1 /*
2  *  linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  *	Released under GPL v2.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include "internal.h"
13 #include "pnode.h"
14 
15 /* return the next shared peer mount of @p */
next_peer(struct vfsmount * p)16 static inline struct vfsmount *next_peer(struct vfsmount *p)
17 {
18 	return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
19 }
20 
first_slave(struct vfsmount * p)21 static inline struct vfsmount *first_slave(struct vfsmount *p)
22 {
23 	return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
24 }
25 
next_slave(struct vfsmount * p)26 static inline struct vfsmount *next_slave(struct vfsmount *p)
27 {
28 	return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
29 }
30 
31 /*
32  * Return true if path is reachable from root
33  *
34  * namespace_sem is held, and mnt is attached
35  */
is_path_reachable(struct vfsmount * mnt,struct dentry * dentry,const struct path * root)36 static bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
37 			 const struct path *root)
38 {
39 	while (mnt != root->mnt && mnt->mnt_parent != mnt) {
40 		dentry = mnt->mnt_mountpoint;
41 		mnt = mnt->mnt_parent;
42 	}
43 	return mnt == root->mnt && is_subdir(dentry, root->dentry);
44 }
45 
get_peer_under_root(struct vfsmount * mnt,struct mnt_namespace * ns,const struct path * root)46 static struct vfsmount *get_peer_under_root(struct vfsmount *mnt,
47 					    struct mnt_namespace *ns,
48 					    const struct path *root)
49 {
50 	struct vfsmount *m = mnt;
51 
52 	do {
53 		/* Check the namespace first for optimization */
54 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root))
55 			return m;
56 
57 		m = next_peer(m);
58 	} while (m != mnt);
59 
60 	return NULL;
61 }
62 
63 /*
64  * Get ID of closest dominating peer group having a representative
65  * under the given root.
66  *
67  * Caller must hold namespace_sem
68  */
get_dominating_id(struct vfsmount * mnt,const struct path * root)69 int get_dominating_id(struct vfsmount *mnt, const struct path *root)
70 {
71 	struct vfsmount *m;
72 
73 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
74 		struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root);
75 		if (d)
76 			return d->mnt_group_id;
77 	}
78 
79 	return 0;
80 }
81 
do_make_slave(struct vfsmount * mnt)82 static int do_make_slave(struct vfsmount *mnt)
83 {
84 	struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
85 	struct vfsmount *slave_mnt;
86 
87 	/*
88 	 * slave 'mnt' to a peer mount that has the
89 	 * same root dentry. If none is available then
90 	 * slave it to anything that is available.
91 	 */
92 	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
93 	       peer_mnt->mnt_root != mnt->mnt_root) ;
94 
95 	if (peer_mnt == mnt) {
96 		peer_mnt = next_peer(mnt);
97 		if (peer_mnt == mnt)
98 			peer_mnt = NULL;
99 	}
100 	if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
101 		mnt_release_group_id(mnt);
102 
103 	list_del_init(&mnt->mnt_share);
104 	mnt->mnt_group_id = 0;
105 
106 	if (peer_mnt)
107 		master = peer_mnt;
108 
109 	if (master) {
110 		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 			slave_mnt->mnt_master = master;
112 		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 	} else {
116 		struct list_head *p = &mnt->mnt_slave_list;
117 		while (!list_empty(p)) {
118                         slave_mnt = list_first_entry(p,
119 					struct vfsmount, mnt_slave);
120 			list_del_init(&slave_mnt->mnt_slave);
121 			slave_mnt->mnt_master = NULL;
122 		}
123 	}
124 	mnt->mnt_master = master;
125 	CLEAR_MNT_SHARED(mnt);
126 	return 0;
127 }
128 
129 /*
130  * vfsmount lock must be held for write
131  */
change_mnt_propagation(struct vfsmount * mnt,int type)132 void change_mnt_propagation(struct vfsmount *mnt, int type)
133 {
134 	if (type == MS_SHARED) {
135 		set_mnt_shared(mnt);
136 		return;
137 	}
138 	do_make_slave(mnt);
139 	if (type != MS_SLAVE) {
140 		list_del_init(&mnt->mnt_slave);
141 		mnt->mnt_master = NULL;
142 		if (type == MS_UNBINDABLE)
143 			mnt->mnt_flags |= MNT_UNBINDABLE;
144 		else
145 			mnt->mnt_flags &= ~MNT_UNBINDABLE;
146 	}
147 }
148 
149 /*
150  * get the next mount in the propagation tree.
151  * @m: the mount seen last
152  * @origin: the original mount from where the tree walk initiated
153  *
154  * Note that peer groups form contiguous segments of slave lists.
155  * We rely on that in get_source() to be able to find out if
156  * vfsmount found while iterating with propagation_next() is
157  * a peer of one we'd found earlier.
158  */
propagation_next(struct vfsmount * m,struct vfsmount * origin)159 static struct vfsmount *propagation_next(struct vfsmount *m,
160 					 struct vfsmount *origin)
161 {
162 	/* are there any slaves of this mount? */
163 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
164 		return first_slave(m);
165 
166 	while (1) {
167 		struct vfsmount *next;
168 		struct vfsmount *master = m->mnt_master;
169 
170 		if (master == origin->mnt_master) {
171 			next = next_peer(m);
172 			return ((next == origin) ? NULL : next);
173 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
174 			return next_slave(m);
175 
176 		/* back at master */
177 		m = master;
178 	}
179 }
180 
181 /*
182  * return the source mount to be used for cloning
183  *
184  * @dest 	the current destination mount
185  * @last_dest  	the last seen destination mount
186  * @last_src  	the last seen source mount
187  * @type	return CL_SLAVE if the new mount has to be
188  * 		cloned as a slave.
189  */
get_source(struct vfsmount * dest,struct vfsmount * last_dest,struct vfsmount * last_src,int * type)190 static struct vfsmount *get_source(struct vfsmount *dest,
191 					struct vfsmount *last_dest,
192 					struct vfsmount *last_src,
193 					int *type)
194 {
195 	struct vfsmount *p_last_src = NULL;
196 	struct vfsmount *p_last_dest = NULL;
197 
198 	while (last_dest != dest->mnt_master) {
199 		p_last_dest = last_dest;
200 		p_last_src = last_src;
201 		last_dest = last_dest->mnt_master;
202 		last_src = last_src->mnt_master;
203 	}
204 
205 	if (p_last_dest) {
206 		do {
207 			p_last_dest = next_peer(p_last_dest);
208 		} while (IS_MNT_NEW(p_last_dest));
209 		/* is that a peer of the earlier? */
210 		if (dest == p_last_dest) {
211 			*type = CL_MAKE_SHARED;
212 			return p_last_src;
213 		}
214 	}
215 	/* slave of the earlier, then */
216 	*type = CL_SLAVE;
217 	/* beginning of peer group among the slaves? */
218 	if (IS_MNT_SHARED(dest))
219 		*type |= CL_MAKE_SHARED;
220 	return last_src;
221 }
222 
223 /*
224  * mount 'source_mnt' under the destination 'dest_mnt' at
225  * dentry 'dest_dentry'. And propagate that mount to
226  * all the peer and slave mounts of 'dest_mnt'.
227  * Link all the new mounts into a propagation tree headed at
228  * source_mnt. Also link all the new mounts using ->mnt_list
229  * headed at source_mnt's ->mnt_list
230  *
231  * @dest_mnt: destination mount.
232  * @dest_dentry: destination dentry.
233  * @source_mnt: source mount.
234  * @tree_list : list of heads of trees to be attached.
235  */
propagate_mnt(struct vfsmount * dest_mnt,struct dentry * dest_dentry,struct vfsmount * source_mnt,struct list_head * tree_list)236 int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
237 		    struct vfsmount *source_mnt, struct list_head *tree_list)
238 {
239 	struct vfsmount *m, *child;
240 	int ret = 0;
241 	struct vfsmount *prev_dest_mnt = dest_mnt;
242 	struct vfsmount *prev_src_mnt  = source_mnt;
243 	LIST_HEAD(tmp_list);
244 	LIST_HEAD(umount_list);
245 
246 	for (m = propagation_next(dest_mnt, dest_mnt); m;
247 			m = propagation_next(m, dest_mnt)) {
248 		int type;
249 		struct vfsmount *source;
250 
251 		if (IS_MNT_NEW(m))
252 			continue;
253 
254 		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
255 
256 		if (!(child = copy_tree(source, source->mnt_root, type))) {
257 			ret = -ENOMEM;
258 			list_splice(tree_list, tmp_list.prev);
259 			goto out;
260 		}
261 
262 		if (is_subdir(dest_dentry, m->mnt_root)) {
263 			mnt_set_mountpoint(m, dest_dentry, child);
264 			list_add_tail(&child->mnt_hash, tree_list);
265 		} else {
266 			/*
267 			 * This can happen if the parent mount was bind mounted
268 			 * on some subdirectory of a shared/slave mount.
269 			 */
270 			list_add_tail(&child->mnt_hash, &tmp_list);
271 		}
272 		prev_dest_mnt = m;
273 		prev_src_mnt  = child;
274 	}
275 out:
276 	br_write_lock(vfsmount_lock);
277 	while (!list_empty(&tmp_list)) {
278 		child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash);
279 		umount_tree(child, 0, &umount_list);
280 	}
281 	br_write_unlock(vfsmount_lock);
282 	release_mounts(&umount_list);
283 	return ret;
284 }
285 
286 /*
287  * return true if the refcount is greater than count
288  */
do_refcount_check(struct vfsmount * mnt,int count)289 static inline int do_refcount_check(struct vfsmount *mnt, int count)
290 {
291 	int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
292 	return (mycount > count);
293 }
294 
295 /*
296  * check if the mount 'mnt' can be unmounted successfully.
297  * @mnt: the mount to be checked for unmount
298  * NOTE: unmounting 'mnt' would naturally propagate to all
299  * other mounts its parent propagates to.
300  * Check if any of these mounts that **do not have submounts**
301  * have more references than 'refcnt'. If so return busy.
302  *
303  * vfsmount lock must be held for write
304  */
propagate_mount_busy(struct vfsmount * mnt,int refcnt)305 int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
306 {
307 	struct vfsmount *m, *child;
308 	struct vfsmount *parent = mnt->mnt_parent;
309 	int ret = 0;
310 
311 	if (mnt == parent)
312 		return do_refcount_check(mnt, refcnt);
313 
314 	/*
315 	 * quickly check if the current mount can be unmounted.
316 	 * If not, we don't have to go checking for all other
317 	 * mounts
318 	 */
319 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
320 		return 1;
321 
322 	for (m = propagation_next(parent, parent); m;
323 	     		m = propagation_next(m, parent)) {
324 		child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
325 		if (child && list_empty(&child->mnt_mounts) &&
326 		    (ret = do_refcount_check(child, 1)))
327 			break;
328 	}
329 	return ret;
330 }
331 
332 /*
333  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
334  * parent propagates to.
335  */
__propagate_umount(struct vfsmount * mnt)336 static void __propagate_umount(struct vfsmount *mnt)
337 {
338 	struct vfsmount *parent = mnt->mnt_parent;
339 	struct vfsmount *m;
340 
341 	BUG_ON(parent == mnt);
342 
343 	for (m = propagation_next(parent, parent); m;
344 			m = propagation_next(m, parent)) {
345 
346 		struct vfsmount *child = __lookup_mnt(m,
347 					mnt->mnt_mountpoint, 0);
348 		/*
349 		 * umount the child only if the child has no
350 		 * other children
351 		 */
352 		if (child && list_empty(&child->mnt_mounts))
353 			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
354 	}
355 }
356 
357 /*
358  * collect all mounts that receive propagation from the mount in @list,
359  * and return these additional mounts in the same list.
360  * @list: the list of mounts to be unmounted.
361  *
362  * vfsmount lock must be held for write
363  */
propagate_umount(struct list_head * list)364 int propagate_umount(struct list_head *list)
365 {
366 	struct vfsmount *mnt;
367 
368 	list_for_each_entry(mnt, list, mnt_hash)
369 		__propagate_umount(mnt);
370 	return 0;
371 }
372