 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
790 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
791 
792 	bip->bli_flags |= XFS_BLI_INODE_BUF;
793 }
794 
795 /*
796  * This call is used to indicate that the buffer is going to
797  * be staled and was an inode buffer. This means it gets
798  * special processing during unpin - where any inodes
799  * associated with the buffer should be removed from ail.
800  * There is also special processing during recovery,
801  * any replay of the inodes in the buffer needs to be
802  * prevented as the buffer may have been reused.
803  */
804 void
xfs_trans_stale_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)805 xfs_trans_stale_inode_buf(
806 	xfs_trans_t	*tp,
807 	xfs_buf_t	*bp)
808 {
809 	xfs_buf_log_item_t	*bip;
810 
811 	ASSERT(XFS_BUF_ISBUSY(bp));
812 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
813 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
814 
815 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
816 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
817 
818 	bip->bli_flags |= XFS_BLI_STALE_INODE;
819 	bip->bli_item.li_cb = xfs_buf_iodone;
820 }
821 
822 /*
823  * Mark the buffer as being one which contains newly allocated
824  * inodes.  We need to make sure that even if this buffer is
825  * relogged as an 'inode buf' we still recover all of the inode
826  * images in the face of a crash.  This works in coordination with
827  * xfs_buf_item_committed() to ensure that the buffer remains in the
828  * AIL at its original location even after it has been relogged.
829  */
830 /* ARGSUSED */
831 void
xfs_trans_inode_alloc_buf(xfs_trans_t * tp,xfs_buf_t * bp)832 xfs_trans_inode_alloc_buf(
833 	xfs_trans_t	*tp,
834 	xfs_buf_t	*bp)
835 {
836 	xfs_buf_log_item_t	*bip;
837 
838 	ASSERT(XFS_BUF_ISBUSY(bp));
839 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
840 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
841 
842 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
843 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
844 
845 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
846 }
847 
848 
849 /*
850  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
851  * dquots. However, unlike in inode buffer recovery, dquot buffers get
852  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
853  * The only thing that makes dquot buffers different from regular
854  * buffers is that we must not replay dquot bufs when recovering
855  * if a _corresponding_ quotaoff has happened. We also have to distinguish
856  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
857  * can be turned off independently.
858  */
859 /* ARGSUSED */
860 void
xfs_trans_dquot_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint type)861 xfs_trans_dquot_buf(
862 	xfs_trans_t	*tp,
863 	xfs_buf_t	*bp,
864 	uint		type)
865 {
866 	xfs_buf_log_item_t	*bip;
867 
868 	ASSERT(XFS_BUF_ISBUSY(bp));
869 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
870 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
871 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
872 	       type == XFS_BLF_PDQUOT_BUF ||
873 	       type == XFS_BLF_GDQUOT_BUF);
874 
875 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
876 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
877 
878 	bip->bli_format.blf_flags |= type;
879 }
880