1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
46 
47 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void	xlog_recover_check_summary(xlog_t *);
51 #else
52 #define	xlog_recover_check_summary(log)
53 #endif
54 
55 /*
56  * This structure is used during recovery to record the buf log items which
57  * have been canceled and should not be replayed.
58  */
59 struct xfs_buf_cancel {
60 	xfs_daddr_t		bc_blkno;
61 	uint			bc_len;
62 	int			bc_refcount;
63 	struct list_head	bc_list;
64 };
65 
66 /*
67  * Sector aligned buffer routines for buffer create/read/write/access
68  */
69 
70 /*
71  * Verify the given count of basic blocks is valid number of blocks
72  * to specify for an operation involving the given XFS log buffer.
73  * Returns nonzero if the count is valid, 0 otherwise.
74  */
75 
76 static inline int
xlog_buf_bbcount_valid(xlog_t * log,int bbcount)77 xlog_buf_bbcount_valid(
78 	xlog_t		*log,
79 	int		bbcount)
80 {
81 	return bbcount > 0 && bbcount <= log->l_logBBsize;
82 }
83 
84 /*
85  * Allocate a buffer to hold log data.  The buffer needs to be able
86  * to map to a range of nbblks basic blocks at any valid (basic
87  * block) offset within the log.
88  */
89 STATIC xfs_buf_t *
xlog_get_bp(xlog_t * log,int nbblks)90 xlog_get_bp(
91 	xlog_t		*log,
92 	int		nbblks)
93 {
94 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
95 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
96 			nbblks);
97 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
98 		return NULL;
99 	}
100 
101 	/*
102 	 * We do log I/O in units of log sectors (a power-of-2
103 	 * multiple of the basic block size), so we round up the
104 	 * requested size to accommodate the basic blocks required
105 	 * for complete log sectors.
106 	 *
107 	 * In addition, the buffer may be used for a non-sector-
108 	 * aligned block offset, in which case an I/O of the
109 	 * requested size could extend beyond the end of the
110 	 * buffer.  If the requested size is only 1 basic block it
111 	 * will never straddle a sector boundary, so this won't be
112 	 * an issue.  Nor will this be a problem if the log I/O is
113 	 * done in basic blocks (sector size 1).  But otherwise we
114 	 * extend the buffer by one extra log sector to ensure
115 	 * there's space to accommodate this possibility.
116 	 */
117 	if (nbblks > 1 && log->l_sectBBsize > 1)
118 		nbblks += log->l_sectBBsize;
119 	nbblks = round_up(nbblks, log->l_sectBBsize);
120 
121 	return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
122 					BBTOB(nbblks), 0);
123 }
124 
125 STATIC void
xlog_put_bp(xfs_buf_t * bp)126 xlog_put_bp(
127 	xfs_buf_t	*bp)
128 {
129 	xfs_buf_free(bp);
130 }
131 
132 /*
133  * Return the address of the start of the given block number's data
134  * in a log buffer.  The buffer covers a log sector-aligned region.
135  */
136 STATIC xfs_caddr_t
xlog_align(xlog_t * log,xfs_daddr_t blk_no,int nbblks,xfs_buf_t * bp)137 xlog_align(
138 	xlog_t		*log,
139 	xfs_daddr_t	blk_no,
140 	int		nbblks,
141 	xfs_buf_t	*bp)
142 {
143 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
144 
145 	ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
146 	return XFS_BUF_PTR(bp) + BBTOB(offset);
147 }
148 
149 
150 /*
151  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
152  */
153 STATIC int
xlog_bread_noalign(xlog_t * log,xfs_daddr_t blk_no,int nbblks,xfs_buf_t * bp)154 xlog_bread_noalign(
155 	xlog_t		*log,
156 	xfs_daddr_t	blk_no,
157 	int		nbblks,
158 	xfs_buf_t	*bp)
159 {
160 	int		error;
161 
162 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
163 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
164 			nbblks);
165 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
166 		return EFSCORRUPTED;
167 	}
168 
169 	blk_no = round_down(blk_no, log->l_sectBBsize);
170 	nbblks = round_up(nbblks, log->l_sectBBsize);
171 
172 	ASSERT(nbblks > 0);
173 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
174 
175 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
176 	XFS_BUF_READ(bp);
177 	XFS_BUF_BUSY(bp);
178 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
179 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
180 
181 	xfsbdstrat(log->l_mp, bp);
182 	error = xfs_buf_iowait(bp);
183 	if (error)
184 		xfs_ioerror_alert("xlog_bread", log->l_mp,
185 				  bp, XFS_BUF_ADDR(bp));
186 	return error;
187 }
188 
189 STATIC int
xlog_bread(xlog_t * log,xfs_daddr_t blk_no,int nbblks,xfs_buf_t * bp,xfs_caddr_t * offset)190 xlog_bread(
191 	xlog_t		*log,
192 	xfs_daddr_t	blk_no,
193 	int		nbblks,
194 	xfs_buf_t	*bp,
195 	xfs_caddr_t	*offset)
196 {
197 	int		error;
198 
199 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
200 	if (error)
201 		return error;
202 
203 	*offset = xlog_align(log, blk_no, nbblks, bp);
204 	return 0;
205 }
206 
207 /*
208  * Write out the buffer at the given block for the given number of blocks.
209  * The buffer is kept locked across the write and is returned locked.
210  * This can only be used for synchronous log writes.
211  */
212 STATIC int
xlog_bwrite(xlog_t * log,xfs_daddr_t blk_no,int nbblks,xfs_buf_t * bp)213 xlog_bwrite(
214 	xlog_t		*log,
215 	xfs_daddr_t	blk_no,
216 	int		nbblks,
217 	xfs_buf_t	*bp)
218 {
219 	int		error;
220 
221 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
222 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
223 			nbblks);
224 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
225 		return EFSCORRUPTED;
226 	}
227 
228 	blk_no = round_down(blk_no, log->l_sectBBsize);
229 	nbblks = round_up(nbblks, log->l_sectBBsize);
230 
231 	ASSERT(nbblks > 0);
232 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
233 
234 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
235 	XFS_BUF_ZEROFLAGS(bp);
236 	XFS_BUF_BUSY(bp);
237 	XFS_BUF_HOLD(bp);
238 	XFS_BUF_PSEMA(bp, PRIBIO);
239 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
240 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
241 
242 	if ((error = xfs_bwrite(log->l_mp, bp)))
243 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
244 				  bp, XFS_BUF_ADDR(bp));
245 	return error;
246 }
247 
248 #ifdef DEBUG
249 /*
250  * dump debug superblock and log record information
251  */
252 STATIC void
xlog_header_check_dump(xfs_mount_t * mp,xlog_rec_header_t * head)253 xlog_header_check_dump(
254 	xfs_mount_t		*mp,
255 	xlog_rec_header_t	*head)
256 {
257 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
258 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
259 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
260 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
261 }
262 #else
263 #define xlog_header_check_dump(mp, head)
264 #endif
265 
266 /*
267  * check log record header for recovery
268  */
269 STATIC int
xlog_header_check_recover(xfs_mount_t * mp,xlog_rec_header_t * head)270 xlog_header_check_recover(
271 	xfs_mount_t		*mp,
272 	xlog_rec_header_t	*head)
273 {
274 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
275 
276 	/*
277 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
278 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
279 	 * a dirty log created in IRIX.
280 	 */
281 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
282 		xfs_warn(mp,
283 	"dirty log written in incompatible format - can't recover");
284 		xlog_header_check_dump(mp, head);
285 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
286 				 XFS_ERRLEVEL_HIGH, mp);
287 		return XFS_ERROR(EFSCORRUPTED);
288 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
289 		xfs_warn(mp,
290 	"dirty log entry has mismatched uuid - can't recover");
291 		xlog_header_check_dump(mp, head);
292 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
293 				 XFS_ERRLEVEL_HIGH, mp);
294 		return XFS_ERROR(EFSCORRUPTED);
295 	}
296 	return 0;
297 }
298 
299 /*
300  * read the head block of the log and check the header
301  */
302 STATIC int
xlog_header_check_mount(xfs_mount_t * mp,xlog_rec_header_t * head)303 xlog_header_check_mount(
304 	xfs_mount_t		*mp,
305 	xlog_rec_header_t	*head)
306 {
307 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
308 
309 	if (uuid_is_nil(&head->h_fs_uuid)) {
310 		/*
311 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
312 		 * h_fs_uuid is nil, we assume this log was last mounted
313 		 * by IRIX and continue.
314 		 */
315 		xfs_warn(mp, "nil uuid in log - IRIX style log");
316 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
317 		xfs_warn(mp, "log has mismatched uuid - can't recover");
318 		xlog_header_check_dump(mp, head);
319 		XFS_ERROR_REPORT("xlog_header_check_mount",
320 				 XFS_ERRLEVEL_HIGH, mp);
321 		return XFS_ERROR(EFSCORRUPTED);
322 	}
323 	return 0;
324 }
325 
326 STATIC void
xlog_recover_iodone(struct xfs_buf * bp)327 xlog_recover_iodone(
328 	struct xfs_buf	*bp)
329 {
330 	if (XFS_BUF_GETERROR(bp)) {
331 		/*
332 		 * We're not going to bother about retrying
333 		 * this during recovery. One strike!
334 		 */
335 		xfs_ioerror_alert("xlog_recover_iodone",
336 					bp->b_target->bt_mount, bp,
337 					XFS_BUF_ADDR(bp));
338 		xfs_force_shutdown(bp->b_target->bt_mount,
339 					SHUTDOWN_META_IO_ERROR);
340 	}
341 	XFS_BUF_CLR_IODONE_FUNC(bp);
342 	xfs_buf_ioend(bp, 0);
343 }
344 
345 /*
346  * This routine finds (to an approximation) the first block in the physical
347  * log which contains the given cycle.  It uses a binary search algorithm.
348  * Note that the algorithm can not be perfect because the disk will not
349  * necessarily be perfect.
350  */
351 STATIC int
xlog_find_cycle_start(xlog_t * log,xfs_buf_t * bp,xfs_daddr_t first_blk,xfs_daddr_t * last_blk,uint cycle)352 xlog_find_cycle_start(
353 	xlog_t		*log,
354 	xfs_buf_t	*bp,
355 	xfs_daddr_t	first_blk,
356 	xfs_daddr_t	*last_blk,
357 	uint		cycle)
358 {
359 	xfs_caddr_t	offset;
360 	xfs_daddr_t	mid_blk;
361 	xfs_daddr_t	end_blk;
362 	uint		mid_cycle;
363 	int		error;
364 
365 	end_blk = *last_blk;
366 	mid_blk = BLK_AVG(first_blk, end_blk);
367 	while (mid_blk != first_blk && mid_blk != end_blk) {
368 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
369 		if (error)
370 			return error;
371 		mid_cycle = xlog_get_cycle(offset);
372 		if (mid_cycle == cycle)
373 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
374 		else
375 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
376 		mid_blk = BLK_AVG(first_blk, end_blk);
377 	}
378 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
379 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
380 
381 	*last_blk = end_blk;
382 
383 	return 0;
384 }
385 
386 /*
387  * Check that a range of blocks does not contain stop_on_cycle_no.
388  * Fill in *new_blk with the block offset where such a block is
389  * found, or with -1 (an invalid block number) if there is no such
390  * block in the range.  The scan needs to occur from front to back
391  * and the pointer into the region must be updated since a later
392  * routine will need to perform another test.
393  */
394 STATIC int
xlog_find_verify_cycle(xlog_t * log,xfs_daddr_t start_blk,int nbblks,uint stop_on_cycle_no,xfs_daddr_t * new_blk)395 xlog_find_verify_cycle(
396 	xlog_t		*log,
397 	xfs_daddr_t	start_blk,
398 	int		nbblks,
399 	uint		stop_on_cycle_no,
400 	xfs_daddr_t	*new_blk)
401 {
402 	xfs_daddr_t	i, j;
403 	uint		cycle;
404 	xfs_buf_t	*bp;
405 	xfs_daddr_t	bufblks;
406 	xfs_caddr_t	buf = NULL;
407 	int		error = 0;
408 
409 	/*
410 	 * Greedily allocate a buffer big enough to handle the full
411 	 * range of basic blocks we'll be examining.  If that fails,
412 	 * try a smaller size.  We need to be able to read at least
413 	 * a log sector, or we're out of luck.
414 	 */
415 	bufblks = 1 << ffs(nbblks);
416 	while (!(bp = xlog_get_bp(log, bufblks))) {
417 		bufblks >>= 1;
418 		if (bufblks < log->l_sectBBsize)
419 			return ENOMEM;
420 	}
421 
422 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
423 		int	bcount;
424 
425 		bcount = min(bufblks, (start_blk + nbblks - i));
426 
427 		error = xlog_bread(log, i, bcount, bp, &buf);
428 		if (error)
429 			goto out;
430 
431 		for (j = 0; j < bcount; j++) {
432 			cycle = xlog_get_cycle(buf);
433 			if (cycle == stop_on_cycle_no) {
434 				*new_blk = i+j;
435 				goto out;
436 			}
437 
438 			buf += BBSIZE;
439 		}
440 	}
441 
442 	*new_blk = -1;
443 
444 out:
445 	xlog_put_bp(bp);
446 	return error;
447 }
448 
449 /*
450  * Potentially backup over partial log record write.
451  *
452  * In the typical case, last_blk is the number of the block directly after
453  * a good log record.  Therefore, we subtract one to get the block number
454  * of the last block in the given buffer.  extra_bblks contains the number
455  * of blocks we would have read on a previous read.  This happens when the
456  * last log record is split over the end of the physical log.
457  *
458  * extra_bblks is the number of blocks potentially verified on a previous
459  * call to this routine.
460  */
461 STATIC int
xlog_find_verify_log_record(xlog_t * log,xfs_daddr_t start_blk,xfs_daddr_t * last_blk,int extra_bblks)462 xlog_find_verify_log_record(
463 	xlog_t			*log,
464 	xfs_daddr_t		start_blk,
465 	xfs_daddr_t		*last_blk,
466 	int			extra_bblks)
467 {
468 	xfs_daddr_t		i;
469 	xfs_buf_t		*bp;
470 	xfs_caddr_t		offset = NULL;
471 	xlog_rec_header_t	*head = NULL;
472 	int			error = 0;
473 	int			smallmem = 0;
474 	int			num_blks = *last_blk - start_blk;
475 	int			xhdrs;
476 
477 	ASSERT(start_blk != 0 || *last_blk != start_blk);
478 
479 	if (!(bp = xlog_get_bp(log, num_blks))) {
480 		if (!(bp = xlog_get_bp(log, 1)))
481 			return ENOMEM;
482 		smallmem = 1;
483 	} else {
484 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
485 		if (error)
486 			goto out;
487 		offset += ((num_blks - 1) << BBSHIFT);
488 	}
489 
490 	for (i = (*last_blk) - 1; i >= 0; i--) {
491 		if (i < start_blk) {
492 			/* valid log record not found */
493 			xfs_warn(log->l_mp,
494 		"Log inconsistent (didn't find previous header)");
495 			ASSERT(0);
496 			error = XFS_ERROR(EIO);
497 			goto out;
498 		}
499 
500 		if (smallmem) {
501 			error = xlog_bread(log, i, 1, bp, &offset);
502 			if (error)
503 				goto out;
504 		}
505 
506 		head = (xlog_rec_header_t *)offset;
507 
508 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
509 			break;
510 
511 		if (!smallmem)
512 			offset -= BBSIZE;
513 	}
514 
515 	/*
516 	 * We hit the beginning of the physical log & still no header.  Return
517 	 * to caller.  If caller can handle a return of -1, then this routine
518 	 * will be called again for the end of the physical log.
519 	 */
520 	if (i == -1) {
521 		error = -1;
522 		goto out;
523 	}
524 
525 	/*
526 	 * We have the final block of the good log (the first block
527 	 * of the log record _before_ the head. So we check the uuid.
528 	 */
529 	if ((error = xlog_header_check_mount(log->l_mp, head)))
530 		goto out;
531 
532 	/*
533 	 * We may have found a log record header before we expected one.
534 	 * last_blk will be the 1st block # with a given cycle #.  We may end
535 	 * up reading an entire log record.  In this case, we don't want to
536 	 * reset last_blk.  Only when last_blk points in the middle of a log
537 	 * record do we update last_blk.
538 	 */
539 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
540 		uint	h_size = be32_to_cpu(head->h_size);
541 
542 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
543 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
544 			xhdrs++;
545 	} else {
546 		xhdrs = 1;
547 	}
548 
549 	if (*last_blk - i + extra_bblks !=
550 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
551 		*last_blk = i;
552 
553 out:
554 	xlog_put_bp(bp);
555 	return error;
556 }
557 
558 /*
559  * Head is defined to be the point of the log where the next log write
560  * write could go.  This means that incomplete LR writes at the end are
561  * eliminated when calculating the head.  We aren't guaranteed that previous
562  * LR have complete transactions.  We only know that a cycle number of
563  * current cycle number -1 won't be present in the log if we start writing
564  * from our current block number.
565  *
566  * last_blk contains the block number of the first block with a given
567  * cycle number.
568  *
569  * Return: zero if normal, non-zero if error.
570  */
571 STATIC int
xlog_find_head(xlog_t * log,xfs_daddr_t * return_head_blk)572 xlog_find_head(
573 	xlog_t 		*log,
574 	xfs_daddr_t	*return_head_blk)
575 {
576 	xfs_buf_t	*bp;
577 	xfs_caddr_t	offset;
578 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
579 	int		num_scan_bblks;
580 	uint		first_half_cycle, last_half_cycle;
581 	uint		stop_on_cycle;
582 	int		error, log_bbnum = log->l_logBBsize;
583 
584 	/* Is the end of the log device zeroed? */
585 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
586 		*return_head_blk = first_blk;
587 
588 		/* Is the whole lot zeroed? */
589 		if (!first_blk) {
590 			/* Linux XFS shouldn't generate totally zeroed logs -
591 			 * mkfs etc write a dummy unmount record to a fresh
592 			 * log so we can store the uuid in there
593 			 */
594 			xfs_warn(log->l_mp, "totally zeroed log");
595 		}
596 
597 		return 0;
598 	} else if (error) {
599 		xfs_warn(log->l_mp, "empty log check failed");
600 		return error;
601 	}
602 
603 	first_blk = 0;			/* get cycle # of 1st block */
604 	bp = xlog_get_bp(log, 1);
605 	if (!bp)
606 		return ENOMEM;
607 
608 	error = xlog_bread(log, 0, 1, bp, &offset);
609 	if (error)
610 		goto bp_err;
611 
612 	first_half_cycle = xlog_get_cycle(offset);
613 
614 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
615 	error = xlog_bread(log, last_blk, 1, bp, &offset);
616 	if (error)
617 		goto bp_err;
618 
619 	last_half_cycle = xlog_get_cycle(offset);
620 	ASSERT(last_half_cycle != 0);
621 
622 	/*
623 	 * If the 1st half cycle number is equal to the last half cycle number,
624 	 * then the entire log is stamped with the same cycle number.  In this
625 	 * case, head_blk can't be set to zero (which makes sense).  The below
626 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
627 	 * we set it to log_bbnum which is an invalid block number, but this
628 	 * value makes the math correct.  If head_blk doesn't changed through
629 	 * all the tests below, *head_blk is set to zero at the very end rather
630 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
631 	 * in a circular file.
632 	 */
633 	if (first_half_cycle == last_half_cycle) {
634 		/*
635 		 * In this case we believe that the entire log should have
636 		 * cycle number last_half_cycle.  We need to scan backwards
637 		 * from the end verifying that there are no holes still
638 		 * containing last_half_cycle - 1.  If we find such a hole,
639 		 * then the start of that hole will be the new head.  The
640 		 * simple case looks like
641 		 *        x | x ... | x - 1 | x
642 		 * Another case that fits this picture would be
643 		 *        x | x + 1 | x ... | x
644 		 * In this case the head really is somewhere at the end of the
645 		 * log, as one of the latest writes at the beginning was
646 		 * incomplete.
647 		 * One more case is
648 		 *        x | x + 1 | x ... | x - 1 | x
649 		 * This is really the combination of the above two cases, and
650 		 * the head has to end up at the start of the x-1 hole at the
651 		 * end of the log.
652 		 *
653 		 * In the 256k log case, we will read from the beginning to the
654 		 * end of the log and search for cycle numbers equal to x-1.
655 		 * We don't worry about the x+1 blocks that we encounter,
656 		 * because we know that they cannot be the head since the log
657 		 * started with x.
658 		 */
659 		head_blk = log_bbnum;
660 		stop_on_cycle = last_half_cycle - 1;
661 	} else {
662 		/*
663 		 * In this case we want to find the first block with cycle
664 		 * number matching last_half_cycle.  We expect the log to be
665 		 * some variation on
666 		 *        x + 1 ... | x ... | x
667 		 * The first block with cycle number x (last_half_cycle) will
668 		 * be where the new head belongs.  First we do a binary search
669 		 * for the first occurrence of last_half_cycle.  The binary
670 		 * search may not be totally accurate, so then we scan back
671 		 * from there looking for occurrences of last_half_cycle before
672 		 * us.  If that backwards scan wraps around the beginning of
673 		 * the log, then we look for occurrences of last_half_cycle - 1
674 		 * at the end of the log.  The cases we're looking for look
675 		 * like
676 		 *                               v binary search stopped here
677 		 *        x + 1 ... | x | x + 1 | x ... | x
678 		 *                   ^ but we want to locate this spot
679 		 * or
680 		 *        <---------> less than scan distance
681 		 *        x + 1 ... | x ... | x - 1 | x
682 		 *                           ^ we want to locate this spot
683 		 */
684 		stop_on_cycle = last_half_cycle;
685 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
686 						&head_blk, last_half_cycle)))
687 			goto bp_err;
688 	}
689 
690 	/*
691 	 * Now validate the answer.  Scan back some number of maximum possible
692 	 * blocks and make sure each one has the expected cycle number.  The
693 	 * maximum is determined by the total possible amount of buffering
694 	 * in the in-core log.  The following number can be made tighter if
695 	 * we actually look at the block size of the filesystem.
696 	 */
697 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
698 	if (head_blk >= num_scan_bblks) {
699 		/*
700 		 * We are guaranteed that the entire check can be performed
701 		 * in one buffer.
702 		 */
703 		start_blk = head_blk - num_scan_bblks;
704 		if ((error = xlog_find_verify_cycle(log,
705 						start_blk, num_scan_bblks,
706 						stop_on_cycle, &new_blk)))
707 			goto bp_err;
708 		if (new_blk != -1)
709 			head_blk = new_blk;
710 	} else {		/* need to read 2 parts of log */
711 		/*
712 		 * We are going to scan backwards in the log in two parts.
713 		 * First we scan the physical end of the log.  In this part
714 		 * of the log, we are looking for blocks with cycle number
715 		 * last_half_cycle - 1.
716 		 * If we find one, then we know that the log starts there, as
717 		 * we've found a hole that didn't get written in going around
718 		 * the end of the physical log.  The simple case for this is
719 		 *        x + 1 ... | x ... | x - 1 | x
720 		 *        <---------> less than scan distance
721 		 * If all of the blocks at the end of the log have cycle number
722 		 * last_half_cycle, then we check the blocks at the start of
723 		 * the log looking for occurrences of last_half_cycle.  If we
724 		 * find one, then our current estimate for the location of the
725 		 * first occurrence of last_half_cycle is wrong and we move
726 		 * back to the hole we've found.  This case looks like
727 		 *        x + 1 ... | x | x + 1 | x ...
728 		 *                               ^ binary search stopped here
729 		 * Another case we need to handle that only occurs in 256k
730 		 * logs is
731 		 *        x + 1 ... | x ... | x+1 | x ...
732 		 *                   ^ binary search stops here
733 		 * In a 256k log, the scan at the end of the log will see the
734 		 * x + 1 blocks.  We need to skip past those since that is
735 		 * certainly not the head of the log.  By searching for
736 		 * last_half_cycle-1 we accomplish that.
737 		 */
738 		ASSERT(head_blk <= INT_MAX &&
739 			(xfs_daddr_t) num_scan_bblks >= head_blk);
740 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
741 		if ((error = xlog_find_verify_cycle(log, start_blk,
742 					num_scan_bblks - (int)head_blk,
743 					(stop_on_cycle - 1), &new_blk)))
744 			goto bp_err;
745 		if (new_blk != -1) {
746 			head_blk = new_blk;
747 			goto validate_head;
748 		}
749 
750 		/*
751 		 * Scan beginning of log now.  The last part of the physical
752 		 * log is good.  This scan needs to verify that it doesn't find
753 		 * the last_half_cycle.
754 		 */
755 		start_blk = 0;
756 		ASSERT(head_blk <= INT_MAX);
757 		if ((error = xlog_find_verify_cycle(log,
758 					start_blk, (int)head_blk,
759 					stop_on_cycle, &new_blk)))
760 			goto bp_err;
761 		if (new_blk != -1)
762 			head_blk = new_blk;
763 	}
764 
765 validate_head:
766 	/*
767 	 * Now we need to make sure head_blk is not pointing to a block in
768 	 * the middle of a log record.
769 	 */
770 	num_scan_bblks = XLOG_REC_SHIFT(log);
771 	if (head_blk >= num_scan_bblks) {
772 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
773 
774 		/* start ptr at last block ptr before head_blk */
775 		if ((error = xlog_find_verify_log_record(log, start_blk,
776 							&head_blk, 0)) == -1) {
777 			error = XFS_ERROR(EIO);
778 			goto bp_err;
779 		} else if (error)
780 			goto bp_err;
781 	} else {
782 		start_blk = 0;
783 		ASSERT(head_blk <= INT_MAX);
784 		if ((error = xlog_find_verify_log_record(log, start_blk,
785 							&head_blk, 0)) == -1) {
786 			/* We hit the beginning of the log during our search */
787 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
788 			new_blk = log_bbnum;
789 			ASSERT(start_blk <= INT_MAX &&
790 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
791 			ASSERT(head_blk <= INT_MAX);
792 			if ((error = xlog_find_verify_log_record(log,
793 							start_blk, &new_blk,
794 							(int)head_blk)) == -1) {
795 				error = XFS_ERROR(EIO);
796 				goto bp_err;
797 			} else if (error)
798 				goto bp_err;
799 			if (new_blk != log_bbnum)
800 				head_blk = new_blk;
801 		} else if (error)
802 			goto bp_err;
803 	}
804 
805 	xlog_put_bp(bp);
806 	if (head_blk == log_bbnum)
807 		*return_head_blk = 0;
808 	else
809 		*return_head_blk = head_blk;
810 	/*
811 	 * When returning here, we have a good block number.  Bad block
812 	 * means that during a previous crash, we didn't have a clean break
813 	 * from cycle number N to cycle number N-1.  In this case, we need
814 	 * to find the first block with cycle number N-1.
815 	 */
816 	return 0;
817 
818  bp_err:
819 	xlog_put_bp(bp);
820 
821 	if (error)
822 		xfs_warn(log->l_mp, "failed to find log head");
823 	return error;
824 }
825 
826 /*
827  * Find the sync block number or the tail of the log.
828  *
829  * This will be the block number of the last record to have its
830  * associated buffers synced to disk.  Every log record header has
831  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
832  * to get a sync block number.  The only concern is to figure out which
833  * log record header to believe.
834  *
835  * The following algorithm uses the log record header with the largest
836  * lsn.  The entire log record does not need to be valid.  We only care
837  * that the header is valid.
838  *
839  * We could speed up search by using current head_blk buffer, but it is not
840  * available.
841  */
842 STATIC int
xlog_find_tail(xlog_t * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk)843 xlog_find_tail(
844 	xlog_t			*log,
845 	xfs_daddr_t		*head_blk,
846 	xfs_daddr_t		*tail_blk)
847 {
848 	xlog_rec_header_t	*rhead;
849 	xlog_op_header_t	*op_head;
850 	xfs_caddr_t		offset = NULL;
851 	xfs_buf_t		*bp;
852 	int			error, i, found;
853 	xfs_daddr_t		umount_data_blk;
854 	xfs_daddr_t		after_umount_blk;
855 	xfs_lsn_t		tail_lsn;
856 	int			hblks;
857 
858 	found = 0;
859 
860 	/*
861 	 * Find previous log record
862 	 */
863 	if ((error = xlog_find_head(log, head_blk)))
864 		return error;
865 
866 	bp = xlog_get_bp(log, 1);
867 	if (!bp)
868 		return ENOMEM;
869 	if (*head_blk == 0) {				/* special case */
870 		error = xlog_bread(log, 0, 1, bp, &offset);
871 		if (error)
872 			goto done;
873 
874 		if (xlog_get_cycle(offset) == 0) {
875 			*tail_blk = 0;
876 			/* leave all other log inited values alone */
877 			goto done;
878 		}
879 	}
880 
881 	/*
882 	 * Search backwards looking for log record header block
883 	 */
884 	ASSERT(*head_blk < INT_MAX);
885 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
886 		error = xlog_bread(log, i, 1, bp, &offset);
887 		if (error)
888 			goto done;
889 
890 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
891 			found = 1;
892 			break;
893 		}
894 	}
895 	/*
896 	 * If we haven't found the log record header block, start looking
897 	 * again from the end of the physical log.  XXXmiken: There should be
898 	 * a check here to make sure we didn't search more than N blocks in
899 	 * the previous code.
900 	 */
901 	if (!found) {
902 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
903 			error = xlog_bread(log, i, 1, bp, &offset);
904 			if (error)
905 				goto done;
906 
907 			if (XLOG_HEADER_MAGIC_NUM ==
908 			    be32_to_cpu(*(__be32 *)offset)) {
909 				found = 2;
910 				break;
911 			}
912 		}
913 	}
914 	if (!found) {
915 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
916 		ASSERT(0);
917 		return XFS_ERROR(EIO);
918 	}
919 
920 	/* find blk_no of tail of log */
921 	rhead = (xlog_rec_header_t *)offset;
922 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
923 
924 	/*
925 	 * Reset log values according to the state of the log when we
926 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
927 	 * one because the next write starts a new cycle rather than
928 	 * continuing the cycle of the last good log record.  At this
929 	 * point we have guaranteed that all partial log records have been
930 	 * accounted for.  Therefore, we know that the last good log record
931 	 * written was complete and ended exactly on the end boundary
932 	 * of the physical log.
933 	 */
934 	log->l_prev_block = i;
935 	log->l_curr_block = (int)*head_blk;
936 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
937 	if (found == 2)
938 		log->l_curr_cycle++;
939 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
940 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
941 	xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
942 					BBTOB(log->l_curr_block));
943 	xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
944 					BBTOB(log->l_curr_block));
945 
946 	/*
947 	 * Look for unmount record.  If we find it, then we know there
948 	 * was a clean unmount.  Since 'i' could be the last block in
949 	 * the physical log, we convert to a log block before comparing
950 	 * to the head_blk.
951 	 *
952 	 * Save the current tail lsn to use to pass to
953 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
954 	 * unmount record if there is one, so we pass the lsn of the
955 	 * unmount record rather than the block after it.
956 	 */
957 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
958 		int	h_size = be32_to_cpu(rhead->h_size);
959 		int	h_version = be32_to_cpu(rhead->h_version);
960 
961 		if ((h_version & XLOG_VERSION_2) &&
962 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
963 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
964 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
965 				hblks++;
966 		} else {
967 			hblks = 1;
968 		}
969 	} else {
970 		hblks = 1;
971 	}
972 	after_umount_blk = (i + hblks + (int)
973 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
974 	tail_lsn = atomic64_read(&log->l_tail_lsn);
975 	if (*head_blk == after_umount_blk &&
976 	    be32_to_cpu(rhead->h_num_logops) == 1) {
977 		umount_data_blk = (i + hblks) % log->l_logBBsize;
978 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
979 		if (error)
980 			goto done;
981 
982 		op_head = (xlog_op_header_t *)offset;
983 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
984 			/*
985 			 * Set tail and last sync so that newly written
986 			 * log records will point recovery to after the
987 			 * current unmount record.
988 			 */
989 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
990 					log->l_curr_cycle, after_umount_blk);
991 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
992 					log->l_curr_cycle, after_umount_blk);
993 			*tail_blk = after_umount_blk;
994 
995 			/*
996 			 * Note that the unmount was clean. If the unmount
997 			 * was not clean, we need to know this to rebuild the
998 			 * superblock counters from the perag headers if we
999 			 * have a filesystem using non-persistent counters.
1000 			 */
1001 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * Make sure that there are no blocks in front of the head
1007 	 * with the same cycle number as the head.  This can happen
1008 	 * because we allow multiple outstanding log writes concurrently,
1009 	 * and the later writes might make it out before earlier ones.
1010 	 *
1011 	 * We use the lsn from before modifying it so that we'll never
1012 	 * overwrite the unmount record after a clean unmount.
1013 	 *
1014 	 * Do this only if we are going to recover the filesystem
1015 	 *
1016 	 * NOTE: This used to say "if (!readonly)"
1017 	 * However on Linux, we can & do recover a read-only filesystem.
1018 	 * We only skip recovery if NORECOVERY is specified on mount,
1019 	 * in which case we would not be here.
1020 	 *
1021 	 * But... if the -device- itself is readonly, just skip this.
1022 	 * We can't recover this device anyway, so it won't matter.
1023 	 */
1024 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1025 		error = xlog_clear_stale_blocks(log, tail_lsn);
1026 
1027 done:
1028 	xlog_put_bp(bp);
1029 
1030 	if (error)
1031 		xfs_warn(log->l_mp, "failed to locate log tail");
1032 	return error;
1033 }
1034 
1035 /*
1036  * Is the log zeroed at all?
1037  *
1038  * The last binary search should be changed to perform an X block read
1039  * once X becomes small enough.  You can then search linearly through
1040  * the X blocks.  This will cut down on the number of reads we need to do.
1041  *
1042  * If the log is partially zeroed, this routine will pass back the blkno
1043  * of the first block with cycle number 0.  It won't have a complete LR
1044  * preceding it.
1045  *
1046  * Return:
1047  *	0  => the log is completely written to
1048  *	-1 => use *blk_no as the first block of the log
1049  *	>0 => error has occurred
1050  */
1051 STATIC int
xlog_find_zeroed(xlog_t * log,xfs_daddr_t * blk_no)1052 xlog_find_zeroed(
1053 	xlog_t		*log,
1054 	xfs_daddr_t	*blk_no)
1055 {
1056 	xfs_buf_t	*bp;
1057 	xfs_caddr_t	offset;
1058 	uint	        first_cycle, last_cycle;
1059 	xfs_daddr_t	new_blk, last_blk, start_blk;
1060 	xfs_daddr_t     num_scan_bblks;
1061 	int	        error, log_bbnum = log->l_logBBsize;
1062 
1063 	*blk_no = 0;
1064 
1065 	/* check totally zeroed log */
1066 	bp = xlog_get_bp(log, 1);
1067 	if (!bp)
1068 		return ENOMEM;
1069 	error = xlog_bread(log, 0, 1, bp, &offset);
1070 	if (error)
1071 		goto bp_err;
1072 
1073 	first_cycle = xlog_get_cycle(offset);
1074 	if (first_cycle == 0) {		/* completely zeroed log */
1075 		*blk_no = 0;
1076 		xlog_put_bp(bp);
1077 		return -1;
1078 	}
1079 
1080 	/* check partially zeroed log */
1081 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1082 	if (error)
1083 		goto bp_err;
1084 
1085 	last_cycle = xlog_get_cycle(offset);
1086 	if (last_cycle != 0) {		/* log completely written to */
1087 		xlog_put_bp(bp);
1088 		return 0;
1089 	} else if (first_cycle != 1) {
1090 		/*
1091 		 * If the cycle of the last block is zero, the cycle of
1092 		 * the first block must be 1. If it's not, maybe we're
1093 		 * not looking at a log... Bail out.
1094 		 */
1095 		xfs_warn(log->l_mp,
1096 			"Log inconsistent or not a log (last==0, first!=1)");
1097 		return XFS_ERROR(EINVAL);
1098 	}
1099 
1100 	/* we have a partially zeroed log */
1101 	last_blk = log_bbnum-1;
1102 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1103 		goto bp_err;
1104 
1105 	/*
1106 	 * Validate the answer.  Because there is no way to guarantee that
1107 	 * the entire log is made up of log records which are the same size,
1108 	 * we scan over the defined maximum blocks.  At this point, the maximum
1109 	 * is not chosen to mean anything special.   XXXmiken
1110 	 */
1111 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1112 	ASSERT(num_scan_bblks <= INT_MAX);
1113 
1114 	if (last_blk < num_scan_bblks)
1115 		num_scan_bblks = last_blk;
1116 	start_blk = last_blk - num_scan_bblks;
1117 
1118 	/*
1119 	 * We search for any instances of cycle number 0 that occur before
1120 	 * our current estimate of the head.  What we're trying to detect is
1121 	 *        1 ... | 0 | 1 | 0...
1122 	 *                       ^ binary search ends here
1123 	 */
1124 	if ((error = xlog_find_verify_cycle(log, start_blk,
1125 					 (int)num_scan_bblks, 0, &new_blk)))
1126 		goto bp_err;
1127 	if (new_blk != -1)
1128 		last_blk = new_blk;
1129 
1130 	/*
1131 	 * Potentially backup over partial log record write.  We don't need
1132 	 * to search the end of the log because we know it is zero.
1133 	 */
1134 	if ((error = xlog_find_verify_log_record(log, start_blk,
1135 				&last_blk, 0)) == -1) {
1136 	    error = XFS_ERROR(EIO);
1137 	    goto bp_err;
1138 	} else if (error)
1139 	    goto bp_err;
1140 
1141 	*blk_no = last_blk;
1142 bp_err:
1143 	xlog_put_bp(bp);
1144 	if (error)
1145 		return error;
1146 	return -1;
1147 }
1148 
1149 /*
1150  * These are simple subroutines used by xlog_clear_stale_blocks() below
1151  * to initialize a buffer full of empty log record headers and write
1152  * them into the log.
1153  */
1154 STATIC void
xlog_add_record(xlog_t * log,xfs_caddr_t buf,int cycle,int block,int tail_cycle,int tail_block)1155 xlog_add_record(
1156 	xlog_t			*log,
1157 	xfs_caddr_t		buf,
1158 	int			cycle,
1159 	int			block,
1160 	int			tail_cycle,
1161 	int			tail_block)
1162 {
1163 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1164 
1165 	memset(buf, 0, BBSIZE);
1166 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1167 	recp->h_cycle = cpu_to_be32(cycle);
1168 	recp->h_version = cpu_to_be32(
1169 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1170 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1171 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1172 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1173 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1174 }
1175 
1176 STATIC int
xlog_write_log_records(xlog_t * log,int cycle,int start_block,int blocks,int tail_cycle,int tail_block)1177 xlog_write_log_records(
1178 	xlog_t		*log,
1179 	int		cycle,
1180 	int		start_block,
1181 	int		blocks,
1182 	int		tail_cycle,
1183 	int		tail_block)
1184 {
1185 	xfs_caddr_t	offset;
1186 	xfs_buf_t	*bp;
1187 	int		balign, ealign;
1188 	int		sectbb = log->l_sectBBsize;
1189 	int		end_block = start_block + blocks;
1190 	int		bufblks;
1191 	int		error = 0;
1192 	int		i, j = 0;
1193 
1194 	/*
1195 	 * Greedily allocate a buffer big enough to handle the full
1196 	 * range of basic blocks to be written.  If that fails, try
1197 	 * a smaller size.  We need to be able to write at least a
1198 	 * log sector, or we're out of luck.
1199 	 */
1200 	bufblks = 1 << ffs(blocks);
1201 	while (!(bp = xlog_get_bp(log, bufblks))) {
1202 		bufblks >>= 1;
1203 		if (bufblks < sectbb)
1204 			return ENOMEM;
1205 	}
1206 
1207 	/* We may need to do a read at the start to fill in part of
1208 	 * the buffer in the starting sector not covered by the first
1209 	 * write below.
1210 	 */
1211 	balign = round_down(start_block, sectbb);
1212 	if (balign != start_block) {
1213 		error = xlog_bread_noalign(log, start_block, 1, bp);
1214 		if (error)
1215 			goto out_put_bp;
1216 
1217 		j = start_block - balign;
1218 	}
1219 
1220 	for (i = start_block; i < end_block; i += bufblks) {
1221 		int		bcount, endcount;
1222 
1223 		bcount = min(bufblks, end_block - start_block);
1224 		endcount = bcount - j;
1225 
1226 		/* We may need to do a read at the end to fill in part of
1227 		 * the buffer in the final sector not covered by the write.
1228 		 * If this is the same sector as the above read, skip it.
1229 		 */
1230 		ealign = round_down(end_block, sectbb);
1231 		if (j == 0 && (start_block + endcount > ealign)) {
1232 			offset = XFS_BUF_PTR(bp);
1233 			balign = BBTOB(ealign - start_block);
1234 			error = XFS_BUF_SET_PTR(bp, offset + balign,
1235 						BBTOB(sectbb));
1236 			if (error)
1237 				break;
1238 
1239 			error = xlog_bread_noalign(log, ealign, sectbb, bp);
1240 			if (error)
1241 				break;
1242 
1243 			error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1244 			if (error)
1245 				break;
1246 		}
1247 
1248 		offset = xlog_align(log, start_block, endcount, bp);
1249 		for (; j < endcount; j++) {
1250 			xlog_add_record(log, offset, cycle, i+j,
1251 					tail_cycle, tail_block);
1252 			offset += BBSIZE;
1253 		}
1254 		error = xlog_bwrite(log, start_block, endcount, bp);
1255 		if (error)
1256 			break;
1257 		start_block += endcount;
1258 		j = 0;
1259 	}
1260 
1261  out_put_bp:
1262 	xlog_put_bp(bp);
1263 	return error;
1264 }
1265 
1266 /*
1267  * This routine is called to blow away any incomplete log writes out
1268  * in front of the log head.  We do this so that we won't become confused
1269  * if we come up, write only a little bit more, and then crash again.
1270  * If we leave the partial log records out there, this situation could
1271  * cause us to think those partial writes are valid blocks since they
1272  * have the current cycle number.  We get rid of them by overwriting them
1273  * with empty log records with the old cycle number rather than the
1274  * current one.
1275  *
1276  * The tail lsn is passed in rather than taken from
1277  * the log so that we will not write over the unmount record after a
1278  * clean unmount in a 512 block log.  Doing so would leave the log without
1279  * any valid log records in it until a new one was written.  If we crashed
1280  * during that time we would not be able to recover.
1281  */
1282 STATIC int
xlog_clear_stale_blocks(xlog_t * log,xfs_lsn_t tail_lsn)1283 xlog_clear_stale_blocks(
1284 	xlog_t		*log,
1285 	xfs_lsn_t	tail_lsn)
1286 {
1287 	int		tail_cycle, head_cycle;
1288 	int		tail_block, head_block;
1289 	int		tail_distance, max_distance;
1290 	int		distance;
1291 	int		error;
1292 
1293 	tail_cycle = CYCLE_LSN(tail_lsn);
1294 	tail_block = BLOCK_LSN(tail_lsn);
1295 	head_cycle = log->l_curr_cycle;
1296 	head_block = log->l_curr_block;
1297 
1298 	/*
1299 	 * Figure out the distance between the new head of the log
1300 	 * and the tail.  We want to write over any blocks beyond the
1301 	 * head that we may have written just before the crash, but
1302 	 * we don't want to overwrite the tail of the log.
1303 	 */
1304 	if (head_cycle == tail_cycle) {
1305 		/*
1306 		 * The tail is behind the head in the physical log,
1307 		 * so the distance from the head to the tail is the
1308 		 * distance from the head to the end of the log plus
1309 		 * the distance from the beginning of the log to the
1310 		 * tail.
1311 		 */
1312 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1313 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1314 					 XFS_ERRLEVEL_LOW, log->l_mp);
1315 			return XFS_ERROR(EFSCORRUPTED);
1316 		}
1317 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1318 	} else {
1319 		/*
1320 		 * The head is behind the tail in the physical log,
1321 		 * so the distance from the head to the tail is just
1322 		 * the tail block minus the head block.
1323 		 */
1324 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1325 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1326 					 XFS_ERRLEVEL_LOW, log->l_mp);
1327 			return XFS_ERROR(EFSCORRUPTED);
1328 		}
1329 		tail_distance = tail_block - head_block;
1330 	}
1331 
1332 	/*
1333 	 * If the head is right up against the tail, we can't clear
1334 	 * anything.
1335 	 */
1336 	if (tail_distance <= 0) {
1337 		ASSERT(tail_distance == 0);
1338 		return 0;
1339 	}
1340 
1341 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1342 	/*
1343 	 * Take the smaller of the maximum amount of outstanding I/O
1344 	 * we could have and the distance to the tail to clear out.
1345 	 * We take the smaller so that we don't overwrite the tail and
1346 	 * we don't waste all day writing from the head to the tail
1347 	 * for no reason.
1348 	 */
1349 	max_distance = MIN(max_distance, tail_distance);
1350 
1351 	if ((head_block + max_distance) <= log->l_logBBsize) {
1352 		/*
1353 		 * We can stomp all the blocks we need to without
1354 		 * wrapping around the end of the log.  Just do it
1355 		 * in a single write.  Use the cycle number of the
1356 		 * current cycle minus one so that the log will look like:
1357 		 *     n ... | n - 1 ...
1358 		 */
1359 		error = xlog_write_log_records(log, (head_cycle - 1),
1360 				head_block, max_distance, tail_cycle,
1361 				tail_block);
1362 		if (error)
1363 			return error;
1364 	} else {
1365 		/*
1366 		 * We need to wrap around the end of the physical log in
1367 		 * order to clear all the blocks.  Do it in two separate
1368 		 * I/Os.  The first write should be from the head to the
1369 		 * end of the physical log, and it should use the current
1370 		 * cycle number minus one just like above.
1371 		 */
1372 		distance = log->l_logBBsize - head_block;
1373 		error = xlog_write_log_records(log, (head_cycle - 1),
1374 				head_block, distance, tail_cycle,
1375 				tail_block);
1376 
1377 		if (error)
1378 			return error;
1379 
1380 		/*
1381 		 * Now write the blocks at the start of the physical log.
1382 		 * This writes the remainder of the blocks we want to clear.
1383 		 * It uses the current cycle number since we're now on the
1384 		 * same cycle as the head so that we get:
1385 		 *    n ... n ... | n - 1 ...
1386 		 *    ^^^^^ blocks we're writing
1387 		 */
1388 		distance = max_distance - (log->l_logBBsize - head_block);
1389 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1390 				tail_cycle, tail_block);
1391 		if (error)
1392 			return error;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /******************************************************************************
1399  *
1400  *		Log recover routines
1401  *
1402  ******************************************************************************
1403  */
1404 
1405 STATIC xlog_recover_t *
xlog_recover_find_tid(struct hlist_head * head,xlog_tid_t tid)1406 xlog_recover_find_tid(
1407 	struct hlist_head	*head,
1408 	xlog_tid_t		tid)
1409 {
1410 	xlog_recover_t		*trans;
1411 	struct hlist_node	*n;
1412 
1413 	hlist_for_each_entry(trans, n, head, r_list) {
1414 		if (trans->r_log_tid == tid)
1415 			return trans;
1416 	}
1417 	return NULL;
1418 }
1419 
1420 STATIC void
xlog_recover_new_tid(struct hlist_head * head,xlog_tid_t tid,xfs_lsn_t lsn)1421 xlog_recover_new_tid(
1422 	struct hlist_head	*head,
1423 	xlog_tid_t		tid,
1424 	xfs_lsn_t		lsn)
1425 {
1426 	xlog_recover_t		*trans;
1427 
1428 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1429 	trans->r_log_tid   = tid;
1430 	trans->r_lsn	   = lsn;
1431 	INIT_LIST_HEAD(&trans->r_itemq);
1432 
1433 	INIT_HLIST_NODE(&trans->r_list);
1434 	hlist_add_head(&trans->r_list, head);
1435 }
1436 
1437 STATIC void
xlog_recover_add_item(struct list_head * head)1438 xlog_recover_add_item(
1439 	struct list_head	*head)
1440 {
1441 	xlog_recover_item_t	*item;
1442 
1443 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1444 	INIT_LIST_HEAD(&item->ri_list);
1445 	list_add_tail(&item->ri_list, head);
1446 }
1447 
1448 STATIC int
xlog_recover_add_to_cont_trans(struct log * log,xlog_recover_t * trans,xfs_caddr_t dp,int len)1449 xlog_recover_add_to_cont_trans(
1450 	struct log		*log,
1451 	xlog_recover_t		*trans,
1452 	xfs_caddr_t		dp,
1453 	int			len)
1454 {
1455 	xlog_recover_item_t	*item;
1456 	xfs_caddr_t		ptr, old_ptr;
1457 	int			old_len;
1458 
1459 	if (list_empty(&trans->r_itemq)) {
1460 		/* finish copying rest of trans header */
1461 		xlog_recover_add_item(&trans->r_itemq);
1462 		ptr = (xfs_caddr_t) &trans->r_theader +
1463 				sizeof(xfs_trans_header_t) - len;
1464 		memcpy(ptr, dp, len); /* d, s, l */
1465 		return 0;
1466 	}
1467 	/* take the tail entry */
1468 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1469 
1470 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1471 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1472 
1473 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1474 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1475 	item->ri_buf[item->ri_cnt-1].i_len += len;
1476 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1477 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1478 	return 0;
1479 }
1480 
1481 /*
1482  * The next region to add is the start of a new region.  It could be
1483  * a whole region or it could be the first part of a new region.  Because
1484  * of this, the assumption here is that the type and size fields of all
1485  * format structures fit into the first 32 bits of the structure.
1486  *
1487  * This works because all regions must be 32 bit aligned.  Therefore, we
1488  * either have both fields or we have neither field.  In the case we have
1489  * neither field, the data part of the region is zero length.  We only have
1490  * a log_op_header and can throw away the header since a new one will appear
1491  * later.  If we have at least 4 bytes, then we can determine how many regions
1492  * will appear in the current log item.
1493  */
1494 STATIC int
xlog_recover_add_to_trans(struct log * log,xlog_recover_t * trans,xfs_caddr_t dp,int len)1495 xlog_recover_add_to_trans(
1496 	struct log		*log,
1497 	xlog_recover_t		*trans,
1498 	xfs_caddr_t		dp,
1499 	int			len)
1500 {
1501 	xfs_inode_log_format_t	*in_f;			/* any will do */
1502 	xlog_recover_item_t	*item;
1503 	xfs_caddr_t		ptr;
1504 
1505 	if (!len)
1506 		return 0;
1507 	if (list_empty(&trans->r_itemq)) {
1508 		/* we need to catch log corruptions here */
1509 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1510 			xfs_warn(log->l_mp, "%s: bad header magic number",
1511 				__func__);
1512 			ASSERT(0);
1513 			return XFS_ERROR(EIO);
1514 		}
1515 		if (len == sizeof(xfs_trans_header_t))
1516 			xlog_recover_add_item(&trans->r_itemq);
1517 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1518 		return 0;
1519 	}
1520 
1521 	ptr = kmem_alloc(len, KM_SLEEP);
1522 	memcpy(ptr, dp, len);
1523 	in_f = (xfs_inode_log_format_t *)ptr;
1524 
1525 	/* take the tail entry */
1526 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1527 	if (item->ri_total != 0 &&
1528 	     item->ri_total == item->ri_cnt) {
1529 		/* tail item is in use, get a new one */
1530 		xlog_recover_add_item(&trans->r_itemq);
1531 		item = list_entry(trans->r_itemq.prev,
1532 					xlog_recover_item_t, ri_list);
1533 	}
1534 
1535 	if (item->ri_total == 0) {		/* first region to be added */
1536 		if (in_f->ilf_size == 0 ||
1537 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1538 			xfs_warn(log->l_mp,
1539 		"bad number of regions (%d) in inode log format",
1540 				  in_f->ilf_size);
1541 			ASSERT(0);
1542 			return XFS_ERROR(EIO);
1543 		}
1544 
1545 		item->ri_total = in_f->ilf_size;
1546 		item->ri_buf =
1547 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1548 				    KM_SLEEP);
1549 	}
1550 	ASSERT(item->ri_total > item->ri_cnt);
1551 	/* Description region is ri_buf[0] */
1552 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1553 	item->ri_buf[item->ri_cnt].i_len  = len;
1554 	item->ri_cnt++;
1555 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1556 	return 0;
1557 }
1558 
1559 /*
1560  * Sort the log items in the transaction. Cancelled buffers need
1561  * to be put first so they are processed before any items that might
1562  * modify the buffers. If they are cancelled, then the modifications
1563  * don't need to be replayed.
1564  */
1565 STATIC int
xlog_recover_reorder_trans(struct log * log,xlog_recover_t * trans,int pass)1566 xlog_recover_reorder_trans(
1567 	struct log		*log,
1568 	xlog_recover_t		*trans,
1569 	int			pass)
1570 {
1571 	xlog_recover_item_t	*item, *n;
1572 	LIST_HEAD(sort_list);
1573 
1574 	list_splice_init(&trans->r_itemq, &sort_list);
1575 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1576 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1577 
1578 		switch (ITEM_TYPE(item)) {
1579 		case XFS_LI_BUF:
1580 			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1581 				trace_xfs_log_recover_item_reorder_head(log,
1582 							trans, item, pass);
1583 				list_move(&item->ri_list, &trans->r_itemq);
1584 				break;
1585 			}
1586 		case XFS_LI_INODE:
1587 		case XFS_LI_DQUOT:
1588 		case XFS_LI_QUOTAOFF:
1589 		case XFS_LI_EFD:
1590 		case XFS_LI_EFI:
1591 			trace_xfs_log_recover_item_reorder_tail(log,
1592 							trans, item, pass);
1593 			list_move_tail(&item->ri_list, &trans->r_itemq);
1594 			break;
1595 		default:
1596 			xfs_warn(log->l_mp,
1597 				"%s: unrecognized type of log operation",
1598 				__func__);
1599 			ASSERT(0);
1600 			return XFS_ERROR(EIO);
1601 		}
1602 	}
1603 	ASSERT(list_empty(&sort_list));
1604 	return 0;
1605 }
1606 
1607 /*
1608  * Build up the table of buf cancel records so that we don't replay
1609  * cancelled data in the second pass.  For buffer records that are
1610  * not cancel records, there is nothing to do here so we just return.
1611  *
1612  * If we get a cancel record which is already in the table, this indicates
1613  * that the buffer was cancelled multiple times.  In order to ensure
1614  * that during pass 2 we keep the record in the table until we reach its
1615  * last occurrence in the log, we keep a reference count in the cancel
1616  * record in the table to tell us how many times we expect to see this
1617  * record during the second pass.
1618  */
1619 STATIC int
xlog_recover_buffer_pass1(struct log * log,xlog_recover_item_t * item)1620 xlog_recover_buffer_pass1(
1621 	struct log		*log,
1622 	xlog_recover_item_t	*item)
1623 {
1624 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1625 	struct list_head	*bucket;
1626 	struct xfs_buf_cancel	*bcp;
1627 
1628 	/*
1629 	 * If this isn't a cancel buffer item, then just return.
1630 	 */
1631 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1632 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1633 		return 0;
1634 	}
1635 
1636 	/*
1637 	 * Insert an xfs_buf_cancel record into the hash table of them.
1638 	 * If there is already an identical record, bump its reference count.
1639 	 */
1640 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1641 	list_for_each_entry(bcp, bucket, bc_list) {
1642 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1643 		    bcp->bc_len == buf_f->blf_len) {
1644 			bcp->bc_refcount++;
1645 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1646 			return 0;
1647 		}
1648 	}
1649 
1650 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1651 	bcp->bc_blkno = buf_f->blf_blkno;
1652 	bcp->bc_len = buf_f->blf_len;
1653 	bcp->bc_refcount = 1;
1654 	list_add_tail(&bcp->bc_list, bucket);
1655 
1656 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1657 	return 0;
1658 }
1659 
1660 /*
1661  * Check to see whether the buffer being recovered has a corresponding
1662  * entry in the buffer cancel record table.  If it does then return 1
1663  * so that it will be cancelled, otherwise return 0.  If the buffer is
1664  * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1665  * the refcount on the entry in the table and remove it from the table
1666  * if this is the last reference.
1667  *
1668  * We remove the cancel record from the table when we encounter its
1669  * last occurrence in the log so that if the same buffer is re-used
1670  * again after its last cancellation we actually replay the changes
1671  * made at that point.
1672  */
1673 STATIC int
xlog_check_buffer_cancelled(struct log * log,xfs_daddr_t blkno,uint len,ushort flags)1674 xlog_check_buffer_cancelled(
1675 	struct log		*log,
1676 	xfs_daddr_t		blkno,
1677 	uint			len,
1678 	ushort			flags)
1679 {
1680 	struct list_head	*bucket;
1681 	struct xfs_buf_cancel	*bcp;
1682 
1683 	if (log->l_buf_cancel_table == NULL) {
1684 		/*
1685 		 * There is nothing in the table built in pass one,
1686 		 * so this buffer must not be cancelled.
1687 		 */
1688 		ASSERT(!(flags & XFS_BLF_CANCEL));
1689 		return 0;
1690 	}
1691 
1692 	/*
1693 	 * Search for an entry in the  cancel table that matches our buffer.
1694 	 */
1695 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1696 	list_for_each_entry(bcp, bucket, bc_list) {
1697 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1698 			goto found;
1699 	}
1700 
1701 	/*
1702 	 * We didn't find a corresponding entry in the table, so return 0 so
1703 	 * that the buffer is NOT cancelled.
1704 	 */
1705 	ASSERT(!(flags & XFS_BLF_CANCEL));
1706 	return 0;
1707 
1708 found:
1709 	/*
1710 	 * We've go a match, so return 1 so that the recovery of this buffer
1711 	 * is cancelled.  If this buffer is actually a buffer cancel log
1712 	 * item, then decrement the refcount on the one in the table and
1713 	 * remove it if this is the last reference.
1714 	 */
1715 	if (flags & XFS_BLF_CANCEL) {
1716 		if (--bcp->bc_refcount == 0) {
1717 			list_del(&bcp->bc_list);
1718 			kmem_free(bcp);
1719 		}
1720 	}
1721 	return 1;
1722 }
1723 
1724 /*
1725  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1726  * data which should be recovered is that which corresponds to the
1727  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1728  * data for the inodes is always logged through the inodes themselves rather
1729  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1730  *
1731  * The only time when buffers full of inodes are fully recovered is when the
1732  * buffer is full of newly allocated inodes.  In this case the buffer will
1733  * not be marked as an inode buffer and so will be sent to
1734  * xlog_recover_do_reg_buffer() below during recovery.
1735  */
1736 STATIC int
xlog_recover_do_inode_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)1737 xlog_recover_do_inode_buffer(
1738 	struct xfs_mount	*mp,
1739 	xlog_recover_item_t	*item,
1740 	struct xfs_buf		*bp,
1741 	xfs_buf_log_format_t	*buf_f)
1742 {
1743 	int			i;
1744 	int			item_index = 0;
1745 	int			bit = 0;
1746 	int			nbits = 0;
1747 	int			reg_buf_offset = 0;
1748 	int			reg_buf_bytes = 0;
1749 	int			next_unlinked_offset;
1750 	int			inodes_per_buf;
1751 	xfs_agino_t		*logged_nextp;
1752 	xfs_agino_t		*buffer_nextp;
1753 
1754 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1755 
1756 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1757 	for (i = 0; i < inodes_per_buf; i++) {
1758 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1759 			offsetof(xfs_dinode_t, di_next_unlinked);
1760 
1761 		while (next_unlinked_offset >=
1762 		       (reg_buf_offset + reg_buf_bytes)) {
1763 			/*
1764 			 * The next di_next_unlinked field is beyond
1765 			 * the current logged region.  Find the next
1766 			 * logged region that contains or is beyond
1767 			 * the current di_next_unlinked field.
1768 			 */
1769 			bit += nbits;
1770 			bit = xfs_next_bit(buf_f->blf_data_map,
1771 					   buf_f->blf_map_size, bit);
1772 
1773 			/*
1774 			 * If there are no more logged regions in the
1775 			 * buffer, then we're done.
1776 			 */
1777 			if (bit == -1)
1778 				return 0;
1779 
1780 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1781 						buf_f->blf_map_size, bit);
1782 			ASSERT(nbits > 0);
1783 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1784 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1785 			item_index++;
1786 		}
1787 
1788 		/*
1789 		 * If the current logged region starts after the current
1790 		 * di_next_unlinked field, then move on to the next
1791 		 * di_next_unlinked field.
1792 		 */
1793 		if (next_unlinked_offset < reg_buf_offset)
1794 			continue;
1795 
1796 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1797 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1798 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1799 
1800 		/*
1801 		 * The current logged region contains a copy of the
1802 		 * current di_next_unlinked field.  Extract its value
1803 		 * and copy it to the buffer copy.
1804 		 */
1805 		logged_nextp = item->ri_buf[item_index].i_addr +
1806 				next_unlinked_offset - reg_buf_offset;
1807 		if (unlikely(*logged_nextp == 0)) {
1808 			xfs_alert(mp,
1809 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1810 		"Trying to replay bad (0) inode di_next_unlinked field.",
1811 				item, bp);
1812 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1813 					 XFS_ERRLEVEL_LOW, mp);
1814 			return XFS_ERROR(EFSCORRUPTED);
1815 		}
1816 
1817 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1818 					      next_unlinked_offset);
1819 		*buffer_nextp = *logged_nextp;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 /*
1826  * Perform a 'normal' buffer recovery.  Each logged region of the
1827  * buffer should be copied over the corresponding region in the
1828  * given buffer.  The bitmap in the buf log format structure indicates
1829  * where to place the logged data.
1830  */
1831 STATIC void
xlog_recover_do_reg_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)1832 xlog_recover_do_reg_buffer(
1833 	struct xfs_mount	*mp,
1834 	xlog_recover_item_t	*item,
1835 	struct xfs_buf		*bp,
1836 	xfs_buf_log_format_t	*buf_f)
1837 {
1838 	int			i;
1839 	int			bit;
1840 	int			nbits;
1841 	int                     error;
1842 
1843 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1844 
1845 	bit = 0;
1846 	i = 1;  /* 0 is the buf format structure */
1847 	while (1) {
1848 		bit = xfs_next_bit(buf_f->blf_data_map,
1849 				   buf_f->blf_map_size, bit);
1850 		if (bit == -1)
1851 			break;
1852 		nbits = xfs_contig_bits(buf_f->blf_data_map,
1853 					buf_f->blf_map_size, bit);
1854 		ASSERT(nbits > 0);
1855 		ASSERT(item->ri_buf[i].i_addr != NULL);
1856 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1857 		ASSERT(XFS_BUF_COUNT(bp) >=
1858 		       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1859 
1860 		/*
1861 		 * Do a sanity check if this is a dquot buffer. Just checking
1862 		 * the first dquot in the buffer should do. XXXThis is
1863 		 * probably a good thing to do for other buf types also.
1864 		 */
1865 		error = 0;
1866 		if (buf_f->blf_flags &
1867 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1868 			if (item->ri_buf[i].i_addr == NULL) {
1869 				xfs_alert(mp,
1870 					"XFS: NULL dquot in %s.", __func__);
1871 				goto next;
1872 			}
1873 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1874 				xfs_alert(mp,
1875 					"XFS: dquot too small (%d) in %s.",
1876 					item->ri_buf[i].i_len, __func__);
1877 				goto next;
1878 			}
1879 			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1880 					       -1, 0, XFS_QMOPT_DOWARN,
1881 					       "dquot_buf_recover");
1882 			if (error)
1883 				goto next;
1884 		}
1885 
1886 		memcpy(xfs_buf_offset(bp,
1887 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1888 			item->ri_buf[i].i_addr,		/* source */
1889 			nbits<<XFS_BLF_SHIFT);		/* length */
1890  next:
1891 		i++;
1892 		bit += nbits;
1893 	}
1894 
1895 	/* Shouldn't be any more regions */
1896 	ASSERT(i == item->ri_total);
1897 }
1898 
1899 /*
1900  * Do some primitive error checking on ondisk dquot data structures.
1901  */
1902 int
xfs_qm_dqcheck(struct xfs_mount * mp,xfs_disk_dquot_t * ddq,xfs_dqid_t id,uint type,uint flags,char * str)1903 xfs_qm_dqcheck(
1904 	struct xfs_mount *mp,
1905 	xfs_disk_dquot_t *ddq,
1906 	xfs_dqid_t	 id,
1907 	uint		 type,	  /* used only when IO_dorepair is true */
1908 	uint		 flags,
1909 	char		 *str)
1910 {
1911 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1912 	int		errs = 0;
1913 
1914 	/*
1915 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1916 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1917 	 *    used for user data. This is because we take the path of regular
1918 	 *    file deletion; however, the size field of quotainodes is never
1919 	 *    updated, so all the tricks that we play in itruncate_finish
1920 	 *    don't quite matter.
1921 	 *
1922 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1923 	 *    But the allocation will be replayed so we'll end up with an
1924 	 *    uninitialized quota block.
1925 	 *
1926 	 * This is all fine; things are still consistent, and we haven't lost
1927 	 * any quota information. Just don't complain about bad dquot blks.
1928 	 */
1929 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1930 		if (flags & XFS_QMOPT_DOWARN)
1931 			xfs_alert(mp,
1932 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1933 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1934 		errs++;
1935 	}
1936 	if (ddq->d_version != XFS_DQUOT_VERSION) {
1937 		if (flags & XFS_QMOPT_DOWARN)
1938 			xfs_alert(mp,
1939 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1940 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1941 		errs++;
1942 	}
1943 
1944 	if (ddq->d_flags != XFS_DQ_USER &&
1945 	    ddq->d_flags != XFS_DQ_PROJ &&
1946 	    ddq->d_flags != XFS_DQ_GROUP) {
1947 		if (flags & XFS_QMOPT_DOWARN)
1948 			xfs_alert(mp,
1949 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1950 			str, id, ddq->d_flags);
1951 		errs++;
1952 	}
1953 
1954 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1955 		if (flags & XFS_QMOPT_DOWARN)
1956 			xfs_alert(mp,
1957 			"%s : ondisk-dquot 0x%p, ID mismatch: "
1958 			"0x%x expected, found id 0x%x",
1959 			str, ddq, id, be32_to_cpu(ddq->d_id));
1960 		errs++;
1961 	}
1962 
1963 	if (!errs && ddq->d_id) {
1964 		if (ddq->d_blk_softlimit &&
1965 		    be64_to_cpu(ddq->d_bcount) >=
1966 				be64_to_cpu(ddq->d_blk_softlimit)) {
1967 			if (!ddq->d_btimer) {
1968 				if (flags & XFS_QMOPT_DOWARN)
1969 					xfs_alert(mp,
1970 			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1971 					str, (int)be32_to_cpu(ddq->d_id), ddq);
1972 				errs++;
1973 			}
1974 		}
1975 		if (ddq->d_ino_softlimit &&
1976 		    be64_to_cpu(ddq->d_icount) >=
1977 				be64_to_cpu(ddq->d_ino_softlimit)) {
1978 			if (!ddq->d_itimer) {
1979 				if (flags & XFS_QMOPT_DOWARN)
1980 					xfs_alert(mp,
1981 			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1982 					str, (int)be32_to_cpu(ddq->d_id), ddq);
1983 				errs++;
1984 			}
1985 		}
1986 		if (ddq->d_rtb_softlimit &&
1987 		    be64_to_cpu(ddq->d_rtbcount) >=
1988 				be64_to_cpu(ddq->d_rtb_softlimit)) {
1989 			if (!ddq->d_rtbtimer) {
1990 				if (flags & XFS_QMOPT_DOWARN)
1991 					xfs_alert(mp,
1992 			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1993 					str, (int)be32_to_cpu(ddq->d_id), ddq);
1994 				errs++;
1995 			}
1996 		}
1997 	}
1998 
1999 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2000 		return errs;
2001 
2002 	if (flags & XFS_QMOPT_DOWARN)
2003 		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2004 
2005 	/*
2006 	 * Typically, a repair is only requested by quotacheck.
2007 	 */
2008 	ASSERT(id != -1);
2009 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2010 	memset(d, 0, sizeof(xfs_dqblk_t));
2011 
2012 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2013 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2014 	d->dd_diskdq.d_flags = type;
2015 	d->dd_diskdq.d_id = cpu_to_be32(id);
2016 
2017 	return errs;
2018 }
2019 
2020 /*
2021  * Perform a dquot buffer recovery.
2022  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2023  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2024  * Else, treat it as a regular buffer and do recovery.
2025  */
2026 STATIC void
xlog_recover_do_dquot_buffer(xfs_mount_t * mp,xlog_t * log,xlog_recover_item_t * item,xfs_buf_t * bp,xfs_buf_log_format_t * buf_f)2027 xlog_recover_do_dquot_buffer(
2028 	xfs_mount_t		*mp,
2029 	xlog_t			*log,
2030 	xlog_recover_item_t	*item,
2031 	xfs_buf_t		*bp,
2032 	xfs_buf_log_format_t	*buf_f)
2033 {
2034 	uint			type;
2035 
2036 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2037 
2038 	/*
2039 	 * Filesystems are required to send in quota flags at mount time.
2040 	 */
2041 	if (mp->m_qflags == 0) {
2042 		return;
2043 	}
2044 
2045 	type = 0;
2046 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2047 		type |= XFS_DQ_USER;
2048 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2049 		type |= XFS_DQ_PROJ;
2050 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2051 		type |= XFS_DQ_GROUP;
2052 	/*
2053 	 * This type of quotas was turned off, so ignore this buffer
2054 	 */
2055 	if (log->l_quotaoffs_flag & type)
2056 		return;
2057 
2058 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2059 }
2060 
2061 /*
2062  * This routine replays a modification made to a buffer at runtime.
2063  * There are actually two types of buffer, regular and inode, which
2064  * are handled differently.  Inode buffers are handled differently
2065  * in that we only recover a specific set of data from them, namely
2066  * the inode di_next_unlinked fields.  This is because all other inode
2067  * data is actually logged via inode records and any data we replay
2068  * here which overlaps that may be stale.
2069  *
2070  * When meta-data buffers are freed at run time we log a buffer item
2071  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2072  * of the buffer in the log should not be replayed at recovery time.
2073  * This is so that if the blocks covered by the buffer are reused for
2074  * file data before we crash we don't end up replaying old, freed
2075  * meta-data into a user's file.
2076  *
2077  * To handle the cancellation of buffer log items, we make two passes
2078  * over the log during recovery.  During the first we build a table of
2079  * those buffers which have been cancelled, and during the second we
2080  * only replay those buffers which do not have corresponding cancel
2081  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2082  * for more details on the implementation of the table of cancel records.
2083  */
2084 STATIC int
xlog_recover_buffer_pass2(xlog_t * log,xlog_recover_item_t * item)2085 xlog_recover_buffer_pass2(
2086 	xlog_t			*log,
2087 	xlog_recover_item_t	*item)
2088 {
2089 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2090 	xfs_mount_t		*mp = log->l_mp;
2091 	xfs_buf_t		*bp;
2092 	int			error;
2093 	uint			buf_flags;
2094 
2095 	/*
2096 	 * In this pass we only want to recover all the buffers which have
2097 	 * not been cancelled and are not cancellation buffers themselves.
2098 	 */
2099 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2100 			buf_f->blf_len, buf_f->blf_flags)) {
2101 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2102 		return 0;
2103 	}
2104 
2105 	trace_xfs_log_recover_buf_recover(log, buf_f);
2106 
2107 	buf_flags = XBF_LOCK;
2108 	if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2109 		buf_flags |= XBF_MAPPED;
2110 
2111 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2112 			  buf_flags);
2113 	if (XFS_BUF_ISERROR(bp)) {
2114 		xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2115 				  bp, buf_f->blf_blkno);
2116 		error = XFS_BUF_GETERROR(bp);
2117 		xfs_buf_relse(bp);
2118 		return error;
2119 	}
2120 
2121 	error = 0;
2122 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2123 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2124 	} else if (buf_f->blf_flags &
2125 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2126 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2127 	} else {
2128 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2129 	}
2130 	if (error)
2131 		return XFS_ERROR(error);
2132 
2133 	/*
2134 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2135 	 * slower when taking into account all the buffers to be flushed.
2136 	 *
2137 	 * Also make sure that only inode buffers with good sizes stay in
2138 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2139 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2140 	 * buffers in the log can be a different size if the log was generated
2141 	 * by an older kernel using unclustered inode buffers or a newer kernel
2142 	 * running with a different inode cluster size.  Regardless, if the
2143 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2144 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2145 	 * the buffer out of the buffer cache so that the buffer won't
2146 	 * overlap with future reads of those inodes.
2147 	 */
2148 	if (XFS_DINODE_MAGIC ==
2149 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2150 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2151 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2152 		XFS_BUF_STALE(bp);
2153 		error = xfs_bwrite(mp, bp);
2154 	} else {
2155 		ASSERT(bp->b_target->bt_mount == mp);
2156 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2157 		xfs_bdwrite(mp, bp);
2158 	}
2159 
2160 	return (error);
2161 }
2162 
2163 STATIC int
xlog_recover_inode_pass2(xlog_t * log,xlog_recover_item_t * item)2164 xlog_recover_inode_pass2(
2165 	xlog_t			*log,
2166 	xlog_recover_item_t	*item)
2167 {
2168 	xfs_inode_log_format_t	*in_f;
2169 	xfs_mount_t		*mp = log->l_mp;
2170 	xfs_buf_t		*bp;
2171 	xfs_dinode_t		*dip;
2172 	int			len;
2173 	xfs_caddr_t		src;
2174 	xfs_caddr_t		dest;
2175 	int			error;
2176 	int			attr_index;
2177 	uint			fields;
2178 	xfs_icdinode_t		*dicp;
2179 	int			need_free = 0;
2180 
2181 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2182 		in_f = item->ri_buf[0].i_addr;
2183 	} else {
2184 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2185 		need_free = 1;
2186 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2187 		if (error)
2188 			goto error;
2189 	}
2190 
2191 	/*
2192 	 * Inode buffers can be freed, look out for it,
2193 	 * and do not replay the inode.
2194 	 */
2195 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2196 					in_f->ilf_len, 0)) {
2197 		error = 0;
2198 		trace_xfs_log_recover_inode_cancel(log, in_f);
2199 		goto error;
2200 	}
2201 	trace_xfs_log_recover_inode_recover(log, in_f);
2202 
2203 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2204 			  XBF_LOCK);
2205 	if (XFS_BUF_ISERROR(bp)) {
2206 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2207 				  bp, in_f->ilf_blkno);
2208 		error = XFS_BUF_GETERROR(bp);
2209 		xfs_buf_relse(bp);
2210 		goto error;
2211 	}
2212 	error = 0;
2213 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2214 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2215 
2216 	/*
2217 	 * Make sure the place we're flushing out to really looks
2218 	 * like an inode!
2219 	 */
2220 	if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2221 		xfs_buf_relse(bp);
2222 		xfs_alert(mp,
2223 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2224 			__func__, dip, bp, in_f->ilf_ino);
2225 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2226 				 XFS_ERRLEVEL_LOW, mp);
2227 		error = EFSCORRUPTED;
2228 		goto error;
2229 	}
2230 	dicp = item->ri_buf[1].i_addr;
2231 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2232 		xfs_buf_relse(bp);
2233 		xfs_alert(mp,
2234 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2235 			__func__, item, in_f->ilf_ino);
2236 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2237 				 XFS_ERRLEVEL_LOW, mp);
2238 		error = EFSCORRUPTED;
2239 		goto error;
2240 	}
2241 
2242 	/* Skip replay when the on disk inode is newer than the log one */
2243 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2244 		/*
2245 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2246 		 * than smaller numbers
2247 		 */
2248 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2249 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2250 			/* do nothing */
2251 		} else {
2252 			xfs_buf_relse(bp);
2253 			trace_xfs_log_recover_inode_skip(log, in_f);
2254 			error = 0;
2255 			goto error;
2256 		}
2257 	}
2258 	/* Take the opportunity to reset the flush iteration count */
2259 	dicp->di_flushiter = 0;
2260 
2261 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2262 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2263 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2264 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2265 					 XFS_ERRLEVEL_LOW, mp, dicp);
2266 			xfs_buf_relse(bp);
2267 			xfs_alert(mp,
2268 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2269 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2270 				__func__, item, dip, bp, in_f->ilf_ino);
2271 			error = EFSCORRUPTED;
2272 			goto error;
2273 		}
2274 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2275 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2276 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2277 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2278 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2279 					     XFS_ERRLEVEL_LOW, mp, dicp);
2280 			xfs_buf_relse(bp);
2281 			xfs_alert(mp,
2282 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2283 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2284 				__func__, item, dip, bp, in_f->ilf_ino);
2285 			error = EFSCORRUPTED;
2286 			goto error;
2287 		}
2288 	}
2289 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2290 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2291 				     XFS_ERRLEVEL_LOW, mp, dicp);
2292 		xfs_buf_relse(bp);
2293 		xfs_alert(mp,
2294 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2295 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2296 			__func__, item, dip, bp, in_f->ilf_ino,
2297 			dicp->di_nextents + dicp->di_anextents,
2298 			dicp->di_nblocks);
2299 		error = EFSCORRUPTED;
2300 		goto error;
2301 	}
2302 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2303 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2304 				     XFS_ERRLEVEL_LOW, mp, dicp);
2305 		xfs_buf_relse(bp);
2306 		xfs_alert(mp,
2307 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2308 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2309 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2310 		error = EFSCORRUPTED;
2311 		goto error;
2312 	}
2313 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2314 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2315 				     XFS_ERRLEVEL_LOW, mp, dicp);
2316 		xfs_buf_relse(bp);
2317 		xfs_alert(mp,
2318 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2319 			__func__, item->ri_buf[1].i_len, item);
2320 		error = EFSCORRUPTED;
2321 		goto error;
2322 	}
2323 
2324 	/* The core is in in-core format */
2325 	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2326 
2327 	/* the rest is in on-disk format */
2328 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2329 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2330 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2331 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2332 	}
2333 
2334 	fields = in_f->ilf_fields;
2335 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2336 	case XFS_ILOG_DEV:
2337 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2338 		break;
2339 	case XFS_ILOG_UUID:
2340 		memcpy(XFS_DFORK_DPTR(dip),
2341 		       &in_f->ilf_u.ilfu_uuid,
2342 		       sizeof(uuid_t));
2343 		break;
2344 	}
2345 
2346 	if (in_f->ilf_size == 2)
2347 		goto write_inode_buffer;
2348 	len = item->ri_buf[2].i_len;
2349 	src = item->ri_buf[2].i_addr;
2350 	ASSERT(in_f->ilf_size <= 4);
2351 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2352 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2353 	       (len == in_f->ilf_dsize));
2354 
2355 	switch (fields & XFS_ILOG_DFORK) {
2356 	case XFS_ILOG_DDATA:
2357 	case XFS_ILOG_DEXT:
2358 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2359 		break;
2360 
2361 	case XFS_ILOG_DBROOT:
2362 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2363 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2364 				 XFS_DFORK_DSIZE(dip, mp));
2365 		break;
2366 
2367 	default:
2368 		/*
2369 		 * There are no data fork flags set.
2370 		 */
2371 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2372 		break;
2373 	}
2374 
2375 	/*
2376 	 * If we logged any attribute data, recover it.  There may or
2377 	 * may not have been any other non-core data logged in this
2378 	 * transaction.
2379 	 */
2380 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2381 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2382 			attr_index = 3;
2383 		} else {
2384 			attr_index = 2;
2385 		}
2386 		len = item->ri_buf[attr_index].i_len;
2387 		src = item->ri_buf[attr_index].i_addr;
2388 		ASSERT(len == in_f->ilf_asize);
2389 
2390 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2391 		case XFS_ILOG_ADATA:
2392 		case XFS_ILOG_AEXT:
2393 			dest = XFS_DFORK_APTR(dip);
2394 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2395 			memcpy(dest, src, len);
2396 			break;
2397 
2398 		case XFS_ILOG_ABROOT:
2399 			dest = XFS_DFORK_APTR(dip);
2400 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2401 					 len, (xfs_bmdr_block_t*)dest,
2402 					 XFS_DFORK_ASIZE(dip, mp));
2403 			break;
2404 
2405 		default:
2406 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2407 			ASSERT(0);
2408 			xfs_buf_relse(bp);
2409 			error = EIO;
2410 			goto error;
2411 		}
2412 	}
2413 
2414 write_inode_buffer:
2415 	ASSERT(bp->b_target->bt_mount == mp);
2416 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2417 	xfs_bdwrite(mp, bp);
2418 error:
2419 	if (need_free)
2420 		kmem_free(in_f);
2421 	return XFS_ERROR(error);
2422 }
2423 
2424 /*
2425  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2426  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2427  * of that type.
2428  */
2429 STATIC int
xlog_recover_quotaoff_pass1(xlog_t * log,xlog_recover_item_t * item)2430 xlog_recover_quotaoff_pass1(
2431 	xlog_t			*log,
2432 	xlog_recover_item_t	*item)
2433 {
2434 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2435 	ASSERT(qoff_f);
2436 
2437 	/*
2438 	 * The logitem format's flag tells us if this was user quotaoff,
2439 	 * group/project quotaoff or both.
2440 	 */
2441 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2442 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2443 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2444 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2445 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2446 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2447 
2448 	return (0);
2449 }
2450 
2451 /*
2452  * Recover a dquot record
2453  */
2454 STATIC int
xlog_recover_dquot_pass2(xlog_t * log,xlog_recover_item_t * item)2455 xlog_recover_dquot_pass2(
2456 	xlog_t			*log,
2457 	xlog_recover_item_t	*item)
2458 {
2459 	xfs_mount_t		*mp = log->l_mp;
2460 	xfs_buf_t		*bp;
2461 	struct xfs_disk_dquot	*ddq, *recddq;
2462 	int			error;
2463 	xfs_dq_logformat_t	*dq_f;
2464 	uint			type;
2465 
2466 
2467 	/*
2468 	 * Filesystems are required to send in quota flags at mount time.
2469 	 */
2470 	if (mp->m_qflags == 0)
2471 		return (0);
2472 
2473 	recddq = item->ri_buf[1].i_addr;
2474 	if (recddq == NULL) {
2475 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2476 		return XFS_ERROR(EIO);
2477 	}
2478 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2479 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2480 			item->ri_buf[1].i_len, __func__);
2481 		return XFS_ERROR(EIO);
2482 	}
2483 
2484 	/*
2485 	 * This type of quotas was turned off, so ignore this record.
2486 	 */
2487 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2488 	ASSERT(type);
2489 	if (log->l_quotaoffs_flag & type)
2490 		return (0);
2491 
2492 	/*
2493 	 * At this point we know that quota was _not_ turned off.
2494 	 * Since the mount flags are not indicating to us otherwise, this
2495 	 * must mean that quota is on, and the dquot needs to be replayed.
2496 	 * Remember that we may not have fully recovered the superblock yet,
2497 	 * so we can't do the usual trick of looking at the SB quota bits.
2498 	 *
2499 	 * The other possibility, of course, is that the quota subsystem was
2500 	 * removed since the last mount - ENOSYS.
2501 	 */
2502 	dq_f = item->ri_buf[0].i_addr;
2503 	ASSERT(dq_f);
2504 	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2505 			   "xlog_recover_dquot_pass2 (log copy)");
2506 	if (error)
2507 		return XFS_ERROR(EIO);
2508 	ASSERT(dq_f->qlf_len == 1);
2509 
2510 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2511 			     dq_f->qlf_blkno,
2512 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2513 			     0, &bp);
2514 	if (error) {
2515 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2516 				  bp, dq_f->qlf_blkno);
2517 		return error;
2518 	}
2519 	ASSERT(bp);
2520 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2521 
2522 	/*
2523 	 * At least the magic num portion should be on disk because this
2524 	 * was among a chunk of dquots created earlier, and we did some
2525 	 * minimal initialization then.
2526 	 */
2527 	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2528 			   "xlog_recover_dquot_pass2");
2529 	if (error) {
2530 		xfs_buf_relse(bp);
2531 		return XFS_ERROR(EIO);
2532 	}
2533 
2534 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2535 
2536 	ASSERT(dq_f->qlf_size == 2);
2537 	ASSERT(bp->b_target->bt_mount == mp);
2538 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2539 	xfs_bdwrite(mp, bp);
2540 
2541 	return (0);
2542 }
2543 
2544 /*
2545  * This routine is called to create an in-core extent free intent
2546  * item from the efi format structure which was logged on disk.
2547  * It allocates an in-core efi, copies the extents from the format
2548  * structure into it, and adds the efi to the AIL with the given
2549  * LSN.
2550  */
2551 STATIC int
xlog_recover_efi_pass2(xlog_t * log,xlog_recover_item_t * item,xfs_lsn_t lsn)2552 xlog_recover_efi_pass2(
2553 	xlog_t			*log,
2554 	xlog_recover_item_t	*item,
2555 	xfs_lsn_t		lsn)
2556 {
2557 	int			error;
2558 	xfs_mount_t		*mp = log->l_mp;
2559 	xfs_efi_log_item_t	*efip;
2560 	xfs_efi_log_format_t	*efi_formatp;
2561 
2562 	efi_formatp = item->ri_buf[0].i_addr;
2563 
2564 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2565 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2566 					 &(efip->efi_format)))) {
2567 		xfs_efi_item_free(efip);
2568 		return error;
2569 	}
2570 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2571 
2572 	spin_lock(&log->l_ailp->xa_lock);
2573 	/*
2574 	 * xfs_trans_ail_update() drops the AIL lock.
2575 	 */
2576 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2577 	return 0;
2578 }
2579 
2580 
2581 /*
2582  * This routine is called when an efd format structure is found in
2583  * a committed transaction in the log.  It's purpose is to cancel
2584  * the corresponding efi if it was still in the log.  To do this
2585  * it searches the AIL for the efi with an id equal to that in the
2586  * efd format structure.  If we find it, we remove the efi from the
2587  * AIL and free it.
2588  */
2589 STATIC int
xlog_recover_efd_pass2(xlog_t * log,xlog_recover_item_t * item)2590 xlog_recover_efd_pass2(
2591 	xlog_t			*log,
2592 	xlog_recover_item_t	*item)
2593 {
2594 	xfs_efd_log_format_t	*efd_formatp;
2595 	xfs_efi_log_item_t	*efip = NULL;
2596 	xfs_log_item_t		*lip;
2597 	__uint64_t		efi_id;
2598 	struct xfs_ail_cursor	cur;
2599 	struct xfs_ail		*ailp = log->l_ailp;
2600 
2601 	efd_formatp = item->ri_buf[0].i_addr;
2602 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2603 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2604 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2605 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2606 	efi_id = efd_formatp->efd_efi_id;
2607 
2608 	/*
2609 	 * Search for the efi with the id in the efd format structure
2610 	 * in the AIL.
2611 	 */
2612 	spin_lock(&ailp->xa_lock);
2613 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2614 	while (lip != NULL) {
2615 		if (lip->li_type == XFS_LI_EFI) {
2616 			efip = (xfs_efi_log_item_t *)lip;
2617 			if (efip->efi_format.efi_id == efi_id) {
2618 				/*
2619 				 * xfs_trans_ail_delete() drops the
2620 				 * AIL lock.
2621 				 */
2622 				xfs_trans_ail_delete(ailp, lip);
2623 				xfs_efi_item_free(efip);
2624 				spin_lock(&ailp->xa_lock);
2625 				break;
2626 			}
2627 		}
2628 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2629 	}
2630 	xfs_trans_ail_cursor_done(ailp, &cur);
2631 	spin_unlock(&ailp->xa_lock);
2632 
2633 	return 0;
2634 }
2635 
2636 /*
2637  * Free up any resources allocated by the transaction
2638  *
2639  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2640  */
2641 STATIC void
xlog_recover_free_trans(struct xlog_recover * trans)2642 xlog_recover_free_trans(
2643 	struct xlog_recover	*trans)
2644 {
2645 	xlog_recover_item_t	*item, *n;
2646 	int			i;
2647 
2648 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2649 		/* Free the regions in the item. */
2650 		list_del(&item->ri_list);
2651 		for (i = 0; i < item->ri_cnt; i++)
2652 			kmem_free(item->ri_buf[i].i_addr);
2653 		/* Free the item itself */
2654 		kmem_free(item->ri_buf);
2655 		kmem_free(item);
2656 	}
2657 	/* Free the transaction recover structure */
2658 	kmem_free(trans);
2659 }
2660 
2661 STATIC int
xlog_recover_commit_pass1(struct log * log,struct xlog_recover * trans,xlog_recover_item_t * item)2662 xlog_recover_commit_pass1(
2663 	struct log		*log,
2664 	struct xlog_recover	*trans,
2665 	xlog_recover_item_t	*item)
2666 {
2667 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2668 
2669 	switch (ITEM_TYPE(item)) {
2670 	case XFS_LI_BUF:
2671 		return xlog_recover_buffer_pass1(log, item);
2672 	case XFS_LI_QUOTAOFF:
2673 		return xlog_recover_quotaoff_pass1(log, item);
2674 	case XFS_LI_INODE:
2675 	case XFS_LI_EFI:
2676 	case XFS_LI_EFD:
2677 	case XFS_LI_DQUOT:
2678 		/* nothing to do in pass 1 */
2679 		return 0;
2680 	default:
2681 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2682 			__func__, ITEM_TYPE(item));
2683 		ASSERT(0);
2684 		return XFS_ERROR(EIO);
2685 	}
2686 }
2687 
2688 STATIC int
xlog_recover_commit_pass2(struct log * log,struct xlog_recover * trans,xlog_recover_item_t * item)2689 xlog_recover_commit_pass2(
2690 	struct log		*log,
2691 	struct xlog_recover	*trans,
2692 	xlog_recover_item_t	*item)
2693 {
2694 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2695 
2696 	switch (ITEM_TYPE(item)) {
2697 	case XFS_LI_BUF:
2698 		return xlog_recover_buffer_pass2(log, item);
2699 	case XFS_LI_INODE:
2700 		return xlog_recover_inode_pass2(log, item);
2701 	case XFS_LI_EFI:
2702 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2703 	case XFS_LI_EFD:
2704 		return xlog_recover_efd_pass2(log, item);
2705 	case XFS_LI_DQUOT:
2706 		return xlog_recover_dquot_pass2(log, item);
2707 	case XFS_LI_QUOTAOFF:
2708 		/* nothing to do in pass2 */
2709 		return 0;
2710 	default:
2711 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2712 			__func__, ITEM_TYPE(item));
2713 		ASSERT(0);
2714 		return XFS_ERROR(EIO);
2715 	}
2716 }
2717 
2718 /*
2719  * Perform the transaction.
2720  *
2721  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2722  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2723  */
2724 STATIC int
xlog_recover_commit_trans(struct log * log,struct xlog_recover * trans,int pass)2725 xlog_recover_commit_trans(
2726 	struct log		*log,
2727 	struct xlog_recover	*trans,
2728 	int			pass)
2729 {
2730 	int			error = 0;
2731 	xlog_recover_item_t	*item;
2732 
2733 	hlist_del(&trans->r_list);
2734 
2735 	error = xlog_recover_reorder_trans(log, trans, pass);
2736 	if (error)
2737 		return error;
2738 
2739 	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2740 		if (pass == XLOG_RECOVER_PASS1)
2741 			error = xlog_recover_commit_pass1(log, trans, item);
2742 		else
2743 			error = xlog_recover_commit_pass2(log, trans, item);
2744 		if (error)
2745 			return error;
2746 	}
2747 
2748 	xlog_recover_free_trans(trans);
2749 	return 0;
2750 }
2751 
2752 STATIC int
xlog_recover_unmount_trans(struct log * log,xlog_recover_t * trans)2753 xlog_recover_unmount_trans(
2754 	struct log		*log,
2755 	xlog_recover_t		*trans)
2756 {
2757 	/* Do nothing now */
2758 	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2759 	return 0;
2760 }
2761 
2762 /*
2763  * There are two valid states of the r_state field.  0 indicates that the
2764  * transaction structure is in a normal state.  We have either seen the
2765  * start of the transaction or the last operation we added was not a partial
2766  * operation.  If the last operation we added to the transaction was a
2767  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2768  *
2769  * NOTE: skip LRs with 0 data length.
2770  */
2771 STATIC int
xlog_recover_process_data(xlog_t * log,struct hlist_head rhash[],xlog_rec_header_t * rhead,xfs_caddr_t dp,int pass)2772 xlog_recover_process_data(
2773 	xlog_t			*log,
2774 	struct hlist_head	rhash[],
2775 	xlog_rec_header_t	*rhead,
2776 	xfs_caddr_t		dp,
2777 	int			pass)
2778 {
2779 	xfs_caddr_t		lp;
2780 	int			num_logops;
2781 	xlog_op_header_t	*ohead;
2782 	xlog_recover_t		*trans;
2783 	xlog_tid_t		tid;
2784 	int			error;
2785 	unsigned long		hash;
2786 	uint			flags;
2787 
2788 	lp = dp + be32_to_cpu(rhead->h_len);
2789 	num_logops = be32_to_cpu(rhead->h_num_logops);
2790 
2791 	/* check the log format matches our own - else we can't recover */
2792 	if (xlog_header_check_recover(log->l_mp, rhead))
2793 		return (XFS_ERROR(EIO));
2794 
2795 	while ((dp < lp) && num_logops) {
2796 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2797 		ohead = (xlog_op_header_t *)dp;
2798 		dp += sizeof(xlog_op_header_t);
2799 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2800 		    ohead->oh_clientid != XFS_LOG) {
2801 			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2802 					__func__, ohead->oh_clientid);
2803 			ASSERT(0);
2804 			return (XFS_ERROR(EIO));
2805 		}
2806 		tid = be32_to_cpu(ohead->oh_tid);
2807 		hash = XLOG_RHASH(tid);
2808 		trans = xlog_recover_find_tid(&rhash[hash], tid);
2809 		if (trans == NULL) {		   /* not found; add new tid */
2810 			if (ohead->oh_flags & XLOG_START_TRANS)
2811 				xlog_recover_new_tid(&rhash[hash], tid,
2812 					be64_to_cpu(rhead->h_lsn));
2813 		} else {
2814 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2815 				xfs_warn(log->l_mp, "%s: bad length 0x%x",
2816 					__func__, be32_to_cpu(ohead->oh_len));
2817 				WARN_ON(1);
2818 				return (XFS_ERROR(EIO));
2819 			}
2820 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2821 			if (flags & XLOG_WAS_CONT_TRANS)
2822 				flags &= ~XLOG_CONTINUE_TRANS;
2823 			switch (flags) {
2824 			case XLOG_COMMIT_TRANS:
2825 				error = xlog_recover_commit_trans(log,
2826 								trans, pass);
2827 				break;
2828 			case XLOG_UNMOUNT_TRANS:
2829 				error = xlog_recover_unmount_trans(log, trans);
2830 				break;
2831 			case XLOG_WAS_CONT_TRANS:
2832 				error = xlog_recover_add_to_cont_trans(log,
2833 						trans, dp,
2834 						be32_to_cpu(ohead->oh_len));
2835 				break;
2836 			case XLOG_START_TRANS:
2837 				xfs_warn(log->l_mp, "%s: bad transaction",
2838 					__func__);
2839 				ASSERT(0);
2840 				error = XFS_ERROR(EIO);
2841 				break;
2842 			case 0:
2843 			case XLOG_CONTINUE_TRANS:
2844 				error = xlog_recover_add_to_trans(log, trans,
2845 						dp, be32_to_cpu(ohead->oh_len));
2846 				break;
2847 			default:
2848 				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2849 					__func__, flags);
2850 				ASSERT(0);
2851 				error = XFS_ERROR(EIO);
2852 				break;
2853 			}
2854 			if (error)
2855 				return error;
2856 		}
2857 		dp += be32_to_cpu(ohead->oh_len);
2858 		num_logops--;
2859 	}
2860 	return 0;
2861 }
2862 
2863 /*
2864  * Process an extent free intent item that was recovered from
2865  * the log.  We need to free the extents that it describes.
2866  */
2867 STATIC int
xlog_recover_process_efi(xfs_mount_t * mp,xfs_efi_log_item_t * efip)2868 xlog_recover_process_efi(
2869 	xfs_mount_t		*mp,
2870 	xfs_efi_log_item_t	*efip)
2871 {
2872 	xfs_efd_log_item_t	*efdp;
2873 	xfs_trans_t		*tp;
2874 	int			i;
2875 	int			error = 0;
2876 	xfs_extent_t		*extp;
2877 	xfs_fsblock_t		startblock_fsb;
2878 
2879 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2880 
2881 	/*
2882 	 * First check the validity of the extents described by the
2883 	 * EFI.  If any are bad, then assume that all are bad and
2884 	 * just toss the EFI.
2885 	 */
2886 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2887 		extp = &(efip->efi_format.efi_extents[i]);
2888 		startblock_fsb = XFS_BB_TO_FSB(mp,
2889 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2890 		if ((startblock_fsb == 0) ||
2891 		    (extp->ext_len == 0) ||
2892 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2893 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2894 			/*
2895 			 * This will pull the EFI from the AIL and
2896 			 * free the memory associated with it.
2897 			 */
2898 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
2899 			return XFS_ERROR(EIO);
2900 		}
2901 	}
2902 
2903 	tp = xfs_trans_alloc(mp, 0);
2904 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2905 	if (error)
2906 		goto abort_error;
2907 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2908 
2909 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2910 		extp = &(efip->efi_format.efi_extents[i]);
2911 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2912 		if (error)
2913 			goto abort_error;
2914 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2915 					 extp->ext_len);
2916 	}
2917 
2918 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2919 	error = xfs_trans_commit(tp, 0);
2920 	return error;
2921 
2922 abort_error:
2923 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2924 	return error;
2925 }
2926 
2927 /*
2928  * When this is called, all of the EFIs which did not have
2929  * corresponding EFDs should be in the AIL.  What we do now
2930  * is free the extents associated with each one.
2931  *
2932  * Since we process the EFIs in normal transactions, they
2933  * will be removed at some point after the commit.  This prevents
2934  * us from just walking down the list processing each one.
2935  * We'll use a flag in the EFI to skip those that we've already
2936  * processed and use the AIL iteration mechanism's generation
2937  * count to try to speed this up at least a bit.
2938  *
2939  * When we start, we know that the EFIs are the only things in
2940  * the AIL.  As we process them, however, other items are added
2941  * to the AIL.  Since everything added to the AIL must come after
2942  * everything already in the AIL, we stop processing as soon as
2943  * we see something other than an EFI in the AIL.
2944  */
2945 STATIC int
xlog_recover_process_efis(xlog_t * log)2946 xlog_recover_process_efis(
2947 	xlog_t			*log)
2948 {
2949 	xfs_log_item_t		*lip;
2950 	xfs_efi_log_item_t	*efip;
2951 	int			error = 0;
2952 	struct xfs_ail_cursor	cur;
2953 	struct xfs_ail		*ailp;
2954 
2955 	ailp = log->l_ailp;
2956 	spin_lock(&ailp->xa_lock);
2957 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2958 	while (lip != NULL) {
2959 		/*
2960 		 * We're done when we see something other than an EFI.
2961 		 * There should be no EFIs left in the AIL now.
2962 		 */
2963 		if (lip->li_type != XFS_LI_EFI) {
2964 #ifdef DEBUG
2965 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2966 				ASSERT(lip->li_type != XFS_LI_EFI);
2967 #endif
2968 			break;
2969 		}
2970 
2971 		/*
2972 		 * Skip EFIs that we've already processed.
2973 		 */
2974 		efip = (xfs_efi_log_item_t *)lip;
2975 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
2976 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
2977 			continue;
2978 		}
2979 
2980 		spin_unlock(&ailp->xa_lock);
2981 		error = xlog_recover_process_efi(log->l_mp, efip);
2982 		spin_lock(&ailp->xa_lock);
2983 		if (error)
2984 			goto out;
2985 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2986 	}
2987 out:
2988 	xfs_trans_ail_cursor_done(ailp, &cur);
2989 	spin_unlock(&ailp->xa_lock);
2990 	return error;
2991 }
2992 
2993 /*
2994  * This routine performs a transaction to null out a bad inode pointer
2995  * in an agi unlinked inode hash bucket.
2996  */
2997 STATIC void
xlog_recover_clear_agi_bucket(xfs_mount_t * mp,xfs_agnumber_t agno,int bucket)2998 xlog_recover_clear_agi_bucket(
2999 	xfs_mount_t	*mp,
3000 	xfs_agnumber_t	agno,
3001 	int		bucket)
3002 {
3003 	xfs_trans_t	*tp;
3004 	xfs_agi_t	*agi;
3005 	xfs_buf_t	*agibp;
3006 	int		offset;
3007 	int		error;
3008 
3009 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3010 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3011 				  0, 0, 0);
3012 	if (error)
3013 		goto out_abort;
3014 
3015 	error = xfs_read_agi(mp, tp, agno, &agibp);
3016 	if (error)
3017 		goto out_abort;
3018 
3019 	agi = XFS_BUF_TO_AGI(agibp);
3020 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3021 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3022 		 (sizeof(xfs_agino_t) * bucket);
3023 	xfs_trans_log_buf(tp, agibp, offset,
3024 			  (offset + sizeof(xfs_agino_t) - 1));
3025 
3026 	error = xfs_trans_commit(tp, 0);
3027 	if (error)
3028 		goto out_error;
3029 	return;
3030 
3031 out_abort:
3032 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3033 out_error:
3034 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3035 	return;
3036 }
3037 
3038 STATIC xfs_agino_t
xlog_recover_process_one_iunlink(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t agino,int bucket)3039 xlog_recover_process_one_iunlink(
3040 	struct xfs_mount		*mp,
3041 	xfs_agnumber_t			agno,
3042 	xfs_agino_t			agino,
3043 	int				bucket)
3044 {
3045 	struct xfs_buf			*ibp;
3046 	struct xfs_dinode		*dip;
3047 	struct xfs_inode		*ip;
3048 	xfs_ino_t			ino;
3049 	int				error;
3050 
3051 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3052 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3053 	if (error)
3054 		goto fail;
3055 
3056 	/*
3057 	 * Get the on disk inode to find the next inode in the bucket.
3058 	 */
3059 	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3060 	if (error)
3061 		goto fail_iput;
3062 
3063 	ASSERT(ip->i_d.di_nlink == 0);
3064 	ASSERT(ip->i_d.di_mode != 0);
3065 
3066 	/* setup for the next pass */
3067 	agino = be32_to_cpu(dip->di_next_unlinked);
3068 	xfs_buf_relse(ibp);
3069 
3070 	/*
3071 	 * Prevent any DMAPI event from being sent when the reference on
3072 	 * the inode is dropped.
3073 	 */
3074 	ip->i_d.di_dmevmask = 0;
3075 
3076 	IRELE(ip);
3077 	return agino;
3078 
3079  fail_iput:
3080 	IRELE(ip);
3081  fail:
3082 	/*
3083 	 * We can't read in the inode this bucket points to, or this inode
3084 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3085 	 * some inodes and space, but at least we won't hang.
3086 	 *
3087 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3088 	 * clear the inode pointer in the bucket.
3089 	 */
3090 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3091 	return NULLAGINO;
3092 }
3093 
3094 /*
3095  * xlog_iunlink_recover
3096  *
3097  * This is called during recovery to process any inodes which
3098  * we unlinked but not freed when the system crashed.  These
3099  * inodes will be on the lists in the AGI blocks.  What we do
3100  * here is scan all the AGIs and fully truncate and free any
3101  * inodes found on the lists.  Each inode is removed from the
3102  * lists when it has been fully truncated and is freed.  The
3103  * freeing of the inode and its removal from the list must be
3104  * atomic.
3105  */
3106 STATIC void
xlog_recover_process_iunlinks(xlog_t * log)3107 xlog_recover_process_iunlinks(
3108 	xlog_t		*log)
3109 {
3110 	xfs_mount_t	*mp;
3111 	xfs_agnumber_t	agno;
3112 	xfs_agi_t	*agi;
3113 	xfs_buf_t	*agibp;
3114 	xfs_agino_t	agino;
3115 	int		bucket;
3116 	int		error;
3117 	uint		mp_dmevmask;
3118 
3119 	mp = log->l_mp;
3120 
3121 	/*
3122 	 * Prevent any DMAPI event from being sent while in this function.
3123 	 */
3124 	mp_dmevmask = mp->m_dmevmask;
3125 	mp->m_dmevmask = 0;
3126 
3127 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3128 		/*
3129 		 * Find the agi for this ag.
3130 		 */
3131 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3132 		if (error) {
3133 			/*
3134 			 * AGI is b0rked. Don't process it.
3135 			 *
3136 			 * We should probably mark the filesystem as corrupt
3137 			 * after we've recovered all the ag's we can....
3138 			 */
3139 			continue;
3140 		}
3141 		agi = XFS_BUF_TO_AGI(agibp);
3142 
3143 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3144 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3145 			while (agino != NULLAGINO) {
3146 				/*
3147 				 * Release the agi buffer so that it can
3148 				 * be acquired in the normal course of the
3149 				 * transaction to truncate and free the inode.
3150 				 */
3151 				xfs_buf_relse(agibp);
3152 
3153 				agino = xlog_recover_process_one_iunlink(mp,
3154 							agno, agino, bucket);
3155 
3156 				/*
3157 				 * Reacquire the agibuffer and continue around
3158 				 * the loop. This should never fail as we know
3159 				 * the buffer was good earlier on.
3160 				 */
3161 				error = xfs_read_agi(mp, NULL, agno, &agibp);
3162 				ASSERT(error == 0);
3163 				agi = XFS_BUF_TO_AGI(agibp);
3164 			}
3165 		}
3166 
3167 		/*
3168 		 * Release the buffer for the current agi so we can
3169 		 * go on to the next one.
3170 		 */
3171 		xfs_buf_relse(agibp);
3172 	}
3173 
3174 	mp->m_dmevmask = mp_dmevmask;
3175 }
3176 
3177 
3178 #ifdef DEBUG
3179 STATIC void
xlog_pack_data_checksum(xlog_t * log,xlog_in_core_t * iclog,int size)3180 xlog_pack_data_checksum(
3181 	xlog_t		*log,
3182 	xlog_in_core_t	*iclog,
3183 	int		size)
3184 {
3185 	int		i;
3186 	__be32		*up;
3187 	uint		chksum = 0;
3188 
3189 	up = (__be32 *)iclog->ic_datap;
3190 	/* divide length by 4 to get # words */
3191 	for (i = 0; i < (size >> 2); i++) {
3192 		chksum ^= be32_to_cpu(*up);
3193 		up++;
3194 	}
3195 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3196 }
3197 #else
3198 #define xlog_pack_data_checksum(log, iclog, size)
3199 #endif
3200 
3201 /*
3202  * Stamp cycle number in every block
3203  */
3204 void
xlog_pack_data(xlog_t * log,xlog_in_core_t * iclog,int roundoff)3205 xlog_pack_data(
3206 	xlog_t			*log,
3207 	xlog_in_core_t		*iclog,
3208 	int			roundoff)
3209 {
3210 	int			i, j, k;
3211 	int			size = iclog->ic_offset + roundoff;
3212 	__be32			cycle_lsn;
3213 	xfs_caddr_t		dp;
3214 
3215 	xlog_pack_data_checksum(log, iclog, size);
3216 
3217 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3218 
3219 	dp = iclog->ic_datap;
3220 	for (i = 0; i < BTOBB(size) &&
3221 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3222 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3223 		*(__be32 *)dp = cycle_lsn;
3224 		dp += BBSIZE;
3225 	}
3226 
3227 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3228 		xlog_in_core_2_t *xhdr = iclog->ic_data;
3229 
3230 		for ( ; i < BTOBB(size); i++) {
3231 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3232 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3233 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3234 			*(__be32 *)dp = cycle_lsn;
3235 			dp += BBSIZE;
3236 		}
3237 
3238 		for (i = 1; i < log->l_iclog_heads; i++) {
3239 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3240 		}
3241 	}
3242 }
3243 
3244 STATIC void
xlog_unpack_data(xlog_rec_header_t * rhead,xfs_caddr_t dp,xlog_t * log)3245 xlog_unpack_data(
3246 	xlog_rec_header_t	*rhead,
3247 	xfs_caddr_t		dp,
3248 	xlog_t			*log)
3249 {
3250 	int			i, j, k;
3251 
3252 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3253 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3254 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3255 		dp += BBSIZE;
3256 	}
3257 
3258 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3259 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3260 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3261 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3262 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3263 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3264 			dp += BBSIZE;
3265 		}
3266 	}
3267 }
3268 
3269 STATIC int
xlog_valid_rec_header(xlog_t * log,xlog_rec_header_t * rhead,xfs_daddr_t blkno)3270 xlog_valid_rec_header(
3271 	xlog_t			*log,
3272 	xlog_rec_header_t	*rhead,
3273 	xfs_daddr_t		blkno)
3274 {
3275 	int			hlen;
3276 
3277 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3278 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3279 				XFS_ERRLEVEL_LOW, log->l_mp);
3280 		return XFS_ERROR(EFSCORRUPTED);
3281 	}
3282 	if (unlikely(
3283 	    (!rhead->h_version ||
3284 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3285 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3286 			__func__, be32_to_cpu(rhead->h_version));
3287 		return XFS_ERROR(EIO);
3288 	}
3289 
3290 	/* LR body must have data or it wouldn't have been written */
3291 	hlen = be32_to_cpu(rhead->h_len);
3292 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3293 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3294 				XFS_ERRLEVEL_LOW, log->l_mp);
3295 		return XFS_ERROR(EFSCORRUPTED);
3296 	}
3297 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3298 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3299 				XFS_ERRLEVEL_LOW, log->l_mp);
3300 		return XFS_ERROR(EFSCORRUPTED);
3301 	}
3302 	return 0;
3303 }
3304 
3305 /*
3306  * Read the log from tail to head and process the log records found.
3307  * Handle the two cases where the tail and head are in the same cycle
3308  * and where the active portion of the log wraps around the end of
3309  * the physical log separately.  The pass parameter is passed through
3310  * to the routines called to process the data and is not looked at
3311  * here.
3312  */
3313 STATIC int
xlog_do_recovery_pass(xlog_t * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int pass)3314 xlog_do_recovery_pass(
3315 	xlog_t			*log,
3316 	xfs_daddr_t		head_blk,
3317 	xfs_daddr_t		tail_blk,
3318 	int			pass)
3319 {
3320 	xlog_rec_header_t	*rhead;
3321 	xfs_daddr_t		blk_no;
3322 	xfs_caddr_t		offset;
3323 	xfs_buf_t		*hbp, *dbp;
3324 	int			error = 0, h_size;
3325 	int			bblks, split_bblks;
3326 	int			hblks, split_hblks, wrapped_hblks;
3327 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3328 
3329 	ASSERT(head_blk != tail_blk);
3330 
3331 	/*
3332 	 * Read the header of the tail block and get the iclog buffer size from
3333 	 * h_size.  Use this to tell how many sectors make up the log header.
3334 	 */
3335 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3336 		/*
3337 		 * When using variable length iclogs, read first sector of
3338 		 * iclog header and extract the header size from it.  Get a
3339 		 * new hbp that is the correct size.
3340 		 */
3341 		hbp = xlog_get_bp(log, 1);
3342 		if (!hbp)
3343 			return ENOMEM;
3344 
3345 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3346 		if (error)
3347 			goto bread_err1;
3348 
3349 		rhead = (xlog_rec_header_t *)offset;
3350 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3351 		if (error)
3352 			goto bread_err1;
3353 		h_size = be32_to_cpu(rhead->h_size);
3354 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3355 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3356 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3357 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3358 				hblks++;
3359 			xlog_put_bp(hbp);
3360 			hbp = xlog_get_bp(log, hblks);
3361 		} else {
3362 			hblks = 1;
3363 		}
3364 	} else {
3365 		ASSERT(log->l_sectBBsize == 1);
3366 		hblks = 1;
3367 		hbp = xlog_get_bp(log, 1);
3368 		h_size = XLOG_BIG_RECORD_BSIZE;
3369 	}
3370 
3371 	if (!hbp)
3372 		return ENOMEM;
3373 	dbp = xlog_get_bp(log, BTOBB(h_size));
3374 	if (!dbp) {
3375 		xlog_put_bp(hbp);
3376 		return ENOMEM;
3377 	}
3378 
3379 	memset(rhash, 0, sizeof(rhash));
3380 	if (tail_blk <= head_blk) {
3381 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3382 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3383 			if (error)
3384 				goto bread_err2;
3385 
3386 			rhead = (xlog_rec_header_t *)offset;
3387 			error = xlog_valid_rec_header(log, rhead, blk_no);
3388 			if (error)
3389 				goto bread_err2;
3390 
3391 			/* blocks in data section */
3392 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3393 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3394 					   &offset);
3395 			if (error)
3396 				goto bread_err2;
3397 
3398 			xlog_unpack_data(rhead, offset, log);
3399 			if ((error = xlog_recover_process_data(log,
3400 						rhash, rhead, offset, pass)))
3401 				goto bread_err2;
3402 			blk_no += bblks + hblks;
3403 		}
3404 	} else {
3405 		/*
3406 		 * Perform recovery around the end of the physical log.
3407 		 * When the head is not on the same cycle number as the tail,
3408 		 * we can't do a sequential recovery as above.
3409 		 */
3410 		blk_no = tail_blk;
3411 		while (blk_no < log->l_logBBsize) {
3412 			/*
3413 			 * Check for header wrapping around physical end-of-log
3414 			 */
3415 			offset = XFS_BUF_PTR(hbp);
3416 			split_hblks = 0;
3417 			wrapped_hblks = 0;
3418 			if (blk_no + hblks <= log->l_logBBsize) {
3419 				/* Read header in one read */
3420 				error = xlog_bread(log, blk_no, hblks, hbp,
3421 						   &offset);
3422 				if (error)
3423 					goto bread_err2;
3424 			} else {
3425 				/* This LR is split across physical log end */
3426 				if (blk_no != log->l_logBBsize) {
3427 					/* some data before physical log end */
3428 					ASSERT(blk_no <= INT_MAX);
3429 					split_hblks = log->l_logBBsize - (int)blk_no;
3430 					ASSERT(split_hblks > 0);
3431 					error = xlog_bread(log, blk_no,
3432 							   split_hblks, hbp,
3433 							   &offset);
3434 					if (error)
3435 						goto bread_err2;
3436 				}
3437 
3438 				/*
3439 				 * Note: this black magic still works with
3440 				 * large sector sizes (non-512) only because:
3441 				 * - we increased the buffer size originally
3442 				 *   by 1 sector giving us enough extra space
3443 				 *   for the second read;
3444 				 * - the log start is guaranteed to be sector
3445 				 *   aligned;
3446 				 * - we read the log end (LR header start)
3447 				 *   _first_, then the log start (LR header end)
3448 				 *   - order is important.
3449 				 */
3450 				wrapped_hblks = hblks - split_hblks;
3451 				error = XFS_BUF_SET_PTR(hbp,
3452 						offset + BBTOB(split_hblks),
3453 						BBTOB(hblks - split_hblks));
3454 				if (error)
3455 					goto bread_err2;
3456 
3457 				error = xlog_bread_noalign(log, 0,
3458 							   wrapped_hblks, hbp);
3459 				if (error)
3460 					goto bread_err2;
3461 
3462 				error = XFS_BUF_SET_PTR(hbp, offset,
3463 							BBTOB(hblks));
3464 				if (error)
3465 					goto bread_err2;
3466 			}
3467 			rhead = (xlog_rec_header_t *)offset;
3468 			error = xlog_valid_rec_header(log, rhead,
3469 						split_hblks ? blk_no : 0);
3470 			if (error)
3471 				goto bread_err2;
3472 
3473 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3474 			blk_no += hblks;
3475 
3476 			/* Read in data for log record */
3477 			if (blk_no + bblks <= log->l_logBBsize) {
3478 				error = xlog_bread(log, blk_no, bblks, dbp,
3479 						   &offset);
3480 				if (error)
3481 					goto bread_err2;
3482 			} else {
3483 				/* This log record is split across the
3484 				 * physical end of log */
3485 				offset = XFS_BUF_PTR(dbp);
3486 				split_bblks = 0;
3487 				if (blk_no != log->l_logBBsize) {
3488 					/* some data is before the physical
3489 					 * end of log */
3490 					ASSERT(!wrapped_hblks);
3491 					ASSERT(blk_no <= INT_MAX);
3492 					split_bblks =
3493 						log->l_logBBsize - (int)blk_no;
3494 					ASSERT(split_bblks > 0);
3495 					error = xlog_bread(log, blk_no,
3496 							split_bblks, dbp,
3497 							&offset);
3498 					if (error)
3499 						goto bread_err2;
3500 				}
3501 
3502 				/*
3503 				 * Note: this black magic still works with
3504 				 * large sector sizes (non-512) only because:
3505 				 * - we increased the buffer size originally
3506 				 *   by 1 sector giving us enough extra space
3507 				 *   for the second read;
3508 				 * - the log start is guaranteed to be sector
3509 				 *   aligned;
3510 				 * - we read the log end (LR header start)
3511 				 *   _first_, then the log start (LR header end)
3512 				 *   - order is important.
3513 				 */
3514 				error = XFS_BUF_SET_PTR(dbp,
3515 						offset + BBTOB(split_bblks),
3516 						BBTOB(bblks - split_bblks));
3517 				if (error)
3518 					goto bread_err2;
3519 
3520 				error = xlog_bread_noalign(log, wrapped_hblks,
3521 						bblks - split_bblks,
3522 						dbp);
3523 				if (error)
3524 					goto bread_err2;
3525 
3526 				error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3527 				if (error)
3528 					goto bread_err2;
3529 			}
3530 			xlog_unpack_data(rhead, offset, log);
3531 			if ((error = xlog_recover_process_data(log, rhash,
3532 							rhead, offset, pass)))
3533 				goto bread_err2;
3534 			blk_no += bblks;
3535 		}
3536 
3537 		ASSERT(blk_no >= log->l_logBBsize);
3538 		blk_no -= log->l_logBBsize;
3539 
3540 		/* read first part of physical log */
3541 		while (blk_no < head_blk) {
3542 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3543 			if (error)
3544 				goto bread_err2;
3545 
3546 			rhead = (xlog_rec_header_t *)offset;
3547 			error = xlog_valid_rec_header(log, rhead, blk_no);
3548 			if (error)
3549 				goto bread_err2;
3550 
3551 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3552 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3553 					   &offset);
3554 			if (error)
3555 				goto bread_err2;
3556 
3557 			xlog_unpack_data(rhead, offset, log);
3558 			if ((error = xlog_recover_process_data(log, rhash,
3559 							rhead, offset, pass)))
3560 				goto bread_err2;
3561 			blk_no += bblks + hblks;
3562 		}
3563 	}
3564 
3565  bread_err2:
3566 	xlog_put_bp(dbp);
3567  bread_err1:
3568 	xlog_put_bp(hbp);
3569 	return error;
3570 }
3571 
3572 /*
3573  * Do the recovery of the log.  We actually do this in two phases.
3574  * The two passes are necessary in order to implement the function
3575  * of cancelling a record written into the log.  The first pass
3576  * determines those things which have been cancelled, and the
3577  * second pass replays log items normally except for those which
3578  * have been cancelled.  The handling of the replay and cancellations
3579  * takes place in the log item type specific routines.
3580  *
3581  * The table of items which have cancel records in the log is allocated
3582  * and freed at this level, since only here do we know when all of
3583  * the log recovery has been completed.
3584  */
3585 STATIC int
xlog_do_log_recovery(xlog_t * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)3586 xlog_do_log_recovery(
3587 	xlog_t		*log,
3588 	xfs_daddr_t	head_blk,
3589 	xfs_daddr_t	tail_blk)
3590 {
3591 	int		error, i;
3592 
3593 	ASSERT(head_blk != tail_blk);
3594 
3595 	/*
3596 	 * First do a pass to find all of the cancelled buf log items.
3597 	 * Store them in the buf_cancel_table for use in the second pass.
3598 	 */
3599 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3600 						 sizeof(struct list_head),
3601 						 KM_SLEEP);
3602 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3603 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3604 
3605 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3606 				      XLOG_RECOVER_PASS1);
3607 	if (error != 0) {
3608 		kmem_free(log->l_buf_cancel_table);
3609 		log->l_buf_cancel_table = NULL;
3610 		return error;
3611 	}
3612 	/*
3613 	 * Then do a second pass to actually recover the items in the log.
3614 	 * When it is complete free the table of buf cancel items.
3615 	 */
3616 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3617 				      XLOG_RECOVER_PASS2);
3618 #ifdef DEBUG
3619 	if (!error) {
3620 		int	i;
3621 
3622 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3623 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3624 	}
3625 #endif	/* DEBUG */
3626 
3627 	kmem_free(log->l_buf_cancel_table);
3628 	log->l_buf_cancel_table = NULL;
3629 
3630 	return error;
3631 }
3632 
3633 /*
3634  * Do the actual recovery
3635  */
3636 STATIC int
xlog_do_recover(xlog_t * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)3637 xlog_do_recover(
3638 	xlog_t		*log,
3639 	xfs_daddr_t	head_blk,
3640 	xfs_daddr_t	tail_blk)
3641 {
3642 	int		error;
3643 	xfs_buf_t	*bp;
3644 	xfs_sb_t	*sbp;
3645 
3646 	/*
3647 	 * First replay the images in the log.
3648 	 */
3649 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3650 	if (error) {
3651 		return error;
3652 	}
3653 
3654 	XFS_bflush(log->l_mp->m_ddev_targp);
3655 
3656 	/*
3657 	 * If IO errors happened during recovery, bail out.
3658 	 */
3659 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3660 		return (EIO);
3661 	}
3662 
3663 	/*
3664 	 * We now update the tail_lsn since much of the recovery has completed
3665 	 * and there may be space available to use.  If there were no extent
3666 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3667 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3668 	 * lsn of the last known good LR on disk.  If there are extent frees
3669 	 * or iunlinks they will have some entries in the AIL; so we look at
3670 	 * the AIL to determine how to set the tail_lsn.
3671 	 */
3672 	xlog_assign_tail_lsn(log->l_mp);
3673 
3674 	/*
3675 	 * Now that we've finished replaying all buffer and inode
3676 	 * updates, re-read in the superblock.
3677 	 */
3678 	bp = xfs_getsb(log->l_mp, 0);
3679 	XFS_BUF_UNDONE(bp);
3680 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3681 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3682 	XFS_BUF_READ(bp);
3683 	XFS_BUF_UNASYNC(bp);
3684 	xfsbdstrat(log->l_mp, bp);
3685 	error = xfs_buf_iowait(bp);
3686 	if (error) {
3687 		xfs_ioerror_alert("xlog_do_recover",
3688 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3689 		ASSERT(0);
3690 		xfs_buf_relse(bp);
3691 		return error;
3692 	}
3693 
3694 	/* Convert superblock from on-disk format */
3695 	sbp = &log->l_mp->m_sb;
3696 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3697 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3698 	ASSERT(xfs_sb_good_version(sbp));
3699 	xfs_buf_relse(bp);
3700 
3701 	/* We've re-read the superblock so re-initialize per-cpu counters */
3702 	xfs_icsb_reinit_counters(log->l_mp);
3703 
3704 	xlog_recover_check_summary(log);
3705 
3706 	/* Normal transactions can now occur */
3707 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3708 	return 0;
3709 }
3710 
3711 /*
3712  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3713  *
3714  * Return error or zero.
3715  */
3716 int
xlog_recover(xlog_t * log)3717 xlog_recover(
3718 	xlog_t		*log)
3719 {
3720 	xfs_daddr_t	head_blk, tail_blk;
3721 	int		error;
3722 
3723 	/* find the tail of the log */
3724 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3725 		return error;
3726 
3727 	if (tail_blk != head_blk) {
3728 		/* There used to be a comment here:
3729 		 *
3730 		 * disallow recovery on read-only mounts.  note -- mount
3731 		 * checks for ENOSPC and turns it into an intelligent
3732 		 * error message.
3733 		 * ...but this is no longer true.  Now, unless you specify
3734 		 * NORECOVERY (in which case this function would never be
3735 		 * called), we just go ahead and recover.  We do this all
3736 		 * under the vfs layer, so we can get away with it unless
3737 		 * the device itself is read-only, in which case we fail.
3738 		 */
3739 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3740 			return error;
3741 		}
3742 
3743 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3744 				log->l_mp->m_logname ? log->l_mp->m_logname
3745 						     : "internal");
3746 
3747 		error = xlog_do_recover(log, head_blk, tail_blk);
3748 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3749 	}
3750 	return error;
3751 }
3752 
3753 /*
3754  * In the first part of recovery we replay inodes and buffers and build
3755  * up the list of extent free items which need to be processed.  Here
3756  * we process the extent free items and clean up the on disk unlinked
3757  * inode lists.  This is separated from the first part of recovery so
3758  * that the root and real-time bitmap inodes can be read in from disk in
3759  * between the two stages.  This is necessary so that we can free space
3760  * in the real-time portion of the file system.
3761  */
3762 int
xlog_recover_finish(xlog_t * log)3763 xlog_recover_finish(
3764 	xlog_t		*log)
3765 {
3766 	/*
3767 	 * Now we're ready to do the transactions needed for the
3768 	 * rest of recovery.  Start with completing all the extent
3769 	 * free intent records and then process the unlinked inode
3770 	 * lists.  At this point, we essentially run in normal mode
3771 	 * except that we're still performing recovery actions
3772 	 * rather than accepting new requests.
3773 	 */
3774 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3775 		int	error;
3776 		error = xlog_recover_process_efis(log);
3777 		if (error) {
3778 			xfs_alert(log->l_mp, "Failed to recover EFIs");
3779 			return error;
3780 		}
3781 		/*
3782 		 * Sync the log to get all the EFIs out of the AIL.
3783 		 * This isn't absolutely necessary, but it helps in
3784 		 * case the unlink transactions would have problems
3785 		 * pushing the EFIs out of the way.
3786 		 */
3787 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3788 
3789 		xlog_recover_process_iunlinks(log);
3790 
3791 		xlog_recover_check_summary(log);
3792 
3793 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3794 				log->l_mp->m_logname ? log->l_mp->m_logname
3795 						     : "internal");
3796 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3797 	} else {
3798 		xfs_info(log->l_mp, "Ending clean mount");
3799 	}
3800 	return 0;
3801 }
3802 
3803 
3804 #if defined(DEBUG)
3805 /*
3806  * Read all of the agf and agi counters and check that they
3807  * are consistent with the superblock counters.
3808  */
3809 void
xlog_recover_check_summary(xlog_t * log)3810 xlog_recover_check_summary(
3811 	xlog_t		*log)
3812 {
3813 	xfs_mount_t	*mp;
3814 	xfs_agf_t	*agfp;
3815 	xfs_buf_t	*agfbp;
3816 	xfs_buf_t	*agibp;
3817 	xfs_agnumber_t	agno;
3818 	__uint64_t	freeblks;
3819 	__uint64_t	itotal;
3820 	__uint64_t	ifree;
3821 	int		error;
3822 
3823 	mp = log->l_mp;
3824 
3825 	freeblks = 0LL;
3826 	itotal = 0LL;
3827 	ifree = 0LL;
3828 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3829 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3830 		if (error) {
3831 			xfs_alert(mp, "%s agf read failed agno %d error %d",
3832 						__func__, agno, error);
3833 		} else {
3834 			agfp = XFS_BUF_TO_AGF(agfbp);
3835 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3836 				    be32_to_cpu(agfp->agf_flcount);
3837 			xfs_buf_relse(agfbp);
3838 		}
3839 
3840 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3841 		if (error) {
3842 			xfs_alert(mp, "%s agi read failed agno %d error %d",
3843 						__func__, agno, error);
3844 		} else {
3845 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3846 
3847 			itotal += be32_to_cpu(agi->agi_count);
3848 			ifree += be32_to_cpu(agi->agi_freecount);
3849 			xfs_buf_relse(agibp);
3850 		}
3851 	}
3852 }
3853 #endif /* DEBUG */
3854