1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2004, 2005 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36 #include <linux/debugfs.h>
37 #include <linux/slab.h>
38 
39 #include "heartbeat.h"
40 #include "tcp.h"
41 #include "nodemanager.h"
42 #include "quorum.h"
43 
44 #include "masklog.h"
45 
46 
47 /*
48  * The first heartbeat pass had one global thread that would serialize all hb
49  * callback calls.  This global serializing sem should only be removed once
50  * we've made sure that all callees can deal with being called concurrently
51  * from multiple hb region threads.
52  */
53 static DECLARE_RWSEM(o2hb_callback_sem);
54 
55 /*
56  * multiple hb threads are watching multiple regions.  A node is live
57  * whenever any of the threads sees activity from the node in its region.
58  */
59 static DEFINE_SPINLOCK(o2hb_live_lock);
60 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
61 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
62 static LIST_HEAD(o2hb_node_events);
63 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
64 
65 /*
66  * In global heartbeat, we maintain a series of region bitmaps.
67  * 	- o2hb_region_bitmap allows us to limit the region number to max region.
68  * 	- o2hb_live_region_bitmap tracks live regions (seen steady iterations).
69  * 	- o2hb_quorum_region_bitmap tracks live regions that have seen all nodes
70  * 		heartbeat on it.
71  * 	- o2hb_failed_region_bitmap tracks the regions that have seen io timeouts.
72  */
73 static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
74 static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
75 static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
76 static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
77 
78 #define O2HB_DB_TYPE_LIVENODES		0
79 #define O2HB_DB_TYPE_LIVEREGIONS	1
80 #define O2HB_DB_TYPE_QUORUMREGIONS	2
81 #define O2HB_DB_TYPE_FAILEDREGIONS	3
82 #define O2HB_DB_TYPE_REGION_LIVENODES	4
83 #define O2HB_DB_TYPE_REGION_NUMBER	5
84 #define O2HB_DB_TYPE_REGION_ELAPSED_TIME	6
85 #define O2HB_DB_TYPE_REGION_PINNED	7
86 struct o2hb_debug_buf {
87 	int db_type;
88 	int db_size;
89 	int db_len;
90 	void *db_data;
91 };
92 
93 static struct o2hb_debug_buf *o2hb_db_livenodes;
94 static struct o2hb_debug_buf *o2hb_db_liveregions;
95 static struct o2hb_debug_buf *o2hb_db_quorumregions;
96 static struct o2hb_debug_buf *o2hb_db_failedregions;
97 
98 #define O2HB_DEBUG_DIR			"o2hb"
99 #define O2HB_DEBUG_LIVENODES		"livenodes"
100 #define O2HB_DEBUG_LIVEREGIONS		"live_regions"
101 #define O2HB_DEBUG_QUORUMREGIONS	"quorum_regions"
102 #define O2HB_DEBUG_FAILEDREGIONS	"failed_regions"
103 #define O2HB_DEBUG_REGION_NUMBER	"num"
104 #define O2HB_DEBUG_REGION_ELAPSED_TIME	"elapsed_time_in_ms"
105 #define O2HB_DEBUG_REGION_PINNED	"pinned"
106 
107 static struct dentry *o2hb_debug_dir;
108 static struct dentry *o2hb_debug_livenodes;
109 static struct dentry *o2hb_debug_liveregions;
110 static struct dentry *o2hb_debug_quorumregions;
111 static struct dentry *o2hb_debug_failedregions;
112 
113 static LIST_HEAD(o2hb_all_regions);
114 
115 static struct o2hb_callback {
116 	struct list_head list;
117 } o2hb_callbacks[O2HB_NUM_CB];
118 
119 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
120 
121 #define O2HB_DEFAULT_BLOCK_BITS       9
122 
123 enum o2hb_heartbeat_modes {
124 	O2HB_HEARTBEAT_LOCAL		= 0,
125 	O2HB_HEARTBEAT_GLOBAL,
126 	O2HB_HEARTBEAT_NUM_MODES,
127 };
128 
129 char *o2hb_heartbeat_mode_desc[O2HB_HEARTBEAT_NUM_MODES] = {
130 		"local",	/* O2HB_HEARTBEAT_LOCAL */
131 		"global",	/* O2HB_HEARTBEAT_GLOBAL */
132 };
133 
134 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
135 unsigned int o2hb_heartbeat_mode = O2HB_HEARTBEAT_LOCAL;
136 
137 /*
138  * o2hb_dependent_users tracks the number of registered callbacks that depend
139  * on heartbeat. o2net and o2dlm are two entities that register this callback.
140  * However only o2dlm depends on the heartbeat. It does not want the heartbeat
141  * to stop while a dlm domain is still active.
142  */
143 unsigned int o2hb_dependent_users;
144 
145 /*
146  * In global heartbeat mode, all regions are pinned if there are one or more
147  * dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All
148  * regions are unpinned if the region count exceeds the cut off or the number
149  * of dependent users falls to zero.
150  */
151 #define O2HB_PIN_CUT_OFF		3
152 
153 /*
154  * In local heartbeat mode, we assume the dlm domain name to be the same as
155  * region uuid. This is true for domains created for the file system but not
156  * necessarily true for userdlm domains. This is a known limitation.
157  *
158  * In global heartbeat mode, we pin/unpin all o2hb regions. This solution
159  * works for both file system and userdlm domains.
160  */
161 static int o2hb_region_pin(const char *region_uuid);
162 static void o2hb_region_unpin(const char *region_uuid);
163 
164 /* Only sets a new threshold if there are no active regions.
165  *
166  * No locking or otherwise interesting code is required for reading
167  * o2hb_dead_threshold as it can't change once regions are active and
168  * it's not interesting to anyone until then anyway. */
o2hb_dead_threshold_set(unsigned int threshold)169 static void o2hb_dead_threshold_set(unsigned int threshold)
170 {
171 	if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
172 		spin_lock(&o2hb_live_lock);
173 		if (list_empty(&o2hb_all_regions))
174 			o2hb_dead_threshold = threshold;
175 		spin_unlock(&o2hb_live_lock);
176 	}
177 }
178 
o2hb_global_hearbeat_mode_set(unsigned int hb_mode)179 static int o2hb_global_hearbeat_mode_set(unsigned int hb_mode)
180 {
181 	int ret = -1;
182 
183 	if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) {
184 		spin_lock(&o2hb_live_lock);
185 		if (list_empty(&o2hb_all_regions)) {
186 			o2hb_heartbeat_mode = hb_mode;
187 			ret = 0;
188 		}
189 		spin_unlock(&o2hb_live_lock);
190 	}
191 
192 	return ret;
193 }
194 
195 struct o2hb_node_event {
196 	struct list_head        hn_item;
197 	enum o2hb_callback_type hn_event_type;
198 	struct o2nm_node        *hn_node;
199 	int                     hn_node_num;
200 };
201 
202 struct o2hb_disk_slot {
203 	struct o2hb_disk_heartbeat_block *ds_raw_block;
204 	u8			ds_node_num;
205 	u64			ds_last_time;
206 	u64			ds_last_generation;
207 	u16			ds_equal_samples;
208 	u16			ds_changed_samples;
209 	struct list_head	ds_live_item;
210 };
211 
212 /* each thread owns a region.. when we're asked to tear down the region
213  * we ask the thread to stop, who cleans up the region */
214 struct o2hb_region {
215 	struct config_item	hr_item;
216 
217 	struct list_head	hr_all_item;
218 	unsigned		hr_unclean_stop:1,
219 				hr_item_pinned:1,
220 				hr_item_dropped:1;
221 
222 	/* protected by the hr_callback_sem */
223 	struct task_struct 	*hr_task;
224 
225 	unsigned int		hr_blocks;
226 	unsigned long long	hr_start_block;
227 
228 	unsigned int		hr_block_bits;
229 	unsigned int		hr_block_bytes;
230 
231 	unsigned int		hr_slots_per_page;
232 	unsigned int		hr_num_pages;
233 
234 	struct page             **hr_slot_data;
235 	struct block_device	*hr_bdev;
236 	struct o2hb_disk_slot	*hr_slots;
237 
238 	/* live node map of this region */
239 	unsigned long		hr_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
240 	unsigned int		hr_region_num;
241 
242 	struct dentry		*hr_debug_dir;
243 	struct dentry		*hr_debug_livenodes;
244 	struct dentry		*hr_debug_regnum;
245 	struct dentry		*hr_debug_elapsed_time;
246 	struct dentry		*hr_debug_pinned;
247 	struct o2hb_debug_buf	*hr_db_livenodes;
248 	struct o2hb_debug_buf	*hr_db_regnum;
249 	struct o2hb_debug_buf	*hr_db_elapsed_time;
250 	struct o2hb_debug_buf	*hr_db_pinned;
251 
252 	/* let the person setting up hb wait for it to return until it
253 	 * has reached a 'steady' state.  This will be fixed when we have
254 	 * a more complete api that doesn't lead to this sort of fragility. */
255 	atomic_t		hr_steady_iterations;
256 
257 	char			hr_dev_name[BDEVNAME_SIZE];
258 
259 	unsigned int		hr_timeout_ms;
260 
261 	/* randomized as the region goes up and down so that a node
262 	 * recognizes a node going up and down in one iteration */
263 	u64			hr_generation;
264 
265 	struct delayed_work	hr_write_timeout_work;
266 	unsigned long		hr_last_timeout_start;
267 
268 	/* Used during o2hb_check_slot to hold a copy of the block
269 	 * being checked because we temporarily have to zero out the
270 	 * crc field. */
271 	struct o2hb_disk_heartbeat_block *hr_tmp_block;
272 };
273 
274 struct o2hb_bio_wait_ctxt {
275 	atomic_t          wc_num_reqs;
276 	struct completion wc_io_complete;
277 	int               wc_error;
278 };
279 
o2hb_pop_count(void * map,int count)280 static int o2hb_pop_count(void *map, int count)
281 {
282 	int i = -1, pop = 0;
283 
284 	while ((i = find_next_bit(map, count, i + 1)) < count)
285 		pop++;
286 	return pop;
287 }
288 
o2hb_write_timeout(struct work_struct * work)289 static void o2hb_write_timeout(struct work_struct *work)
290 {
291 	int failed, quorum;
292 	unsigned long flags;
293 	struct o2hb_region *reg =
294 		container_of(work, struct o2hb_region,
295 			     hr_write_timeout_work.work);
296 
297 	mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
298 	     "milliseconds\n", reg->hr_dev_name,
299 	     jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
300 
301 	if (o2hb_global_heartbeat_active()) {
302 		spin_lock_irqsave(&o2hb_live_lock, flags);
303 		if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
304 			set_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
305 		failed = o2hb_pop_count(&o2hb_failed_region_bitmap,
306 					O2NM_MAX_REGIONS);
307 		quorum = o2hb_pop_count(&o2hb_quorum_region_bitmap,
308 					O2NM_MAX_REGIONS);
309 		spin_unlock_irqrestore(&o2hb_live_lock, flags);
310 
311 		mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n",
312 		     quorum, failed);
313 
314 		/*
315 		 * Fence if the number of failed regions >= half the number
316 		 * of  quorum regions
317 		 */
318 		if ((failed << 1) < quorum)
319 			return;
320 	}
321 
322 	o2quo_disk_timeout();
323 }
324 
o2hb_arm_write_timeout(struct o2hb_region * reg)325 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
326 {
327 	mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
328 	     O2HB_MAX_WRITE_TIMEOUT_MS);
329 
330 	if (o2hb_global_heartbeat_active()) {
331 		spin_lock(&o2hb_live_lock);
332 		clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
333 		spin_unlock(&o2hb_live_lock);
334 	}
335 	cancel_delayed_work(&reg->hr_write_timeout_work);
336 	reg->hr_last_timeout_start = jiffies;
337 	schedule_delayed_work(&reg->hr_write_timeout_work,
338 			      msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
339 }
340 
o2hb_disarm_write_timeout(struct o2hb_region * reg)341 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
342 {
343 	cancel_delayed_work_sync(&reg->hr_write_timeout_work);
344 }
345 
o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt * wc)346 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
347 {
348 	atomic_set(&wc->wc_num_reqs, 1);
349 	init_completion(&wc->wc_io_complete);
350 	wc->wc_error = 0;
351 }
352 
353 /* Used in error paths too */
o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt * wc,unsigned int num)354 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
355 				     unsigned int num)
356 {
357 	/* sadly atomic_sub_and_test() isn't available on all platforms.  The
358 	 * good news is that the fast path only completes one at a time */
359 	while(num--) {
360 		if (atomic_dec_and_test(&wc->wc_num_reqs)) {
361 			BUG_ON(num > 0);
362 			complete(&wc->wc_io_complete);
363 		}
364 	}
365 }
366 
o2hb_wait_on_io(struct o2hb_region * reg,struct o2hb_bio_wait_ctxt * wc)367 static void o2hb_wait_on_io(struct o2hb_region *reg,
368 			    struct o2hb_bio_wait_ctxt *wc)
369 {
370 	o2hb_bio_wait_dec(wc, 1);
371 	wait_for_completion(&wc->wc_io_complete);
372 }
373 
o2hb_bio_end_io(struct bio * bio,int error)374 static void o2hb_bio_end_io(struct bio *bio,
375 			   int error)
376 {
377 	struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
378 
379 	if (error) {
380 		mlog(ML_ERROR, "IO Error %d\n", error);
381 		wc->wc_error = error;
382 	}
383 
384 	o2hb_bio_wait_dec(wc, 1);
385 	bio_put(bio);
386 }
387 
388 /* Setup a Bio to cover I/O against num_slots slots starting at
389  * start_slot. */
o2hb_setup_one_bio(struct o2hb_region * reg,struct o2hb_bio_wait_ctxt * wc,unsigned int * current_slot,unsigned int max_slots)390 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
391 				      struct o2hb_bio_wait_ctxt *wc,
392 				      unsigned int *current_slot,
393 				      unsigned int max_slots)
394 {
395 	int len, current_page;
396 	unsigned int vec_len, vec_start;
397 	unsigned int bits = reg->hr_block_bits;
398 	unsigned int spp = reg->hr_slots_per_page;
399 	unsigned int cs = *current_slot;
400 	struct bio *bio;
401 	struct page *page;
402 
403 	/* Testing has shown this allocation to take long enough under
404 	 * GFP_KERNEL that the local node can get fenced. It would be
405 	 * nicest if we could pre-allocate these bios and avoid this
406 	 * all together. */
407 	bio = bio_alloc(GFP_ATOMIC, 16);
408 	if (!bio) {
409 		mlog(ML_ERROR, "Could not alloc slots BIO!\n");
410 		bio = ERR_PTR(-ENOMEM);
411 		goto bail;
412 	}
413 
414 	/* Must put everything in 512 byte sectors for the bio... */
415 	bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
416 	bio->bi_bdev = reg->hr_bdev;
417 	bio->bi_private = wc;
418 	bio->bi_end_io = o2hb_bio_end_io;
419 
420 	vec_start = (cs << bits) % PAGE_CACHE_SIZE;
421 	while(cs < max_slots) {
422 		current_page = cs / spp;
423 		page = reg->hr_slot_data[current_page];
424 
425 		vec_len = min(PAGE_CACHE_SIZE - vec_start,
426 			      (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
427 
428 		mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
429 		     current_page, vec_len, vec_start);
430 
431 		len = bio_add_page(bio, page, vec_len, vec_start);
432 		if (len != vec_len) break;
433 
434 		cs += vec_len / (PAGE_CACHE_SIZE/spp);
435 		vec_start = 0;
436 	}
437 
438 bail:
439 	*current_slot = cs;
440 	return bio;
441 }
442 
o2hb_read_slots(struct o2hb_region * reg,unsigned int max_slots)443 static int o2hb_read_slots(struct o2hb_region *reg,
444 			   unsigned int max_slots)
445 {
446 	unsigned int current_slot=0;
447 	int status;
448 	struct o2hb_bio_wait_ctxt wc;
449 	struct bio *bio;
450 
451 	o2hb_bio_wait_init(&wc);
452 
453 	while(current_slot < max_slots) {
454 		bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
455 		if (IS_ERR(bio)) {
456 			status = PTR_ERR(bio);
457 			mlog_errno(status);
458 			goto bail_and_wait;
459 		}
460 
461 		atomic_inc(&wc.wc_num_reqs);
462 		submit_bio(READ, bio);
463 	}
464 
465 	status = 0;
466 
467 bail_and_wait:
468 	o2hb_wait_on_io(reg, &wc);
469 	if (wc.wc_error && !status)
470 		status = wc.wc_error;
471 
472 	return status;
473 }
474 
o2hb_issue_node_write(struct o2hb_region * reg,struct o2hb_bio_wait_ctxt * write_wc)475 static int o2hb_issue_node_write(struct o2hb_region *reg,
476 				 struct o2hb_bio_wait_ctxt *write_wc)
477 {
478 	int status;
479 	unsigned int slot;
480 	struct bio *bio;
481 
482 	o2hb_bio_wait_init(write_wc);
483 
484 	slot = o2nm_this_node();
485 
486 	bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
487 	if (IS_ERR(bio)) {
488 		status = PTR_ERR(bio);
489 		mlog_errno(status);
490 		goto bail;
491 	}
492 
493 	atomic_inc(&write_wc->wc_num_reqs);
494 	submit_bio(WRITE, bio);
495 
496 	status = 0;
497 bail:
498 	return status;
499 }
500 
o2hb_compute_block_crc_le(struct o2hb_region * reg,struct o2hb_disk_heartbeat_block * hb_block)501 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
502 				     struct o2hb_disk_heartbeat_block *hb_block)
503 {
504 	__le32 old_cksum;
505 	u32 ret;
506 
507 	/* We want to compute the block crc with a 0 value in the
508 	 * hb_cksum field. Save it off here and replace after the
509 	 * crc. */
510 	old_cksum = hb_block->hb_cksum;
511 	hb_block->hb_cksum = 0;
512 
513 	ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
514 
515 	hb_block->hb_cksum = old_cksum;
516 
517 	return ret;
518 }
519 
o2hb_dump_slot(struct o2hb_disk_heartbeat_block * hb_block)520 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
521 {
522 	mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
523 	     "cksum = 0x%x, generation 0x%llx\n",
524 	     (long long)le64_to_cpu(hb_block->hb_seq),
525 	     hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
526 	     (long long)le64_to_cpu(hb_block->hb_generation));
527 }
528 
o2hb_verify_crc(struct o2hb_region * reg,struct o2hb_disk_heartbeat_block * hb_block)529 static int o2hb_verify_crc(struct o2hb_region *reg,
530 			   struct o2hb_disk_heartbeat_block *hb_block)
531 {
532 	u32 read, computed;
533 
534 	read = le32_to_cpu(hb_block->hb_cksum);
535 	computed = o2hb_compute_block_crc_le(reg, hb_block);
536 
537 	return read == computed;
538 }
539 
540 /* We want to make sure that nobody is heartbeating on top of us --
541  * this will help detect an invalid configuration. */
o2hb_check_last_timestamp(struct o2hb_region * reg)542 static void o2hb_check_last_timestamp(struct o2hb_region *reg)
543 {
544 	struct o2hb_disk_slot *slot;
545 	struct o2hb_disk_heartbeat_block *hb_block;
546 	char *errstr;
547 
548 	slot = &reg->hr_slots[o2nm_this_node()];
549 	/* Don't check on our 1st timestamp */
550 	if (!slot->ds_last_time)
551 		return;
552 
553 	hb_block = slot->ds_raw_block;
554 	if (le64_to_cpu(hb_block->hb_seq) == slot->ds_last_time &&
555 	    le64_to_cpu(hb_block->hb_generation) == slot->ds_last_generation &&
556 	    hb_block->hb_node == slot->ds_node_num)
557 		return;
558 
559 #define ERRSTR1		"Another node is heartbeating on device"
560 #define ERRSTR2		"Heartbeat generation mismatch on device"
561 #define ERRSTR3		"Heartbeat sequence mismatch on device"
562 
563 	if (hb_block->hb_node != slot->ds_node_num)
564 		errstr = ERRSTR1;
565 	else if (le64_to_cpu(hb_block->hb_generation) !=
566 		 slot->ds_last_generation)
567 		errstr = ERRSTR2;
568 	else
569 		errstr = ERRSTR3;
570 
571 	mlog(ML_ERROR, "%s (%s): expected(%u:0x%llx, 0x%llx), "
572 	     "ondisk(%u:0x%llx, 0x%llx)\n", errstr, reg->hr_dev_name,
573 	     slot->ds_node_num, (unsigned long long)slot->ds_last_generation,
574 	     (unsigned long long)slot->ds_last_time, hb_block->hb_node,
575 	     (unsigned long long)le64_to_cpu(hb_block->hb_generation),
576 	     (unsigned long long)le64_to_cpu(hb_block->hb_seq));
577 }
578 
o2hb_prepare_block(struct o2hb_region * reg,u64 generation)579 static inline void o2hb_prepare_block(struct o2hb_region *reg,
580 				      u64 generation)
581 {
582 	int node_num;
583 	u64 cputime;
584 	struct o2hb_disk_slot *slot;
585 	struct o2hb_disk_heartbeat_block *hb_block;
586 
587 	node_num = o2nm_this_node();
588 	slot = &reg->hr_slots[node_num];
589 
590 	hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
591 	memset(hb_block, 0, reg->hr_block_bytes);
592 	/* TODO: time stuff */
593 	cputime = CURRENT_TIME.tv_sec;
594 	if (!cputime)
595 		cputime = 1;
596 
597 	hb_block->hb_seq = cpu_to_le64(cputime);
598 	hb_block->hb_node = node_num;
599 	hb_block->hb_generation = cpu_to_le64(generation);
600 	hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
601 
602 	/* This step must always happen last! */
603 	hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
604 								   hb_block));
605 
606 	mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
607 	     (long long)generation,
608 	     le32_to_cpu(hb_block->hb_cksum));
609 }
610 
o2hb_fire_callbacks(struct o2hb_callback * hbcall,struct o2nm_node * node,int idx)611 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
612 				struct o2nm_node *node,
613 				int idx)
614 {
615 	struct list_head *iter;
616 	struct o2hb_callback_func *f;
617 
618 	list_for_each(iter, &hbcall->list) {
619 		f = list_entry(iter, struct o2hb_callback_func, hc_item);
620 		mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
621 		(f->hc_func)(node, idx, f->hc_data);
622 	}
623 }
624 
625 /* Will run the list in order until we process the passed event */
o2hb_run_event_list(struct o2hb_node_event * queued_event)626 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
627 {
628 	int empty;
629 	struct o2hb_callback *hbcall;
630 	struct o2hb_node_event *event;
631 
632 	spin_lock(&o2hb_live_lock);
633 	empty = list_empty(&queued_event->hn_item);
634 	spin_unlock(&o2hb_live_lock);
635 	if (empty)
636 		return;
637 
638 	/* Holding callback sem assures we don't alter the callback
639 	 * lists when doing this, and serializes ourselves with other
640 	 * processes wanting callbacks. */
641 	down_write(&o2hb_callback_sem);
642 
643 	spin_lock(&o2hb_live_lock);
644 	while (!list_empty(&o2hb_node_events)
645 	       && !list_empty(&queued_event->hn_item)) {
646 		event = list_entry(o2hb_node_events.next,
647 				   struct o2hb_node_event,
648 				   hn_item);
649 		list_del_init(&event->hn_item);
650 		spin_unlock(&o2hb_live_lock);
651 
652 		mlog(ML_HEARTBEAT, "Node %s event for %d\n",
653 		     event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
654 		     event->hn_node_num);
655 
656 		hbcall = hbcall_from_type(event->hn_event_type);
657 
658 		/* We should *never* have gotten on to the list with a
659 		 * bad type... This isn't something that we should try
660 		 * to recover from. */
661 		BUG_ON(IS_ERR(hbcall));
662 
663 		o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
664 
665 		spin_lock(&o2hb_live_lock);
666 	}
667 	spin_unlock(&o2hb_live_lock);
668 
669 	up_write(&o2hb_callback_sem);
670 }
671 
o2hb_queue_node_event(struct o2hb_node_event * event,enum o2hb_callback_type type,struct o2nm_node * node,int node_num)672 static void o2hb_queue_node_event(struct o2hb_node_event *event,
673 				  enum o2hb_callback_type type,
674 				  struct o2nm_node *node,
675 				  int node_num)
676 {
677 	assert_spin_locked(&o2hb_live_lock);
678 
679 	BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB));
680 
681 	event->hn_event_type = type;
682 	event->hn_node = node;
683 	event->hn_node_num = node_num;
684 
685 	mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
686 	     type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
687 
688 	list_add_tail(&event->hn_item, &o2hb_node_events);
689 }
690 
o2hb_shutdown_slot(struct o2hb_disk_slot * slot)691 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
692 {
693 	struct o2hb_node_event event =
694 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
695 	struct o2nm_node *node;
696 
697 	node = o2nm_get_node_by_num(slot->ds_node_num);
698 	if (!node)
699 		return;
700 
701 	spin_lock(&o2hb_live_lock);
702 	if (!list_empty(&slot->ds_live_item)) {
703 		mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
704 		     slot->ds_node_num);
705 
706 		list_del_init(&slot->ds_live_item);
707 
708 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
709 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
710 
711 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
712 					      slot->ds_node_num);
713 		}
714 	}
715 	spin_unlock(&o2hb_live_lock);
716 
717 	o2hb_run_event_list(&event);
718 
719 	o2nm_node_put(node);
720 }
721 
o2hb_set_quorum_device(struct o2hb_region * reg,struct o2hb_disk_slot * slot)722 static void o2hb_set_quorum_device(struct o2hb_region *reg,
723 				   struct o2hb_disk_slot *slot)
724 {
725 	assert_spin_locked(&o2hb_live_lock);
726 
727 	if (!o2hb_global_heartbeat_active())
728 		return;
729 
730 	if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
731 		return;
732 
733 	/*
734 	 * A region can be added to the quorum only when it sees all
735 	 * live nodes heartbeat on it. In other words, the region has been
736 	 * added to all nodes.
737 	 */
738 	if (memcmp(reg->hr_live_node_bitmap, o2hb_live_node_bitmap,
739 		   sizeof(o2hb_live_node_bitmap)))
740 		return;
741 
742 	if (slot->ds_changed_samples < O2HB_LIVE_THRESHOLD)
743 		return;
744 
745 	printk(KERN_NOTICE "o2hb: Region %s is now a quorum device\n",
746 	       config_item_name(&reg->hr_item));
747 
748 	set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
749 
750 	/*
751 	 * If global heartbeat active, unpin all regions if the
752 	 * region count > CUT_OFF
753 	 */
754 	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
755 			   O2NM_MAX_REGIONS) > O2HB_PIN_CUT_OFF)
756 		o2hb_region_unpin(NULL);
757 }
758 
o2hb_check_slot(struct o2hb_region * reg,struct o2hb_disk_slot * slot)759 static int o2hb_check_slot(struct o2hb_region *reg,
760 			   struct o2hb_disk_slot *slot)
761 {
762 	int changed = 0, gen_changed = 0;
763 	struct o2hb_node_event event =
764 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
765 	struct o2nm_node *node;
766 	struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
767 	u64 cputime;
768 	unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
769 	unsigned int slot_dead_ms;
770 	int tmp;
771 
772 	memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
773 
774 	/*
775 	 * If a node is no longer configured but is still in the livemap, we
776 	 * may need to clear that bit from the livemap.
777 	 */
778 	node = o2nm_get_node_by_num(slot->ds_node_num);
779 	if (!node) {
780 		spin_lock(&o2hb_live_lock);
781 		tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap);
782 		spin_unlock(&o2hb_live_lock);
783 		if (!tmp)
784 			return 0;
785 	}
786 
787 	if (!o2hb_verify_crc(reg, hb_block)) {
788 		/* all paths from here will drop o2hb_live_lock for
789 		 * us. */
790 		spin_lock(&o2hb_live_lock);
791 
792 		/* Don't print an error on the console in this case -
793 		 * a freshly formatted heartbeat area will not have a
794 		 * crc set on it. */
795 		if (list_empty(&slot->ds_live_item))
796 			goto out;
797 
798 		/* The node is live but pushed out a bad crc. We
799 		 * consider it a transient miss but don't populate any
800 		 * other values as they may be junk. */
801 		mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
802 		     slot->ds_node_num, reg->hr_dev_name);
803 		o2hb_dump_slot(hb_block);
804 
805 		slot->ds_equal_samples++;
806 		goto fire_callbacks;
807 	}
808 
809 	/* we don't care if these wrap.. the state transitions below
810 	 * clear at the right places */
811 	cputime = le64_to_cpu(hb_block->hb_seq);
812 	if (slot->ds_last_time != cputime)
813 		slot->ds_changed_samples++;
814 	else
815 		slot->ds_equal_samples++;
816 	slot->ds_last_time = cputime;
817 
818 	/* The node changed heartbeat generations. We assume this to
819 	 * mean it dropped off but came back before we timed out. We
820 	 * want to consider it down for the time being but don't want
821 	 * to lose any changed_samples state we might build up to
822 	 * considering it live again. */
823 	if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
824 		gen_changed = 1;
825 		slot->ds_equal_samples = 0;
826 		mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
827 		     "to 0x%llx)\n", slot->ds_node_num,
828 		     (long long)slot->ds_last_generation,
829 		     (long long)le64_to_cpu(hb_block->hb_generation));
830 	}
831 
832 	slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
833 
834 	mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
835 	     "seq %llu last %llu changed %u equal %u\n",
836 	     slot->ds_node_num, (long long)slot->ds_last_generation,
837 	     le32_to_cpu(hb_block->hb_cksum),
838 	     (unsigned long long)le64_to_cpu(hb_block->hb_seq),
839 	     (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
840 	     slot->ds_equal_samples);
841 
842 	spin_lock(&o2hb_live_lock);
843 
844 fire_callbacks:
845 	/* dead nodes only come to life after some number of
846 	 * changes at any time during their dead time */
847 	if (list_empty(&slot->ds_live_item) &&
848 	    slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
849 		mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
850 		     slot->ds_node_num, (long long)slot->ds_last_generation);
851 
852 		set_bit(slot->ds_node_num, reg->hr_live_node_bitmap);
853 
854 		/* first on the list generates a callback */
855 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
856 			mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes "
857 			     "bitmap\n", slot->ds_node_num);
858 			set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
859 
860 			o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
861 					      slot->ds_node_num);
862 
863 			changed = 1;
864 		}
865 
866 		list_add_tail(&slot->ds_live_item,
867 			      &o2hb_live_slots[slot->ds_node_num]);
868 
869 		slot->ds_equal_samples = 0;
870 
871 		/* We want to be sure that all nodes agree on the
872 		 * number of milliseconds before a node will be
873 		 * considered dead. The self-fencing timeout is
874 		 * computed from this value, and a discrepancy might
875 		 * result in heartbeat calling a node dead when it
876 		 * hasn't self-fenced yet. */
877 		slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
878 		if (slot_dead_ms && slot_dead_ms != dead_ms) {
879 			/* TODO: Perhaps we can fail the region here. */
880 			mlog(ML_ERROR, "Node %d on device %s has a dead count "
881 			     "of %u ms, but our count is %u ms.\n"
882 			     "Please double check your configuration values "
883 			     "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
884 			     slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
885 			     dead_ms);
886 		}
887 		goto out;
888 	}
889 
890 	/* if the list is dead, we're done.. */
891 	if (list_empty(&slot->ds_live_item))
892 		goto out;
893 
894 	/* live nodes only go dead after enough consequtive missed
895 	 * samples..  reset the missed counter whenever we see
896 	 * activity */
897 	if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
898 		mlog(ML_HEARTBEAT, "Node %d left my region\n",
899 		     slot->ds_node_num);
900 
901 		clear_bit(slot->ds_node_num, reg->hr_live_node_bitmap);
902 
903 		/* last off the live_slot generates a callback */
904 		list_del_init(&slot->ds_live_item);
905 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
906 			mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live "
907 			     "nodes bitmap\n", slot->ds_node_num);
908 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
909 
910 			/* node can be null */
911 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB,
912 					      node, slot->ds_node_num);
913 
914 			changed = 1;
915 		}
916 
917 		/* We don't clear this because the node is still
918 		 * actually writing new blocks. */
919 		if (!gen_changed)
920 			slot->ds_changed_samples = 0;
921 		goto out;
922 	}
923 	if (slot->ds_changed_samples) {
924 		slot->ds_changed_samples = 0;
925 		slot->ds_equal_samples = 0;
926 	}
927 out:
928 	o2hb_set_quorum_device(reg, slot);
929 
930 	spin_unlock(&o2hb_live_lock);
931 
932 	o2hb_run_event_list(&event);
933 
934 	if (node)
935 		o2nm_node_put(node);
936 	return changed;
937 }
938 
939 /* This could be faster if we just implmented a find_last_bit, but I
940  * don't think the circumstances warrant it. */
o2hb_highest_node(unsigned long * nodes,int numbits)941 static int o2hb_highest_node(unsigned long *nodes,
942 			     int numbits)
943 {
944 	int highest, node;
945 
946 	highest = numbits;
947 	node = -1;
948 	while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
949 		if (node >= numbits)
950 			break;
951 
952 		highest = node;
953 	}
954 
955 	return highest;
956 }
957 
o2hb_do_disk_heartbeat(struct o2hb_region * reg)958 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
959 {
960 	int i, ret, highest_node, change = 0;
961 	unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
962 	unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
963 	struct o2hb_bio_wait_ctxt write_wc;
964 
965 	ret = o2nm_configured_node_map(configured_nodes,
966 				       sizeof(configured_nodes));
967 	if (ret) {
968 		mlog_errno(ret);
969 		return ret;
970 	}
971 
972 	/*
973 	 * If a node is not configured but is in the livemap, we still need
974 	 * to read the slot so as to be able to remove it from the livemap.
975 	 */
976 	o2hb_fill_node_map(live_node_bitmap, sizeof(live_node_bitmap));
977 	i = -1;
978 	while ((i = find_next_bit(live_node_bitmap,
979 				  O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
980 		set_bit(i, configured_nodes);
981 	}
982 
983 	highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
984 	if (highest_node >= O2NM_MAX_NODES) {
985 		mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
986 		return -EINVAL;
987 	}
988 
989 	/* No sense in reading the slots of nodes that don't exist
990 	 * yet. Of course, if the node definitions have holes in them
991 	 * then we're reading an empty slot anyway... Consider this
992 	 * best-effort. */
993 	ret = o2hb_read_slots(reg, highest_node + 1);
994 	if (ret < 0) {
995 		mlog_errno(ret);
996 		return ret;
997 	}
998 
999 	/* With an up to date view of the slots, we can check that no
1000 	 * other node has been improperly configured to heartbeat in
1001 	 * our slot. */
1002 	o2hb_check_last_timestamp(reg);
1003 
1004 	/* fill in the proper info for our next heartbeat */
1005 	o2hb_prepare_block(reg, reg->hr_generation);
1006 
1007 	/* And fire off the write. Note that we don't wait on this I/O
1008 	 * until later. */
1009 	ret = o2hb_issue_node_write(reg, &write_wc);
1010 	if (ret < 0) {
1011 		mlog_errno(ret);
1012 		return ret;
1013 	}
1014 
1015 	i = -1;
1016 	while((i = find_next_bit(configured_nodes,
1017 				 O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
1018 		change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
1019 	}
1020 
1021 	/*
1022 	 * We have to be sure we've advertised ourselves on disk
1023 	 * before we can go to steady state.  This ensures that
1024 	 * people we find in our steady state have seen us.
1025 	 */
1026 	o2hb_wait_on_io(reg, &write_wc);
1027 	if (write_wc.wc_error) {
1028 		/* Do not re-arm the write timeout on I/O error - we
1029 		 * can't be sure that the new block ever made it to
1030 		 * disk */
1031 		mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
1032 		     write_wc.wc_error, reg->hr_dev_name);
1033 		return write_wc.wc_error;
1034 	}
1035 
1036 	o2hb_arm_write_timeout(reg);
1037 
1038 	/* let the person who launched us know when things are steady */
1039 	if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
1040 		if (atomic_dec_and_test(&reg->hr_steady_iterations))
1041 			wake_up(&o2hb_steady_queue);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 /* Subtract b from a, storing the result in a. a *must* have a larger
1048  * value than b. */
o2hb_tv_subtract(struct timeval * a,struct timeval * b)1049 static void o2hb_tv_subtract(struct timeval *a,
1050 			     struct timeval *b)
1051 {
1052 	/* just return 0 when a is after b */
1053 	if (a->tv_sec < b->tv_sec ||
1054 	    (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
1055 		a->tv_sec = 0;
1056 		a->tv_usec = 0;
1057 		return;
1058 	}
1059 
1060 	a->tv_sec -= b->tv_sec;
1061 	a->tv_usec -= b->tv_usec;
1062 	while ( a->tv_usec < 0 ) {
1063 		a->tv_sec--;
1064 		a->tv_usec += 1000000;
1065 	}
1066 }
1067 
o2hb_elapsed_msecs(struct timeval * start,struct timeval * end)1068 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
1069 				       struct timeval *end)
1070 {
1071 	struct timeval res = *end;
1072 
1073 	o2hb_tv_subtract(&res, start);
1074 
1075 	return res.tv_sec * 1000 + res.tv_usec / 1000;
1076 }
1077 
1078 /*
1079  * we ride the region ref that the region dir holds.  before the region
1080  * dir is removed and drops it ref it will wait to tear down this
1081  * thread.
1082  */
o2hb_thread(void * data)1083 static int o2hb_thread(void *data)
1084 {
1085 	int i, ret;
1086 	struct o2hb_region *reg = data;
1087 	struct o2hb_bio_wait_ctxt write_wc;
1088 	struct timeval before_hb, after_hb;
1089 	unsigned int elapsed_msec;
1090 
1091 	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
1092 
1093 	set_user_nice(current, -20);
1094 
1095 	/* Pin node */
1096 	o2nm_depend_this_node();
1097 
1098 	while (!kthread_should_stop() && !reg->hr_unclean_stop) {
1099 		/* We track the time spent inside
1100 		 * o2hb_do_disk_heartbeat so that we avoid more than
1101 		 * hr_timeout_ms between disk writes. On busy systems
1102 		 * this should result in a heartbeat which is less
1103 		 * likely to time itself out. */
1104 		do_gettimeofday(&before_hb);
1105 
1106 		i = 0;
1107 		do {
1108 			ret = o2hb_do_disk_heartbeat(reg);
1109 		} while (ret && ++i < 2);
1110 
1111 		do_gettimeofday(&after_hb);
1112 		elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
1113 
1114 		mlog(ML_HEARTBEAT,
1115 		     "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
1116 		     before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
1117 		     after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
1118 		     elapsed_msec);
1119 
1120 		if (elapsed_msec < reg->hr_timeout_ms) {
1121 			/* the kthread api has blocked signals for us so no
1122 			 * need to record the return value. */
1123 			msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
1124 		}
1125 	}
1126 
1127 	o2hb_disarm_write_timeout(reg);
1128 
1129 	/* unclean stop is only used in very bad situation */
1130 	for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
1131 		o2hb_shutdown_slot(&reg->hr_slots[i]);
1132 
1133 	/* Explicit down notification - avoid forcing the other nodes
1134 	 * to timeout on this region when we could just as easily
1135 	 * write a clear generation - thus indicating to them that
1136 	 * this node has left this region.
1137 	 *
1138 	 * XXX: Should we skip this on unclean_stop? */
1139 	o2hb_prepare_block(reg, 0);
1140 	ret = o2hb_issue_node_write(reg, &write_wc);
1141 	if (ret == 0) {
1142 		o2hb_wait_on_io(reg, &write_wc);
1143 	} else {
1144 		mlog_errno(ret);
1145 	}
1146 
1147 	/* Unpin node */
1148 	o2nm_undepend_this_node();
1149 
1150 	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
1151 
1152 	return 0;
1153 }
1154 
1155 #ifdef CONFIG_DEBUG_FS
o2hb_debug_open(struct inode * inode,struct file * file)1156 static int o2hb_debug_open(struct inode *inode, struct file *file)
1157 {
1158 	struct o2hb_debug_buf *db = inode->i_private;
1159 	struct o2hb_region *reg;
1160 	unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1161 	char *buf = NULL;
1162 	int i = -1;
1163 	int out = 0;
1164 
1165 	/* max_nodes should be the largest bitmap we pass here */
1166 	BUG_ON(sizeof(map) < db->db_size);
1167 
1168 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1169 	if (!buf)
1170 		goto bail;
1171 
1172 	switch (db->db_type) {
1173 	case O2HB_DB_TYPE_LIVENODES:
1174 	case O2HB_DB_TYPE_LIVEREGIONS:
1175 	case O2HB_DB_TYPE_QUORUMREGIONS:
1176 	case O2HB_DB_TYPE_FAILEDREGIONS:
1177 		spin_lock(&o2hb_live_lock);
1178 		memcpy(map, db->db_data, db->db_size);
1179 		spin_unlock(&o2hb_live_lock);
1180 		break;
1181 
1182 	case O2HB_DB_TYPE_REGION_LIVENODES:
1183 		spin_lock(&o2hb_live_lock);
1184 		reg = (struct o2hb_region *)db->db_data;
1185 		memcpy(map, reg->hr_live_node_bitmap, db->db_size);
1186 		spin_unlock(&o2hb_live_lock);
1187 		break;
1188 
1189 	case O2HB_DB_TYPE_REGION_NUMBER:
1190 		reg = (struct o2hb_region *)db->db_data;
1191 		out += snprintf(buf + out, PAGE_SIZE - out, "%d\n",
1192 				reg->hr_region_num);
1193 		goto done;
1194 
1195 	case O2HB_DB_TYPE_REGION_ELAPSED_TIME:
1196 		reg = (struct o2hb_region *)db->db_data;
1197 		out += snprintf(buf + out, PAGE_SIZE - out, "%u\n",
1198 				jiffies_to_msecs(jiffies -
1199 						 reg->hr_last_timeout_start));
1200 		goto done;
1201 
1202 	case O2HB_DB_TYPE_REGION_PINNED:
1203 		reg = (struct o2hb_region *)db->db_data;
1204 		out += snprintf(buf + out, PAGE_SIZE - out, "%u\n",
1205 				!!reg->hr_item_pinned);
1206 		goto done;
1207 
1208 	default:
1209 		goto done;
1210 	}
1211 
1212 	while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len)
1213 		out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
1214 	out += snprintf(buf + out, PAGE_SIZE - out, "\n");
1215 
1216 done:
1217 	i_size_write(inode, out);
1218 
1219 	file->private_data = buf;
1220 
1221 	return 0;
1222 bail:
1223 	return -ENOMEM;
1224 }
1225 
o2hb_debug_release(struct inode * inode,struct file * file)1226 static int o2hb_debug_release(struct inode *inode, struct file *file)
1227 {
1228 	kfree(file->private_data);
1229 	return 0;
1230 }
1231 
o2hb_debug_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1232 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
1233 				 size_t nbytes, loff_t *ppos)
1234 {
1235 	return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
1236 				       i_size_read(file->f_mapping->host));
1237 }
1238 #else
o2hb_debug_open(struct inode * inode,struct file * file)1239 static int o2hb_debug_open(struct inode *inode, struct file *file)
1240 {
1241 	return 0;
1242 }
o2hb_debug_release(struct inode * inode,struct file * file)1243 static int o2hb_debug_release(struct inode *inode, struct file *file)
1244 {
1245 	return 0;
1246 }
o2hb_debug_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1247 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
1248 			       size_t nbytes, loff_t *ppos)
1249 {
1250 	return 0;
1251 }
1252 #endif  /* CONFIG_DEBUG_FS */
1253 
1254 static const struct file_operations o2hb_debug_fops = {
1255 	.open =		o2hb_debug_open,
1256 	.release =	o2hb_debug_release,
1257 	.read =		o2hb_debug_read,
1258 	.llseek =	generic_file_llseek,
1259 };
1260 
o2hb_exit(void)1261 void o2hb_exit(void)
1262 {
1263 	kfree(o2hb_db_livenodes);
1264 	kfree(o2hb_db_liveregions);
1265 	kfree(o2hb_db_quorumregions);
1266 	kfree(o2hb_db_failedregions);
1267 	debugfs_remove(o2hb_debug_failedregions);
1268 	debugfs_remove(o2hb_debug_quorumregions);
1269 	debugfs_remove(o2hb_debug_liveregions);
1270 	debugfs_remove(o2hb_debug_livenodes);
1271 	debugfs_remove(o2hb_debug_dir);
1272 }
1273 
o2hb_debug_create(const char * name,struct dentry * dir,struct o2hb_debug_buf ** db,int db_len,int type,int size,int len,void * data)1274 static struct dentry *o2hb_debug_create(const char *name, struct dentry *dir,
1275 					struct o2hb_debug_buf **db, int db_len,
1276 					int type, int size, int len, void *data)
1277 {
1278 	*db = kmalloc(db_len, GFP_KERNEL);
1279 	if (!*db)
1280 		return NULL;
1281 
1282 	(*db)->db_type = type;
1283 	(*db)->db_size = size;
1284 	(*db)->db_len = len;
1285 	(*db)->db_data = data;
1286 
1287 	return debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db,
1288 				   &o2hb_debug_fops);
1289 }
1290 
o2hb_debug_init(void)1291 static int o2hb_debug_init(void)
1292 {
1293 	int ret = -ENOMEM;
1294 
1295 	o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
1296 	if (!o2hb_debug_dir) {
1297 		mlog_errno(ret);
1298 		goto bail;
1299 	}
1300 
1301 	o2hb_debug_livenodes = o2hb_debug_create(O2HB_DEBUG_LIVENODES,
1302 						 o2hb_debug_dir,
1303 						 &o2hb_db_livenodes,
1304 						 sizeof(*o2hb_db_livenodes),
1305 						 O2HB_DB_TYPE_LIVENODES,
1306 						 sizeof(o2hb_live_node_bitmap),
1307 						 O2NM_MAX_NODES,
1308 						 o2hb_live_node_bitmap);
1309 	if (!o2hb_debug_livenodes) {
1310 		mlog_errno(ret);
1311 		goto bail;
1312 	}
1313 
1314 	o2hb_debug_liveregions = o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS,
1315 						   o2hb_debug_dir,
1316 						   &o2hb_db_liveregions,
1317 						   sizeof(*o2hb_db_liveregions),
1318 						   O2HB_DB_TYPE_LIVEREGIONS,
1319 						   sizeof(o2hb_live_region_bitmap),
1320 						   O2NM_MAX_REGIONS,
1321 						   o2hb_live_region_bitmap);
1322 	if (!o2hb_debug_liveregions) {
1323 		mlog_errno(ret);
1324 		goto bail;
1325 	}
1326 
1327 	o2hb_debug_quorumregions =
1328 			o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS,
1329 					  o2hb_debug_dir,
1330 					  &o2hb_db_quorumregions,
1331 					  sizeof(*o2hb_db_quorumregions),
1332 					  O2HB_DB_TYPE_QUORUMREGIONS,
1333 					  sizeof(o2hb_quorum_region_bitmap),
1334 					  O2NM_MAX_REGIONS,
1335 					  o2hb_quorum_region_bitmap);
1336 	if (!o2hb_debug_quorumregions) {
1337 		mlog_errno(ret);
1338 		goto bail;
1339 	}
1340 
1341 	o2hb_debug_failedregions =
1342 			o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS,
1343 					  o2hb_debug_dir,
1344 					  &o2hb_db_failedregions,
1345 					  sizeof(*o2hb_db_failedregions),
1346 					  O2HB_DB_TYPE_FAILEDREGIONS,
1347 					  sizeof(o2hb_failed_region_bitmap),
1348 					  O2NM_MAX_REGIONS,
1349 					  o2hb_failed_region_bitmap);
1350 	if (!o2hb_debug_failedregions) {
1351 		mlog_errno(ret);
1352 		goto bail;
1353 	}
1354 
1355 	ret = 0;
1356 bail:
1357 	if (ret)
1358 		o2hb_exit();
1359 
1360 	return ret;
1361 }
1362 
o2hb_init(void)1363 int o2hb_init(void)
1364 {
1365 	int i;
1366 
1367 	for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
1368 		INIT_LIST_HEAD(&o2hb_callbacks[i].list);
1369 
1370 	for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
1371 		INIT_LIST_HEAD(&o2hb_live_slots[i]);
1372 
1373 	INIT_LIST_HEAD(&o2hb_node_events);
1374 
1375 	memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
1376 	memset(o2hb_region_bitmap, 0, sizeof(o2hb_region_bitmap));
1377 	memset(o2hb_live_region_bitmap, 0, sizeof(o2hb_live_region_bitmap));
1378 	memset(o2hb_quorum_region_bitmap, 0, sizeof(o2hb_quorum_region_bitmap));
1379 	memset(o2hb_failed_region_bitmap, 0, sizeof(o2hb_failed_region_bitmap));
1380 
1381 	o2hb_dependent_users = 0;
1382 
1383 	return o2hb_debug_init();
1384 }
1385 
1386 /* if we're already in a callback then we're already serialized by the sem */
o2hb_fill_node_map_from_callback(unsigned long * map,unsigned bytes)1387 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1388 					     unsigned bytes)
1389 {
1390 	BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1391 
1392 	memcpy(map, &o2hb_live_node_bitmap, bytes);
1393 }
1394 
1395 /*
1396  * get a map of all nodes that are heartbeating in any regions
1397  */
o2hb_fill_node_map(unsigned long * map,unsigned bytes)1398 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1399 {
1400 	/* callers want to serialize this map and callbacks so that they
1401 	 * can trust that they don't miss nodes coming to the party */
1402 	down_read(&o2hb_callback_sem);
1403 	spin_lock(&o2hb_live_lock);
1404 	o2hb_fill_node_map_from_callback(map, bytes);
1405 	spin_unlock(&o2hb_live_lock);
1406 	up_read(&o2hb_callback_sem);
1407 }
1408 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1409 
1410 /*
1411  * heartbeat configfs bits.  The heartbeat set is a default set under
1412  * the cluster set in nodemanager.c.
1413  */
1414 
to_o2hb_region(struct config_item * item)1415 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1416 {
1417 	return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1418 }
1419 
1420 /* drop_item only drops its ref after killing the thread, nothing should
1421  * be using the region anymore.  this has to clean up any state that
1422  * attributes might have built up. */
o2hb_region_release(struct config_item * item)1423 static void o2hb_region_release(struct config_item *item)
1424 {
1425 	int i;
1426 	struct page *page;
1427 	struct o2hb_region *reg = to_o2hb_region(item);
1428 
1429 	if (reg->hr_tmp_block)
1430 		kfree(reg->hr_tmp_block);
1431 
1432 	if (reg->hr_slot_data) {
1433 		for (i = 0; i < reg->hr_num_pages; i++) {
1434 			page = reg->hr_slot_data[i];
1435 			if (page)
1436 				__free_page(page);
1437 		}
1438 		kfree(reg->hr_slot_data);
1439 	}
1440 
1441 	if (reg->hr_bdev)
1442 		blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1443 
1444 	if (reg->hr_slots)
1445 		kfree(reg->hr_slots);
1446 
1447 	kfree(reg->hr_db_regnum);
1448 	kfree(reg->hr_db_livenodes);
1449 	debugfs_remove(reg->hr_debug_livenodes);
1450 	debugfs_remove(reg->hr_debug_regnum);
1451 	debugfs_remove(reg->hr_debug_elapsed_time);
1452 	debugfs_remove(reg->hr_debug_pinned);
1453 	debugfs_remove(reg->hr_debug_dir);
1454 
1455 	spin_lock(&o2hb_live_lock);
1456 	list_del(&reg->hr_all_item);
1457 	spin_unlock(&o2hb_live_lock);
1458 
1459 	kfree(reg);
1460 }
1461 
o2hb_read_block_input(struct o2hb_region * reg,const char * page,size_t count,unsigned long * ret_bytes,unsigned int * ret_bits)1462 static int o2hb_read_block_input(struct o2hb_region *reg,
1463 				 const char *page,
1464 				 size_t count,
1465 				 unsigned long *ret_bytes,
1466 				 unsigned int *ret_bits)
1467 {
1468 	unsigned long bytes;
1469 	char *p = (char *)page;
1470 
1471 	bytes = simple_strtoul(p, &p, 0);
1472 	if (!p || (*p && (*p != '\n')))
1473 		return -EINVAL;
1474 
1475 	/* Heartbeat and fs min / max block sizes are the same. */
1476 	if (bytes > 4096 || bytes < 512)
1477 		return -ERANGE;
1478 	if (hweight16(bytes) != 1)
1479 		return -EINVAL;
1480 
1481 	if (ret_bytes)
1482 		*ret_bytes = bytes;
1483 	if (ret_bits)
1484 		*ret_bits = ffs(bytes) - 1;
1485 
1486 	return 0;
1487 }
1488 
o2hb_region_block_bytes_read(struct o2hb_region * reg,char * page)1489 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1490 					    char *page)
1491 {
1492 	return sprintf(page, "%u\n", reg->hr_block_bytes);
1493 }
1494 
o2hb_region_block_bytes_write(struct o2hb_region * reg,const char * page,size_t count)1495 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1496 					     const char *page,
1497 					     size_t count)
1498 {
1499 	int status;
1500 	unsigned long block_bytes;
1501 	unsigned int block_bits;
1502 
1503 	if (reg->hr_bdev)
1504 		return -EINVAL;
1505 
1506 	status = o2hb_read_block_input(reg, page, count,
1507 				       &block_bytes, &block_bits);
1508 	if (status)
1509 		return status;
1510 
1511 	reg->hr_block_bytes = (unsigned int)block_bytes;
1512 	reg->hr_block_bits = block_bits;
1513 
1514 	return count;
1515 }
1516 
o2hb_region_start_block_read(struct o2hb_region * reg,char * page)1517 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1518 					    char *page)
1519 {
1520 	return sprintf(page, "%llu\n", reg->hr_start_block);
1521 }
1522 
o2hb_region_start_block_write(struct o2hb_region * reg,const char * page,size_t count)1523 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1524 					     const char *page,
1525 					     size_t count)
1526 {
1527 	unsigned long long tmp;
1528 	char *p = (char *)page;
1529 
1530 	if (reg->hr_bdev)
1531 		return -EINVAL;
1532 
1533 	tmp = simple_strtoull(p, &p, 0);
1534 	if (!p || (*p && (*p != '\n')))
1535 		return -EINVAL;
1536 
1537 	reg->hr_start_block = tmp;
1538 
1539 	return count;
1540 }
1541 
o2hb_region_blocks_read(struct o2hb_region * reg,char * page)1542 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1543 				       char *page)
1544 {
1545 	return sprintf(page, "%d\n", reg->hr_blocks);
1546 }
1547 
o2hb_region_blocks_write(struct o2hb_region * reg,const char * page,size_t count)1548 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1549 					const char *page,
1550 					size_t count)
1551 {
1552 	unsigned long tmp;
1553 	char *p = (char *)page;
1554 
1555 	if (reg->hr_bdev)
1556 		return -EINVAL;
1557 
1558 	tmp = simple_strtoul(p, &p, 0);
1559 	if (!p || (*p && (*p != '\n')))
1560 		return -EINVAL;
1561 
1562 	if (tmp > O2NM_MAX_NODES || tmp == 0)
1563 		return -ERANGE;
1564 
1565 	reg->hr_blocks = (unsigned int)tmp;
1566 
1567 	return count;
1568 }
1569 
o2hb_region_dev_read(struct o2hb_region * reg,char * page)1570 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1571 				    char *page)
1572 {
1573 	unsigned int ret = 0;
1574 
1575 	if (reg->hr_bdev)
1576 		ret = sprintf(page, "%s\n", reg->hr_dev_name);
1577 
1578 	return ret;
1579 }
1580 
o2hb_init_region_params(struct o2hb_region * reg)1581 static void o2hb_init_region_params(struct o2hb_region *reg)
1582 {
1583 	reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1584 	reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1585 
1586 	mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1587 	     reg->hr_start_block, reg->hr_blocks);
1588 	mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1589 	     reg->hr_block_bytes, reg->hr_block_bits);
1590 	mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1591 	mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1592 }
1593 
o2hb_map_slot_data(struct o2hb_region * reg)1594 static int o2hb_map_slot_data(struct o2hb_region *reg)
1595 {
1596 	int i, j;
1597 	unsigned int last_slot;
1598 	unsigned int spp = reg->hr_slots_per_page;
1599 	struct page *page;
1600 	char *raw;
1601 	struct o2hb_disk_slot *slot;
1602 
1603 	reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1604 	if (reg->hr_tmp_block == NULL) {
1605 		mlog_errno(-ENOMEM);
1606 		return -ENOMEM;
1607 	}
1608 
1609 	reg->hr_slots = kcalloc(reg->hr_blocks,
1610 				sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1611 	if (reg->hr_slots == NULL) {
1612 		mlog_errno(-ENOMEM);
1613 		return -ENOMEM;
1614 	}
1615 
1616 	for(i = 0; i < reg->hr_blocks; i++) {
1617 		slot = &reg->hr_slots[i];
1618 		slot->ds_node_num = i;
1619 		INIT_LIST_HEAD(&slot->ds_live_item);
1620 		slot->ds_raw_block = NULL;
1621 	}
1622 
1623 	reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1624 	mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1625 			   "at %u blocks per page\n",
1626 	     reg->hr_num_pages, reg->hr_blocks, spp);
1627 
1628 	reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1629 				    GFP_KERNEL);
1630 	if (!reg->hr_slot_data) {
1631 		mlog_errno(-ENOMEM);
1632 		return -ENOMEM;
1633 	}
1634 
1635 	for(i = 0; i < reg->hr_num_pages; i++) {
1636 		page = alloc_page(GFP_KERNEL);
1637 		if (!page) {
1638 			mlog_errno(-ENOMEM);
1639 			return -ENOMEM;
1640 		}
1641 
1642 		reg->hr_slot_data[i] = page;
1643 
1644 		last_slot = i * spp;
1645 		raw = page_address(page);
1646 		for (j = 0;
1647 		     (j < spp) && ((j + last_slot) < reg->hr_blocks);
1648 		     j++) {
1649 			BUG_ON((j + last_slot) >= reg->hr_blocks);
1650 
1651 			slot = &reg->hr_slots[j + last_slot];
1652 			slot->ds_raw_block =
1653 				(struct o2hb_disk_heartbeat_block *) raw;
1654 
1655 			raw += reg->hr_block_bytes;
1656 		}
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 /* Read in all the slots available and populate the tracking
1663  * structures so that we can start with a baseline idea of what's
1664  * there. */
o2hb_populate_slot_data(struct o2hb_region * reg)1665 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1666 {
1667 	int ret, i;
1668 	struct o2hb_disk_slot *slot;
1669 	struct o2hb_disk_heartbeat_block *hb_block;
1670 
1671 	ret = o2hb_read_slots(reg, reg->hr_blocks);
1672 	if (ret) {
1673 		mlog_errno(ret);
1674 		goto out;
1675 	}
1676 
1677 	/* We only want to get an idea of the values initially in each
1678 	 * slot, so we do no verification - o2hb_check_slot will
1679 	 * actually determine if each configured slot is valid and
1680 	 * whether any values have changed. */
1681 	for(i = 0; i < reg->hr_blocks; i++) {
1682 		slot = &reg->hr_slots[i];
1683 		hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1684 
1685 		/* Only fill the values that o2hb_check_slot uses to
1686 		 * determine changing slots */
1687 		slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1688 		slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1689 	}
1690 
1691 out:
1692 	return ret;
1693 }
1694 
1695 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
o2hb_region_dev_write(struct o2hb_region * reg,const char * page,size_t count)1696 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1697 				     const char *page,
1698 				     size_t count)
1699 {
1700 	struct task_struct *hb_task;
1701 	long fd;
1702 	int sectsize;
1703 	char *p = (char *)page;
1704 	struct file *filp = NULL;
1705 	struct inode *inode = NULL;
1706 	ssize_t ret = -EINVAL;
1707 	int live_threshold;
1708 
1709 	if (reg->hr_bdev)
1710 		goto out;
1711 
1712 	/* We can't heartbeat without having had our node number
1713 	 * configured yet. */
1714 	if (o2nm_this_node() == O2NM_MAX_NODES)
1715 		goto out;
1716 
1717 	fd = simple_strtol(p, &p, 0);
1718 	if (!p || (*p && (*p != '\n')))
1719 		goto out;
1720 
1721 	if (fd < 0 || fd >= INT_MAX)
1722 		goto out;
1723 
1724 	filp = fget(fd);
1725 	if (filp == NULL)
1726 		goto out;
1727 
1728 	if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1729 	    reg->hr_block_bytes == 0)
1730 		goto out;
1731 
1732 	inode = igrab(filp->f_mapping->host);
1733 	if (inode == NULL)
1734 		goto out;
1735 
1736 	if (!S_ISBLK(inode->i_mode))
1737 		goto out;
1738 
1739 	reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1740 	ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, NULL);
1741 	if (ret) {
1742 		reg->hr_bdev = NULL;
1743 		goto out;
1744 	}
1745 	inode = NULL;
1746 
1747 	bdevname(reg->hr_bdev, reg->hr_dev_name);
1748 
1749 	sectsize = bdev_logical_block_size(reg->hr_bdev);
1750 	if (sectsize != reg->hr_block_bytes) {
1751 		mlog(ML_ERROR,
1752 		     "blocksize %u incorrect for device, expected %d",
1753 		     reg->hr_block_bytes, sectsize);
1754 		ret = -EINVAL;
1755 		goto out;
1756 	}
1757 
1758 	o2hb_init_region_params(reg);
1759 
1760 	/* Generation of zero is invalid */
1761 	do {
1762 		get_random_bytes(&reg->hr_generation,
1763 				 sizeof(reg->hr_generation));
1764 	} while (reg->hr_generation == 0);
1765 
1766 	ret = o2hb_map_slot_data(reg);
1767 	if (ret) {
1768 		mlog_errno(ret);
1769 		goto out;
1770 	}
1771 
1772 	ret = o2hb_populate_slot_data(reg);
1773 	if (ret) {
1774 		mlog_errno(ret);
1775 		goto out;
1776 	}
1777 
1778 	INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1779 
1780 	/*
1781 	 * A node is considered live after it has beat LIVE_THRESHOLD
1782 	 * times.  We're not steady until we've given them a chance
1783 	 * _after_ our first read.
1784 	 * The default threshold is bare minimum so as to limit the delay
1785 	 * during mounts. For global heartbeat, the threshold doubled for the
1786 	 * first region.
1787 	 */
1788 	live_threshold = O2HB_LIVE_THRESHOLD;
1789 	if (o2hb_global_heartbeat_active()) {
1790 		spin_lock(&o2hb_live_lock);
1791 		if (o2hb_pop_count(&o2hb_region_bitmap, O2NM_MAX_REGIONS) == 1)
1792 			live_threshold <<= 1;
1793 		spin_unlock(&o2hb_live_lock);
1794 	}
1795 	atomic_set(&reg->hr_steady_iterations, live_threshold + 1);
1796 
1797 	hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1798 			      reg->hr_item.ci_name);
1799 	if (IS_ERR(hb_task)) {
1800 		ret = PTR_ERR(hb_task);
1801 		mlog_errno(ret);
1802 		goto out;
1803 	}
1804 
1805 	spin_lock(&o2hb_live_lock);
1806 	reg->hr_task = hb_task;
1807 	spin_unlock(&o2hb_live_lock);
1808 
1809 	ret = wait_event_interruptible(o2hb_steady_queue,
1810 				atomic_read(&reg->hr_steady_iterations) == 0);
1811 	if (ret) {
1812 		/* We got interrupted (hello ptrace!).  Clean up */
1813 		spin_lock(&o2hb_live_lock);
1814 		hb_task = reg->hr_task;
1815 		reg->hr_task = NULL;
1816 		spin_unlock(&o2hb_live_lock);
1817 
1818 		if (hb_task)
1819 			kthread_stop(hb_task);
1820 		goto out;
1821 	}
1822 
1823 	/* Ok, we were woken.  Make sure it wasn't by drop_item() */
1824 	spin_lock(&o2hb_live_lock);
1825 	hb_task = reg->hr_task;
1826 	if (o2hb_global_heartbeat_active())
1827 		set_bit(reg->hr_region_num, o2hb_live_region_bitmap);
1828 	spin_unlock(&o2hb_live_lock);
1829 
1830 	if (hb_task)
1831 		ret = count;
1832 	else
1833 		ret = -EIO;
1834 
1835 	if (hb_task && o2hb_global_heartbeat_active())
1836 		printk(KERN_NOTICE "o2hb: Heartbeat started on region %s\n",
1837 		       config_item_name(&reg->hr_item));
1838 
1839 out:
1840 	if (filp)
1841 		fput(filp);
1842 	if (inode)
1843 		iput(inode);
1844 	if (ret < 0) {
1845 		if (reg->hr_bdev) {
1846 			blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1847 			reg->hr_bdev = NULL;
1848 		}
1849 	}
1850 	return ret;
1851 }
1852 
o2hb_region_pid_read(struct o2hb_region * reg,char * page)1853 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1854                                       char *page)
1855 {
1856 	pid_t pid = 0;
1857 
1858 	spin_lock(&o2hb_live_lock);
1859 	if (reg->hr_task)
1860 		pid = task_pid_nr(reg->hr_task);
1861 	spin_unlock(&o2hb_live_lock);
1862 
1863 	if (!pid)
1864 		return 0;
1865 
1866 	return sprintf(page, "%u\n", pid);
1867 }
1868 
1869 struct o2hb_region_attribute {
1870 	struct configfs_attribute attr;
1871 	ssize_t (*show)(struct o2hb_region *, char *);
1872 	ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1873 };
1874 
1875 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1876 	.attr	= { .ca_owner = THIS_MODULE,
1877 		    .ca_name = "block_bytes",
1878 		    .ca_mode = S_IRUGO | S_IWUSR },
1879 	.show	= o2hb_region_block_bytes_read,
1880 	.store	= o2hb_region_block_bytes_write,
1881 };
1882 
1883 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1884 	.attr	= { .ca_owner = THIS_MODULE,
1885 		    .ca_name = "start_block",
1886 		    .ca_mode = S_IRUGO | S_IWUSR },
1887 	.show	= o2hb_region_start_block_read,
1888 	.store	= o2hb_region_start_block_write,
1889 };
1890 
1891 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1892 	.attr	= { .ca_owner = THIS_MODULE,
1893 		    .ca_name = "blocks",
1894 		    .ca_mode = S_IRUGO | S_IWUSR },
1895 	.show	= o2hb_region_blocks_read,
1896 	.store	= o2hb_region_blocks_write,
1897 };
1898 
1899 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1900 	.attr	= { .ca_owner = THIS_MODULE,
1901 		    .ca_name = "dev",
1902 		    .ca_mode = S_IRUGO | S_IWUSR },
1903 	.show	= o2hb_region_dev_read,
1904 	.store	= o2hb_region_dev_write,
1905 };
1906 
1907 static struct o2hb_region_attribute o2hb_region_attr_pid = {
1908        .attr   = { .ca_owner = THIS_MODULE,
1909                    .ca_name = "pid",
1910                    .ca_mode = S_IRUGO | S_IRUSR },
1911        .show   = o2hb_region_pid_read,
1912 };
1913 
1914 static struct configfs_attribute *o2hb_region_attrs[] = {
1915 	&o2hb_region_attr_block_bytes.attr,
1916 	&o2hb_region_attr_start_block.attr,
1917 	&o2hb_region_attr_blocks.attr,
1918 	&o2hb_region_attr_dev.attr,
1919 	&o2hb_region_attr_pid.attr,
1920 	NULL,
1921 };
1922 
o2hb_region_show(struct config_item * item,struct configfs_attribute * attr,char * page)1923 static ssize_t o2hb_region_show(struct config_item *item,
1924 				struct configfs_attribute *attr,
1925 				char *page)
1926 {
1927 	struct o2hb_region *reg = to_o2hb_region(item);
1928 	struct o2hb_region_attribute *o2hb_region_attr =
1929 		container_of(attr, struct o2hb_region_attribute, attr);
1930 	ssize_t ret = 0;
1931 
1932 	if (o2hb_region_attr->show)
1933 		ret = o2hb_region_attr->show(reg, page);
1934 	return ret;
1935 }
1936 
o2hb_region_store(struct config_item * item,struct configfs_attribute * attr,const char * page,size_t count)1937 static ssize_t o2hb_region_store(struct config_item *item,
1938 				 struct configfs_attribute *attr,
1939 				 const char *page, size_t count)
1940 {
1941 	struct o2hb_region *reg = to_o2hb_region(item);
1942 	struct o2hb_region_attribute *o2hb_region_attr =
1943 		container_of(attr, struct o2hb_region_attribute, attr);
1944 	ssize_t ret = -EINVAL;
1945 
1946 	if (o2hb_region_attr->store)
1947 		ret = o2hb_region_attr->store(reg, page, count);
1948 	return ret;
1949 }
1950 
1951 static struct configfs_item_operations o2hb_region_item_ops = {
1952 	.release		= o2hb_region_release,
1953 	.show_attribute		= o2hb_region_show,
1954 	.store_attribute	= o2hb_region_store,
1955 };
1956 
1957 static struct config_item_type o2hb_region_type = {
1958 	.ct_item_ops	= &o2hb_region_item_ops,
1959 	.ct_attrs	= o2hb_region_attrs,
1960 	.ct_owner	= THIS_MODULE,
1961 };
1962 
1963 /* heartbeat set */
1964 
1965 struct o2hb_heartbeat_group {
1966 	struct config_group hs_group;
1967 	/* some stuff? */
1968 };
1969 
to_o2hb_heartbeat_group(struct config_group * group)1970 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1971 {
1972 	return group ?
1973 		container_of(group, struct o2hb_heartbeat_group, hs_group)
1974 		: NULL;
1975 }
1976 
o2hb_debug_region_init(struct o2hb_region * reg,struct dentry * dir)1977 static int o2hb_debug_region_init(struct o2hb_region *reg, struct dentry *dir)
1978 {
1979 	int ret = -ENOMEM;
1980 
1981 	reg->hr_debug_dir =
1982 		debugfs_create_dir(config_item_name(&reg->hr_item), dir);
1983 	if (!reg->hr_debug_dir) {
1984 		mlog_errno(ret);
1985 		goto bail;
1986 	}
1987 
1988 	reg->hr_debug_livenodes =
1989 			o2hb_debug_create(O2HB_DEBUG_LIVENODES,
1990 					  reg->hr_debug_dir,
1991 					  &(reg->hr_db_livenodes),
1992 					  sizeof(*(reg->hr_db_livenodes)),
1993 					  O2HB_DB_TYPE_REGION_LIVENODES,
1994 					  sizeof(reg->hr_live_node_bitmap),
1995 					  O2NM_MAX_NODES, reg);
1996 	if (!reg->hr_debug_livenodes) {
1997 		mlog_errno(ret);
1998 		goto bail;
1999 	}
2000 
2001 	reg->hr_debug_regnum =
2002 			o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER,
2003 					  reg->hr_debug_dir,
2004 					  &(reg->hr_db_regnum),
2005 					  sizeof(*(reg->hr_db_regnum)),
2006 					  O2HB_DB_TYPE_REGION_NUMBER,
2007 					  0, O2NM_MAX_NODES, reg);
2008 	if (!reg->hr_debug_regnum) {
2009 		mlog_errno(ret);
2010 		goto bail;
2011 	}
2012 
2013 	reg->hr_debug_elapsed_time =
2014 			o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME,
2015 					  reg->hr_debug_dir,
2016 					  &(reg->hr_db_elapsed_time),
2017 					  sizeof(*(reg->hr_db_elapsed_time)),
2018 					  O2HB_DB_TYPE_REGION_ELAPSED_TIME,
2019 					  0, 0, reg);
2020 	if (!reg->hr_debug_elapsed_time) {
2021 		mlog_errno(ret);
2022 		goto bail;
2023 	}
2024 
2025 	reg->hr_debug_pinned =
2026 			o2hb_debug_create(O2HB_DEBUG_REGION_PINNED,
2027 					  reg->hr_debug_dir,
2028 					  &(reg->hr_db_pinned),
2029 					  sizeof(*(reg->hr_db_pinned)),
2030 					  O2HB_DB_TYPE_REGION_PINNED,
2031 					  0, 0, reg);
2032 	if (!reg->hr_debug_pinned) {
2033 		mlog_errno(ret);
2034 		goto bail;
2035 	}
2036 
2037 	ret = 0;
2038 bail:
2039 	return ret;
2040 }
2041 
o2hb_heartbeat_group_make_item(struct config_group * group,const char * name)2042 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
2043 							  const char *name)
2044 {
2045 	struct o2hb_region *reg = NULL;
2046 	int ret;
2047 
2048 	reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
2049 	if (reg == NULL)
2050 		return ERR_PTR(-ENOMEM);
2051 
2052 	if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) {
2053 		ret = -ENAMETOOLONG;
2054 		goto free;
2055 	}
2056 
2057 	spin_lock(&o2hb_live_lock);
2058 	reg->hr_region_num = 0;
2059 	if (o2hb_global_heartbeat_active()) {
2060 		reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap,
2061 							 O2NM_MAX_REGIONS);
2062 		if (reg->hr_region_num >= O2NM_MAX_REGIONS) {
2063 			spin_unlock(&o2hb_live_lock);
2064 			ret = -EFBIG;
2065 			goto free;
2066 		}
2067 		set_bit(reg->hr_region_num, o2hb_region_bitmap);
2068 	}
2069 	list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
2070 	spin_unlock(&o2hb_live_lock);
2071 
2072 	config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
2073 
2074 	ret = o2hb_debug_region_init(reg, o2hb_debug_dir);
2075 	if (ret) {
2076 		config_item_put(&reg->hr_item);
2077 		goto free;
2078 	}
2079 
2080 	return &reg->hr_item;
2081 free:
2082 	kfree(reg);
2083 	return ERR_PTR(ret);
2084 }
2085 
o2hb_heartbeat_group_drop_item(struct config_group * group,struct config_item * item)2086 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
2087 					   struct config_item *item)
2088 {
2089 	struct task_struct *hb_task;
2090 	struct o2hb_region *reg = to_o2hb_region(item);
2091 	int quorum_region = 0;
2092 
2093 	/* stop the thread when the user removes the region dir */
2094 	spin_lock(&o2hb_live_lock);
2095 	if (o2hb_global_heartbeat_active()) {
2096 		clear_bit(reg->hr_region_num, o2hb_region_bitmap);
2097 		clear_bit(reg->hr_region_num, o2hb_live_region_bitmap);
2098 		if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
2099 			quorum_region = 1;
2100 		clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
2101 	}
2102 	hb_task = reg->hr_task;
2103 	reg->hr_task = NULL;
2104 	reg->hr_item_dropped = 1;
2105 	spin_unlock(&o2hb_live_lock);
2106 
2107 	if (hb_task)
2108 		kthread_stop(hb_task);
2109 
2110 	/*
2111 	 * If we're racing a dev_write(), we need to wake them.  They will
2112 	 * check reg->hr_task
2113 	 */
2114 	if (atomic_read(&reg->hr_steady_iterations) != 0) {
2115 		atomic_set(&reg->hr_steady_iterations, 0);
2116 		wake_up(&o2hb_steady_queue);
2117 	}
2118 
2119 	if (o2hb_global_heartbeat_active())
2120 		printk(KERN_NOTICE "o2hb: Heartbeat stopped on region %s\n",
2121 		       config_item_name(&reg->hr_item));
2122 
2123 	config_item_put(item);
2124 
2125 	if (!o2hb_global_heartbeat_active() || !quorum_region)
2126 		return;
2127 
2128 	/*
2129 	 * If global heartbeat active and there are dependent users,
2130 	 * pin all regions if quorum region count <= CUT_OFF
2131 	 */
2132 	spin_lock(&o2hb_live_lock);
2133 
2134 	if (!o2hb_dependent_users)
2135 		goto unlock;
2136 
2137 	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
2138 			   O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
2139 		o2hb_region_pin(NULL);
2140 
2141 unlock:
2142 	spin_unlock(&o2hb_live_lock);
2143 }
2144 
2145 struct o2hb_heartbeat_group_attribute {
2146 	struct configfs_attribute attr;
2147 	ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
2148 	ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
2149 };
2150 
o2hb_heartbeat_group_show(struct config_item * item,struct configfs_attribute * attr,char * page)2151 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
2152 					 struct configfs_attribute *attr,
2153 					 char *page)
2154 {
2155 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
2156 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
2157 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
2158 	ssize_t ret = 0;
2159 
2160 	if (o2hb_heartbeat_group_attr->show)
2161 		ret = o2hb_heartbeat_group_attr->show(reg, page);
2162 	return ret;
2163 }
2164 
o2hb_heartbeat_group_store(struct config_item * item,struct configfs_attribute * attr,const char * page,size_t count)2165 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
2166 					  struct configfs_attribute *attr,
2167 					  const char *page, size_t count)
2168 {
2169 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
2170 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
2171 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
2172 	ssize_t ret = -EINVAL;
2173 
2174 	if (o2hb_heartbeat_group_attr->store)
2175 		ret = o2hb_heartbeat_group_attr->store(reg, page, count);
2176 	return ret;
2177 }
2178 
o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group * group,char * page)2179 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
2180 						     char *page)
2181 {
2182 	return sprintf(page, "%u\n", o2hb_dead_threshold);
2183 }
2184 
o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group * group,const char * page,size_t count)2185 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
2186 						    const char *page,
2187 						    size_t count)
2188 {
2189 	unsigned long tmp;
2190 	char *p = (char *)page;
2191 
2192 	tmp = simple_strtoul(p, &p, 10);
2193 	if (!p || (*p && (*p != '\n')))
2194                 return -EINVAL;
2195 
2196 	/* this will validate ranges for us. */
2197 	o2hb_dead_threshold_set((unsigned int) tmp);
2198 
2199 	return count;
2200 }
2201 
2202 static
o2hb_heartbeat_group_mode_show(struct o2hb_heartbeat_group * group,char * page)2203 ssize_t o2hb_heartbeat_group_mode_show(struct o2hb_heartbeat_group *group,
2204 				       char *page)
2205 {
2206 	return sprintf(page, "%s\n",
2207 		       o2hb_heartbeat_mode_desc[o2hb_heartbeat_mode]);
2208 }
2209 
2210 static
o2hb_heartbeat_group_mode_store(struct o2hb_heartbeat_group * group,const char * page,size_t count)2211 ssize_t o2hb_heartbeat_group_mode_store(struct o2hb_heartbeat_group *group,
2212 					const char *page, size_t count)
2213 {
2214 	unsigned int i;
2215 	int ret;
2216 	size_t len;
2217 
2218 	len = (page[count - 1] == '\n') ? count - 1 : count;
2219 	if (!len)
2220 		return -EINVAL;
2221 
2222 	for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) {
2223 		if (strnicmp(page, o2hb_heartbeat_mode_desc[i], len))
2224 			continue;
2225 
2226 		ret = o2hb_global_hearbeat_mode_set(i);
2227 		if (!ret)
2228 			printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n",
2229 			       o2hb_heartbeat_mode_desc[i]);
2230 		return count;
2231 	}
2232 
2233 	return -EINVAL;
2234 
2235 }
2236 
2237 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
2238 	.attr	= { .ca_owner = THIS_MODULE,
2239 		    .ca_name = "dead_threshold",
2240 		    .ca_mode = S_IRUGO | S_IWUSR },
2241 	.show	= o2hb_heartbeat_group_threshold_show,
2242 	.store	= o2hb_heartbeat_group_threshold_store,
2243 };
2244 
2245 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_mode = {
2246 	.attr   = { .ca_owner = THIS_MODULE,
2247 		.ca_name = "mode",
2248 		.ca_mode = S_IRUGO | S_IWUSR },
2249 	.show   = o2hb_heartbeat_group_mode_show,
2250 	.store  = o2hb_heartbeat_group_mode_store,
2251 };
2252 
2253 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
2254 	&o2hb_heartbeat_group_attr_threshold.attr,
2255 	&o2hb_heartbeat_group_attr_mode.attr,
2256 	NULL,
2257 };
2258 
2259 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
2260 	.show_attribute		= o2hb_heartbeat_group_show,
2261 	.store_attribute	= o2hb_heartbeat_group_store,
2262 };
2263 
2264 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
2265 	.make_item	= o2hb_heartbeat_group_make_item,
2266 	.drop_item	= o2hb_heartbeat_group_drop_item,
2267 };
2268 
2269 static struct config_item_type o2hb_heartbeat_group_type = {
2270 	.ct_group_ops	= &o2hb_heartbeat_group_group_ops,
2271 	.ct_item_ops	= &o2hb_hearbeat_group_item_ops,
2272 	.ct_attrs	= o2hb_heartbeat_group_attrs,
2273 	.ct_owner	= THIS_MODULE,
2274 };
2275 
2276 /* this is just here to avoid touching group in heartbeat.h which the
2277  * entire damn world #includes */
o2hb_alloc_hb_set(void)2278 struct config_group *o2hb_alloc_hb_set(void)
2279 {
2280 	struct o2hb_heartbeat_group *hs = NULL;
2281 	struct config_group *ret = NULL;
2282 
2283 	hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
2284 	if (hs == NULL)
2285 		goto out;
2286 
2287 	config_group_init_type_name(&hs->hs_group, "heartbeat",
2288 				    &o2hb_heartbeat_group_type);
2289 
2290 	ret = &hs->hs_group;
2291 out:
2292 	if (ret == NULL)
2293 		kfree(hs);
2294 	return ret;
2295 }
2296 
o2hb_free_hb_set(struct config_group * group)2297 void o2hb_free_hb_set(struct config_group *group)
2298 {
2299 	struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
2300 	kfree(hs);
2301 }
2302 
2303 /* hb callback registration and issuing */
2304 
hbcall_from_type(enum o2hb_callback_type type)2305 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
2306 {
2307 	if (type == O2HB_NUM_CB)
2308 		return ERR_PTR(-EINVAL);
2309 
2310 	return &o2hb_callbacks[type];
2311 }
2312 
o2hb_setup_callback(struct o2hb_callback_func * hc,enum o2hb_callback_type type,o2hb_cb_func * func,void * data,int priority)2313 void o2hb_setup_callback(struct o2hb_callback_func *hc,
2314 			 enum o2hb_callback_type type,
2315 			 o2hb_cb_func *func,
2316 			 void *data,
2317 			 int priority)
2318 {
2319 	INIT_LIST_HEAD(&hc->hc_item);
2320 	hc->hc_func = func;
2321 	hc->hc_data = data;
2322 	hc->hc_priority = priority;
2323 	hc->hc_type = type;
2324 	hc->hc_magic = O2HB_CB_MAGIC;
2325 }
2326 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
2327 
2328 /*
2329  * In local heartbeat mode, region_uuid passed matches the dlm domain name.
2330  * In global heartbeat mode, region_uuid passed is NULL.
2331  *
2332  * In local, we only pin the matching region. In global we pin all the active
2333  * regions.
2334  */
o2hb_region_pin(const char * region_uuid)2335 static int o2hb_region_pin(const char *region_uuid)
2336 {
2337 	int ret = 0, found = 0;
2338 	struct o2hb_region *reg;
2339 	char *uuid;
2340 
2341 	assert_spin_locked(&o2hb_live_lock);
2342 
2343 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2344 		uuid = config_item_name(&reg->hr_item);
2345 
2346 		/* local heartbeat */
2347 		if (region_uuid) {
2348 			if (strcmp(region_uuid, uuid))
2349 				continue;
2350 			found = 1;
2351 		}
2352 
2353 		if (reg->hr_item_pinned || reg->hr_item_dropped)
2354 			goto skip_pin;
2355 
2356 		/* Ignore ENOENT only for local hb (userdlm domain) */
2357 		ret = o2nm_depend_item(&reg->hr_item);
2358 		if (!ret) {
2359 			mlog(ML_CLUSTER, "Pin region %s\n", uuid);
2360 			reg->hr_item_pinned = 1;
2361 		} else {
2362 			if (ret == -ENOENT && found)
2363 				ret = 0;
2364 			else {
2365 				mlog(ML_ERROR, "Pin region %s fails with %d\n",
2366 				     uuid, ret);
2367 				break;
2368 			}
2369 		}
2370 skip_pin:
2371 		if (found)
2372 			break;
2373 	}
2374 
2375 	return ret;
2376 }
2377 
2378 /*
2379  * In local heartbeat mode, region_uuid passed matches the dlm domain name.
2380  * In global heartbeat mode, region_uuid passed is NULL.
2381  *
2382  * In local, we only unpin the matching region. In global we unpin all the
2383  * active regions.
2384  */
o2hb_region_unpin(const char * region_uuid)2385 static void o2hb_region_unpin(const char *region_uuid)
2386 {
2387 	struct o2hb_region *reg;
2388 	char *uuid;
2389 	int found = 0;
2390 
2391 	assert_spin_locked(&o2hb_live_lock);
2392 
2393 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2394 		uuid = config_item_name(&reg->hr_item);
2395 		if (region_uuid) {
2396 			if (strcmp(region_uuid, uuid))
2397 				continue;
2398 			found = 1;
2399 		}
2400 
2401 		if (reg->hr_item_pinned) {
2402 			mlog(ML_CLUSTER, "Unpin region %s\n", uuid);
2403 			o2nm_undepend_item(&reg->hr_item);
2404 			reg->hr_item_pinned = 0;
2405 		}
2406 		if (found)
2407 			break;
2408 	}
2409 }
2410 
o2hb_region_inc_user(const char * region_uuid)2411 static int o2hb_region_inc_user(const char *region_uuid)
2412 {
2413 	int ret = 0;
2414 
2415 	spin_lock(&o2hb_live_lock);
2416 
2417 	/* local heartbeat */
2418 	if (!o2hb_global_heartbeat_active()) {
2419 	    ret = o2hb_region_pin(region_uuid);
2420 	    goto unlock;
2421 	}
2422 
2423 	/*
2424 	 * if global heartbeat active and this is the first dependent user,
2425 	 * pin all regions if quorum region count <= CUT_OFF
2426 	 */
2427 	o2hb_dependent_users++;
2428 	if (o2hb_dependent_users > 1)
2429 		goto unlock;
2430 
2431 	if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
2432 			   O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
2433 		ret = o2hb_region_pin(NULL);
2434 
2435 unlock:
2436 	spin_unlock(&o2hb_live_lock);
2437 	return ret;
2438 }
2439 
o2hb_region_dec_user(const char * region_uuid)2440 void o2hb_region_dec_user(const char *region_uuid)
2441 {
2442 	spin_lock(&o2hb_live_lock);
2443 
2444 	/* local heartbeat */
2445 	if (!o2hb_global_heartbeat_active()) {
2446 	    o2hb_region_unpin(region_uuid);
2447 	    goto unlock;
2448 	}
2449 
2450 	/*
2451 	 * if global heartbeat active and there are no dependent users,
2452 	 * unpin all quorum regions
2453 	 */
2454 	o2hb_dependent_users--;
2455 	if (!o2hb_dependent_users)
2456 		o2hb_region_unpin(NULL);
2457 
2458 unlock:
2459 	spin_unlock(&o2hb_live_lock);
2460 }
2461 
o2hb_register_callback(const char * region_uuid,struct o2hb_callback_func * hc)2462 int o2hb_register_callback(const char *region_uuid,
2463 			   struct o2hb_callback_func *hc)
2464 {
2465 	struct o2hb_callback_func *tmp;
2466 	struct list_head *iter;
2467 	struct o2hb_callback *hbcall;
2468 	int ret;
2469 
2470 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
2471 	BUG_ON(!list_empty(&hc->hc_item));
2472 
2473 	hbcall = hbcall_from_type(hc->hc_type);
2474 	if (IS_ERR(hbcall)) {
2475 		ret = PTR_ERR(hbcall);
2476 		goto out;
2477 	}
2478 
2479 	if (region_uuid) {
2480 		ret = o2hb_region_inc_user(region_uuid);
2481 		if (ret) {
2482 			mlog_errno(ret);
2483 			goto out;
2484 		}
2485 	}
2486 
2487 	down_write(&o2hb_callback_sem);
2488 
2489 	list_for_each(iter, &hbcall->list) {
2490 		tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
2491 		if (hc->hc_priority < tmp->hc_priority) {
2492 			list_add_tail(&hc->hc_item, iter);
2493 			break;
2494 		}
2495 	}
2496 	if (list_empty(&hc->hc_item))
2497 		list_add_tail(&hc->hc_item, &hbcall->list);
2498 
2499 	up_write(&o2hb_callback_sem);
2500 	ret = 0;
2501 out:
2502 	mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n",
2503 	     ret, __builtin_return_address(0), hc);
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(o2hb_register_callback);
2507 
o2hb_unregister_callback(const char * region_uuid,struct o2hb_callback_func * hc)2508 void o2hb_unregister_callback(const char *region_uuid,
2509 			      struct o2hb_callback_func *hc)
2510 {
2511 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
2512 
2513 	mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n",
2514 	     __builtin_return_address(0), hc);
2515 
2516 	/* XXX Can this happen _with_ a region reference? */
2517 	if (list_empty(&hc->hc_item))
2518 		return;
2519 
2520 	if (region_uuid)
2521 		o2hb_region_dec_user(region_uuid);
2522 
2523 	down_write(&o2hb_callback_sem);
2524 
2525 	list_del_init(&hc->hc_item);
2526 
2527 	up_write(&o2hb_callback_sem);
2528 }
2529 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
2530 
o2hb_check_node_heartbeating(u8 node_num)2531 int o2hb_check_node_heartbeating(u8 node_num)
2532 {
2533 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
2534 
2535 	o2hb_fill_node_map(testing_map, sizeof(testing_map));
2536 	if (!test_bit(node_num, testing_map)) {
2537 		mlog(ML_HEARTBEAT,
2538 		     "node (%u) does not have heartbeating enabled.\n",
2539 		     node_num);
2540 		return 0;
2541 	}
2542 
2543 	return 1;
2544 }
2545 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
2546 
o2hb_check_node_heartbeating_from_callback(u8 node_num)2547 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
2548 {
2549 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
2550 
2551 	o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
2552 	if (!test_bit(node_num, testing_map)) {
2553 		mlog(ML_HEARTBEAT,
2554 		     "node (%u) does not have heartbeating enabled.\n",
2555 		     node_num);
2556 		return 0;
2557 	}
2558 
2559 	return 1;
2560 }
2561 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
2562 
2563 /* Makes sure our local node is configured with a node number, and is
2564  * heartbeating. */
o2hb_check_local_node_heartbeating(void)2565 int o2hb_check_local_node_heartbeating(void)
2566 {
2567 	u8 node_num;
2568 
2569 	/* if this node was set then we have networking */
2570 	node_num = o2nm_this_node();
2571 	if (node_num == O2NM_MAX_NODES) {
2572 		mlog(ML_HEARTBEAT, "this node has not been configured.\n");
2573 		return 0;
2574 	}
2575 
2576 	return o2hb_check_node_heartbeating(node_num);
2577 }
2578 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
2579 
2580 /*
2581  * this is just a hack until we get the plumbing which flips file systems
2582  * read only and drops the hb ref instead of killing the node dead.
2583  */
o2hb_stop_all_regions(void)2584 void o2hb_stop_all_regions(void)
2585 {
2586 	struct o2hb_region *reg;
2587 
2588 	mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
2589 
2590 	spin_lock(&o2hb_live_lock);
2591 
2592 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
2593 		reg->hr_unclean_stop = 1;
2594 
2595 	spin_unlock(&o2hb_live_lock);
2596 }
2597 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
2598 
o2hb_get_all_regions(char * region_uuids,u8 max_regions)2599 int o2hb_get_all_regions(char *region_uuids, u8 max_regions)
2600 {
2601 	struct o2hb_region *reg;
2602 	int numregs = 0;
2603 	char *p;
2604 
2605 	spin_lock(&o2hb_live_lock);
2606 
2607 	p = region_uuids;
2608 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2609 		mlog(0, "Region: %s\n", config_item_name(&reg->hr_item));
2610 		if (numregs < max_regions) {
2611 			memcpy(p, config_item_name(&reg->hr_item),
2612 			       O2HB_MAX_REGION_NAME_LEN);
2613 			p += O2HB_MAX_REGION_NAME_LEN;
2614 		}
2615 		numregs++;
2616 	}
2617 
2618 	spin_unlock(&o2hb_live_lock);
2619 
2620 	return numregs;
2621 }
2622 EXPORT_SYMBOL_GPL(o2hb_get_all_regions);
2623 
o2hb_global_heartbeat_active(void)2624 int o2hb_global_heartbeat_active(void)
2625 {
2626 	return (o2hb_heartbeat_mode == O2HB_HEARTBEAT_GLOBAL);
2627 }
2628 EXPORT_SYMBOL(o2hb_global_heartbeat_active);
2629