1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/swap.h>
21 #include <linux/splice.h>
22 
23 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
24 MODULE_ALIAS("devname:fuse");
25 
26 static struct kmem_cache *fuse_req_cachep;
27 
fuse_get_conn(struct file * file)28 static struct fuse_conn *fuse_get_conn(struct file *file)
29 {
30 	/*
31 	 * Lockless access is OK, because file->private data is set
32 	 * once during mount and is valid until the file is released.
33 	 */
34 	return file->private_data;
35 }
36 
fuse_request_init(struct fuse_req * req)37 static void fuse_request_init(struct fuse_req *req)
38 {
39 	memset(req, 0, sizeof(*req));
40 	INIT_LIST_HEAD(&req->list);
41 	INIT_LIST_HEAD(&req->intr_entry);
42 	init_waitqueue_head(&req->waitq);
43 	atomic_set(&req->count, 1);
44 }
45 
fuse_request_alloc(void)46 struct fuse_req *fuse_request_alloc(void)
47 {
48 	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
49 	if (req)
50 		fuse_request_init(req);
51 	return req;
52 }
53 EXPORT_SYMBOL_GPL(fuse_request_alloc);
54 
fuse_request_alloc_nofs(void)55 struct fuse_req *fuse_request_alloc_nofs(void)
56 {
57 	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
58 	if (req)
59 		fuse_request_init(req);
60 	return req;
61 }
62 
fuse_request_free(struct fuse_req * req)63 void fuse_request_free(struct fuse_req *req)
64 {
65 	kmem_cache_free(fuse_req_cachep, req);
66 }
67 
block_sigs(sigset_t * oldset)68 static void block_sigs(sigset_t *oldset)
69 {
70 	sigset_t mask;
71 
72 	siginitsetinv(&mask, sigmask(SIGKILL));
73 	sigprocmask(SIG_BLOCK, &mask, oldset);
74 }
75 
restore_sigs(sigset_t * oldset)76 static void restore_sigs(sigset_t *oldset)
77 {
78 	sigprocmask(SIG_SETMASK, oldset, NULL);
79 }
80 
__fuse_get_request(struct fuse_req * req)81 static void __fuse_get_request(struct fuse_req *req)
82 {
83 	atomic_inc(&req->count);
84 }
85 
86 /* Must be called with > 1 refcount */
__fuse_put_request(struct fuse_req * req)87 static void __fuse_put_request(struct fuse_req *req)
88 {
89 	BUG_ON(atomic_read(&req->count) < 2);
90 	atomic_dec(&req->count);
91 }
92 
fuse_req_init_context(struct fuse_req * req)93 static void fuse_req_init_context(struct fuse_req *req)
94 {
95 	req->in.h.uid = current_fsuid();
96 	req->in.h.gid = current_fsgid();
97 	req->in.h.pid = current->pid;
98 }
99 
fuse_get_req(struct fuse_conn * fc)100 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
101 {
102 	struct fuse_req *req;
103 	sigset_t oldset;
104 	int intr;
105 	int err;
106 
107 	atomic_inc(&fc->num_waiting);
108 	block_sigs(&oldset);
109 	intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
110 	restore_sigs(&oldset);
111 	err = -EINTR;
112 	if (intr)
113 		goto out;
114 
115 	err = -ENOTCONN;
116 	if (!fc->connected)
117 		goto out;
118 
119 	req = fuse_request_alloc();
120 	err = -ENOMEM;
121 	if (!req)
122 		goto out;
123 
124 	fuse_req_init_context(req);
125 	req->waiting = 1;
126 	return req;
127 
128  out:
129 	atomic_dec(&fc->num_waiting);
130 	return ERR_PTR(err);
131 }
132 EXPORT_SYMBOL_GPL(fuse_get_req);
133 
134 /*
135  * Return request in fuse_file->reserved_req.  However that may
136  * currently be in use.  If that is the case, wait for it to become
137  * available.
138  */
get_reserved_req(struct fuse_conn * fc,struct file * file)139 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
140 					 struct file *file)
141 {
142 	struct fuse_req *req = NULL;
143 	struct fuse_file *ff = file->private_data;
144 
145 	do {
146 		wait_event(fc->reserved_req_waitq, ff->reserved_req);
147 		spin_lock(&fc->lock);
148 		if (ff->reserved_req) {
149 			req = ff->reserved_req;
150 			ff->reserved_req = NULL;
151 			get_file(file);
152 			req->stolen_file = file;
153 		}
154 		spin_unlock(&fc->lock);
155 	} while (!req);
156 
157 	return req;
158 }
159 
160 /*
161  * Put stolen request back into fuse_file->reserved_req
162  */
put_reserved_req(struct fuse_conn * fc,struct fuse_req * req)163 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
164 {
165 	struct file *file = req->stolen_file;
166 	struct fuse_file *ff = file->private_data;
167 
168 	spin_lock(&fc->lock);
169 	fuse_request_init(req);
170 	BUG_ON(ff->reserved_req);
171 	ff->reserved_req = req;
172 	wake_up_all(&fc->reserved_req_waitq);
173 	spin_unlock(&fc->lock);
174 	fput(file);
175 }
176 
177 /*
178  * Gets a requests for a file operation, always succeeds
179  *
180  * This is used for sending the FLUSH request, which must get to
181  * userspace, due to POSIX locks which may need to be unlocked.
182  *
183  * If allocation fails due to OOM, use the reserved request in
184  * fuse_file.
185  *
186  * This is very unlikely to deadlock accidentally, since the
187  * filesystem should not have it's own file open.  If deadlock is
188  * intentional, it can still be broken by "aborting" the filesystem.
189  */
fuse_get_req_nofail(struct fuse_conn * fc,struct file * file)190 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
191 {
192 	struct fuse_req *req;
193 
194 	atomic_inc(&fc->num_waiting);
195 	wait_event(fc->blocked_waitq, !fc->blocked);
196 	req = fuse_request_alloc();
197 	if (!req)
198 		req = get_reserved_req(fc, file);
199 
200 	fuse_req_init_context(req);
201 	req->waiting = 1;
202 	return req;
203 }
204 
fuse_put_request(struct fuse_conn * fc,struct fuse_req * req)205 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
206 {
207 	if (atomic_dec_and_test(&req->count)) {
208 		if (req->waiting)
209 			atomic_dec(&fc->num_waiting);
210 
211 		if (req->stolen_file)
212 			put_reserved_req(fc, req);
213 		else
214 			fuse_request_free(req);
215 	}
216 }
217 EXPORT_SYMBOL_GPL(fuse_put_request);
218 
len_args(unsigned numargs,struct fuse_arg * args)219 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
220 {
221 	unsigned nbytes = 0;
222 	unsigned i;
223 
224 	for (i = 0; i < numargs; i++)
225 		nbytes += args[i].size;
226 
227 	return nbytes;
228 }
229 
fuse_get_unique(struct fuse_conn * fc)230 static u64 fuse_get_unique(struct fuse_conn *fc)
231 {
232 	fc->reqctr++;
233 	/* zero is special */
234 	if (fc->reqctr == 0)
235 		fc->reqctr = 1;
236 
237 	return fc->reqctr;
238 }
239 
queue_request(struct fuse_conn * fc,struct fuse_req * req)240 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
241 {
242 	req->in.h.len = sizeof(struct fuse_in_header) +
243 		len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
244 	list_add_tail(&req->list, &fc->pending);
245 	req->state = FUSE_REQ_PENDING;
246 	if (!req->waiting) {
247 		req->waiting = 1;
248 		atomic_inc(&fc->num_waiting);
249 	}
250 	wake_up(&fc->waitq);
251 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
252 }
253 
fuse_queue_forget(struct fuse_conn * fc,struct fuse_forget_link * forget,u64 nodeid,u64 nlookup)254 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
255 		       u64 nodeid, u64 nlookup)
256 {
257 	forget->forget_one.nodeid = nodeid;
258 	forget->forget_one.nlookup = nlookup;
259 
260 	spin_lock(&fc->lock);
261 	fc->forget_list_tail->next = forget;
262 	fc->forget_list_tail = forget;
263 	wake_up(&fc->waitq);
264 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
265 	spin_unlock(&fc->lock);
266 }
267 
flush_bg_queue(struct fuse_conn * fc)268 static void flush_bg_queue(struct fuse_conn *fc)
269 {
270 	while (fc->active_background < fc->max_background &&
271 	       !list_empty(&fc->bg_queue)) {
272 		struct fuse_req *req;
273 
274 		req = list_entry(fc->bg_queue.next, struct fuse_req, list);
275 		list_del(&req->list);
276 		fc->active_background++;
277 		req->in.h.unique = fuse_get_unique(fc);
278 		queue_request(fc, req);
279 	}
280 }
281 
282 /*
283  * This function is called when a request is finished.  Either a reply
284  * has arrived or it was aborted (and not yet sent) or some error
285  * occurred during communication with userspace, or the device file
286  * was closed.  The requester thread is woken up (if still waiting),
287  * the 'end' callback is called if given, else the reference to the
288  * request is released
289  *
290  * Called with fc->lock, unlocks it
291  */
request_end(struct fuse_conn * fc,struct fuse_req * req)292 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
293 __releases(fc->lock)
294 {
295 	void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
296 	req->end = NULL;
297 	list_del(&req->list);
298 	list_del(&req->intr_entry);
299 	req->state = FUSE_REQ_FINISHED;
300 	if (req->background) {
301 		if (fc->num_background == fc->max_background) {
302 			fc->blocked = 0;
303 			wake_up_all(&fc->blocked_waitq);
304 		}
305 		if (fc->num_background == fc->congestion_threshold &&
306 		    fc->connected && fc->bdi_initialized) {
307 			clear_bdi_congested(&fc->bdi, BLK_RW_SYNC);
308 			clear_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
309 		}
310 		fc->num_background--;
311 		fc->active_background--;
312 		flush_bg_queue(fc);
313 	}
314 	spin_unlock(&fc->lock);
315 	wake_up(&req->waitq);
316 	if (end)
317 		end(fc, req);
318 	fuse_put_request(fc, req);
319 }
320 
wait_answer_interruptible(struct fuse_conn * fc,struct fuse_req * req)321 static void wait_answer_interruptible(struct fuse_conn *fc,
322 				      struct fuse_req *req)
323 __releases(fc->lock)
324 __acquires(fc->lock)
325 {
326 	if (signal_pending(current))
327 		return;
328 
329 	spin_unlock(&fc->lock);
330 	wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
331 	spin_lock(&fc->lock);
332 }
333 
queue_interrupt(struct fuse_conn * fc,struct fuse_req * req)334 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
335 {
336 	list_add_tail(&req->intr_entry, &fc->interrupts);
337 	wake_up(&fc->waitq);
338 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
339 }
340 
request_wait_answer(struct fuse_conn * fc,struct fuse_req * req)341 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
342 __releases(fc->lock)
343 __acquires(fc->lock)
344 {
345 	if (!fc->no_interrupt) {
346 		/* Any signal may interrupt this */
347 		wait_answer_interruptible(fc, req);
348 
349 		if (req->aborted)
350 			goto aborted;
351 		if (req->state == FUSE_REQ_FINISHED)
352 			return;
353 
354 		req->interrupted = 1;
355 		if (req->state == FUSE_REQ_SENT)
356 			queue_interrupt(fc, req);
357 	}
358 
359 	if (!req->force) {
360 		sigset_t oldset;
361 
362 		/* Only fatal signals may interrupt this */
363 		block_sigs(&oldset);
364 		wait_answer_interruptible(fc, req);
365 		restore_sigs(&oldset);
366 
367 		if (req->aborted)
368 			goto aborted;
369 		if (req->state == FUSE_REQ_FINISHED)
370 			return;
371 
372 		/* Request is not yet in userspace, bail out */
373 		if (req->state == FUSE_REQ_PENDING) {
374 			list_del(&req->list);
375 			__fuse_put_request(req);
376 			req->out.h.error = -EINTR;
377 			return;
378 		}
379 	}
380 
381 	/*
382 	 * Either request is already in userspace, or it was forced.
383 	 * Wait it out.
384 	 */
385 	spin_unlock(&fc->lock);
386 	wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
387 	spin_lock(&fc->lock);
388 
389 	if (!req->aborted)
390 		return;
391 
392  aborted:
393 	BUG_ON(req->state != FUSE_REQ_FINISHED);
394 	if (req->locked) {
395 		/* This is uninterruptible sleep, because data is
396 		   being copied to/from the buffers of req.  During
397 		   locked state, there mustn't be any filesystem
398 		   operation (e.g. page fault), since that could lead
399 		   to deadlock */
400 		spin_unlock(&fc->lock);
401 		wait_event(req->waitq, !req->locked);
402 		spin_lock(&fc->lock);
403 	}
404 }
405 
fuse_request_send(struct fuse_conn * fc,struct fuse_req * req)406 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
407 {
408 	req->isreply = 1;
409 	spin_lock(&fc->lock);
410 	if (!fc->connected)
411 		req->out.h.error = -ENOTCONN;
412 	else if (fc->conn_error)
413 		req->out.h.error = -ECONNREFUSED;
414 	else {
415 		req->in.h.unique = fuse_get_unique(fc);
416 		queue_request(fc, req);
417 		/* acquire extra reference, since request is still needed
418 		   after request_end() */
419 		__fuse_get_request(req);
420 
421 		request_wait_answer(fc, req);
422 	}
423 	spin_unlock(&fc->lock);
424 }
425 EXPORT_SYMBOL_GPL(fuse_request_send);
426 
fuse_request_send_nowait_locked(struct fuse_conn * fc,struct fuse_req * req)427 static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
428 					    struct fuse_req *req)
429 {
430 	req->background = 1;
431 	fc->num_background++;
432 	if (fc->num_background == fc->max_background)
433 		fc->blocked = 1;
434 	if (fc->num_background == fc->congestion_threshold &&
435 	    fc->bdi_initialized) {
436 		set_bdi_congested(&fc->bdi, BLK_RW_SYNC);
437 		set_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
438 	}
439 	list_add_tail(&req->list, &fc->bg_queue);
440 	flush_bg_queue(fc);
441 }
442 
fuse_request_send_nowait(struct fuse_conn * fc,struct fuse_req * req)443 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
444 {
445 	spin_lock(&fc->lock);
446 	if (fc->connected) {
447 		fuse_request_send_nowait_locked(fc, req);
448 		spin_unlock(&fc->lock);
449 	} else {
450 		req->out.h.error = -ENOTCONN;
451 		request_end(fc, req);
452 	}
453 }
454 
fuse_request_send_background(struct fuse_conn * fc,struct fuse_req * req)455 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
456 {
457 	req->isreply = 1;
458 	fuse_request_send_nowait(fc, req);
459 }
460 EXPORT_SYMBOL_GPL(fuse_request_send_background);
461 
fuse_request_send_notify_reply(struct fuse_conn * fc,struct fuse_req * req,u64 unique)462 static int fuse_request_send_notify_reply(struct fuse_conn *fc,
463 					  struct fuse_req *req, u64 unique)
464 {
465 	int err = -ENODEV;
466 
467 	req->isreply = 0;
468 	req->in.h.unique = unique;
469 	spin_lock(&fc->lock);
470 	if (fc->connected) {
471 		queue_request(fc, req);
472 		err = 0;
473 	}
474 	spin_unlock(&fc->lock);
475 
476 	return err;
477 }
478 
479 /*
480  * Called under fc->lock
481  *
482  * fc->connected must have been checked previously
483  */
fuse_request_send_background_locked(struct fuse_conn * fc,struct fuse_req * req)484 void fuse_request_send_background_locked(struct fuse_conn *fc,
485 					 struct fuse_req *req)
486 {
487 	req->isreply = 1;
488 	fuse_request_send_nowait_locked(fc, req);
489 }
490 
491 /*
492  * Lock the request.  Up to the next unlock_request() there mustn't be
493  * anything that could cause a page-fault.  If the request was already
494  * aborted bail out.
495  */
lock_request(struct fuse_conn * fc,struct fuse_req * req)496 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
497 {
498 	int err = 0;
499 	if (req) {
500 		spin_lock(&fc->lock);
501 		if (req->aborted)
502 			err = -ENOENT;
503 		else
504 			req->locked = 1;
505 		spin_unlock(&fc->lock);
506 	}
507 	return err;
508 }
509 
510 /*
511  * Unlock request.  If it was aborted during being locked, the
512  * requester thread is currently waiting for it to be unlocked, so
513  * wake it up.
514  */
unlock_request(struct fuse_conn * fc,struct fuse_req * req)515 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
516 {
517 	if (req) {
518 		spin_lock(&fc->lock);
519 		req->locked = 0;
520 		if (req->aborted)
521 			wake_up(&req->waitq);
522 		spin_unlock(&fc->lock);
523 	}
524 }
525 
526 struct fuse_copy_state {
527 	struct fuse_conn *fc;
528 	int write;
529 	struct fuse_req *req;
530 	const struct iovec *iov;
531 	struct pipe_buffer *pipebufs;
532 	struct pipe_buffer *currbuf;
533 	struct pipe_inode_info *pipe;
534 	unsigned long nr_segs;
535 	unsigned long seglen;
536 	unsigned long addr;
537 	struct page *pg;
538 	void *mapaddr;
539 	void *buf;
540 	unsigned len;
541 	unsigned move_pages:1;
542 };
543 
fuse_copy_init(struct fuse_copy_state * cs,struct fuse_conn * fc,int write,const struct iovec * iov,unsigned long nr_segs)544 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
545 			   int write,
546 			   const struct iovec *iov, unsigned long nr_segs)
547 {
548 	memset(cs, 0, sizeof(*cs));
549 	cs->fc = fc;
550 	cs->write = write;
551 	cs->iov = iov;
552 	cs->nr_segs = nr_segs;
553 }
554 
555 /* Unmap and put previous page of userspace buffer */
fuse_copy_finish(struct fuse_copy_state * cs)556 static void fuse_copy_finish(struct fuse_copy_state *cs)
557 {
558 	if (cs->currbuf) {
559 		struct pipe_buffer *buf = cs->currbuf;
560 
561 		if (!cs->write) {
562 			buf->ops->unmap(cs->pipe, buf, cs->mapaddr);
563 		} else {
564 			kunmap(buf->page);
565 			buf->len = PAGE_SIZE - cs->len;
566 		}
567 		cs->currbuf = NULL;
568 		cs->mapaddr = NULL;
569 	} else if (cs->mapaddr) {
570 		kunmap(cs->pg);
571 		if (cs->write) {
572 			flush_dcache_page(cs->pg);
573 			set_page_dirty_lock(cs->pg);
574 		}
575 		put_page(cs->pg);
576 		cs->mapaddr = NULL;
577 	}
578 }
579 
580 /*
581  * Get another pagefull of userspace buffer, and map it to kernel
582  * address space, and lock request
583  */
fuse_copy_fill(struct fuse_copy_state * cs)584 static int fuse_copy_fill(struct fuse_copy_state *cs)
585 {
586 	unsigned long offset;
587 	int err;
588 
589 	unlock_request(cs->fc, cs->req);
590 	fuse_copy_finish(cs);
591 	if (cs->pipebufs) {
592 		struct pipe_buffer *buf = cs->pipebufs;
593 
594 		if (!cs->write) {
595 			err = buf->ops->confirm(cs->pipe, buf);
596 			if (err)
597 				return err;
598 
599 			BUG_ON(!cs->nr_segs);
600 			cs->currbuf = buf;
601 			cs->mapaddr = buf->ops->map(cs->pipe, buf, 0);
602 			cs->len = buf->len;
603 			cs->buf = cs->mapaddr + buf->offset;
604 			cs->pipebufs++;
605 			cs->nr_segs--;
606 		} else {
607 			struct page *page;
608 
609 			if (cs->nr_segs == cs->pipe->buffers)
610 				return -EIO;
611 
612 			page = alloc_page(GFP_HIGHUSER);
613 			if (!page)
614 				return -ENOMEM;
615 
616 			buf->page = page;
617 			buf->offset = 0;
618 			buf->len = 0;
619 
620 			cs->currbuf = buf;
621 			cs->mapaddr = kmap(page);
622 			cs->buf = cs->mapaddr;
623 			cs->len = PAGE_SIZE;
624 			cs->pipebufs++;
625 			cs->nr_segs++;
626 		}
627 	} else {
628 		if (!cs->seglen) {
629 			BUG_ON(!cs->nr_segs);
630 			cs->seglen = cs->iov[0].iov_len;
631 			cs->addr = (unsigned long) cs->iov[0].iov_base;
632 			cs->iov++;
633 			cs->nr_segs--;
634 		}
635 		err = get_user_pages_fast(cs->addr, 1, cs->write, &cs->pg);
636 		if (err < 0)
637 			return err;
638 		BUG_ON(err != 1);
639 		offset = cs->addr % PAGE_SIZE;
640 		cs->mapaddr = kmap(cs->pg);
641 		cs->buf = cs->mapaddr + offset;
642 		cs->len = min(PAGE_SIZE - offset, cs->seglen);
643 		cs->seglen -= cs->len;
644 		cs->addr += cs->len;
645 	}
646 
647 	return lock_request(cs->fc, cs->req);
648 }
649 
650 /* Do as much copy to/from userspace buffer as we can */
fuse_copy_do(struct fuse_copy_state * cs,void ** val,unsigned * size)651 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
652 {
653 	unsigned ncpy = min(*size, cs->len);
654 	if (val) {
655 		if (cs->write)
656 			memcpy(cs->buf, *val, ncpy);
657 		else
658 			memcpy(*val, cs->buf, ncpy);
659 		*val += ncpy;
660 	}
661 	*size -= ncpy;
662 	cs->len -= ncpy;
663 	cs->buf += ncpy;
664 	return ncpy;
665 }
666 
fuse_check_page(struct page * page)667 static int fuse_check_page(struct page *page)
668 {
669 	if (page_mapcount(page) ||
670 	    page->mapping != NULL ||
671 	    page_count(page) != 1 ||
672 	    (page->flags & PAGE_FLAGS_CHECK_AT_PREP &
673 	     ~(1 << PG_locked |
674 	       1 << PG_referenced |
675 	       1 << PG_uptodate |
676 	       1 << PG_lru |
677 	       1 << PG_active |
678 	       1 << PG_reclaim))) {
679 		printk(KERN_WARNING "fuse: trying to steal weird page\n");
680 		printk(KERN_WARNING "  page=%p index=%li flags=%08lx, count=%i, mapcount=%i, mapping=%p\n", page, page->index, page->flags, page_count(page), page_mapcount(page), page->mapping);
681 		return 1;
682 	}
683 	return 0;
684 }
685 
fuse_try_move_page(struct fuse_copy_state * cs,struct page ** pagep)686 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
687 {
688 	int err;
689 	struct page *oldpage = *pagep;
690 	struct page *newpage;
691 	struct pipe_buffer *buf = cs->pipebufs;
692 	struct address_space *mapping;
693 	pgoff_t index;
694 
695 	unlock_request(cs->fc, cs->req);
696 	fuse_copy_finish(cs);
697 
698 	err = buf->ops->confirm(cs->pipe, buf);
699 	if (err)
700 		return err;
701 
702 	BUG_ON(!cs->nr_segs);
703 	cs->currbuf = buf;
704 	cs->len = buf->len;
705 	cs->pipebufs++;
706 	cs->nr_segs--;
707 
708 	if (cs->len != PAGE_SIZE)
709 		goto out_fallback;
710 
711 	if (buf->ops->steal(cs->pipe, buf) != 0)
712 		goto out_fallback;
713 
714 	newpage = buf->page;
715 
716 	if (WARN_ON(!PageUptodate(newpage)))
717 		return -EIO;
718 
719 	ClearPageMappedToDisk(newpage);
720 
721 	if (fuse_check_page(newpage) != 0)
722 		goto out_fallback_unlock;
723 
724 	mapping = oldpage->mapping;
725 	index = oldpage->index;
726 
727 	/*
728 	 * This is a new and locked page, it shouldn't be mapped or
729 	 * have any special flags on it
730 	 */
731 	if (WARN_ON(page_mapped(oldpage)))
732 		goto out_fallback_unlock;
733 	if (WARN_ON(page_has_private(oldpage)))
734 		goto out_fallback_unlock;
735 	if (WARN_ON(PageDirty(oldpage) || PageWriteback(oldpage)))
736 		goto out_fallback_unlock;
737 	if (WARN_ON(PageMlocked(oldpage)))
738 		goto out_fallback_unlock;
739 
740 	err = replace_page_cache_page(oldpage, newpage, GFP_KERNEL);
741 	if (err) {
742 		unlock_page(newpage);
743 		return err;
744 	}
745 
746 	page_cache_get(newpage);
747 
748 	if (!(buf->flags & PIPE_BUF_FLAG_LRU))
749 		lru_cache_add_file(newpage);
750 
751 	err = 0;
752 	spin_lock(&cs->fc->lock);
753 	if (cs->req->aborted)
754 		err = -ENOENT;
755 	else
756 		*pagep = newpage;
757 	spin_unlock(&cs->fc->lock);
758 
759 	if (err) {
760 		unlock_page(newpage);
761 		page_cache_release(newpage);
762 		return err;
763 	}
764 
765 	unlock_page(oldpage);
766 	page_cache_release(oldpage);
767 	cs->len = 0;
768 
769 	return 0;
770 
771 out_fallback_unlock:
772 	unlock_page(newpage);
773 out_fallback:
774 	cs->mapaddr = buf->ops->map(cs->pipe, buf, 1);
775 	cs->buf = cs->mapaddr + buf->offset;
776 
777 	err = lock_request(cs->fc, cs->req);
778 	if (err)
779 		return err;
780 
781 	return 1;
782 }
783 
fuse_ref_page(struct fuse_copy_state * cs,struct page * page,unsigned offset,unsigned count)784 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
785 			 unsigned offset, unsigned count)
786 {
787 	struct pipe_buffer *buf;
788 
789 	if (cs->nr_segs == cs->pipe->buffers)
790 		return -EIO;
791 
792 	unlock_request(cs->fc, cs->req);
793 	fuse_copy_finish(cs);
794 
795 	buf = cs->pipebufs;
796 	page_cache_get(page);
797 	buf->page = page;
798 	buf->offset = offset;
799 	buf->len = count;
800 
801 	cs->pipebufs++;
802 	cs->nr_segs++;
803 	cs->len = 0;
804 
805 	return 0;
806 }
807 
808 /*
809  * Copy a page in the request to/from the userspace buffer.  Must be
810  * done atomically
811  */
fuse_copy_page(struct fuse_copy_state * cs,struct page ** pagep,unsigned offset,unsigned count,int zeroing)812 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
813 			  unsigned offset, unsigned count, int zeroing)
814 {
815 	int err;
816 	struct page *page = *pagep;
817 
818 	if (page && zeroing && count < PAGE_SIZE)
819 		clear_highpage(page);
820 
821 	while (count) {
822 		if (cs->write && cs->pipebufs && page) {
823 			return fuse_ref_page(cs, page, offset, count);
824 		} else if (!cs->len) {
825 			if (cs->move_pages && page &&
826 			    offset == 0 && count == PAGE_SIZE) {
827 				err = fuse_try_move_page(cs, pagep);
828 				if (err <= 0)
829 					return err;
830 			} else {
831 				err = fuse_copy_fill(cs);
832 				if (err)
833 					return err;
834 			}
835 		}
836 		if (page) {
837 			void *mapaddr = kmap_atomic(page, KM_USER0);
838 			void *buf = mapaddr + offset;
839 			offset += fuse_copy_do(cs, &buf, &count);
840 			kunmap_atomic(mapaddr, KM_USER0);
841 		} else
842 			offset += fuse_copy_do(cs, NULL, &count);
843 	}
844 	if (page && !cs->write)
845 		flush_dcache_page(page);
846 	return 0;
847 }
848 
849 /* Copy pages in the request to/from userspace buffer */
fuse_copy_pages(struct fuse_copy_state * cs,unsigned nbytes,int zeroing)850 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
851 			   int zeroing)
852 {
853 	unsigned i;
854 	struct fuse_req *req = cs->req;
855 	unsigned offset = req->page_offset;
856 	unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
857 
858 	for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
859 		int err;
860 
861 		err = fuse_copy_page(cs, &req->pages[i], offset, count,
862 				     zeroing);
863 		if (err)
864 			return err;
865 
866 		nbytes -= count;
867 		count = min(nbytes, (unsigned) PAGE_SIZE);
868 		offset = 0;
869 	}
870 	return 0;
871 }
872 
873 /* Copy a single argument in the request to/from userspace buffer */
fuse_copy_one(struct fuse_copy_state * cs,void * val,unsigned size)874 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
875 {
876 	while (size) {
877 		if (!cs->len) {
878 			int err = fuse_copy_fill(cs);
879 			if (err)
880 				return err;
881 		}
882 		fuse_copy_do(cs, &val, &size);
883 	}
884 	return 0;
885 }
886 
887 /* Copy request arguments to/from userspace buffer */
fuse_copy_args(struct fuse_copy_state * cs,unsigned numargs,unsigned argpages,struct fuse_arg * args,int zeroing)888 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
889 			  unsigned argpages, struct fuse_arg *args,
890 			  int zeroing)
891 {
892 	int err = 0;
893 	unsigned i;
894 
895 	for (i = 0; !err && i < numargs; i++)  {
896 		struct fuse_arg *arg = &args[i];
897 		if (i == numargs - 1 && argpages)
898 			err = fuse_copy_pages(cs, arg->size, zeroing);
899 		else
900 			err = fuse_copy_one(cs, arg->value, arg->size);
901 	}
902 	return err;
903 }
904 
forget_pending(struct fuse_conn * fc)905 static int forget_pending(struct fuse_conn *fc)
906 {
907 	return fc->forget_list_head.next != NULL;
908 }
909 
request_pending(struct fuse_conn * fc)910 static int request_pending(struct fuse_conn *fc)
911 {
912 	return !list_empty(&fc->pending) || !list_empty(&fc->interrupts) ||
913 		forget_pending(fc);
914 }
915 
916 /* Wait until a request is available on the pending list */
request_wait(struct fuse_conn * fc)917 static void request_wait(struct fuse_conn *fc)
918 __releases(fc->lock)
919 __acquires(fc->lock)
920 {
921 	DECLARE_WAITQUEUE(wait, current);
922 
923 	add_wait_queue_exclusive(&fc->waitq, &wait);
924 	while (fc->connected && !request_pending(fc)) {
925 		set_current_state(TASK_INTERRUPTIBLE);
926 		if (signal_pending(current))
927 			break;
928 
929 		spin_unlock(&fc->lock);
930 		schedule();
931 		spin_lock(&fc->lock);
932 	}
933 	set_current_state(TASK_RUNNING);
934 	remove_wait_queue(&fc->waitq, &wait);
935 }
936 
937 /*
938  * Transfer an interrupt request to userspace
939  *
940  * Unlike other requests this is assembled on demand, without a need
941  * to allocate a separate fuse_req structure.
942  *
943  * Called with fc->lock held, releases it
944  */
fuse_read_interrupt(struct fuse_conn * fc,struct fuse_copy_state * cs,size_t nbytes,struct fuse_req * req)945 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_copy_state *cs,
946 			       size_t nbytes, struct fuse_req *req)
947 __releases(fc->lock)
948 {
949 	struct fuse_in_header ih;
950 	struct fuse_interrupt_in arg;
951 	unsigned reqsize = sizeof(ih) + sizeof(arg);
952 	int err;
953 
954 	list_del_init(&req->intr_entry);
955 	req->intr_unique = fuse_get_unique(fc);
956 	memset(&ih, 0, sizeof(ih));
957 	memset(&arg, 0, sizeof(arg));
958 	ih.len = reqsize;
959 	ih.opcode = FUSE_INTERRUPT;
960 	ih.unique = req->intr_unique;
961 	arg.unique = req->in.h.unique;
962 
963 	spin_unlock(&fc->lock);
964 	if (nbytes < reqsize)
965 		return -EINVAL;
966 
967 	err = fuse_copy_one(cs, &ih, sizeof(ih));
968 	if (!err)
969 		err = fuse_copy_one(cs, &arg, sizeof(arg));
970 	fuse_copy_finish(cs);
971 
972 	return err ? err : reqsize;
973 }
974 
dequeue_forget(struct fuse_conn * fc,unsigned max,unsigned * countp)975 static struct fuse_forget_link *dequeue_forget(struct fuse_conn *fc,
976 					       unsigned max,
977 					       unsigned *countp)
978 {
979 	struct fuse_forget_link *head = fc->forget_list_head.next;
980 	struct fuse_forget_link **newhead = &head;
981 	unsigned count;
982 
983 	for (count = 0; *newhead != NULL && count < max; count++)
984 		newhead = &(*newhead)->next;
985 
986 	fc->forget_list_head.next = *newhead;
987 	*newhead = NULL;
988 	if (fc->forget_list_head.next == NULL)
989 		fc->forget_list_tail = &fc->forget_list_head;
990 
991 	if (countp != NULL)
992 		*countp = count;
993 
994 	return head;
995 }
996 
fuse_read_single_forget(struct fuse_conn * fc,struct fuse_copy_state * cs,size_t nbytes)997 static int fuse_read_single_forget(struct fuse_conn *fc,
998 				   struct fuse_copy_state *cs,
999 				   size_t nbytes)
1000 __releases(fc->lock)
1001 {
1002 	int err;
1003 	struct fuse_forget_link *forget = dequeue_forget(fc, 1, NULL);
1004 	struct fuse_forget_in arg = {
1005 		.nlookup = forget->forget_one.nlookup,
1006 	};
1007 	struct fuse_in_header ih = {
1008 		.opcode = FUSE_FORGET,
1009 		.nodeid = forget->forget_one.nodeid,
1010 		.unique = fuse_get_unique(fc),
1011 		.len = sizeof(ih) + sizeof(arg),
1012 	};
1013 
1014 	spin_unlock(&fc->lock);
1015 	kfree(forget);
1016 	if (nbytes < ih.len)
1017 		return -EINVAL;
1018 
1019 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1020 	if (!err)
1021 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1022 	fuse_copy_finish(cs);
1023 
1024 	if (err)
1025 		return err;
1026 
1027 	return ih.len;
1028 }
1029 
fuse_read_batch_forget(struct fuse_conn * fc,struct fuse_copy_state * cs,size_t nbytes)1030 static int fuse_read_batch_forget(struct fuse_conn *fc,
1031 				   struct fuse_copy_state *cs, size_t nbytes)
1032 __releases(fc->lock)
1033 {
1034 	int err;
1035 	unsigned max_forgets;
1036 	unsigned count;
1037 	struct fuse_forget_link *head;
1038 	struct fuse_batch_forget_in arg = { .count = 0 };
1039 	struct fuse_in_header ih = {
1040 		.opcode = FUSE_BATCH_FORGET,
1041 		.unique = fuse_get_unique(fc),
1042 		.len = sizeof(ih) + sizeof(arg),
1043 	};
1044 
1045 	if (nbytes < ih.len) {
1046 		spin_unlock(&fc->lock);
1047 		return -EINVAL;
1048 	}
1049 
1050 	max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1051 	head = dequeue_forget(fc, max_forgets, &count);
1052 	spin_unlock(&fc->lock);
1053 
1054 	arg.count = count;
1055 	ih.len += count * sizeof(struct fuse_forget_one);
1056 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1057 	if (!err)
1058 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1059 
1060 	while (head) {
1061 		struct fuse_forget_link *forget = head;
1062 
1063 		if (!err) {
1064 			err = fuse_copy_one(cs, &forget->forget_one,
1065 					    sizeof(forget->forget_one));
1066 		}
1067 		head = forget->next;
1068 		kfree(forget);
1069 	}
1070 
1071 	fuse_copy_finish(cs);
1072 
1073 	if (err)
1074 		return err;
1075 
1076 	return ih.len;
1077 }
1078 
fuse_read_forget(struct fuse_conn * fc,struct fuse_copy_state * cs,size_t nbytes)1079 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_copy_state *cs,
1080 			    size_t nbytes)
1081 __releases(fc->lock)
1082 {
1083 	if (fc->minor < 16 || fc->forget_list_head.next->next == NULL)
1084 		return fuse_read_single_forget(fc, cs, nbytes);
1085 	else
1086 		return fuse_read_batch_forget(fc, cs, nbytes);
1087 }
1088 
1089 /*
1090  * Read a single request into the userspace filesystem's buffer.  This
1091  * function waits until a request is available, then removes it from
1092  * the pending list and copies request data to userspace buffer.  If
1093  * no reply is needed (FORGET) or request has been aborted or there
1094  * was an error during the copying then it's finished by calling
1095  * request_end().  Otherwise add it to the processing list, and set
1096  * the 'sent' flag.
1097  */
fuse_dev_do_read(struct fuse_conn * fc,struct file * file,struct fuse_copy_state * cs,size_t nbytes)1098 static ssize_t fuse_dev_do_read(struct fuse_conn *fc, struct file *file,
1099 				struct fuse_copy_state *cs, size_t nbytes)
1100 {
1101 	int err;
1102 	struct fuse_req *req;
1103 	struct fuse_in *in;
1104 	unsigned reqsize;
1105 
1106  restart:
1107 	spin_lock(&fc->lock);
1108 	err = -EAGAIN;
1109 	if ((file->f_flags & O_NONBLOCK) && fc->connected &&
1110 	    !request_pending(fc))
1111 		goto err_unlock;
1112 
1113 	request_wait(fc);
1114 	err = -ENODEV;
1115 	if (!fc->connected)
1116 		goto err_unlock;
1117 	err = -ERESTARTSYS;
1118 	if (!request_pending(fc))
1119 		goto err_unlock;
1120 
1121 	if (!list_empty(&fc->interrupts)) {
1122 		req = list_entry(fc->interrupts.next, struct fuse_req,
1123 				 intr_entry);
1124 		return fuse_read_interrupt(fc, cs, nbytes, req);
1125 	}
1126 
1127 	if (forget_pending(fc)) {
1128 		if (list_empty(&fc->pending) || fc->forget_batch-- > 0)
1129 			return fuse_read_forget(fc, cs, nbytes);
1130 
1131 		if (fc->forget_batch <= -8)
1132 			fc->forget_batch = 16;
1133 	}
1134 
1135 	req = list_entry(fc->pending.next, struct fuse_req, list);
1136 	req->state = FUSE_REQ_READING;
1137 	list_move(&req->list, &fc->io);
1138 
1139 	in = &req->in;
1140 	reqsize = in->h.len;
1141 	/* If request is too large, reply with an error and restart the read */
1142 	if (nbytes < reqsize) {
1143 		req->out.h.error = -EIO;
1144 		/* SETXATTR is special, since it may contain too large data */
1145 		if (in->h.opcode == FUSE_SETXATTR)
1146 			req->out.h.error = -E2BIG;
1147 		request_end(fc, req);
1148 		goto restart;
1149 	}
1150 	spin_unlock(&fc->lock);
1151 	cs->req = req;
1152 	err = fuse_copy_one(cs, &in->h, sizeof(in->h));
1153 	if (!err)
1154 		err = fuse_copy_args(cs, in->numargs, in->argpages,
1155 				     (struct fuse_arg *) in->args, 0);
1156 	fuse_copy_finish(cs);
1157 	spin_lock(&fc->lock);
1158 	req->locked = 0;
1159 	if (req->aborted) {
1160 		request_end(fc, req);
1161 		return -ENODEV;
1162 	}
1163 	if (err) {
1164 		req->out.h.error = -EIO;
1165 		request_end(fc, req);
1166 		return err;
1167 	}
1168 	if (!req->isreply)
1169 		request_end(fc, req);
1170 	else {
1171 		req->state = FUSE_REQ_SENT;
1172 		list_move_tail(&req->list, &fc->processing);
1173 		if (req->interrupted)
1174 			queue_interrupt(fc, req);
1175 		spin_unlock(&fc->lock);
1176 	}
1177 	return reqsize;
1178 
1179  err_unlock:
1180 	spin_unlock(&fc->lock);
1181 	return err;
1182 }
1183 
fuse_dev_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1184 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
1185 			      unsigned long nr_segs, loff_t pos)
1186 {
1187 	struct fuse_copy_state cs;
1188 	struct file *file = iocb->ki_filp;
1189 	struct fuse_conn *fc = fuse_get_conn(file);
1190 	if (!fc)
1191 		return -EPERM;
1192 
1193 	fuse_copy_init(&cs, fc, 1, iov, nr_segs);
1194 
1195 	return fuse_dev_do_read(fc, file, &cs, iov_length(iov, nr_segs));
1196 }
1197 
fuse_dev_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)1198 static int fuse_dev_pipe_buf_steal(struct pipe_inode_info *pipe,
1199 				   struct pipe_buffer *buf)
1200 {
1201 	return 1;
1202 }
1203 
1204 static const struct pipe_buf_operations fuse_dev_pipe_buf_ops = {
1205 	.can_merge = 0,
1206 	.map = generic_pipe_buf_map,
1207 	.unmap = generic_pipe_buf_unmap,
1208 	.confirm = generic_pipe_buf_confirm,
1209 	.release = generic_pipe_buf_release,
1210 	.steal = fuse_dev_pipe_buf_steal,
1211 	.get = generic_pipe_buf_get,
1212 };
1213 
fuse_dev_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1214 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1215 				    struct pipe_inode_info *pipe,
1216 				    size_t len, unsigned int flags)
1217 {
1218 	int ret;
1219 	int page_nr = 0;
1220 	int do_wakeup = 0;
1221 	struct pipe_buffer *bufs;
1222 	struct fuse_copy_state cs;
1223 	struct fuse_conn *fc = fuse_get_conn(in);
1224 	if (!fc)
1225 		return -EPERM;
1226 
1227 	bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL);
1228 	if (!bufs)
1229 		return -ENOMEM;
1230 
1231 	fuse_copy_init(&cs, fc, 1, NULL, 0);
1232 	cs.pipebufs = bufs;
1233 	cs.pipe = pipe;
1234 	ret = fuse_dev_do_read(fc, in, &cs, len);
1235 	if (ret < 0)
1236 		goto out;
1237 
1238 	ret = 0;
1239 	pipe_lock(pipe);
1240 
1241 	if (!pipe->readers) {
1242 		send_sig(SIGPIPE, current, 0);
1243 		if (!ret)
1244 			ret = -EPIPE;
1245 		goto out_unlock;
1246 	}
1247 
1248 	if (pipe->nrbufs + cs.nr_segs > pipe->buffers) {
1249 		ret = -EIO;
1250 		goto out_unlock;
1251 	}
1252 
1253 	while (page_nr < cs.nr_segs) {
1254 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1255 		struct pipe_buffer *buf = pipe->bufs + newbuf;
1256 
1257 		buf->page = bufs[page_nr].page;
1258 		buf->offset = bufs[page_nr].offset;
1259 		buf->len = bufs[page_nr].len;
1260 		buf->ops = &fuse_dev_pipe_buf_ops;
1261 
1262 		pipe->nrbufs++;
1263 		page_nr++;
1264 		ret += buf->len;
1265 
1266 		if (pipe->inode)
1267 			do_wakeup = 1;
1268 	}
1269 
1270 out_unlock:
1271 	pipe_unlock(pipe);
1272 
1273 	if (do_wakeup) {
1274 		smp_mb();
1275 		if (waitqueue_active(&pipe->wait))
1276 			wake_up_interruptible(&pipe->wait);
1277 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1278 	}
1279 
1280 out:
1281 	for (; page_nr < cs.nr_segs; page_nr++)
1282 		page_cache_release(bufs[page_nr].page);
1283 
1284 	kfree(bufs);
1285 	return ret;
1286 }
1287 
fuse_notify_poll(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1288 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1289 			    struct fuse_copy_state *cs)
1290 {
1291 	struct fuse_notify_poll_wakeup_out outarg;
1292 	int err = -EINVAL;
1293 
1294 	if (size != sizeof(outarg))
1295 		goto err;
1296 
1297 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1298 	if (err)
1299 		goto err;
1300 
1301 	fuse_copy_finish(cs);
1302 	return fuse_notify_poll_wakeup(fc, &outarg);
1303 
1304 err:
1305 	fuse_copy_finish(cs);
1306 	return err;
1307 }
1308 
fuse_notify_inval_inode(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1309 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1310 				   struct fuse_copy_state *cs)
1311 {
1312 	struct fuse_notify_inval_inode_out outarg;
1313 	int err = -EINVAL;
1314 
1315 	if (size != sizeof(outarg))
1316 		goto err;
1317 
1318 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1319 	if (err)
1320 		goto err;
1321 	fuse_copy_finish(cs);
1322 
1323 	down_read(&fc->killsb);
1324 	err = -ENOENT;
1325 	if (fc->sb) {
1326 		err = fuse_reverse_inval_inode(fc->sb, outarg.ino,
1327 					       outarg.off, outarg.len);
1328 	}
1329 	up_read(&fc->killsb);
1330 	return err;
1331 
1332 err:
1333 	fuse_copy_finish(cs);
1334 	return err;
1335 }
1336 
fuse_notify_inval_entry(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1337 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1338 				   struct fuse_copy_state *cs)
1339 {
1340 	struct fuse_notify_inval_entry_out outarg;
1341 	int err = -ENOMEM;
1342 	char *buf;
1343 	struct qstr name;
1344 
1345 	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1346 	if (!buf)
1347 		goto err;
1348 
1349 	err = -EINVAL;
1350 	if (size < sizeof(outarg))
1351 		goto err;
1352 
1353 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1354 	if (err)
1355 		goto err;
1356 
1357 	err = -ENAMETOOLONG;
1358 	if (outarg.namelen > FUSE_NAME_MAX)
1359 		goto err;
1360 
1361 	name.name = buf;
1362 	name.len = outarg.namelen;
1363 	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1364 	if (err)
1365 		goto err;
1366 	fuse_copy_finish(cs);
1367 	buf[outarg.namelen] = 0;
1368 	name.hash = full_name_hash(name.name, name.len);
1369 
1370 	down_read(&fc->killsb);
1371 	err = -ENOENT;
1372 	if (fc->sb)
1373 		err = fuse_reverse_inval_entry(fc->sb, outarg.parent, &name);
1374 	up_read(&fc->killsb);
1375 	kfree(buf);
1376 	return err;
1377 
1378 err:
1379 	kfree(buf);
1380 	fuse_copy_finish(cs);
1381 	return err;
1382 }
1383 
fuse_notify_store(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1384 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1385 			     struct fuse_copy_state *cs)
1386 {
1387 	struct fuse_notify_store_out outarg;
1388 	struct inode *inode;
1389 	struct address_space *mapping;
1390 	u64 nodeid;
1391 	int err;
1392 	pgoff_t index;
1393 	unsigned int offset;
1394 	unsigned int num;
1395 	loff_t file_size;
1396 	loff_t end;
1397 
1398 	err = -EINVAL;
1399 	if (size < sizeof(outarg))
1400 		goto out_finish;
1401 
1402 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1403 	if (err)
1404 		goto out_finish;
1405 
1406 	err = -EINVAL;
1407 	if (size - sizeof(outarg) != outarg.size)
1408 		goto out_finish;
1409 
1410 	nodeid = outarg.nodeid;
1411 
1412 	down_read(&fc->killsb);
1413 
1414 	err = -ENOENT;
1415 	if (!fc->sb)
1416 		goto out_up_killsb;
1417 
1418 	inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1419 	if (!inode)
1420 		goto out_up_killsb;
1421 
1422 	mapping = inode->i_mapping;
1423 	index = outarg.offset >> PAGE_CACHE_SHIFT;
1424 	offset = outarg.offset & ~PAGE_CACHE_MASK;
1425 	file_size = i_size_read(inode);
1426 	end = outarg.offset + outarg.size;
1427 	if (end > file_size) {
1428 		file_size = end;
1429 		fuse_write_update_size(inode, file_size);
1430 	}
1431 
1432 	num = outarg.size;
1433 	while (num) {
1434 		struct page *page;
1435 		unsigned int this_num;
1436 
1437 		err = -ENOMEM;
1438 		page = find_or_create_page(mapping, index,
1439 					   mapping_gfp_mask(mapping));
1440 		if (!page)
1441 			goto out_iput;
1442 
1443 		this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset);
1444 		err = fuse_copy_page(cs, &page, offset, this_num, 0);
1445 		if (!err && offset == 0 && (num != 0 || file_size == end))
1446 			SetPageUptodate(page);
1447 		unlock_page(page);
1448 		page_cache_release(page);
1449 
1450 		if (err)
1451 			goto out_iput;
1452 
1453 		num -= this_num;
1454 		offset = 0;
1455 		index++;
1456 	}
1457 
1458 	err = 0;
1459 
1460 out_iput:
1461 	iput(inode);
1462 out_up_killsb:
1463 	up_read(&fc->killsb);
1464 out_finish:
1465 	fuse_copy_finish(cs);
1466 	return err;
1467 }
1468 
fuse_retrieve_end(struct fuse_conn * fc,struct fuse_req * req)1469 static void fuse_retrieve_end(struct fuse_conn *fc, struct fuse_req *req)
1470 {
1471 	release_pages(req->pages, req->num_pages, 0);
1472 }
1473 
fuse_retrieve(struct fuse_conn * fc,struct inode * inode,struct fuse_notify_retrieve_out * outarg)1474 static int fuse_retrieve(struct fuse_conn *fc, struct inode *inode,
1475 			 struct fuse_notify_retrieve_out *outarg)
1476 {
1477 	int err;
1478 	struct address_space *mapping = inode->i_mapping;
1479 	struct fuse_req *req;
1480 	pgoff_t index;
1481 	loff_t file_size;
1482 	unsigned int num;
1483 	unsigned int offset;
1484 	size_t total_len = 0;
1485 
1486 	req = fuse_get_req(fc);
1487 	if (IS_ERR(req))
1488 		return PTR_ERR(req);
1489 
1490 	offset = outarg->offset & ~PAGE_CACHE_MASK;
1491 
1492 	req->in.h.opcode = FUSE_NOTIFY_REPLY;
1493 	req->in.h.nodeid = outarg->nodeid;
1494 	req->in.numargs = 2;
1495 	req->in.argpages = 1;
1496 	req->page_offset = offset;
1497 	req->end = fuse_retrieve_end;
1498 
1499 	index = outarg->offset >> PAGE_CACHE_SHIFT;
1500 	file_size = i_size_read(inode);
1501 	num = outarg->size;
1502 	if (outarg->offset > file_size)
1503 		num = 0;
1504 	else if (outarg->offset + num > file_size)
1505 		num = file_size - outarg->offset;
1506 
1507 	while (num) {
1508 		struct page *page;
1509 		unsigned int this_num;
1510 
1511 		page = find_get_page(mapping, index);
1512 		if (!page)
1513 			break;
1514 
1515 		this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset);
1516 		req->pages[req->num_pages] = page;
1517 		req->num_pages++;
1518 
1519 		num -= this_num;
1520 		total_len += this_num;
1521 	}
1522 	req->misc.retrieve_in.offset = outarg->offset;
1523 	req->misc.retrieve_in.size = total_len;
1524 	req->in.args[0].size = sizeof(req->misc.retrieve_in);
1525 	req->in.args[0].value = &req->misc.retrieve_in;
1526 	req->in.args[1].size = total_len;
1527 
1528 	err = fuse_request_send_notify_reply(fc, req, outarg->notify_unique);
1529 	if (err)
1530 		fuse_retrieve_end(fc, req);
1531 
1532 	return err;
1533 }
1534 
fuse_notify_retrieve(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1535 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1536 				struct fuse_copy_state *cs)
1537 {
1538 	struct fuse_notify_retrieve_out outarg;
1539 	struct inode *inode;
1540 	int err;
1541 
1542 	err = -EINVAL;
1543 	if (size != sizeof(outarg))
1544 		goto copy_finish;
1545 
1546 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1547 	if (err)
1548 		goto copy_finish;
1549 
1550 	fuse_copy_finish(cs);
1551 
1552 	down_read(&fc->killsb);
1553 	err = -ENOENT;
1554 	if (fc->sb) {
1555 		u64 nodeid = outarg.nodeid;
1556 
1557 		inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1558 		if (inode) {
1559 			err = fuse_retrieve(fc, inode, &outarg);
1560 			iput(inode);
1561 		}
1562 	}
1563 	up_read(&fc->killsb);
1564 
1565 	return err;
1566 
1567 copy_finish:
1568 	fuse_copy_finish(cs);
1569 	return err;
1570 }
1571 
fuse_notify(struct fuse_conn * fc,enum fuse_notify_code code,unsigned int size,struct fuse_copy_state * cs)1572 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1573 		       unsigned int size, struct fuse_copy_state *cs)
1574 {
1575 	switch (code) {
1576 	case FUSE_NOTIFY_POLL:
1577 		return fuse_notify_poll(fc, size, cs);
1578 
1579 	case FUSE_NOTIFY_INVAL_INODE:
1580 		return fuse_notify_inval_inode(fc, size, cs);
1581 
1582 	case FUSE_NOTIFY_INVAL_ENTRY:
1583 		return fuse_notify_inval_entry(fc, size, cs);
1584 
1585 	case FUSE_NOTIFY_STORE:
1586 		return fuse_notify_store(fc, size, cs);
1587 
1588 	case FUSE_NOTIFY_RETRIEVE:
1589 		return fuse_notify_retrieve(fc, size, cs);
1590 
1591 	default:
1592 		fuse_copy_finish(cs);
1593 		return -EINVAL;
1594 	}
1595 }
1596 
1597 /* Look up request on processing list by unique ID */
request_find(struct fuse_conn * fc,u64 unique)1598 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
1599 {
1600 	struct list_head *entry;
1601 
1602 	list_for_each(entry, &fc->processing) {
1603 		struct fuse_req *req;
1604 		req = list_entry(entry, struct fuse_req, list);
1605 		if (req->in.h.unique == unique || req->intr_unique == unique)
1606 			return req;
1607 	}
1608 	return NULL;
1609 }
1610 
copy_out_args(struct fuse_copy_state * cs,struct fuse_out * out,unsigned nbytes)1611 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
1612 			 unsigned nbytes)
1613 {
1614 	unsigned reqsize = sizeof(struct fuse_out_header);
1615 
1616 	if (out->h.error)
1617 		return nbytes != reqsize ? -EINVAL : 0;
1618 
1619 	reqsize += len_args(out->numargs, out->args);
1620 
1621 	if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
1622 		return -EINVAL;
1623 	else if (reqsize > nbytes) {
1624 		struct fuse_arg *lastarg = &out->args[out->numargs-1];
1625 		unsigned diffsize = reqsize - nbytes;
1626 		if (diffsize > lastarg->size)
1627 			return -EINVAL;
1628 		lastarg->size -= diffsize;
1629 	}
1630 	return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
1631 			      out->page_zeroing);
1632 }
1633 
1634 /*
1635  * Write a single reply to a request.  First the header is copied from
1636  * the write buffer.  The request is then searched on the processing
1637  * list by the unique ID found in the header.  If found, then remove
1638  * it from the list and copy the rest of the buffer to the request.
1639  * The request is finished by calling request_end()
1640  */
fuse_dev_do_write(struct fuse_conn * fc,struct fuse_copy_state * cs,size_t nbytes)1641 static ssize_t fuse_dev_do_write(struct fuse_conn *fc,
1642 				 struct fuse_copy_state *cs, size_t nbytes)
1643 {
1644 	int err;
1645 	struct fuse_req *req;
1646 	struct fuse_out_header oh;
1647 
1648 	if (nbytes < sizeof(struct fuse_out_header))
1649 		return -EINVAL;
1650 
1651 	err = fuse_copy_one(cs, &oh, sizeof(oh));
1652 	if (err)
1653 		goto err_finish;
1654 
1655 	err = -EINVAL;
1656 	if (oh.len != nbytes)
1657 		goto err_finish;
1658 
1659 	/*
1660 	 * Zero oh.unique indicates unsolicited notification message
1661 	 * and error contains notification code.
1662 	 */
1663 	if (!oh.unique) {
1664 		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1665 		return err ? err : nbytes;
1666 	}
1667 
1668 	err = -EINVAL;
1669 	if (oh.error <= -1000 || oh.error > 0)
1670 		goto err_finish;
1671 
1672 	spin_lock(&fc->lock);
1673 	err = -ENOENT;
1674 	if (!fc->connected)
1675 		goto err_unlock;
1676 
1677 	req = request_find(fc, oh.unique);
1678 	if (!req)
1679 		goto err_unlock;
1680 
1681 	if (req->aborted) {
1682 		spin_unlock(&fc->lock);
1683 		fuse_copy_finish(cs);
1684 		spin_lock(&fc->lock);
1685 		request_end(fc, req);
1686 		return -ENOENT;
1687 	}
1688 	/* Is it an interrupt reply? */
1689 	if (req->intr_unique == oh.unique) {
1690 		err = -EINVAL;
1691 		if (nbytes != sizeof(struct fuse_out_header))
1692 			goto err_unlock;
1693 
1694 		if (oh.error == -ENOSYS)
1695 			fc->no_interrupt = 1;
1696 		else if (oh.error == -EAGAIN)
1697 			queue_interrupt(fc, req);
1698 
1699 		spin_unlock(&fc->lock);
1700 		fuse_copy_finish(cs);
1701 		return nbytes;
1702 	}
1703 
1704 	req->state = FUSE_REQ_WRITING;
1705 	list_move(&req->list, &fc->io);
1706 	req->out.h = oh;
1707 	req->locked = 1;
1708 	cs->req = req;
1709 	if (!req->out.page_replace)
1710 		cs->move_pages = 0;
1711 	spin_unlock(&fc->lock);
1712 
1713 	err = copy_out_args(cs, &req->out, nbytes);
1714 	fuse_copy_finish(cs);
1715 
1716 	spin_lock(&fc->lock);
1717 	req->locked = 0;
1718 	if (!err) {
1719 		if (req->aborted)
1720 			err = -ENOENT;
1721 	} else if (!req->aborted)
1722 		req->out.h.error = -EIO;
1723 	request_end(fc, req);
1724 
1725 	return err ? err : nbytes;
1726 
1727  err_unlock:
1728 	spin_unlock(&fc->lock);
1729  err_finish:
1730 	fuse_copy_finish(cs);
1731 	return err;
1732 }
1733 
fuse_dev_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1734 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
1735 			      unsigned long nr_segs, loff_t pos)
1736 {
1737 	struct fuse_copy_state cs;
1738 	struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
1739 	if (!fc)
1740 		return -EPERM;
1741 
1742 	fuse_copy_init(&cs, fc, 0, iov, nr_segs);
1743 
1744 	return fuse_dev_do_write(fc, &cs, iov_length(iov, nr_segs));
1745 }
1746 
fuse_dev_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1747 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
1748 				     struct file *out, loff_t *ppos,
1749 				     size_t len, unsigned int flags)
1750 {
1751 	unsigned nbuf;
1752 	unsigned idx;
1753 	struct pipe_buffer *bufs;
1754 	struct fuse_copy_state cs;
1755 	struct fuse_conn *fc;
1756 	size_t rem;
1757 	ssize_t ret;
1758 
1759 	fc = fuse_get_conn(out);
1760 	if (!fc)
1761 		return -EPERM;
1762 
1763 	bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL);
1764 	if (!bufs)
1765 		return -ENOMEM;
1766 
1767 	pipe_lock(pipe);
1768 	nbuf = 0;
1769 	rem = 0;
1770 	for (idx = 0; idx < pipe->nrbufs && rem < len; idx++)
1771 		rem += pipe->bufs[(pipe->curbuf + idx) & (pipe->buffers - 1)].len;
1772 
1773 	ret = -EINVAL;
1774 	if (rem < len) {
1775 		pipe_unlock(pipe);
1776 		goto out;
1777 	}
1778 
1779 	rem = len;
1780 	while (rem) {
1781 		struct pipe_buffer *ibuf;
1782 		struct pipe_buffer *obuf;
1783 
1784 		BUG_ON(nbuf >= pipe->buffers);
1785 		BUG_ON(!pipe->nrbufs);
1786 		ibuf = &pipe->bufs[pipe->curbuf];
1787 		obuf = &bufs[nbuf];
1788 
1789 		if (rem >= ibuf->len) {
1790 			*obuf = *ibuf;
1791 			ibuf->ops = NULL;
1792 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1793 			pipe->nrbufs--;
1794 		} else {
1795 			ibuf->ops->get(pipe, ibuf);
1796 			*obuf = *ibuf;
1797 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1798 			obuf->len = rem;
1799 			ibuf->offset += obuf->len;
1800 			ibuf->len -= obuf->len;
1801 		}
1802 		nbuf++;
1803 		rem -= obuf->len;
1804 	}
1805 	pipe_unlock(pipe);
1806 
1807 	fuse_copy_init(&cs, fc, 0, NULL, nbuf);
1808 	cs.pipebufs = bufs;
1809 	cs.pipe = pipe;
1810 
1811 	if (flags & SPLICE_F_MOVE)
1812 		cs.move_pages = 1;
1813 
1814 	ret = fuse_dev_do_write(fc, &cs, len);
1815 
1816 	for (idx = 0; idx < nbuf; idx++) {
1817 		struct pipe_buffer *buf = &bufs[idx];
1818 		buf->ops->release(pipe, buf);
1819 	}
1820 out:
1821 	kfree(bufs);
1822 	return ret;
1823 }
1824 
fuse_dev_poll(struct file * file,poll_table * wait)1825 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
1826 {
1827 	unsigned mask = POLLOUT | POLLWRNORM;
1828 	struct fuse_conn *fc = fuse_get_conn(file);
1829 	if (!fc)
1830 		return POLLERR;
1831 
1832 	poll_wait(file, &fc->waitq, wait);
1833 
1834 	spin_lock(&fc->lock);
1835 	if (!fc->connected)
1836 		mask = POLLERR;
1837 	else if (request_pending(fc))
1838 		mask |= POLLIN | POLLRDNORM;
1839 	spin_unlock(&fc->lock);
1840 
1841 	return mask;
1842 }
1843 
1844 /*
1845  * Abort all requests on the given list (pending or processing)
1846  *
1847  * This function releases and reacquires fc->lock
1848  */
end_requests(struct fuse_conn * fc,struct list_head * head)1849 static void end_requests(struct fuse_conn *fc, struct list_head *head)
1850 __releases(fc->lock)
1851 __acquires(fc->lock)
1852 {
1853 	while (!list_empty(head)) {
1854 		struct fuse_req *req;
1855 		req = list_entry(head->next, struct fuse_req, list);
1856 		req->out.h.error = -ECONNABORTED;
1857 		request_end(fc, req);
1858 		spin_lock(&fc->lock);
1859 	}
1860 }
1861 
1862 /*
1863  * Abort requests under I/O
1864  *
1865  * The requests are set to aborted and finished, and the request
1866  * waiter is woken up.  This will make request_wait_answer() wait
1867  * until the request is unlocked and then return.
1868  *
1869  * If the request is asynchronous, then the end function needs to be
1870  * called after waiting for the request to be unlocked (if it was
1871  * locked).
1872  */
end_io_requests(struct fuse_conn * fc)1873 static void end_io_requests(struct fuse_conn *fc)
1874 __releases(fc->lock)
1875 __acquires(fc->lock)
1876 {
1877 	while (!list_empty(&fc->io)) {
1878 		struct fuse_req *req =
1879 			list_entry(fc->io.next, struct fuse_req, list);
1880 		void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1881 
1882 		req->aborted = 1;
1883 		req->out.h.error = -ECONNABORTED;
1884 		req->state = FUSE_REQ_FINISHED;
1885 		list_del_init(&req->list);
1886 		wake_up(&req->waitq);
1887 		if (end) {
1888 			req->end = NULL;
1889 			__fuse_get_request(req);
1890 			spin_unlock(&fc->lock);
1891 			wait_event(req->waitq, !req->locked);
1892 			end(fc, req);
1893 			fuse_put_request(fc, req);
1894 			spin_lock(&fc->lock);
1895 		}
1896 	}
1897 }
1898 
end_queued_requests(struct fuse_conn * fc)1899 static void end_queued_requests(struct fuse_conn *fc)
1900 __releases(fc->lock)
1901 __acquires(fc->lock)
1902 {
1903 	fc->max_background = UINT_MAX;
1904 	flush_bg_queue(fc);
1905 	end_requests(fc, &fc->pending);
1906 	end_requests(fc, &fc->processing);
1907 	while (forget_pending(fc))
1908 		kfree(dequeue_forget(fc, 1, NULL));
1909 }
1910 
end_polls(struct fuse_conn * fc)1911 static void end_polls(struct fuse_conn *fc)
1912 {
1913 	struct rb_node *p;
1914 
1915 	p = rb_first(&fc->polled_files);
1916 
1917 	while (p) {
1918 		struct fuse_file *ff;
1919 		ff = rb_entry(p, struct fuse_file, polled_node);
1920 		wake_up_interruptible_all(&ff->poll_wait);
1921 
1922 		p = rb_next(p);
1923 	}
1924 }
1925 
1926 /*
1927  * Abort all requests.
1928  *
1929  * Emergency exit in case of a malicious or accidental deadlock, or
1930  * just a hung filesystem.
1931  *
1932  * The same effect is usually achievable through killing the
1933  * filesystem daemon and all users of the filesystem.  The exception
1934  * is the combination of an asynchronous request and the tricky
1935  * deadlock (see Documentation/filesystems/fuse.txt).
1936  *
1937  * During the aborting, progression of requests from the pending and
1938  * processing lists onto the io list, and progression of new requests
1939  * onto the pending list is prevented by req->connected being false.
1940  *
1941  * Progression of requests under I/O to the processing list is
1942  * prevented by the req->aborted flag being true for these requests.
1943  * For this reason requests on the io list must be aborted first.
1944  */
fuse_abort_conn(struct fuse_conn * fc)1945 void fuse_abort_conn(struct fuse_conn *fc)
1946 {
1947 	spin_lock(&fc->lock);
1948 	if (fc->connected) {
1949 		fc->connected = 0;
1950 		fc->blocked = 0;
1951 		end_io_requests(fc);
1952 		end_queued_requests(fc);
1953 		end_polls(fc);
1954 		wake_up_all(&fc->waitq);
1955 		wake_up_all(&fc->blocked_waitq);
1956 		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1957 	}
1958 	spin_unlock(&fc->lock);
1959 }
1960 EXPORT_SYMBOL_GPL(fuse_abort_conn);
1961 
fuse_dev_release(struct inode * inode,struct file * file)1962 int fuse_dev_release(struct inode *inode, struct file *file)
1963 {
1964 	struct fuse_conn *fc = fuse_get_conn(file);
1965 	if (fc) {
1966 		spin_lock(&fc->lock);
1967 		fc->connected = 0;
1968 		fc->blocked = 0;
1969 		end_queued_requests(fc);
1970 		end_polls(fc);
1971 		wake_up_all(&fc->blocked_waitq);
1972 		spin_unlock(&fc->lock);
1973 		fuse_conn_put(fc);
1974 	}
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(fuse_dev_release);
1979 
fuse_dev_fasync(int fd,struct file * file,int on)1980 static int fuse_dev_fasync(int fd, struct file *file, int on)
1981 {
1982 	struct fuse_conn *fc = fuse_get_conn(file);
1983 	if (!fc)
1984 		return -EPERM;
1985 
1986 	/* No locking - fasync_helper does its own locking */
1987 	return fasync_helper(fd, file, on, &fc->fasync);
1988 }
1989 
1990 const struct file_operations fuse_dev_operations = {
1991 	.owner		= THIS_MODULE,
1992 	.llseek		= no_llseek,
1993 	.read		= do_sync_read,
1994 	.aio_read	= fuse_dev_read,
1995 	.splice_read	= fuse_dev_splice_read,
1996 	.write		= do_sync_write,
1997 	.aio_write	= fuse_dev_write,
1998 	.splice_write	= fuse_dev_splice_write,
1999 	.poll		= fuse_dev_poll,
2000 	.release	= fuse_dev_release,
2001 	.fasync		= fuse_dev_fasync,
2002 };
2003 EXPORT_SYMBOL_GPL(fuse_dev_operations);
2004 
2005 static struct miscdevice fuse_miscdevice = {
2006 	.minor = FUSE_MINOR,
2007 	.name  = "fuse",
2008 	.fops = &fuse_dev_operations,
2009 };
2010 
fuse_dev_init(void)2011 int __init fuse_dev_init(void)
2012 {
2013 	int err = -ENOMEM;
2014 	fuse_req_cachep = kmem_cache_create("fuse_request",
2015 					    sizeof(struct fuse_req),
2016 					    0, 0, NULL);
2017 	if (!fuse_req_cachep)
2018 		goto out;
2019 
2020 	err = misc_register(&fuse_miscdevice);
2021 	if (err)
2022 		goto out_cache_clean;
2023 
2024 	return 0;
2025 
2026  out_cache_clean:
2027 	kmem_cache_destroy(fuse_req_cachep);
2028  out:
2029 	return err;
2030 }
2031 
fuse_dev_cleanup(void)2032 void fuse_dev_cleanup(void)
2033 {
2034 	misc_deregister(&fuse_miscdevice);
2035 	kmem_cache_destroy(fuse_req_cachep);
2036 }
2037