1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54 
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 static struct ext4_lazy_init *ext4_li_info;
58 static struct mutex ext4_li_mtx;
59 static struct ext4_features *ext4_feat;
60 
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 			     unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 					struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 				   struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 				     char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 		       const char *dev_name, void *data);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82 
83 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
84 static struct file_system_type ext3_fs_type = {
85 	.owner		= THIS_MODULE,
86 	.name		= "ext3",
87 	.mount		= ext4_mount,
88 	.kill_sb	= kill_block_super,
89 	.fs_flags	= FS_REQUIRES_DEV,
90 };
91 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
92 #else
93 #define IS_EXT3_SB(sb) (0)
94 #endif
95 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)96 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
97 			       struct ext4_group_desc *bg)
98 {
99 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
100 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
101 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
102 }
103 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)104 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
105 			       struct ext4_group_desc *bg)
106 {
107 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
108 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
109 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
110 }
111 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)112 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
113 			      struct ext4_group_desc *bg)
114 {
115 	return le32_to_cpu(bg->bg_inode_table_lo) |
116 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
117 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
118 }
119 
ext4_free_blks_count(struct super_block * sb,struct ext4_group_desc * bg)120 __u32 ext4_free_blks_count(struct super_block *sb,
121 			      struct ext4_group_desc *bg)
122 {
123 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
124 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
125 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
126 }
127 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)128 __u32 ext4_free_inodes_count(struct super_block *sb,
129 			      struct ext4_group_desc *bg)
130 {
131 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
132 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
133 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
134 }
135 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)136 __u32 ext4_used_dirs_count(struct super_block *sb,
137 			      struct ext4_group_desc *bg)
138 {
139 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
140 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
141 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
142 }
143 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)144 __u32 ext4_itable_unused_count(struct super_block *sb,
145 			      struct ext4_group_desc *bg)
146 {
147 	return le16_to_cpu(bg->bg_itable_unused_lo) |
148 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
150 }
151 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)152 void ext4_block_bitmap_set(struct super_block *sb,
153 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
154 {
155 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
156 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
157 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
158 }
159 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)160 void ext4_inode_bitmap_set(struct super_block *sb,
161 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
162 {
163 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
164 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
165 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
166 }
167 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)168 void ext4_inode_table_set(struct super_block *sb,
169 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
170 {
171 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
172 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
173 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
174 }
175 
ext4_free_blks_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)176 void ext4_free_blks_set(struct super_block *sb,
177 			  struct ext4_group_desc *bg, __u32 count)
178 {
179 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
180 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
181 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
182 }
183 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)184 void ext4_free_inodes_set(struct super_block *sb,
185 			  struct ext4_group_desc *bg, __u32 count)
186 {
187 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
188 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
189 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
190 }
191 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)192 void ext4_used_dirs_set(struct super_block *sb,
193 			  struct ext4_group_desc *bg, __u32 count)
194 {
195 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
196 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
197 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
198 }
199 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)200 void ext4_itable_unused_set(struct super_block *sb,
201 			  struct ext4_group_desc *bg, __u32 count)
202 {
203 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
204 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
206 }
207 
208 
209 /* Just increment the non-pointer handle value */
ext4_get_nojournal(void)210 static handle_t *ext4_get_nojournal(void)
211 {
212 	handle_t *handle = current->journal_info;
213 	unsigned long ref_cnt = (unsigned long)handle;
214 
215 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
216 
217 	ref_cnt++;
218 	handle = (handle_t *)ref_cnt;
219 
220 	current->journal_info = handle;
221 	return handle;
222 }
223 
224 
225 /* Decrement the non-pointer handle value */
ext4_put_nojournal(handle_t * handle)226 static void ext4_put_nojournal(handle_t *handle)
227 {
228 	unsigned long ref_cnt = (unsigned long)handle;
229 
230 	BUG_ON(ref_cnt == 0);
231 
232 	ref_cnt--;
233 	handle = (handle_t *)ref_cnt;
234 
235 	current->journal_info = handle;
236 }
237 
238 /*
239  * Wrappers for jbd2_journal_start/end.
240  *
241  * The only special thing we need to do here is to make sure that all
242  * journal_end calls result in the superblock being marked dirty, so
243  * that sync() will call the filesystem's write_super callback if
244  * appropriate.
245  *
246  * To avoid j_barrier hold in userspace when a user calls freeze(),
247  * ext4 prevents a new handle from being started by s_frozen, which
248  * is in an upper layer.
249  */
ext4_journal_start_sb(struct super_block * sb,int nblocks)250 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
251 {
252 	journal_t *journal;
253 	handle_t  *handle;
254 
255 	if (sb->s_flags & MS_RDONLY)
256 		return ERR_PTR(-EROFS);
257 
258 	journal = EXT4_SB(sb)->s_journal;
259 	handle = ext4_journal_current_handle();
260 
261 	/*
262 	 * If a handle has been started, it should be allowed to
263 	 * finish, otherwise deadlock could happen between freeze
264 	 * and others(e.g. truncate) due to the restart of the
265 	 * journal handle if the filesystem is forzen and active
266 	 * handles are not stopped.
267 	 */
268 	if (!handle)
269 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
270 
271 	if (!journal)
272 		return ext4_get_nojournal();
273 	/*
274 	 * Special case here: if the journal has aborted behind our
275 	 * backs (eg. EIO in the commit thread), then we still need to
276 	 * take the FS itself readonly cleanly.
277 	 */
278 	if (is_journal_aborted(journal)) {
279 		ext4_abort(sb, "Detected aborted journal");
280 		return ERR_PTR(-EROFS);
281 	}
282 	return jbd2_journal_start(journal, nblocks);
283 }
284 
285 /*
286  * The only special thing we need to do here is to make sure that all
287  * jbd2_journal_stop calls result in the superblock being marked dirty, so
288  * that sync() will call the filesystem's write_super callback if
289  * appropriate.
290  */
__ext4_journal_stop(const char * where,unsigned int line,handle_t * handle)291 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
292 {
293 	struct super_block *sb;
294 	int err;
295 	int rc;
296 
297 	if (!ext4_handle_valid(handle)) {
298 		ext4_put_nojournal(handle);
299 		return 0;
300 	}
301 	sb = handle->h_transaction->t_journal->j_private;
302 	err = handle->h_err;
303 	rc = jbd2_journal_stop(handle);
304 
305 	if (!err)
306 		err = rc;
307 	if (err)
308 		__ext4_std_error(sb, where, line, err);
309 	return err;
310 }
311 
ext4_journal_abort_handle(const char * caller,unsigned int line,const char * err_fn,struct buffer_head * bh,handle_t * handle,int err)312 void ext4_journal_abort_handle(const char *caller, unsigned int line,
313 			       const char *err_fn, struct buffer_head *bh,
314 			       handle_t *handle, int err)
315 {
316 	char nbuf[16];
317 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
318 
319 	BUG_ON(!ext4_handle_valid(handle));
320 
321 	if (bh)
322 		BUFFER_TRACE(bh, "abort");
323 
324 	if (!handle->h_err)
325 		handle->h_err = err;
326 
327 	if (is_handle_aborted(handle))
328 		return;
329 
330 	printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
331 	       caller, line, errstr, err_fn);
332 
333 	jbd2_journal_abort_handle(handle);
334 }
335 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)336 static void __save_error_info(struct super_block *sb, const char *func,
337 			    unsigned int line)
338 {
339 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
340 
341 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
342 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
343 	es->s_last_error_time = cpu_to_le32(get_seconds());
344 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
345 	es->s_last_error_line = cpu_to_le32(line);
346 	if (!es->s_first_error_time) {
347 		es->s_first_error_time = es->s_last_error_time;
348 		strncpy(es->s_first_error_func, func,
349 			sizeof(es->s_first_error_func));
350 		es->s_first_error_line = cpu_to_le32(line);
351 		es->s_first_error_ino = es->s_last_error_ino;
352 		es->s_first_error_block = es->s_last_error_block;
353 	}
354 	/*
355 	 * Start the daily error reporting function if it hasn't been
356 	 * started already
357 	 */
358 	if (!es->s_error_count)
359 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
360 	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
361 }
362 
save_error_info(struct super_block * sb,const char * func,unsigned int line)363 static void save_error_info(struct super_block *sb, const char *func,
364 			    unsigned int line)
365 {
366 	__save_error_info(sb, func, line);
367 	ext4_commit_super(sb, 1);
368 }
369 
370 
371 /* Deal with the reporting of failure conditions on a filesystem such as
372  * inconsistencies detected or read IO failures.
373  *
374  * On ext2, we can store the error state of the filesystem in the
375  * superblock.  That is not possible on ext4, because we may have other
376  * write ordering constraints on the superblock which prevent us from
377  * writing it out straight away; and given that the journal is about to
378  * be aborted, we can't rely on the current, or future, transactions to
379  * write out the superblock safely.
380  *
381  * We'll just use the jbd2_journal_abort() error code to record an error in
382  * the journal instead.  On recovery, the journal will complain about
383  * that error until we've noted it down and cleared it.
384  */
385 
ext4_handle_error(struct super_block * sb)386 static void ext4_handle_error(struct super_block *sb)
387 {
388 	if (sb->s_flags & MS_RDONLY)
389 		return;
390 
391 	if (!test_opt(sb, ERRORS_CONT)) {
392 		journal_t *journal = EXT4_SB(sb)->s_journal;
393 
394 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
395 		if (journal)
396 			jbd2_journal_abort(journal, -EIO);
397 	}
398 	if (test_opt(sb, ERRORS_RO)) {
399 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
400 		sb->s_flags |= MS_RDONLY;
401 	}
402 	if (test_opt(sb, ERRORS_PANIC))
403 		panic("EXT4-fs (device %s): panic forced after error\n",
404 			sb->s_id);
405 }
406 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)407 void __ext4_error(struct super_block *sb, const char *function,
408 		  unsigned int line, const char *fmt, ...)
409 {
410 	struct va_format vaf;
411 	va_list args;
412 
413 	va_start(args, fmt);
414 	vaf.fmt = fmt;
415 	vaf.va = &args;
416 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
417 	       sb->s_id, function, line, current->comm, &vaf);
418 	va_end(args);
419 
420 	ext4_handle_error(sb);
421 }
422 
ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)423 void ext4_error_inode(struct inode *inode, const char *function,
424 		      unsigned int line, ext4_fsblk_t block,
425 		      const char *fmt, ...)
426 {
427 	va_list args;
428 	struct va_format vaf;
429 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
430 
431 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
432 	es->s_last_error_block = cpu_to_le64(block);
433 	save_error_info(inode->i_sb, function, line);
434 	va_start(args, fmt);
435 	vaf.fmt = fmt;
436 	vaf.va = &args;
437 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
438 	       inode->i_sb->s_id, function, line, inode->i_ino);
439 	if (block)
440 		printk(KERN_CONT "block %llu: ", block);
441 	printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
442 	va_end(args);
443 
444 	ext4_handle_error(inode->i_sb);
445 }
446 
ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)447 void ext4_error_file(struct file *file, const char *function,
448 		     unsigned int line, ext4_fsblk_t block,
449 		     const char *fmt, ...)
450 {
451 	va_list args;
452 	struct va_format vaf;
453 	struct ext4_super_block *es;
454 	struct inode *inode = file->f_dentry->d_inode;
455 	char pathname[80], *path;
456 
457 	es = EXT4_SB(inode->i_sb)->s_es;
458 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
459 	save_error_info(inode->i_sb, function, line);
460 	path = d_path(&(file->f_path), pathname, sizeof(pathname));
461 	if (IS_ERR(path))
462 		path = "(unknown)";
463 	printk(KERN_CRIT
464 	       "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
465 	       inode->i_sb->s_id, function, line, inode->i_ino);
466 	if (block)
467 		printk(KERN_CONT "block %llu: ", block);
468 	va_start(args, fmt);
469 	vaf.fmt = fmt;
470 	vaf.va = &args;
471 	printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
472 	va_end(args);
473 
474 	ext4_handle_error(inode->i_sb);
475 }
476 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])477 static const char *ext4_decode_error(struct super_block *sb, int errno,
478 				     char nbuf[16])
479 {
480 	char *errstr = NULL;
481 
482 	switch (errno) {
483 	case -EIO:
484 		errstr = "IO failure";
485 		break;
486 	case -ENOMEM:
487 		errstr = "Out of memory";
488 		break;
489 	case -EROFS:
490 		if (!sb || (EXT4_SB(sb)->s_journal &&
491 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
492 			errstr = "Journal has aborted";
493 		else
494 			errstr = "Readonly filesystem";
495 		break;
496 	default:
497 		/* If the caller passed in an extra buffer for unknown
498 		 * errors, textualise them now.  Else we just return
499 		 * NULL. */
500 		if (nbuf) {
501 			/* Check for truncated error codes... */
502 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
503 				errstr = nbuf;
504 		}
505 		break;
506 	}
507 
508 	return errstr;
509 }
510 
511 /* __ext4_std_error decodes expected errors from journaling functions
512  * automatically and invokes the appropriate error response.  */
513 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)514 void __ext4_std_error(struct super_block *sb, const char *function,
515 		      unsigned int line, int errno)
516 {
517 	char nbuf[16];
518 	const char *errstr;
519 
520 	/* Special case: if the error is EROFS, and we're not already
521 	 * inside a transaction, then there's really no point in logging
522 	 * an error. */
523 	if (errno == -EROFS && journal_current_handle() == NULL &&
524 	    (sb->s_flags & MS_RDONLY))
525 		return;
526 
527 	errstr = ext4_decode_error(sb, errno, nbuf);
528 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
529 	       sb->s_id, function, line, errstr);
530 	save_error_info(sb, function, line);
531 
532 	ext4_handle_error(sb);
533 }
534 
535 /*
536  * ext4_abort is a much stronger failure handler than ext4_error.  The
537  * abort function may be used to deal with unrecoverable failures such
538  * as journal IO errors or ENOMEM at a critical moment in log management.
539  *
540  * We unconditionally force the filesystem into an ABORT|READONLY state,
541  * unless the error response on the fs has been set to panic in which
542  * case we take the easy way out and panic immediately.
543  */
544 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)545 void __ext4_abort(struct super_block *sb, const char *function,
546 		unsigned int line, const char *fmt, ...)
547 {
548 	va_list args;
549 
550 	save_error_info(sb, function, line);
551 	va_start(args, fmt);
552 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
553 	       function, line);
554 	vprintk(fmt, args);
555 	printk("\n");
556 	va_end(args);
557 
558 	if ((sb->s_flags & MS_RDONLY) == 0) {
559 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
560 		sb->s_flags |= MS_RDONLY;
561 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
562 		if (EXT4_SB(sb)->s_journal)
563 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
564 		save_error_info(sb, function, line);
565 	}
566 	if (test_opt(sb, ERRORS_PANIC))
567 		panic("EXT4-fs panic from previous error\n");
568 }
569 
ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)570 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
571 {
572 	struct va_format vaf;
573 	va_list args;
574 
575 	va_start(args, fmt);
576 	vaf.fmt = fmt;
577 	vaf.va = &args;
578 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
579 	va_end(args);
580 }
581 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)582 void __ext4_warning(struct super_block *sb, const char *function,
583 		    unsigned int line, const char *fmt, ...)
584 {
585 	struct va_format vaf;
586 	va_list args;
587 
588 	va_start(args, fmt);
589 	vaf.fmt = fmt;
590 	vaf.va = &args;
591 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
592 	       sb->s_id, function, line, &vaf);
593 	va_end(args);
594 }
595 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)596 void __ext4_grp_locked_error(const char *function, unsigned int line,
597 			     struct super_block *sb, ext4_group_t grp,
598 			     unsigned long ino, ext4_fsblk_t block,
599 			     const char *fmt, ...)
600 __releases(bitlock)
601 __acquires(bitlock)
602 {
603 	struct va_format vaf;
604 	va_list args;
605 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
606 
607 	es->s_last_error_ino = cpu_to_le32(ino);
608 	es->s_last_error_block = cpu_to_le64(block);
609 	__save_error_info(sb, function, line);
610 
611 	va_start(args, fmt);
612 
613 	vaf.fmt = fmt;
614 	vaf.va = &args;
615 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
616 	       sb->s_id, function, line, grp);
617 	if (ino)
618 		printk(KERN_CONT "inode %lu: ", ino);
619 	if (block)
620 		printk(KERN_CONT "block %llu:", (unsigned long long) block);
621 	printk(KERN_CONT "%pV\n", &vaf);
622 	va_end(args);
623 
624 	if (test_opt(sb, ERRORS_CONT)) {
625 		ext4_commit_super(sb, 0);
626 		return;
627 	}
628 
629 	ext4_unlock_group(sb, grp);
630 	ext4_handle_error(sb);
631 	/*
632 	 * We only get here in the ERRORS_RO case; relocking the group
633 	 * may be dangerous, but nothing bad will happen since the
634 	 * filesystem will have already been marked read/only and the
635 	 * journal has been aborted.  We return 1 as a hint to callers
636 	 * who might what to use the return value from
637 	 * ext4_grp_locked_error() to distinguish between the
638 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
639 	 * aggressively from the ext4 function in question, with a
640 	 * more appropriate error code.
641 	 */
642 	ext4_lock_group(sb, grp);
643 	return;
644 }
645 
ext4_update_dynamic_rev(struct super_block * sb)646 void ext4_update_dynamic_rev(struct super_block *sb)
647 {
648 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
649 
650 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
651 		return;
652 
653 	ext4_warning(sb,
654 		     "updating to rev %d because of new feature flag, "
655 		     "running e2fsck is recommended",
656 		     EXT4_DYNAMIC_REV);
657 
658 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
659 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
660 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
661 	/* leave es->s_feature_*compat flags alone */
662 	/* es->s_uuid will be set by e2fsck if empty */
663 
664 	/*
665 	 * The rest of the superblock fields should be zero, and if not it
666 	 * means they are likely already in use, so leave them alone.  We
667 	 * can leave it up to e2fsck to clean up any inconsistencies there.
668 	 */
669 }
670 
671 /*
672  * Open the external journal device
673  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)674 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
675 {
676 	struct block_device *bdev;
677 	char b[BDEVNAME_SIZE];
678 
679 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
680 	if (IS_ERR(bdev))
681 		goto fail;
682 	return bdev;
683 
684 fail:
685 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
686 			__bdevname(dev, b), PTR_ERR(bdev));
687 	return NULL;
688 }
689 
690 /*
691  * Release the journal device
692  */
ext4_blkdev_put(struct block_device * bdev)693 static int ext4_blkdev_put(struct block_device *bdev)
694 {
695 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
696 }
697 
ext4_blkdev_remove(struct ext4_sb_info * sbi)698 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
699 {
700 	struct block_device *bdev;
701 	int ret = -ENODEV;
702 
703 	bdev = sbi->journal_bdev;
704 	if (bdev) {
705 		ret = ext4_blkdev_put(bdev);
706 		sbi->journal_bdev = NULL;
707 	}
708 	return ret;
709 }
710 
orphan_list_entry(struct list_head * l)711 static inline struct inode *orphan_list_entry(struct list_head *l)
712 {
713 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
714 }
715 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)716 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
717 {
718 	struct list_head *l;
719 
720 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
721 		 le32_to_cpu(sbi->s_es->s_last_orphan));
722 
723 	printk(KERN_ERR "sb_info orphan list:\n");
724 	list_for_each(l, &sbi->s_orphan) {
725 		struct inode *inode = orphan_list_entry(l);
726 		printk(KERN_ERR "  "
727 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
728 		       inode->i_sb->s_id, inode->i_ino, inode,
729 		       inode->i_mode, inode->i_nlink,
730 		       NEXT_ORPHAN(inode));
731 	}
732 }
733 
ext4_put_super(struct super_block * sb)734 static void ext4_put_super(struct super_block *sb)
735 {
736 	struct ext4_sb_info *sbi = EXT4_SB(sb);
737 	struct ext4_super_block *es = sbi->s_es;
738 	int i, err;
739 
740 	ext4_unregister_li_request(sb);
741 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
742 
743 	flush_workqueue(sbi->dio_unwritten_wq);
744 	destroy_workqueue(sbi->dio_unwritten_wq);
745 
746 	lock_super(sb);
747 	if (sb->s_dirt)
748 		ext4_commit_super(sb, 1);
749 
750 	if (sbi->s_journal) {
751 		err = jbd2_journal_destroy(sbi->s_journal);
752 		sbi->s_journal = NULL;
753 		if (err < 0)
754 			ext4_abort(sb, "Couldn't clean up the journal");
755 	}
756 
757 	del_timer(&sbi->s_err_report);
758 	ext4_release_system_zone(sb);
759 	ext4_mb_release(sb);
760 	ext4_ext_release(sb);
761 	ext4_xattr_put_super(sb);
762 
763 	if (!(sb->s_flags & MS_RDONLY)) {
764 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
765 		es->s_state = cpu_to_le16(sbi->s_mount_state);
766 		ext4_commit_super(sb, 1);
767 	}
768 	if (sbi->s_proc) {
769 		remove_proc_entry(sb->s_id, ext4_proc_root);
770 	}
771 	kobject_del(&sbi->s_kobj);
772 
773 	for (i = 0; i < sbi->s_gdb_count; i++)
774 		brelse(sbi->s_group_desc[i]);
775 	kfree(sbi->s_group_desc);
776 	if (is_vmalloc_addr(sbi->s_flex_groups))
777 		vfree(sbi->s_flex_groups);
778 	else
779 		kfree(sbi->s_flex_groups);
780 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
781 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
782 	percpu_counter_destroy(&sbi->s_dirs_counter);
783 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
784 	brelse(sbi->s_sbh);
785 #ifdef CONFIG_QUOTA
786 	for (i = 0; i < MAXQUOTAS; i++)
787 		kfree(sbi->s_qf_names[i]);
788 #endif
789 
790 	/* Debugging code just in case the in-memory inode orphan list
791 	 * isn't empty.  The on-disk one can be non-empty if we've
792 	 * detected an error and taken the fs readonly, but the
793 	 * in-memory list had better be clean by this point. */
794 	if (!list_empty(&sbi->s_orphan))
795 		dump_orphan_list(sb, sbi);
796 	J_ASSERT(list_empty(&sbi->s_orphan));
797 
798 	invalidate_bdev(sb->s_bdev);
799 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
800 		/*
801 		 * Invalidate the journal device's buffers.  We don't want them
802 		 * floating about in memory - the physical journal device may
803 		 * hotswapped, and it breaks the `ro-after' testing code.
804 		 */
805 		sync_blockdev(sbi->journal_bdev);
806 		invalidate_bdev(sbi->journal_bdev);
807 		ext4_blkdev_remove(sbi);
808 	}
809 	sb->s_fs_info = NULL;
810 	/*
811 	 * Now that we are completely done shutting down the
812 	 * superblock, we need to actually destroy the kobject.
813 	 */
814 	unlock_super(sb);
815 	kobject_put(&sbi->s_kobj);
816 	wait_for_completion(&sbi->s_kobj_unregister);
817 	kfree(sbi->s_blockgroup_lock);
818 	kfree(sbi);
819 }
820 
821 static struct kmem_cache *ext4_inode_cachep;
822 
823 /*
824  * Called inside transaction, so use GFP_NOFS
825  */
ext4_alloc_inode(struct super_block * sb)826 static struct inode *ext4_alloc_inode(struct super_block *sb)
827 {
828 	struct ext4_inode_info *ei;
829 
830 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
831 	if (!ei)
832 		return NULL;
833 
834 	ei->vfs_inode.i_version = 1;
835 	ei->vfs_inode.i_data.writeback_index = 0;
836 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
837 	INIT_LIST_HEAD(&ei->i_prealloc_list);
838 	spin_lock_init(&ei->i_prealloc_lock);
839 	ei->i_reserved_data_blocks = 0;
840 	ei->i_reserved_meta_blocks = 0;
841 	ei->i_allocated_meta_blocks = 0;
842 	ei->i_da_metadata_calc_len = 0;
843 	spin_lock_init(&(ei->i_block_reservation_lock));
844 #ifdef CONFIG_QUOTA
845 	ei->i_reserved_quota = 0;
846 #endif
847 	ei->jinode = NULL;
848 	INIT_LIST_HEAD(&ei->i_completed_io_list);
849 	spin_lock_init(&ei->i_completed_io_lock);
850 	ei->cur_aio_dio = NULL;
851 	ei->i_sync_tid = 0;
852 	ei->i_datasync_tid = 0;
853 	atomic_set(&ei->i_ioend_count, 0);
854 	atomic_set(&ei->i_aiodio_unwritten, 0);
855 
856 	return &ei->vfs_inode;
857 }
858 
ext4_drop_inode(struct inode * inode)859 static int ext4_drop_inode(struct inode *inode)
860 {
861 	int drop = generic_drop_inode(inode);
862 
863 	trace_ext4_drop_inode(inode, drop);
864 	return drop;
865 }
866 
ext4_i_callback(struct rcu_head * head)867 static void ext4_i_callback(struct rcu_head *head)
868 {
869 	struct inode *inode = container_of(head, struct inode, i_rcu);
870 	INIT_LIST_HEAD(&inode->i_dentry);
871 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
872 }
873 
ext4_destroy_inode(struct inode * inode)874 static void ext4_destroy_inode(struct inode *inode)
875 {
876 	ext4_ioend_wait(inode);
877 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
878 		ext4_msg(inode->i_sb, KERN_ERR,
879 			 "Inode %lu (%p): orphan list check failed!",
880 			 inode->i_ino, EXT4_I(inode));
881 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
882 				EXT4_I(inode), sizeof(struct ext4_inode_info),
883 				true);
884 		dump_stack();
885 	}
886 	call_rcu(&inode->i_rcu, ext4_i_callback);
887 }
888 
init_once(void * foo)889 static void init_once(void *foo)
890 {
891 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
892 
893 	INIT_LIST_HEAD(&ei->i_orphan);
894 #ifdef CONFIG_EXT4_FS_XATTR
895 	init_rwsem(&ei->xattr_sem);
896 #endif
897 	init_rwsem(&ei->i_data_sem);
898 	inode_init_once(&ei->vfs_inode);
899 }
900 
init_inodecache(void)901 static int init_inodecache(void)
902 {
903 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
904 					     sizeof(struct ext4_inode_info),
905 					     0, (SLAB_RECLAIM_ACCOUNT|
906 						SLAB_MEM_SPREAD),
907 					     init_once);
908 	if (ext4_inode_cachep == NULL)
909 		return -ENOMEM;
910 	return 0;
911 }
912 
destroy_inodecache(void)913 static void destroy_inodecache(void)
914 {
915 	kmem_cache_destroy(ext4_inode_cachep);
916 }
917 
ext4_clear_inode(struct inode * inode)918 void ext4_clear_inode(struct inode *inode)
919 {
920 	invalidate_inode_buffers(inode);
921 	end_writeback(inode);
922 	dquot_drop(inode);
923 	ext4_discard_preallocations(inode);
924 	if (EXT4_I(inode)->jinode) {
925 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
926 					       EXT4_I(inode)->jinode);
927 		jbd2_free_inode(EXT4_I(inode)->jinode);
928 		EXT4_I(inode)->jinode = NULL;
929 	}
930 }
931 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)932 static inline void ext4_show_quota_options(struct seq_file *seq,
933 					   struct super_block *sb)
934 {
935 #if defined(CONFIG_QUOTA)
936 	struct ext4_sb_info *sbi = EXT4_SB(sb);
937 
938 	if (sbi->s_jquota_fmt) {
939 		char *fmtname = "";
940 
941 		switch (sbi->s_jquota_fmt) {
942 		case QFMT_VFS_OLD:
943 			fmtname = "vfsold";
944 			break;
945 		case QFMT_VFS_V0:
946 			fmtname = "vfsv0";
947 			break;
948 		case QFMT_VFS_V1:
949 			fmtname = "vfsv1";
950 			break;
951 		}
952 		seq_printf(seq, ",jqfmt=%s", fmtname);
953 	}
954 
955 	if (sbi->s_qf_names[USRQUOTA])
956 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
957 
958 	if (sbi->s_qf_names[GRPQUOTA])
959 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
960 
961 	if (test_opt(sb, USRQUOTA))
962 		seq_puts(seq, ",usrquota");
963 
964 	if (test_opt(sb, GRPQUOTA))
965 		seq_puts(seq, ",grpquota");
966 #endif
967 }
968 
969 /*
970  * Show an option if
971  *  - it's set to a non-default value OR
972  *  - if the per-sb default is different from the global default
973  */
ext4_show_options(struct seq_file * seq,struct vfsmount * vfs)974 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
975 {
976 	int def_errors;
977 	unsigned long def_mount_opts;
978 	struct super_block *sb = vfs->mnt_sb;
979 	struct ext4_sb_info *sbi = EXT4_SB(sb);
980 	struct ext4_super_block *es = sbi->s_es;
981 
982 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
983 	def_errors     = le16_to_cpu(es->s_errors);
984 
985 	if (sbi->s_sb_block != 1)
986 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
987 	if (test_opt(sb, MINIX_DF))
988 		seq_puts(seq, ",minixdf");
989 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
990 		seq_puts(seq, ",grpid");
991 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
992 		seq_puts(seq, ",nogrpid");
993 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
994 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
995 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
996 	}
997 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
998 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
999 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1000 	}
1001 	if (test_opt(sb, ERRORS_RO)) {
1002 		if (def_errors == EXT4_ERRORS_PANIC ||
1003 		    def_errors == EXT4_ERRORS_CONTINUE) {
1004 			seq_puts(seq, ",errors=remount-ro");
1005 		}
1006 	}
1007 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1008 		seq_puts(seq, ",errors=continue");
1009 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1010 		seq_puts(seq, ",errors=panic");
1011 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1012 		seq_puts(seq, ",nouid32");
1013 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1014 		seq_puts(seq, ",debug");
1015 	if (test_opt(sb, OLDALLOC))
1016 		seq_puts(seq, ",oldalloc");
1017 #ifdef CONFIG_EXT4_FS_XATTR
1018 	if (test_opt(sb, XATTR_USER))
1019 		seq_puts(seq, ",user_xattr");
1020 	if (!test_opt(sb, XATTR_USER))
1021 		seq_puts(seq, ",nouser_xattr");
1022 #endif
1023 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1024 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1025 		seq_puts(seq, ",acl");
1026 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1027 		seq_puts(seq, ",noacl");
1028 #endif
1029 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1030 		seq_printf(seq, ",commit=%u",
1031 			   (unsigned) (sbi->s_commit_interval / HZ));
1032 	}
1033 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1034 		seq_printf(seq, ",min_batch_time=%u",
1035 			   (unsigned) sbi->s_min_batch_time);
1036 	}
1037 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1038 		seq_printf(seq, ",max_batch_time=%u",
1039 			   (unsigned) sbi->s_min_batch_time);
1040 	}
1041 
1042 	/*
1043 	 * We're changing the default of barrier mount option, so
1044 	 * let's always display its mount state so it's clear what its
1045 	 * status is.
1046 	 */
1047 	seq_puts(seq, ",barrier=");
1048 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1049 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1050 		seq_puts(seq, ",journal_async_commit");
1051 	else if (test_opt(sb, JOURNAL_CHECKSUM))
1052 		seq_puts(seq, ",journal_checksum");
1053 	if (test_opt(sb, I_VERSION))
1054 		seq_puts(seq, ",i_version");
1055 	if (!test_opt(sb, DELALLOC) &&
1056 	    !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1057 		seq_puts(seq, ",nodelalloc");
1058 
1059 	if (!test_opt(sb, MBLK_IO_SUBMIT))
1060 		seq_puts(seq, ",nomblk_io_submit");
1061 	if (sbi->s_stripe)
1062 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1063 	/*
1064 	 * journal mode get enabled in different ways
1065 	 * So just print the value even if we didn't specify it
1066 	 */
1067 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1068 		seq_puts(seq, ",data=journal");
1069 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1070 		seq_puts(seq, ",data=ordered");
1071 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1072 		seq_puts(seq, ",data=writeback");
1073 
1074 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1075 		seq_printf(seq, ",inode_readahead_blks=%u",
1076 			   sbi->s_inode_readahead_blks);
1077 
1078 	if (test_opt(sb, DATA_ERR_ABORT))
1079 		seq_puts(seq, ",data_err=abort");
1080 
1081 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
1082 		seq_puts(seq, ",noauto_da_alloc");
1083 
1084 	if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1085 		seq_puts(seq, ",discard");
1086 
1087 	if (test_opt(sb, NOLOAD))
1088 		seq_puts(seq, ",norecovery");
1089 
1090 	if (test_opt(sb, DIOREAD_NOLOCK))
1091 		seq_puts(seq, ",dioread_nolock");
1092 
1093 	if (test_opt(sb, BLOCK_VALIDITY) &&
1094 	    !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1095 		seq_puts(seq, ",block_validity");
1096 
1097 	if (!test_opt(sb, INIT_INODE_TABLE))
1098 		seq_puts(seq, ",noinit_inode_table");
1099 	else if (sbi->s_li_wait_mult)
1100 		seq_printf(seq, ",init_inode_table=%u",
1101 			   (unsigned) sbi->s_li_wait_mult);
1102 
1103 	ext4_show_quota_options(seq, sb);
1104 
1105 	return 0;
1106 }
1107 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1108 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1109 					u64 ino, u32 generation)
1110 {
1111 	struct inode *inode;
1112 
1113 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1114 		return ERR_PTR(-ESTALE);
1115 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1116 		return ERR_PTR(-ESTALE);
1117 
1118 	/* iget isn't really right if the inode is currently unallocated!!
1119 	 *
1120 	 * ext4_read_inode will return a bad_inode if the inode had been
1121 	 * deleted, so we should be safe.
1122 	 *
1123 	 * Currently we don't know the generation for parent directory, so
1124 	 * a generation of 0 means "accept any"
1125 	 */
1126 	inode = ext4_iget(sb, ino);
1127 	if (IS_ERR(inode))
1128 		return ERR_CAST(inode);
1129 	if (generation && inode->i_generation != generation) {
1130 		iput(inode);
1131 		return ERR_PTR(-ESTALE);
1132 	}
1133 
1134 	return inode;
1135 }
1136 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1137 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1138 					int fh_len, int fh_type)
1139 {
1140 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1141 				    ext4_nfs_get_inode);
1142 }
1143 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1144 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1145 					int fh_len, int fh_type)
1146 {
1147 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1148 				    ext4_nfs_get_inode);
1149 }
1150 
1151 /*
1152  * Try to release metadata pages (indirect blocks, directories) which are
1153  * mapped via the block device.  Since these pages could have journal heads
1154  * which would prevent try_to_free_buffers() from freeing them, we must use
1155  * jbd2 layer's try_to_free_buffers() function to release them.
1156  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1157 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1158 				 gfp_t wait)
1159 {
1160 	journal_t *journal = EXT4_SB(sb)->s_journal;
1161 
1162 	WARN_ON(PageChecked(page));
1163 	if (!page_has_buffers(page))
1164 		return 0;
1165 	if (journal)
1166 		return jbd2_journal_try_to_free_buffers(journal, page,
1167 							wait & ~__GFP_WAIT);
1168 	return try_to_free_buffers(page);
1169 }
1170 
1171 #ifdef CONFIG_QUOTA
1172 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1173 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1174 
1175 static int ext4_write_dquot(struct dquot *dquot);
1176 static int ext4_acquire_dquot(struct dquot *dquot);
1177 static int ext4_release_dquot(struct dquot *dquot);
1178 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1179 static int ext4_write_info(struct super_block *sb, int type);
1180 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1181 			 struct path *path);
1182 static int ext4_quota_off(struct super_block *sb, int type);
1183 static int ext4_quota_on_mount(struct super_block *sb, int type);
1184 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1185 			       size_t len, loff_t off);
1186 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1187 				const char *data, size_t len, loff_t off);
1188 
1189 static const struct dquot_operations ext4_quota_operations = {
1190 #ifdef CONFIG_QUOTA
1191 	.get_reserved_space = ext4_get_reserved_space,
1192 #endif
1193 	.write_dquot	= ext4_write_dquot,
1194 	.acquire_dquot	= ext4_acquire_dquot,
1195 	.release_dquot	= ext4_release_dquot,
1196 	.mark_dirty	= ext4_mark_dquot_dirty,
1197 	.write_info	= ext4_write_info,
1198 	.alloc_dquot	= dquot_alloc,
1199 	.destroy_dquot	= dquot_destroy,
1200 };
1201 
1202 static const struct quotactl_ops ext4_qctl_operations = {
1203 	.quota_on	= ext4_quota_on,
1204 	.quota_off	= ext4_quota_off,
1205 	.quota_sync	= dquot_quota_sync,
1206 	.get_info	= dquot_get_dqinfo,
1207 	.set_info	= dquot_set_dqinfo,
1208 	.get_dqblk	= dquot_get_dqblk,
1209 	.set_dqblk	= dquot_set_dqblk
1210 };
1211 #endif
1212 
1213 static const struct super_operations ext4_sops = {
1214 	.alloc_inode	= ext4_alloc_inode,
1215 	.destroy_inode	= ext4_destroy_inode,
1216 	.write_inode	= ext4_write_inode,
1217 	.dirty_inode	= ext4_dirty_inode,
1218 	.drop_inode	= ext4_drop_inode,
1219 	.evict_inode	= ext4_evict_inode,
1220 	.put_super	= ext4_put_super,
1221 	.sync_fs	= ext4_sync_fs,
1222 	.freeze_fs	= ext4_freeze,
1223 	.unfreeze_fs	= ext4_unfreeze,
1224 	.statfs		= ext4_statfs,
1225 	.remount_fs	= ext4_remount,
1226 	.show_options	= ext4_show_options,
1227 #ifdef CONFIG_QUOTA
1228 	.quota_read	= ext4_quota_read,
1229 	.quota_write	= ext4_quota_write,
1230 #endif
1231 	.bdev_try_to_free_page = bdev_try_to_free_page,
1232 };
1233 
1234 static const struct super_operations ext4_nojournal_sops = {
1235 	.alloc_inode	= ext4_alloc_inode,
1236 	.destroy_inode	= ext4_destroy_inode,
1237 	.write_inode	= ext4_write_inode,
1238 	.dirty_inode	= ext4_dirty_inode,
1239 	.drop_inode	= ext4_drop_inode,
1240 	.evict_inode	= ext4_evict_inode,
1241 	.write_super	= ext4_write_super,
1242 	.put_super	= ext4_put_super,
1243 	.statfs		= ext4_statfs,
1244 	.remount_fs	= ext4_remount,
1245 	.show_options	= ext4_show_options,
1246 #ifdef CONFIG_QUOTA
1247 	.quota_read	= ext4_quota_read,
1248 	.quota_write	= ext4_quota_write,
1249 #endif
1250 	.bdev_try_to_free_page = bdev_try_to_free_page,
1251 };
1252 
1253 static const struct export_operations ext4_export_ops = {
1254 	.fh_to_dentry = ext4_fh_to_dentry,
1255 	.fh_to_parent = ext4_fh_to_parent,
1256 	.get_parent = ext4_get_parent,
1257 };
1258 
1259 enum {
1260 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1261 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1262 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1263 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1264 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1265 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1266 	Opt_journal_update, Opt_journal_dev,
1267 	Opt_journal_checksum, Opt_journal_async_commit,
1268 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1269 	Opt_data_err_abort, Opt_data_err_ignore,
1270 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1271 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1272 	Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1273 	Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1274 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1275 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1276 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1277 	Opt_dioread_nolock, Opt_dioread_lock,
1278 	Opt_discard, Opt_nodiscard,
1279 	Opt_init_inode_table, Opt_noinit_inode_table,
1280 };
1281 
1282 static const match_table_t tokens = {
1283 	{Opt_bsd_df, "bsddf"},
1284 	{Opt_minix_df, "minixdf"},
1285 	{Opt_grpid, "grpid"},
1286 	{Opt_grpid, "bsdgroups"},
1287 	{Opt_nogrpid, "nogrpid"},
1288 	{Opt_nogrpid, "sysvgroups"},
1289 	{Opt_resgid, "resgid=%u"},
1290 	{Opt_resuid, "resuid=%u"},
1291 	{Opt_sb, "sb=%u"},
1292 	{Opt_err_cont, "errors=continue"},
1293 	{Opt_err_panic, "errors=panic"},
1294 	{Opt_err_ro, "errors=remount-ro"},
1295 	{Opt_nouid32, "nouid32"},
1296 	{Opt_debug, "debug"},
1297 	{Opt_oldalloc, "oldalloc"},
1298 	{Opt_orlov, "orlov"},
1299 	{Opt_user_xattr, "user_xattr"},
1300 	{Opt_nouser_xattr, "nouser_xattr"},
1301 	{Opt_acl, "acl"},
1302 	{Opt_noacl, "noacl"},
1303 	{Opt_noload, "noload"},
1304 	{Opt_noload, "norecovery"},
1305 	{Opt_nobh, "nobh"},
1306 	{Opt_bh, "bh"},
1307 	{Opt_commit, "commit=%u"},
1308 	{Opt_min_batch_time, "min_batch_time=%u"},
1309 	{Opt_max_batch_time, "max_batch_time=%u"},
1310 	{Opt_journal_update, "journal=update"},
1311 	{Opt_journal_dev, "journal_dev=%u"},
1312 	{Opt_journal_checksum, "journal_checksum"},
1313 	{Opt_journal_async_commit, "journal_async_commit"},
1314 	{Opt_abort, "abort"},
1315 	{Opt_data_journal, "data=journal"},
1316 	{Opt_data_ordered, "data=ordered"},
1317 	{Opt_data_writeback, "data=writeback"},
1318 	{Opt_data_err_abort, "data_err=abort"},
1319 	{Opt_data_err_ignore, "data_err=ignore"},
1320 	{Opt_offusrjquota, "usrjquota="},
1321 	{Opt_usrjquota, "usrjquota=%s"},
1322 	{Opt_offgrpjquota, "grpjquota="},
1323 	{Opt_grpjquota, "grpjquota=%s"},
1324 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1325 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1326 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1327 	{Opt_grpquota, "grpquota"},
1328 	{Opt_noquota, "noquota"},
1329 	{Opt_quota, "quota"},
1330 	{Opt_usrquota, "usrquota"},
1331 	{Opt_barrier, "barrier=%u"},
1332 	{Opt_barrier, "barrier"},
1333 	{Opt_nobarrier, "nobarrier"},
1334 	{Opt_i_version, "i_version"},
1335 	{Opt_stripe, "stripe=%u"},
1336 	{Opt_resize, "resize"},
1337 	{Opt_delalloc, "delalloc"},
1338 	{Opt_nodelalloc, "nodelalloc"},
1339 	{Opt_mblk_io_submit, "mblk_io_submit"},
1340 	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1341 	{Opt_block_validity, "block_validity"},
1342 	{Opt_noblock_validity, "noblock_validity"},
1343 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1344 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1345 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1346 	{Opt_auto_da_alloc, "auto_da_alloc"},
1347 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1348 	{Opt_dioread_nolock, "dioread_nolock"},
1349 	{Opt_dioread_lock, "dioread_lock"},
1350 	{Opt_discard, "discard"},
1351 	{Opt_nodiscard, "nodiscard"},
1352 	{Opt_init_inode_table, "init_itable=%u"},
1353 	{Opt_init_inode_table, "init_itable"},
1354 	{Opt_noinit_inode_table, "noinit_itable"},
1355 	{Opt_err, NULL},
1356 };
1357 
get_sb_block(void ** data)1358 static ext4_fsblk_t get_sb_block(void **data)
1359 {
1360 	ext4_fsblk_t	sb_block;
1361 	char		*options = (char *) *data;
1362 
1363 	if (!options || strncmp(options, "sb=", 3) != 0)
1364 		return 1;	/* Default location */
1365 
1366 	options += 3;
1367 	/* TODO: use simple_strtoll with >32bit ext4 */
1368 	sb_block = simple_strtoul(options, &options, 0);
1369 	if (*options && *options != ',') {
1370 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1371 		       (char *) *data);
1372 		return 1;
1373 	}
1374 	if (*options == ',')
1375 		options++;
1376 	*data = (void *) options;
1377 
1378 	return sb_block;
1379 }
1380 
1381 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1382 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1383 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1384 
1385 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1386 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1387 {
1388 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1389 	char *qname;
1390 
1391 	if (sb_any_quota_loaded(sb) &&
1392 		!sbi->s_qf_names[qtype]) {
1393 		ext4_msg(sb, KERN_ERR,
1394 			"Cannot change journaled "
1395 			"quota options when quota turned on");
1396 		return 0;
1397 	}
1398 	qname = match_strdup(args);
1399 	if (!qname) {
1400 		ext4_msg(sb, KERN_ERR,
1401 			"Not enough memory for storing quotafile name");
1402 		return 0;
1403 	}
1404 	if (sbi->s_qf_names[qtype] &&
1405 		strcmp(sbi->s_qf_names[qtype], qname)) {
1406 		ext4_msg(sb, KERN_ERR,
1407 			"%s quota file already specified", QTYPE2NAME(qtype));
1408 		kfree(qname);
1409 		return 0;
1410 	}
1411 	sbi->s_qf_names[qtype] = qname;
1412 	if (strchr(sbi->s_qf_names[qtype], '/')) {
1413 		ext4_msg(sb, KERN_ERR,
1414 			"quotafile must be on filesystem root");
1415 		kfree(sbi->s_qf_names[qtype]);
1416 		sbi->s_qf_names[qtype] = NULL;
1417 		return 0;
1418 	}
1419 	set_opt(sb, QUOTA);
1420 	return 1;
1421 }
1422 
clear_qf_name(struct super_block * sb,int qtype)1423 static int clear_qf_name(struct super_block *sb, int qtype)
1424 {
1425 
1426 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1427 
1428 	if (sb_any_quota_loaded(sb) &&
1429 		sbi->s_qf_names[qtype]) {
1430 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1431 			" when quota turned on");
1432 		return 0;
1433 	}
1434 	/*
1435 	 * The space will be released later when all options are confirmed
1436 	 * to be correct
1437 	 */
1438 	sbi->s_qf_names[qtype] = NULL;
1439 	return 1;
1440 }
1441 #endif
1442 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,ext4_fsblk_t * n_blocks_count,int is_remount)1443 static int parse_options(char *options, struct super_block *sb,
1444 			 unsigned long *journal_devnum,
1445 			 unsigned int *journal_ioprio,
1446 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1447 {
1448 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1449 	char *p;
1450 	substring_t args[MAX_OPT_ARGS];
1451 	int data_opt = 0;
1452 	int option;
1453 #ifdef CONFIG_QUOTA
1454 	int qfmt;
1455 #endif
1456 
1457 	if (!options)
1458 		return 1;
1459 
1460 	while ((p = strsep(&options, ",")) != NULL) {
1461 		int token;
1462 		if (!*p)
1463 			continue;
1464 
1465 		/*
1466 		 * Initialize args struct so we know whether arg was
1467 		 * found; some options take optional arguments.
1468 		 */
1469 		args[0].to = args[0].from = NULL;
1470 		token = match_token(p, tokens, args);
1471 		switch (token) {
1472 		case Opt_bsd_df:
1473 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1474 			clear_opt(sb, MINIX_DF);
1475 			break;
1476 		case Opt_minix_df:
1477 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1478 			set_opt(sb, MINIX_DF);
1479 
1480 			break;
1481 		case Opt_grpid:
1482 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1483 			set_opt(sb, GRPID);
1484 
1485 			break;
1486 		case Opt_nogrpid:
1487 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1488 			clear_opt(sb, GRPID);
1489 
1490 			break;
1491 		case Opt_resuid:
1492 			if (match_int(&args[0], &option))
1493 				return 0;
1494 			sbi->s_resuid = option;
1495 			break;
1496 		case Opt_resgid:
1497 			if (match_int(&args[0], &option))
1498 				return 0;
1499 			sbi->s_resgid = option;
1500 			break;
1501 		case Opt_sb:
1502 			/* handled by get_sb_block() instead of here */
1503 			/* *sb_block = match_int(&args[0]); */
1504 			break;
1505 		case Opt_err_panic:
1506 			clear_opt(sb, ERRORS_CONT);
1507 			clear_opt(sb, ERRORS_RO);
1508 			set_opt(sb, ERRORS_PANIC);
1509 			break;
1510 		case Opt_err_ro:
1511 			clear_opt(sb, ERRORS_CONT);
1512 			clear_opt(sb, ERRORS_PANIC);
1513 			set_opt(sb, ERRORS_RO);
1514 			break;
1515 		case Opt_err_cont:
1516 			clear_opt(sb, ERRORS_RO);
1517 			clear_opt(sb, ERRORS_PANIC);
1518 			set_opt(sb, ERRORS_CONT);
1519 			break;
1520 		case Opt_nouid32:
1521 			set_opt(sb, NO_UID32);
1522 			break;
1523 		case Opt_debug:
1524 			set_opt(sb, DEBUG);
1525 			break;
1526 		case Opt_oldalloc:
1527 			set_opt(sb, OLDALLOC);
1528 			break;
1529 		case Opt_orlov:
1530 			clear_opt(sb, OLDALLOC);
1531 			break;
1532 #ifdef CONFIG_EXT4_FS_XATTR
1533 		case Opt_user_xattr:
1534 			set_opt(sb, XATTR_USER);
1535 			break;
1536 		case Opt_nouser_xattr:
1537 			clear_opt(sb, XATTR_USER);
1538 			break;
1539 #else
1540 		case Opt_user_xattr:
1541 		case Opt_nouser_xattr:
1542 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1543 			break;
1544 #endif
1545 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1546 		case Opt_acl:
1547 			set_opt(sb, POSIX_ACL);
1548 			break;
1549 		case Opt_noacl:
1550 			clear_opt(sb, POSIX_ACL);
1551 			break;
1552 #else
1553 		case Opt_acl:
1554 		case Opt_noacl:
1555 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1556 			break;
1557 #endif
1558 		case Opt_journal_update:
1559 			/* @@@ FIXME */
1560 			/* Eventually we will want to be able to create
1561 			   a journal file here.  For now, only allow the
1562 			   user to specify an existing inode to be the
1563 			   journal file. */
1564 			if (is_remount) {
1565 				ext4_msg(sb, KERN_ERR,
1566 					 "Cannot specify journal on remount");
1567 				return 0;
1568 			}
1569 			set_opt(sb, UPDATE_JOURNAL);
1570 			break;
1571 		case Opt_journal_dev:
1572 			if (is_remount) {
1573 				ext4_msg(sb, KERN_ERR,
1574 					"Cannot specify journal on remount");
1575 				return 0;
1576 			}
1577 			if (match_int(&args[0], &option))
1578 				return 0;
1579 			*journal_devnum = option;
1580 			break;
1581 		case Opt_journal_checksum:
1582 			set_opt(sb, JOURNAL_CHECKSUM);
1583 			break;
1584 		case Opt_journal_async_commit:
1585 			set_opt(sb, JOURNAL_ASYNC_COMMIT);
1586 			set_opt(sb, JOURNAL_CHECKSUM);
1587 			break;
1588 		case Opt_noload:
1589 			set_opt(sb, NOLOAD);
1590 			break;
1591 		case Opt_commit:
1592 			if (match_int(&args[0], &option))
1593 				return 0;
1594 			if (option < 0)
1595 				return 0;
1596 			if (option == 0)
1597 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1598 			sbi->s_commit_interval = HZ * option;
1599 			break;
1600 		case Opt_max_batch_time:
1601 			if (match_int(&args[0], &option))
1602 				return 0;
1603 			if (option < 0)
1604 				return 0;
1605 			if (option == 0)
1606 				option = EXT4_DEF_MAX_BATCH_TIME;
1607 			sbi->s_max_batch_time = option;
1608 			break;
1609 		case Opt_min_batch_time:
1610 			if (match_int(&args[0], &option))
1611 				return 0;
1612 			if (option < 0)
1613 				return 0;
1614 			sbi->s_min_batch_time = option;
1615 			break;
1616 		case Opt_data_journal:
1617 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1618 			goto datacheck;
1619 		case Opt_data_ordered:
1620 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1621 			goto datacheck;
1622 		case Opt_data_writeback:
1623 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1624 		datacheck:
1625 			if (is_remount) {
1626 				if (test_opt(sb, DATA_FLAGS) != data_opt) {
1627 					ext4_msg(sb, KERN_ERR,
1628 						"Cannot change data mode on remount");
1629 					return 0;
1630 				}
1631 			} else {
1632 				clear_opt(sb, DATA_FLAGS);
1633 				sbi->s_mount_opt |= data_opt;
1634 			}
1635 			break;
1636 		case Opt_data_err_abort:
1637 			set_opt(sb, DATA_ERR_ABORT);
1638 			break;
1639 		case Opt_data_err_ignore:
1640 			clear_opt(sb, DATA_ERR_ABORT);
1641 			break;
1642 #ifdef CONFIG_QUOTA
1643 		case Opt_usrjquota:
1644 			if (!set_qf_name(sb, USRQUOTA, &args[0]))
1645 				return 0;
1646 			break;
1647 		case Opt_grpjquota:
1648 			if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1649 				return 0;
1650 			break;
1651 		case Opt_offusrjquota:
1652 			if (!clear_qf_name(sb, USRQUOTA))
1653 				return 0;
1654 			break;
1655 		case Opt_offgrpjquota:
1656 			if (!clear_qf_name(sb, GRPQUOTA))
1657 				return 0;
1658 			break;
1659 
1660 		case Opt_jqfmt_vfsold:
1661 			qfmt = QFMT_VFS_OLD;
1662 			goto set_qf_format;
1663 		case Opt_jqfmt_vfsv0:
1664 			qfmt = QFMT_VFS_V0;
1665 			goto set_qf_format;
1666 		case Opt_jqfmt_vfsv1:
1667 			qfmt = QFMT_VFS_V1;
1668 set_qf_format:
1669 			if (sb_any_quota_loaded(sb) &&
1670 			    sbi->s_jquota_fmt != qfmt) {
1671 				ext4_msg(sb, KERN_ERR, "Cannot change "
1672 					"journaled quota options when "
1673 					"quota turned on");
1674 				return 0;
1675 			}
1676 			sbi->s_jquota_fmt = qfmt;
1677 			break;
1678 		case Opt_quota:
1679 		case Opt_usrquota:
1680 			set_opt(sb, QUOTA);
1681 			set_opt(sb, USRQUOTA);
1682 			break;
1683 		case Opt_grpquota:
1684 			set_opt(sb, QUOTA);
1685 			set_opt(sb, GRPQUOTA);
1686 			break;
1687 		case Opt_noquota:
1688 			if (sb_any_quota_loaded(sb)) {
1689 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1690 					"options when quota turned on");
1691 				return 0;
1692 			}
1693 			clear_opt(sb, QUOTA);
1694 			clear_opt(sb, USRQUOTA);
1695 			clear_opt(sb, GRPQUOTA);
1696 			break;
1697 #else
1698 		case Opt_quota:
1699 		case Opt_usrquota:
1700 		case Opt_grpquota:
1701 			ext4_msg(sb, KERN_ERR,
1702 				"quota options not supported");
1703 			break;
1704 		case Opt_usrjquota:
1705 		case Opt_grpjquota:
1706 		case Opt_offusrjquota:
1707 		case Opt_offgrpjquota:
1708 		case Opt_jqfmt_vfsold:
1709 		case Opt_jqfmt_vfsv0:
1710 		case Opt_jqfmt_vfsv1:
1711 			ext4_msg(sb, KERN_ERR,
1712 				"journaled quota options not supported");
1713 			break;
1714 		case Opt_noquota:
1715 			break;
1716 #endif
1717 		case Opt_abort:
1718 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1719 			break;
1720 		case Opt_nobarrier:
1721 			clear_opt(sb, BARRIER);
1722 			break;
1723 		case Opt_barrier:
1724 			if (args[0].from) {
1725 				if (match_int(&args[0], &option))
1726 					return 0;
1727 			} else
1728 				option = 1;	/* No argument, default to 1 */
1729 			if (option)
1730 				set_opt(sb, BARRIER);
1731 			else
1732 				clear_opt(sb, BARRIER);
1733 			break;
1734 		case Opt_ignore:
1735 			break;
1736 		case Opt_resize:
1737 			if (!is_remount) {
1738 				ext4_msg(sb, KERN_ERR,
1739 					"resize option only available "
1740 					"for remount");
1741 				return 0;
1742 			}
1743 			if (match_int(&args[0], &option) != 0)
1744 				return 0;
1745 			*n_blocks_count = option;
1746 			break;
1747 		case Opt_nobh:
1748 			ext4_msg(sb, KERN_WARNING,
1749 				 "Ignoring deprecated nobh option");
1750 			break;
1751 		case Opt_bh:
1752 			ext4_msg(sb, KERN_WARNING,
1753 				 "Ignoring deprecated bh option");
1754 			break;
1755 		case Opt_i_version:
1756 			set_opt(sb, I_VERSION);
1757 			sb->s_flags |= MS_I_VERSION;
1758 			break;
1759 		case Opt_nodelalloc:
1760 			clear_opt(sb, DELALLOC);
1761 			break;
1762 		case Opt_mblk_io_submit:
1763 			set_opt(sb, MBLK_IO_SUBMIT);
1764 			break;
1765 		case Opt_nomblk_io_submit:
1766 			clear_opt(sb, MBLK_IO_SUBMIT);
1767 			break;
1768 		case Opt_stripe:
1769 			if (match_int(&args[0], &option))
1770 				return 0;
1771 			if (option < 0)
1772 				return 0;
1773 			sbi->s_stripe = option;
1774 			break;
1775 		case Opt_delalloc:
1776 			set_opt(sb, DELALLOC);
1777 			break;
1778 		case Opt_block_validity:
1779 			set_opt(sb, BLOCK_VALIDITY);
1780 			break;
1781 		case Opt_noblock_validity:
1782 			clear_opt(sb, BLOCK_VALIDITY);
1783 			break;
1784 		case Opt_inode_readahead_blks:
1785 			if (match_int(&args[0], &option))
1786 				return 0;
1787 			if (option < 0 || option > (1 << 30))
1788 				return 0;
1789 			if (option && !is_power_of_2(option)) {
1790 				ext4_msg(sb, KERN_ERR,
1791 					 "EXT4-fs: inode_readahead_blks"
1792 					 " must be a power of 2");
1793 				return 0;
1794 			}
1795 			sbi->s_inode_readahead_blks = option;
1796 			break;
1797 		case Opt_journal_ioprio:
1798 			if (match_int(&args[0], &option))
1799 				return 0;
1800 			if (option < 0 || option > 7)
1801 				break;
1802 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1803 							    option);
1804 			break;
1805 		case Opt_noauto_da_alloc:
1806 			set_opt(sb, NO_AUTO_DA_ALLOC);
1807 			break;
1808 		case Opt_auto_da_alloc:
1809 			if (args[0].from) {
1810 				if (match_int(&args[0], &option))
1811 					return 0;
1812 			} else
1813 				option = 1;	/* No argument, default to 1 */
1814 			if (option)
1815 				clear_opt(sb, NO_AUTO_DA_ALLOC);
1816 			else
1817 				set_opt(sb,NO_AUTO_DA_ALLOC);
1818 			break;
1819 		case Opt_discard:
1820 			set_opt(sb, DISCARD);
1821 			break;
1822 		case Opt_nodiscard:
1823 			clear_opt(sb, DISCARD);
1824 			break;
1825 		case Opt_dioread_nolock:
1826 			set_opt(sb, DIOREAD_NOLOCK);
1827 			break;
1828 		case Opt_dioread_lock:
1829 			clear_opt(sb, DIOREAD_NOLOCK);
1830 			break;
1831 		case Opt_init_inode_table:
1832 			set_opt(sb, INIT_INODE_TABLE);
1833 			if (args[0].from) {
1834 				if (match_int(&args[0], &option))
1835 					return 0;
1836 			} else
1837 				option = EXT4_DEF_LI_WAIT_MULT;
1838 			if (option < 0)
1839 				return 0;
1840 			sbi->s_li_wait_mult = option;
1841 			break;
1842 		case Opt_noinit_inode_table:
1843 			clear_opt(sb, INIT_INODE_TABLE);
1844 			break;
1845 		default:
1846 			ext4_msg(sb, KERN_ERR,
1847 			       "Unrecognized mount option \"%s\" "
1848 			       "or missing value", p);
1849 			return 0;
1850 		}
1851 	}
1852 #ifdef CONFIG_QUOTA
1853 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1854 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1855 			clear_opt(sb, USRQUOTA);
1856 
1857 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1858 			clear_opt(sb, GRPQUOTA);
1859 
1860 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1861 			ext4_msg(sb, KERN_ERR, "old and new quota "
1862 					"format mixing");
1863 			return 0;
1864 		}
1865 
1866 		if (!sbi->s_jquota_fmt) {
1867 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1868 					"not specified");
1869 			return 0;
1870 		}
1871 	} else {
1872 		if (sbi->s_jquota_fmt) {
1873 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1874 					"specified with no journaling "
1875 					"enabled");
1876 			return 0;
1877 		}
1878 	}
1879 #endif
1880 	return 1;
1881 }
1882 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1883 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1884 			    int read_only)
1885 {
1886 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1887 	int res = 0;
1888 
1889 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1890 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1891 			 "forcing read-only mode");
1892 		res = MS_RDONLY;
1893 	}
1894 	if (read_only)
1895 		return res;
1896 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1897 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1898 			 "running e2fsck is recommended");
1899 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1900 		ext4_msg(sb, KERN_WARNING,
1901 			 "warning: mounting fs with errors, "
1902 			 "running e2fsck is recommended");
1903 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1904 		 le16_to_cpu(es->s_mnt_count) >=
1905 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1906 		ext4_msg(sb, KERN_WARNING,
1907 			 "warning: maximal mount count reached, "
1908 			 "running e2fsck is recommended");
1909 	else if (le32_to_cpu(es->s_checkinterval) &&
1910 		(le32_to_cpu(es->s_lastcheck) +
1911 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1912 		ext4_msg(sb, KERN_WARNING,
1913 			 "warning: checktime reached, "
1914 			 "running e2fsck is recommended");
1915 	if (!sbi->s_journal)
1916 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1917 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1918 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1919 	le16_add_cpu(&es->s_mnt_count, 1);
1920 	es->s_mtime = cpu_to_le32(get_seconds());
1921 	ext4_update_dynamic_rev(sb);
1922 	if (sbi->s_journal)
1923 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1924 
1925 	ext4_commit_super(sb, 1);
1926 	if (test_opt(sb, DEBUG))
1927 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1928 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1929 			sb->s_blocksize,
1930 			sbi->s_groups_count,
1931 			EXT4_BLOCKS_PER_GROUP(sb),
1932 			EXT4_INODES_PER_GROUP(sb),
1933 			sbi->s_mount_opt, sbi->s_mount_opt2);
1934 
1935 	return res;
1936 }
1937 
ext4_fill_flex_info(struct super_block * sb)1938 static int ext4_fill_flex_info(struct super_block *sb)
1939 {
1940 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1941 	struct ext4_group_desc *gdp = NULL;
1942 	ext4_group_t flex_group_count;
1943 	ext4_group_t flex_group;
1944 	int groups_per_flex = 0;
1945 	size_t size;
1946 	int i;
1947 
1948 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1949 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1950 
1951 	if (groups_per_flex < 2) {
1952 		sbi->s_log_groups_per_flex = 0;
1953 		return 1;
1954 	}
1955 
1956 	/* We allocate both existing and potentially added groups */
1957 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1958 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1959 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1960 	size = flex_group_count * sizeof(struct flex_groups);
1961 	sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1962 	if (sbi->s_flex_groups == NULL) {
1963 		sbi->s_flex_groups = vzalloc(size);
1964 		if (sbi->s_flex_groups == NULL) {
1965 			ext4_msg(sb, KERN_ERR,
1966 				 "not enough memory for %u flex groups",
1967 				 flex_group_count);
1968 			goto failed;
1969 		}
1970 	}
1971 
1972 	for (i = 0; i < sbi->s_groups_count; i++) {
1973 		gdp = ext4_get_group_desc(sb, i, NULL);
1974 
1975 		flex_group = ext4_flex_group(sbi, i);
1976 		atomic_add(ext4_free_inodes_count(sb, gdp),
1977 			   &sbi->s_flex_groups[flex_group].free_inodes);
1978 		atomic_add(ext4_free_blks_count(sb, gdp),
1979 			   &sbi->s_flex_groups[flex_group].free_blocks);
1980 		atomic_add(ext4_used_dirs_count(sb, gdp),
1981 			   &sbi->s_flex_groups[flex_group].used_dirs);
1982 	}
1983 
1984 	return 1;
1985 failed:
1986 	return 0;
1987 }
1988 
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1989 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1990 			    struct ext4_group_desc *gdp)
1991 {
1992 	__u16 crc = 0;
1993 
1994 	if (sbi->s_es->s_feature_ro_compat &
1995 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1996 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
1997 		__le32 le_group = cpu_to_le32(block_group);
1998 
1999 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2000 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2001 		crc = crc16(crc, (__u8 *)gdp, offset);
2002 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
2003 		/* for checksum of struct ext4_group_desc do the rest...*/
2004 		if ((sbi->s_es->s_feature_incompat &
2005 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2006 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2007 			crc = crc16(crc, (__u8 *)gdp + offset,
2008 				    le16_to_cpu(sbi->s_es->s_desc_size) -
2009 					offset);
2010 	}
2011 
2012 	return cpu_to_le16(crc);
2013 }
2014 
ext4_group_desc_csum_verify(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2015 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2016 				struct ext4_group_desc *gdp)
2017 {
2018 	if ((sbi->s_es->s_feature_ro_compat &
2019 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2020 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2021 		return 0;
2022 
2023 	return 1;
2024 }
2025 
2026 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2027 static int ext4_check_descriptors(struct super_block *sb,
2028 				  ext4_group_t *first_not_zeroed)
2029 {
2030 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2031 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2032 	ext4_fsblk_t last_block;
2033 	ext4_fsblk_t block_bitmap;
2034 	ext4_fsblk_t inode_bitmap;
2035 	ext4_fsblk_t inode_table;
2036 	int flexbg_flag = 0;
2037 	ext4_group_t i, grp = sbi->s_groups_count;
2038 
2039 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2040 		flexbg_flag = 1;
2041 
2042 	ext4_debug("Checking group descriptors");
2043 
2044 	for (i = 0; i < sbi->s_groups_count; i++) {
2045 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2046 
2047 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2048 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2049 		else
2050 			last_block = first_block +
2051 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2052 
2053 		if ((grp == sbi->s_groups_count) &&
2054 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2055 			grp = i;
2056 
2057 		block_bitmap = ext4_block_bitmap(sb, gdp);
2058 		if (block_bitmap < first_block || block_bitmap > last_block) {
2059 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2060 			       "Block bitmap for group %u not in group "
2061 			       "(block %llu)!", i, block_bitmap);
2062 			return 0;
2063 		}
2064 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2065 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2066 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2067 			       "Inode bitmap for group %u not in group "
2068 			       "(block %llu)!", i, inode_bitmap);
2069 			return 0;
2070 		}
2071 		inode_table = ext4_inode_table(sb, gdp);
2072 		if (inode_table < first_block ||
2073 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2074 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2075 			       "Inode table for group %u not in group "
2076 			       "(block %llu)!", i, inode_table);
2077 			return 0;
2078 		}
2079 		ext4_lock_group(sb, i);
2080 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2081 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2082 				 "Checksum for group %u failed (%u!=%u)",
2083 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2084 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2085 			if (!(sb->s_flags & MS_RDONLY)) {
2086 				ext4_unlock_group(sb, i);
2087 				return 0;
2088 			}
2089 		}
2090 		ext4_unlock_group(sb, i);
2091 		if (!flexbg_flag)
2092 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2093 	}
2094 	if (NULL != first_not_zeroed)
2095 		*first_not_zeroed = grp;
2096 
2097 	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2098 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2099 	return 1;
2100 }
2101 
2102 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2103  * the superblock) which were deleted from all directories, but held open by
2104  * a process at the time of a crash.  We walk the list and try to delete these
2105  * inodes at recovery time (only with a read-write filesystem).
2106  *
2107  * In order to keep the orphan inode chain consistent during traversal (in
2108  * case of crash during recovery), we link each inode into the superblock
2109  * orphan list_head and handle it the same way as an inode deletion during
2110  * normal operation (which journals the operations for us).
2111  *
2112  * We only do an iget() and an iput() on each inode, which is very safe if we
2113  * accidentally point at an in-use or already deleted inode.  The worst that
2114  * can happen in this case is that we get a "bit already cleared" message from
2115  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2116  * e2fsck was run on this filesystem, and it must have already done the orphan
2117  * inode cleanup for us, so we can safely abort without any further action.
2118  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2119 static void ext4_orphan_cleanup(struct super_block *sb,
2120 				struct ext4_super_block *es)
2121 {
2122 	unsigned int s_flags = sb->s_flags;
2123 	int nr_orphans = 0, nr_truncates = 0;
2124 #ifdef CONFIG_QUOTA
2125 	int i;
2126 #endif
2127 	if (!es->s_last_orphan) {
2128 		jbd_debug(4, "no orphan inodes to clean up\n");
2129 		return;
2130 	}
2131 
2132 	if (bdev_read_only(sb->s_bdev)) {
2133 		ext4_msg(sb, KERN_ERR, "write access "
2134 			"unavailable, skipping orphan cleanup");
2135 		return;
2136 	}
2137 
2138 	/* Check if feature set would not allow a r/w mount */
2139 	if (!ext4_feature_set_ok(sb, 0)) {
2140 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2141 			 "unknown ROCOMPAT features");
2142 		return;
2143 	}
2144 
2145 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2146 		if (es->s_last_orphan)
2147 			jbd_debug(1, "Errors on filesystem, "
2148 				  "clearing orphan list.\n");
2149 		es->s_last_orphan = 0;
2150 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2151 		return;
2152 	}
2153 
2154 	if (s_flags & MS_RDONLY) {
2155 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2156 		sb->s_flags &= ~MS_RDONLY;
2157 	}
2158 #ifdef CONFIG_QUOTA
2159 	/* Needed for iput() to work correctly and not trash data */
2160 	sb->s_flags |= MS_ACTIVE;
2161 	/* Turn on quotas so that they are updated correctly */
2162 	for (i = 0; i < MAXQUOTAS; i++) {
2163 		if (EXT4_SB(sb)->s_qf_names[i]) {
2164 			int ret = ext4_quota_on_mount(sb, i);
2165 			if (ret < 0)
2166 				ext4_msg(sb, KERN_ERR,
2167 					"Cannot turn on journaled "
2168 					"quota: error %d", ret);
2169 		}
2170 	}
2171 #endif
2172 
2173 	while (es->s_last_orphan) {
2174 		struct inode *inode;
2175 
2176 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2177 		if (IS_ERR(inode)) {
2178 			es->s_last_orphan = 0;
2179 			break;
2180 		}
2181 
2182 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2183 		dquot_initialize(inode);
2184 		if (inode->i_nlink) {
2185 			ext4_msg(sb, KERN_DEBUG,
2186 				"%s: truncating inode %lu to %lld bytes",
2187 				__func__, inode->i_ino, inode->i_size);
2188 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2189 				  inode->i_ino, inode->i_size);
2190 			ext4_truncate(inode);
2191 			nr_truncates++;
2192 		} else {
2193 			ext4_msg(sb, KERN_DEBUG,
2194 				"%s: deleting unreferenced inode %lu",
2195 				__func__, inode->i_ino);
2196 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2197 				  inode->i_ino);
2198 			nr_orphans++;
2199 		}
2200 		iput(inode);  /* The delete magic happens here! */
2201 	}
2202 
2203 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2204 
2205 	if (nr_orphans)
2206 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2207 		       PLURAL(nr_orphans));
2208 	if (nr_truncates)
2209 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2210 		       PLURAL(nr_truncates));
2211 #ifdef CONFIG_QUOTA
2212 	/* Turn quotas off */
2213 	for (i = 0; i < MAXQUOTAS; i++) {
2214 		if (sb_dqopt(sb)->files[i])
2215 			dquot_quota_off(sb, i);
2216 	}
2217 #endif
2218 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2219 }
2220 
2221 /*
2222  * Maximal extent format file size.
2223  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2224  * extent format containers, within a sector_t, and within i_blocks
2225  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2226  * so that won't be a limiting factor.
2227  *
2228  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2229  */
ext4_max_size(int blkbits,int has_huge_files)2230 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2231 {
2232 	loff_t res;
2233 	loff_t upper_limit = MAX_LFS_FILESIZE;
2234 
2235 	/* small i_blocks in vfs inode? */
2236 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2237 		/*
2238 		 * CONFIG_LBDAF is not enabled implies the inode
2239 		 * i_block represent total blocks in 512 bytes
2240 		 * 32 == size of vfs inode i_blocks * 8
2241 		 */
2242 		upper_limit = (1LL << 32) - 1;
2243 
2244 		/* total blocks in file system block size */
2245 		upper_limit >>= (blkbits - 9);
2246 		upper_limit <<= blkbits;
2247 	}
2248 
2249 	/* 32-bit extent-start container, ee_block */
2250 	res = 1LL << 32;
2251 	res <<= blkbits;
2252 	res -= 1;
2253 
2254 	/* Sanity check against vm- & vfs- imposed limits */
2255 	if (res > upper_limit)
2256 		res = upper_limit;
2257 
2258 	return res;
2259 }
2260 
2261 /*
2262  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2263  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2264  * We need to be 1 filesystem block less than the 2^48 sector limit.
2265  */
ext4_max_bitmap_size(int bits,int has_huge_files)2266 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2267 {
2268 	loff_t res = EXT4_NDIR_BLOCKS;
2269 	int meta_blocks;
2270 	loff_t upper_limit;
2271 	/* This is calculated to be the largest file size for a dense, block
2272 	 * mapped file such that the file's total number of 512-byte sectors,
2273 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2274 	 *
2275 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2276 	 * number of 512-byte sectors of the file.
2277 	 */
2278 
2279 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2280 		/*
2281 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2282 		 * the inode i_block field represents total file blocks in
2283 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2284 		 */
2285 		upper_limit = (1LL << 32) - 1;
2286 
2287 		/* total blocks in file system block size */
2288 		upper_limit >>= (bits - 9);
2289 
2290 	} else {
2291 		/*
2292 		 * We use 48 bit ext4_inode i_blocks
2293 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2294 		 * represent total number of blocks in
2295 		 * file system block size
2296 		 */
2297 		upper_limit = (1LL << 48) - 1;
2298 
2299 	}
2300 
2301 	/* indirect blocks */
2302 	meta_blocks = 1;
2303 	/* double indirect blocks */
2304 	meta_blocks += 1 + (1LL << (bits-2));
2305 	/* tripple indirect blocks */
2306 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2307 
2308 	upper_limit -= meta_blocks;
2309 	upper_limit <<= bits;
2310 
2311 	res += 1LL << (bits-2);
2312 	res += 1LL << (2*(bits-2));
2313 	res += 1LL << (3*(bits-2));
2314 	res <<= bits;
2315 	if (res > upper_limit)
2316 		res = upper_limit;
2317 
2318 	if (res > MAX_LFS_FILESIZE)
2319 		res = MAX_LFS_FILESIZE;
2320 
2321 	return res;
2322 }
2323 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2324 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2325 				   ext4_fsblk_t logical_sb_block, int nr)
2326 {
2327 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2328 	ext4_group_t bg, first_meta_bg;
2329 	int has_super = 0;
2330 
2331 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2332 
2333 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2334 	    nr < first_meta_bg)
2335 		return logical_sb_block + nr + 1;
2336 	bg = sbi->s_desc_per_block * nr;
2337 	if (ext4_bg_has_super(sb, bg))
2338 		has_super = 1;
2339 
2340 	return (has_super + ext4_group_first_block_no(sb, bg));
2341 }
2342 
2343 /**
2344  * ext4_get_stripe_size: Get the stripe size.
2345  * @sbi: In memory super block info
2346  *
2347  * If we have specified it via mount option, then
2348  * use the mount option value. If the value specified at mount time is
2349  * greater than the blocks per group use the super block value.
2350  * If the super block value is greater than blocks per group return 0.
2351  * Allocator needs it be less than blocks per group.
2352  *
2353  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2354 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2355 {
2356 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2357 	unsigned long stripe_width =
2358 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2359 
2360 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2361 		return sbi->s_stripe;
2362 
2363 	if (stripe_width <= sbi->s_blocks_per_group)
2364 		return stripe_width;
2365 
2366 	if (stride <= sbi->s_blocks_per_group)
2367 		return stride;
2368 
2369 	return 0;
2370 }
2371 
2372 /* sysfs supprt */
2373 
2374 struct ext4_attr {
2375 	struct attribute attr;
2376 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2377 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2378 			 const char *, size_t);
2379 	int offset;
2380 };
2381 
parse_strtoul(const char * buf,unsigned long max,unsigned long * value)2382 static int parse_strtoul(const char *buf,
2383 		unsigned long max, unsigned long *value)
2384 {
2385 	char *endp;
2386 
2387 	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2388 	endp = skip_spaces(endp);
2389 	if (*endp || *value > max)
2390 		return -EINVAL;
2391 
2392 	return 0;
2393 }
2394 
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2395 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2396 					      struct ext4_sb_info *sbi,
2397 					      char *buf)
2398 {
2399 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2400 			(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2401 }
2402 
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2403 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2404 					 struct ext4_sb_info *sbi, char *buf)
2405 {
2406 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2407 
2408 	if (!sb->s_bdev->bd_part)
2409 		return snprintf(buf, PAGE_SIZE, "0\n");
2410 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2411 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2412 			 sbi->s_sectors_written_start) >> 1);
2413 }
2414 
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2415 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2416 					  struct ext4_sb_info *sbi, char *buf)
2417 {
2418 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2419 
2420 	if (!sb->s_bdev->bd_part)
2421 		return snprintf(buf, PAGE_SIZE, "0\n");
2422 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2423 			(unsigned long long)(sbi->s_kbytes_written +
2424 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2425 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2426 }
2427 
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2428 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2429 					  struct ext4_sb_info *sbi,
2430 					  const char *buf, size_t count)
2431 {
2432 	unsigned long t;
2433 
2434 	if (parse_strtoul(buf, 0x40000000, &t))
2435 		return -EINVAL;
2436 
2437 	if (t && !is_power_of_2(t))
2438 		return -EINVAL;
2439 
2440 	sbi->s_inode_readahead_blks = t;
2441 	return count;
2442 }
2443 
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2444 static ssize_t sbi_ui_show(struct ext4_attr *a,
2445 			   struct ext4_sb_info *sbi, char *buf)
2446 {
2447 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2448 
2449 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2450 }
2451 
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2452 static ssize_t sbi_ui_store(struct ext4_attr *a,
2453 			    struct ext4_sb_info *sbi,
2454 			    const char *buf, size_t count)
2455 {
2456 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2457 	unsigned long t;
2458 
2459 	if (parse_strtoul(buf, 0xffffffff, &t))
2460 		return -EINVAL;
2461 	*ui = t;
2462 	return count;
2463 }
2464 
2465 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2466 static struct ext4_attr ext4_attr_##_name = {			\
2467 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2468 	.show	= _show,					\
2469 	.store	= _store,					\
2470 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2471 }
2472 #define EXT4_ATTR(name, mode, show, store) \
2473 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2474 
2475 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2476 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2477 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2478 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2479 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2480 #define ATTR_LIST(name) &ext4_attr_##name.attr
2481 
2482 EXT4_RO_ATTR(delayed_allocation_blocks);
2483 EXT4_RO_ATTR(session_write_kbytes);
2484 EXT4_RO_ATTR(lifetime_write_kbytes);
2485 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2486 		 inode_readahead_blks_store, s_inode_readahead_blks);
2487 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2488 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2489 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2490 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2491 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2492 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2493 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2494 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2495 
2496 static struct attribute *ext4_attrs[] = {
2497 	ATTR_LIST(delayed_allocation_blocks),
2498 	ATTR_LIST(session_write_kbytes),
2499 	ATTR_LIST(lifetime_write_kbytes),
2500 	ATTR_LIST(inode_readahead_blks),
2501 	ATTR_LIST(inode_goal),
2502 	ATTR_LIST(mb_stats),
2503 	ATTR_LIST(mb_max_to_scan),
2504 	ATTR_LIST(mb_min_to_scan),
2505 	ATTR_LIST(mb_order2_req),
2506 	ATTR_LIST(mb_stream_req),
2507 	ATTR_LIST(mb_group_prealloc),
2508 	ATTR_LIST(max_writeback_mb_bump),
2509 	NULL,
2510 };
2511 
2512 /* Features this copy of ext4 supports */
2513 EXT4_INFO_ATTR(lazy_itable_init);
2514 EXT4_INFO_ATTR(batched_discard);
2515 
2516 static struct attribute *ext4_feat_attrs[] = {
2517 	ATTR_LIST(lazy_itable_init),
2518 	ATTR_LIST(batched_discard),
2519 	NULL,
2520 };
2521 
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2522 static ssize_t ext4_attr_show(struct kobject *kobj,
2523 			      struct attribute *attr, char *buf)
2524 {
2525 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2526 						s_kobj);
2527 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2528 
2529 	return a->show ? a->show(a, sbi, buf) : 0;
2530 }
2531 
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2532 static ssize_t ext4_attr_store(struct kobject *kobj,
2533 			       struct attribute *attr,
2534 			       const char *buf, size_t len)
2535 {
2536 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2537 						s_kobj);
2538 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2539 
2540 	return a->store ? a->store(a, sbi, buf, len) : 0;
2541 }
2542 
ext4_sb_release(struct kobject * kobj)2543 static void ext4_sb_release(struct kobject *kobj)
2544 {
2545 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2546 						s_kobj);
2547 	complete(&sbi->s_kobj_unregister);
2548 }
2549 
2550 static const struct sysfs_ops ext4_attr_ops = {
2551 	.show	= ext4_attr_show,
2552 	.store	= ext4_attr_store,
2553 };
2554 
2555 static struct kobj_type ext4_ktype = {
2556 	.default_attrs	= ext4_attrs,
2557 	.sysfs_ops	= &ext4_attr_ops,
2558 	.release	= ext4_sb_release,
2559 };
2560 
ext4_feat_release(struct kobject * kobj)2561 static void ext4_feat_release(struct kobject *kobj)
2562 {
2563 	complete(&ext4_feat->f_kobj_unregister);
2564 }
2565 
2566 static struct kobj_type ext4_feat_ktype = {
2567 	.default_attrs	= ext4_feat_attrs,
2568 	.sysfs_ops	= &ext4_attr_ops,
2569 	.release	= ext4_feat_release,
2570 };
2571 
2572 /*
2573  * Check whether this filesystem can be mounted based on
2574  * the features present and the RDONLY/RDWR mount requested.
2575  * Returns 1 if this filesystem can be mounted as requested,
2576  * 0 if it cannot be.
2577  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2578 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2579 {
2580 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2581 		ext4_msg(sb, KERN_ERR,
2582 			"Couldn't mount because of "
2583 			"unsupported optional features (%x)",
2584 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2585 			~EXT4_FEATURE_INCOMPAT_SUPP));
2586 		return 0;
2587 	}
2588 
2589 	if (readonly)
2590 		return 1;
2591 
2592 	/* Check that feature set is OK for a read-write mount */
2593 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2594 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2595 			 "unsupported optional features (%x)",
2596 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2597 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2598 		return 0;
2599 	}
2600 	/*
2601 	 * Large file size enabled file system can only be mounted
2602 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2603 	 */
2604 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2605 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2606 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2607 				 "cannot be mounted RDWR without "
2608 				 "CONFIG_LBDAF");
2609 			return 0;
2610 		}
2611 	}
2612 	return 1;
2613 }
2614 
2615 /*
2616  * This function is called once a day if we have errors logged
2617  * on the file system
2618  */
print_daily_error_info(unsigned long arg)2619 static void print_daily_error_info(unsigned long arg)
2620 {
2621 	struct super_block *sb = (struct super_block *) arg;
2622 	struct ext4_sb_info *sbi;
2623 	struct ext4_super_block *es;
2624 
2625 	sbi = EXT4_SB(sb);
2626 	es = sbi->s_es;
2627 
2628 	if (es->s_error_count)
2629 		ext4_msg(sb, KERN_NOTICE, "error count: %u",
2630 			 le32_to_cpu(es->s_error_count));
2631 	if (es->s_first_error_time) {
2632 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2633 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2634 		       (int) sizeof(es->s_first_error_func),
2635 		       es->s_first_error_func,
2636 		       le32_to_cpu(es->s_first_error_line));
2637 		if (es->s_first_error_ino)
2638 			printk(": inode %u",
2639 			       le32_to_cpu(es->s_first_error_ino));
2640 		if (es->s_first_error_block)
2641 			printk(": block %llu", (unsigned long long)
2642 			       le64_to_cpu(es->s_first_error_block));
2643 		printk("\n");
2644 	}
2645 	if (es->s_last_error_time) {
2646 		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2647 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2648 		       (int) sizeof(es->s_last_error_func),
2649 		       es->s_last_error_func,
2650 		       le32_to_cpu(es->s_last_error_line));
2651 		if (es->s_last_error_ino)
2652 			printk(": inode %u",
2653 			       le32_to_cpu(es->s_last_error_ino));
2654 		if (es->s_last_error_block)
2655 			printk(": block %llu", (unsigned long long)
2656 			       le64_to_cpu(es->s_last_error_block));
2657 		printk("\n");
2658 	}
2659 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2660 }
2661 
ext4_lazyinode_timeout(unsigned long data)2662 static void ext4_lazyinode_timeout(unsigned long data)
2663 {
2664 	struct task_struct *p = (struct task_struct *)data;
2665 	wake_up_process(p);
2666 }
2667 
2668 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2669 static int ext4_run_li_request(struct ext4_li_request *elr)
2670 {
2671 	struct ext4_group_desc *gdp = NULL;
2672 	ext4_group_t group, ngroups;
2673 	struct super_block *sb;
2674 	unsigned long timeout = 0;
2675 	int ret = 0;
2676 
2677 	sb = elr->lr_super;
2678 	ngroups = EXT4_SB(sb)->s_groups_count;
2679 
2680 	for (group = elr->lr_next_group; group < ngroups; group++) {
2681 		gdp = ext4_get_group_desc(sb, group, NULL);
2682 		if (!gdp) {
2683 			ret = 1;
2684 			break;
2685 		}
2686 
2687 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2688 			break;
2689 	}
2690 
2691 	if (group == ngroups)
2692 		ret = 1;
2693 
2694 	if (!ret) {
2695 		timeout = jiffies;
2696 		ret = ext4_init_inode_table(sb, group,
2697 					    elr->lr_timeout ? 0 : 1);
2698 		if (elr->lr_timeout == 0) {
2699 			timeout = jiffies - timeout;
2700 			if (elr->lr_sbi->s_li_wait_mult)
2701 				timeout *= elr->lr_sbi->s_li_wait_mult;
2702 			else
2703 				timeout *= 20;
2704 			elr->lr_timeout = timeout;
2705 		}
2706 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2707 		elr->lr_next_group = group + 1;
2708 	}
2709 
2710 	return ret;
2711 }
2712 
2713 /*
2714  * Remove lr_request from the list_request and free the
2715  * request tructure. Should be called with li_list_mtx held
2716  */
ext4_remove_li_request(struct ext4_li_request * elr)2717 static void ext4_remove_li_request(struct ext4_li_request *elr)
2718 {
2719 	struct ext4_sb_info *sbi;
2720 
2721 	if (!elr)
2722 		return;
2723 
2724 	sbi = elr->lr_sbi;
2725 
2726 	list_del(&elr->lr_request);
2727 	sbi->s_li_request = NULL;
2728 	kfree(elr);
2729 }
2730 
ext4_unregister_li_request(struct super_block * sb)2731 static void ext4_unregister_li_request(struct super_block *sb)
2732 {
2733 	struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2734 
2735 	if (!ext4_li_info)
2736 		return;
2737 
2738 	mutex_lock(&ext4_li_info->li_list_mtx);
2739 	ext4_remove_li_request(elr);
2740 	mutex_unlock(&ext4_li_info->li_list_mtx);
2741 }
2742 
2743 static struct task_struct *ext4_lazyinit_task;
2744 
2745 /*
2746  * This is the function where ext4lazyinit thread lives. It walks
2747  * through the request list searching for next scheduled filesystem.
2748  * When such a fs is found, run the lazy initialization request
2749  * (ext4_rn_li_request) and keep track of the time spend in this
2750  * function. Based on that time we compute next schedule time of
2751  * the request. When walking through the list is complete, compute
2752  * next waking time and put itself into sleep.
2753  */
ext4_lazyinit_thread(void * arg)2754 static int ext4_lazyinit_thread(void *arg)
2755 {
2756 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2757 	struct list_head *pos, *n;
2758 	struct ext4_li_request *elr;
2759 	unsigned long next_wakeup;
2760 	DEFINE_WAIT(wait);
2761 
2762 	BUG_ON(NULL == eli);
2763 
2764 	eli->li_timer.data = (unsigned long)current;
2765 	eli->li_timer.function = ext4_lazyinode_timeout;
2766 
2767 	eli->li_task = current;
2768 	wake_up(&eli->li_wait_task);
2769 
2770 cont_thread:
2771 	while (true) {
2772 		next_wakeup = MAX_JIFFY_OFFSET;
2773 
2774 		mutex_lock(&eli->li_list_mtx);
2775 		if (list_empty(&eli->li_request_list)) {
2776 			mutex_unlock(&eli->li_list_mtx);
2777 			goto exit_thread;
2778 		}
2779 
2780 		list_for_each_safe(pos, n, &eli->li_request_list) {
2781 			elr = list_entry(pos, struct ext4_li_request,
2782 					 lr_request);
2783 
2784 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2785 				if (ext4_run_li_request(elr) != 0) {
2786 					/* error, remove the lazy_init job */
2787 					ext4_remove_li_request(elr);
2788 					continue;
2789 				}
2790 			}
2791 
2792 			if (time_before(elr->lr_next_sched, next_wakeup))
2793 				next_wakeup = elr->lr_next_sched;
2794 		}
2795 		mutex_unlock(&eli->li_list_mtx);
2796 
2797 		if (freezing(current))
2798 			refrigerator();
2799 
2800 		if ((time_after_eq(jiffies, next_wakeup)) ||
2801 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2802 			cond_resched();
2803 			continue;
2804 		}
2805 
2806 		eli->li_timer.expires = next_wakeup;
2807 		add_timer(&eli->li_timer);
2808 		prepare_to_wait(&eli->li_wait_daemon, &wait,
2809 				TASK_INTERRUPTIBLE);
2810 		if (time_before(jiffies, next_wakeup))
2811 			schedule();
2812 		finish_wait(&eli->li_wait_daemon, &wait);
2813 		if (kthread_should_stop()) {
2814 			ext4_clear_request_list();
2815 			goto exit_thread;
2816 		}
2817 	}
2818 
2819 exit_thread:
2820 	/*
2821 	 * It looks like the request list is empty, but we need
2822 	 * to check it under the li_list_mtx lock, to prevent any
2823 	 * additions into it, and of course we should lock ext4_li_mtx
2824 	 * to atomically free the list and ext4_li_info, because at
2825 	 * this point another ext4 filesystem could be registering
2826 	 * new one.
2827 	 */
2828 	mutex_lock(&ext4_li_mtx);
2829 	mutex_lock(&eli->li_list_mtx);
2830 	if (!list_empty(&eli->li_request_list)) {
2831 		mutex_unlock(&eli->li_list_mtx);
2832 		mutex_unlock(&ext4_li_mtx);
2833 		goto cont_thread;
2834 	}
2835 	mutex_unlock(&eli->li_list_mtx);
2836 	del_timer_sync(&ext4_li_info->li_timer);
2837 	eli->li_task = NULL;
2838 	wake_up(&eli->li_wait_task);
2839 
2840 	kfree(ext4_li_info);
2841 	ext4_lazyinit_task = NULL;
2842 	ext4_li_info = NULL;
2843 	mutex_unlock(&ext4_li_mtx);
2844 
2845 	return 0;
2846 }
2847 
ext4_clear_request_list(void)2848 static void ext4_clear_request_list(void)
2849 {
2850 	struct list_head *pos, *n;
2851 	struct ext4_li_request *elr;
2852 
2853 	mutex_lock(&ext4_li_info->li_list_mtx);
2854 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2855 		elr = list_entry(pos, struct ext4_li_request,
2856 				 lr_request);
2857 		ext4_remove_li_request(elr);
2858 	}
2859 	mutex_unlock(&ext4_li_info->li_list_mtx);
2860 }
2861 
ext4_run_lazyinit_thread(void)2862 static int ext4_run_lazyinit_thread(void)
2863 {
2864 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2865 					 ext4_li_info, "ext4lazyinit");
2866 	if (IS_ERR(ext4_lazyinit_task)) {
2867 		int err = PTR_ERR(ext4_lazyinit_task);
2868 		ext4_clear_request_list();
2869 		del_timer_sync(&ext4_li_info->li_timer);
2870 		kfree(ext4_li_info);
2871 		ext4_li_info = NULL;
2872 		printk(KERN_CRIT "EXT4: error %d creating inode table "
2873 				 "initialization thread\n",
2874 				 err);
2875 		return err;
2876 	}
2877 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2878 
2879 	wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2880 	return 0;
2881 }
2882 
2883 /*
2884  * Check whether it make sense to run itable init. thread or not.
2885  * If there is at least one uninitialized inode table, return
2886  * corresponding group number, else the loop goes through all
2887  * groups and return total number of groups.
2888  */
ext4_has_uninit_itable(struct super_block * sb)2889 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2890 {
2891 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2892 	struct ext4_group_desc *gdp = NULL;
2893 
2894 	for (group = 0; group < ngroups; group++) {
2895 		gdp = ext4_get_group_desc(sb, group, NULL);
2896 		if (!gdp)
2897 			continue;
2898 
2899 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2900 			break;
2901 	}
2902 
2903 	return group;
2904 }
2905 
ext4_li_info_new(void)2906 static int ext4_li_info_new(void)
2907 {
2908 	struct ext4_lazy_init *eli = NULL;
2909 
2910 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2911 	if (!eli)
2912 		return -ENOMEM;
2913 
2914 	eli->li_task = NULL;
2915 	INIT_LIST_HEAD(&eli->li_request_list);
2916 	mutex_init(&eli->li_list_mtx);
2917 
2918 	init_waitqueue_head(&eli->li_wait_daemon);
2919 	init_waitqueue_head(&eli->li_wait_task);
2920 	init_timer(&eli->li_timer);
2921 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2922 
2923 	ext4_li_info = eli;
2924 
2925 	return 0;
2926 }
2927 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2928 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2929 					    ext4_group_t start)
2930 {
2931 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2932 	struct ext4_li_request *elr;
2933 	unsigned long rnd;
2934 
2935 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2936 	if (!elr)
2937 		return NULL;
2938 
2939 	elr->lr_super = sb;
2940 	elr->lr_sbi = sbi;
2941 	elr->lr_next_group = start;
2942 
2943 	/*
2944 	 * Randomize first schedule time of the request to
2945 	 * spread the inode table initialization requests
2946 	 * better.
2947 	 */
2948 	get_random_bytes(&rnd, sizeof(rnd));
2949 	elr->lr_next_sched = jiffies + (unsigned long)rnd %
2950 			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2951 
2952 	return elr;
2953 }
2954 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)2955 static int ext4_register_li_request(struct super_block *sb,
2956 				    ext4_group_t first_not_zeroed)
2957 {
2958 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2959 	struct ext4_li_request *elr;
2960 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2961 	int ret = 0;
2962 
2963 	if (sbi->s_li_request != NULL)
2964 		return 0;
2965 
2966 	if (first_not_zeroed == ngroups ||
2967 	    (sb->s_flags & MS_RDONLY) ||
2968 	    !test_opt(sb, INIT_INODE_TABLE)) {
2969 		sbi->s_li_request = NULL;
2970 		return 0;
2971 	}
2972 
2973 	if (first_not_zeroed == ngroups) {
2974 		sbi->s_li_request = NULL;
2975 		return 0;
2976 	}
2977 
2978 	elr = ext4_li_request_new(sb, first_not_zeroed);
2979 	if (!elr)
2980 		return -ENOMEM;
2981 
2982 	mutex_lock(&ext4_li_mtx);
2983 
2984 	if (NULL == ext4_li_info) {
2985 		ret = ext4_li_info_new();
2986 		if (ret)
2987 			goto out;
2988 	}
2989 
2990 	mutex_lock(&ext4_li_info->li_list_mtx);
2991 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2992 	mutex_unlock(&ext4_li_info->li_list_mtx);
2993 
2994 	sbi->s_li_request = elr;
2995 	/*
2996 	 * set elr to NULL here since it has been inserted to
2997 	 * the request_list and the removal and free of it is
2998 	 * handled by ext4_clear_request_list from now on.
2999 	 */
3000 	elr = NULL;
3001 
3002 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3003 		ret = ext4_run_lazyinit_thread();
3004 		if (ret)
3005 			goto out;
3006 	}
3007 out:
3008 	mutex_unlock(&ext4_li_mtx);
3009 	if (ret)
3010 		kfree(elr);
3011 	return ret;
3012 }
3013 
3014 /*
3015  * We do not need to lock anything since this is called on
3016  * module unload.
3017  */
ext4_destroy_lazyinit_thread(void)3018 static void ext4_destroy_lazyinit_thread(void)
3019 {
3020 	/*
3021 	 * If thread exited earlier
3022 	 * there's nothing to be done.
3023 	 */
3024 	if (!ext4_li_info || !ext4_lazyinit_task)
3025 		return;
3026 
3027 	kthread_stop(ext4_lazyinit_task);
3028 }
3029 
ext4_fill_super(struct super_block * sb,void * data,int silent)3030 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3031 				__releases(kernel_lock)
3032 				__acquires(kernel_lock)
3033 {
3034 	char *orig_data = kstrdup(data, GFP_KERNEL);
3035 	struct buffer_head *bh;
3036 	struct ext4_super_block *es = NULL;
3037 	struct ext4_sb_info *sbi;
3038 	ext4_fsblk_t block;
3039 	ext4_fsblk_t sb_block = get_sb_block(&data);
3040 	ext4_fsblk_t logical_sb_block;
3041 	unsigned long offset = 0;
3042 	unsigned long journal_devnum = 0;
3043 	unsigned long def_mount_opts;
3044 	struct inode *root;
3045 	char *cp;
3046 	const char *descr;
3047 	int ret = -ENOMEM;
3048 	int blocksize;
3049 	unsigned int db_count;
3050 	unsigned int i;
3051 	int needs_recovery, has_huge_files;
3052 	__u64 blocks_count;
3053 	int err;
3054 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3055 	ext4_group_t first_not_zeroed;
3056 
3057 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3058 	if (!sbi)
3059 		goto out_free_orig;
3060 
3061 	sbi->s_blockgroup_lock =
3062 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3063 	if (!sbi->s_blockgroup_lock) {
3064 		kfree(sbi);
3065 		goto out_free_orig;
3066 	}
3067 	sb->s_fs_info = sbi;
3068 	sbi->s_mount_opt = 0;
3069 	sbi->s_resuid = EXT4_DEF_RESUID;
3070 	sbi->s_resgid = EXT4_DEF_RESGID;
3071 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3072 	sbi->s_sb_block = sb_block;
3073 	if (sb->s_bdev->bd_part)
3074 		sbi->s_sectors_written_start =
3075 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3076 
3077 	/* Cleanup superblock name */
3078 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3079 		*cp = '!';
3080 
3081 	ret = -EINVAL;
3082 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3083 	if (!blocksize) {
3084 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3085 		goto out_fail;
3086 	}
3087 
3088 	/*
3089 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3090 	 * block sizes.  We need to calculate the offset from buffer start.
3091 	 */
3092 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3093 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3094 		offset = do_div(logical_sb_block, blocksize);
3095 	} else {
3096 		logical_sb_block = sb_block;
3097 	}
3098 
3099 	if (!(bh = sb_bread(sb, logical_sb_block))) {
3100 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3101 		goto out_fail;
3102 	}
3103 	/*
3104 	 * Note: s_es must be initialized as soon as possible because
3105 	 *       some ext4 macro-instructions depend on its value
3106 	 */
3107 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3108 	sbi->s_es = es;
3109 	sb->s_magic = le16_to_cpu(es->s_magic);
3110 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3111 		goto cantfind_ext4;
3112 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3113 
3114 	/* Set defaults before we parse the mount options */
3115 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3116 	set_opt(sb, INIT_INODE_TABLE);
3117 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3118 		set_opt(sb, DEBUG);
3119 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3120 		ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3121 			"2.6.38");
3122 		set_opt(sb, GRPID);
3123 	}
3124 	if (def_mount_opts & EXT4_DEFM_UID16)
3125 		set_opt(sb, NO_UID32);
3126 	/* xattr user namespace & acls are now defaulted on */
3127 #ifdef CONFIG_EXT4_FS_XATTR
3128 	set_opt(sb, XATTR_USER);
3129 #endif
3130 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3131 	set_opt(sb, POSIX_ACL);
3132 #endif
3133 	set_opt(sb, MBLK_IO_SUBMIT);
3134 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3135 		set_opt(sb, JOURNAL_DATA);
3136 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3137 		set_opt(sb, ORDERED_DATA);
3138 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3139 		set_opt(sb, WRITEBACK_DATA);
3140 
3141 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3142 		set_opt(sb, ERRORS_PANIC);
3143 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3144 		set_opt(sb, ERRORS_CONT);
3145 	else
3146 		set_opt(sb, ERRORS_RO);
3147 	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3148 		set_opt(sb, BLOCK_VALIDITY);
3149 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3150 		set_opt(sb, DISCARD);
3151 
3152 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3153 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3154 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3155 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3156 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3157 
3158 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3159 		set_opt(sb, BARRIER);
3160 
3161 	/*
3162 	 * enable delayed allocation by default
3163 	 * Use -o nodelalloc to turn it off
3164 	 */
3165 	if (!IS_EXT3_SB(sb) &&
3166 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3167 		set_opt(sb, DELALLOC);
3168 
3169 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3170 			   &journal_devnum, &journal_ioprio, NULL, 0)) {
3171 		ext4_msg(sb, KERN_WARNING,
3172 			 "failed to parse options in superblock: %s",
3173 			 sbi->s_es->s_mount_opts);
3174 	}
3175 	if (!parse_options((char *) data, sb, &journal_devnum,
3176 			   &journal_ioprio, NULL, 0))
3177 		goto failed_mount;
3178 
3179 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3180 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3181 
3182 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3183 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3184 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3185 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3186 		ext4_msg(sb, KERN_WARNING,
3187 		       "feature flags set on rev 0 fs, "
3188 		       "running e2fsck is recommended");
3189 
3190 	/*
3191 	 * Check feature flags regardless of the revision level, since we
3192 	 * previously didn't change the revision level when setting the flags,
3193 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3194 	 */
3195 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3196 		goto failed_mount;
3197 
3198 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3199 
3200 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3201 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3202 		ext4_msg(sb, KERN_ERR,
3203 		       "Unsupported filesystem blocksize %d", blocksize);
3204 		goto failed_mount;
3205 	}
3206 
3207 	if (sb->s_blocksize != blocksize) {
3208 		/* Validate the filesystem blocksize */
3209 		if (!sb_set_blocksize(sb, blocksize)) {
3210 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3211 					blocksize);
3212 			goto failed_mount;
3213 		}
3214 
3215 		brelse(bh);
3216 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3217 		offset = do_div(logical_sb_block, blocksize);
3218 		bh = sb_bread(sb, logical_sb_block);
3219 		if (!bh) {
3220 			ext4_msg(sb, KERN_ERR,
3221 			       "Can't read superblock on 2nd try");
3222 			goto failed_mount;
3223 		}
3224 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3225 		sbi->s_es = es;
3226 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3227 			ext4_msg(sb, KERN_ERR,
3228 			       "Magic mismatch, very weird!");
3229 			goto failed_mount;
3230 		}
3231 	}
3232 
3233 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3234 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3235 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3236 						      has_huge_files);
3237 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3238 
3239 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3240 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3241 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3242 	} else {
3243 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3244 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3245 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3246 		    (!is_power_of_2(sbi->s_inode_size)) ||
3247 		    (sbi->s_inode_size > blocksize)) {
3248 			ext4_msg(sb, KERN_ERR,
3249 			       "unsupported inode size: %d",
3250 			       sbi->s_inode_size);
3251 			goto failed_mount;
3252 		}
3253 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3254 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3255 	}
3256 
3257 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3258 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3259 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3260 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3261 		    !is_power_of_2(sbi->s_desc_size)) {
3262 			ext4_msg(sb, KERN_ERR,
3263 			       "unsupported descriptor size %lu",
3264 			       sbi->s_desc_size);
3265 			goto failed_mount;
3266 		}
3267 	} else
3268 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3269 
3270 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3271 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3272 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3273 		goto cantfind_ext4;
3274 
3275 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3276 	if (sbi->s_inodes_per_block == 0)
3277 		goto cantfind_ext4;
3278 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3279 					sbi->s_inodes_per_block;
3280 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3281 	sbi->s_sbh = bh;
3282 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3283 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3284 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3285 
3286 	for (i = 0; i < 4; i++)
3287 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3288 	sbi->s_def_hash_version = es->s_def_hash_version;
3289 	i = le32_to_cpu(es->s_flags);
3290 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
3291 		sbi->s_hash_unsigned = 3;
3292 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3293 #ifdef __CHAR_UNSIGNED__
3294 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3295 		sbi->s_hash_unsigned = 3;
3296 #else
3297 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3298 #endif
3299 		sb->s_dirt = 1;
3300 	}
3301 
3302 	if (sbi->s_blocks_per_group > blocksize * 8) {
3303 		ext4_msg(sb, KERN_ERR,
3304 		       "#blocks per group too big: %lu",
3305 		       sbi->s_blocks_per_group);
3306 		goto failed_mount;
3307 	}
3308 	if (sbi->s_inodes_per_group > blocksize * 8) {
3309 		ext4_msg(sb, KERN_ERR,
3310 		       "#inodes per group too big: %lu",
3311 		       sbi->s_inodes_per_group);
3312 		goto failed_mount;
3313 	}
3314 
3315 	/*
3316 	 * Test whether we have more sectors than will fit in sector_t,
3317 	 * and whether the max offset is addressable by the page cache.
3318 	 */
3319 	err = generic_check_addressable(sb->s_blocksize_bits,
3320 					ext4_blocks_count(es));
3321 	if (err) {
3322 		ext4_msg(sb, KERN_ERR, "filesystem"
3323 			 " too large to mount safely on this system");
3324 		if (sizeof(sector_t) < 8)
3325 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3326 		ret = err;
3327 		goto failed_mount;
3328 	}
3329 
3330 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3331 		goto cantfind_ext4;
3332 
3333 	/* check blocks count against device size */
3334 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3335 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3336 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3337 		       "exceeds size of device (%llu blocks)",
3338 		       ext4_blocks_count(es), blocks_count);
3339 		goto failed_mount;
3340 	}
3341 
3342 	/*
3343 	 * It makes no sense for the first data block to be beyond the end
3344 	 * of the filesystem.
3345 	 */
3346 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3347                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3348 			 "block %u is beyond end of filesystem (%llu)",
3349 			 le32_to_cpu(es->s_first_data_block),
3350 			 ext4_blocks_count(es));
3351 		goto failed_mount;
3352 	}
3353 	blocks_count = (ext4_blocks_count(es) -
3354 			le32_to_cpu(es->s_first_data_block) +
3355 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3356 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3357 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3358 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3359 		       "(block count %llu, first data block %u, "
3360 		       "blocks per group %lu)", sbi->s_groups_count,
3361 		       ext4_blocks_count(es),
3362 		       le32_to_cpu(es->s_first_data_block),
3363 		       EXT4_BLOCKS_PER_GROUP(sb));
3364 		goto failed_mount;
3365 	}
3366 	sbi->s_groups_count = blocks_count;
3367 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3368 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3369 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3370 		   EXT4_DESC_PER_BLOCK(sb);
3371 	sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3372 				    GFP_KERNEL);
3373 	if (sbi->s_group_desc == NULL) {
3374 		ext4_msg(sb, KERN_ERR, "not enough memory");
3375 		goto failed_mount;
3376 	}
3377 
3378 #ifdef CONFIG_PROC_FS
3379 	if (ext4_proc_root)
3380 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3381 #endif
3382 
3383 	bgl_lock_init(sbi->s_blockgroup_lock);
3384 
3385 	for (i = 0; i < db_count; i++) {
3386 		block = descriptor_loc(sb, logical_sb_block, i);
3387 		sbi->s_group_desc[i] = sb_bread(sb, block);
3388 		if (!sbi->s_group_desc[i]) {
3389 			ext4_msg(sb, KERN_ERR,
3390 			       "can't read group descriptor %d", i);
3391 			db_count = i;
3392 			goto failed_mount2;
3393 		}
3394 	}
3395 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3396 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3397 		goto failed_mount2;
3398 	}
3399 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3400 		if (!ext4_fill_flex_info(sb)) {
3401 			ext4_msg(sb, KERN_ERR,
3402 			       "unable to initialize "
3403 			       "flex_bg meta info!");
3404 			goto failed_mount2;
3405 		}
3406 
3407 	sbi->s_gdb_count = db_count;
3408 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3409 	spin_lock_init(&sbi->s_next_gen_lock);
3410 
3411 	init_timer(&sbi->s_err_report);
3412 	sbi->s_err_report.function = print_daily_error_info;
3413 	sbi->s_err_report.data = (unsigned long) sb;
3414 
3415 	err = percpu_counter_init(&sbi->s_freeblocks_counter,
3416 			ext4_count_free_blocks(sb));
3417 	if (!err) {
3418 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3419 				ext4_count_free_inodes(sb));
3420 	}
3421 	if (!err) {
3422 		err = percpu_counter_init(&sbi->s_dirs_counter,
3423 				ext4_count_dirs(sb));
3424 	}
3425 	if (!err) {
3426 		err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3427 	}
3428 	if (err) {
3429 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3430 		goto failed_mount3;
3431 	}
3432 
3433 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3434 	sbi->s_max_writeback_mb_bump = 128;
3435 
3436 	/*
3437 	 * set up enough so that it can read an inode
3438 	 */
3439 	if (!test_opt(sb, NOLOAD) &&
3440 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3441 		sb->s_op = &ext4_sops;
3442 	else
3443 		sb->s_op = &ext4_nojournal_sops;
3444 	sb->s_export_op = &ext4_export_ops;
3445 	sb->s_xattr = ext4_xattr_handlers;
3446 #ifdef CONFIG_QUOTA
3447 	sb->s_qcop = &ext4_qctl_operations;
3448 	sb->dq_op = &ext4_quota_operations;
3449 #endif
3450 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3451 
3452 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3453 	mutex_init(&sbi->s_orphan_lock);
3454 	mutex_init(&sbi->s_resize_lock);
3455 
3456 	sb->s_root = NULL;
3457 
3458 	needs_recovery = (es->s_last_orphan != 0 ||
3459 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3460 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3461 
3462 	/*
3463 	 * The first inode we look at is the journal inode.  Don't try
3464 	 * root first: it may be modified in the journal!
3465 	 */
3466 	if (!test_opt(sb, NOLOAD) &&
3467 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3468 		if (ext4_load_journal(sb, es, journal_devnum))
3469 			goto failed_mount3;
3470 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3471 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3472 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3473 		       "suppressed and not mounted read-only");
3474 		goto failed_mount_wq;
3475 	} else {
3476 		clear_opt(sb, DATA_FLAGS);
3477 		set_opt(sb, WRITEBACK_DATA);
3478 		sbi->s_journal = NULL;
3479 		needs_recovery = 0;
3480 		goto no_journal;
3481 	}
3482 
3483 	if (ext4_blocks_count(es) > 0xffffffffULL &&
3484 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3485 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3486 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3487 		goto failed_mount_wq;
3488 	}
3489 
3490 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3491 		jbd2_journal_set_features(sbi->s_journal,
3492 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3493 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3494 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3495 		jbd2_journal_set_features(sbi->s_journal,
3496 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3497 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3498 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3499 	} else {
3500 		jbd2_journal_clear_features(sbi->s_journal,
3501 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3502 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3503 	}
3504 
3505 	/* We have now updated the journal if required, so we can
3506 	 * validate the data journaling mode. */
3507 	switch (test_opt(sb, DATA_FLAGS)) {
3508 	case 0:
3509 		/* No mode set, assume a default based on the journal
3510 		 * capabilities: ORDERED_DATA if the journal can
3511 		 * cope, else JOURNAL_DATA
3512 		 */
3513 		if (jbd2_journal_check_available_features
3514 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3515 			set_opt(sb, ORDERED_DATA);
3516 		else
3517 			set_opt(sb, JOURNAL_DATA);
3518 		break;
3519 
3520 	case EXT4_MOUNT_ORDERED_DATA:
3521 	case EXT4_MOUNT_WRITEBACK_DATA:
3522 		if (!jbd2_journal_check_available_features
3523 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3524 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3525 			       "requested data journaling mode");
3526 			goto failed_mount_wq;
3527 		}
3528 	default:
3529 		break;
3530 	}
3531 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3532 
3533 	/*
3534 	 * The journal may have updated the bg summary counts, so we
3535 	 * need to update the global counters.
3536 	 */
3537 	percpu_counter_set(&sbi->s_freeblocks_counter,
3538 			   ext4_count_free_blocks(sb));
3539 	percpu_counter_set(&sbi->s_freeinodes_counter,
3540 			   ext4_count_free_inodes(sb));
3541 	percpu_counter_set(&sbi->s_dirs_counter,
3542 			   ext4_count_dirs(sb));
3543 	percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3544 
3545 no_journal:
3546 	/*
3547 	 * The maximum number of concurrent works can be high and
3548 	 * concurrency isn't really necessary.  Limit it to 1.
3549 	 */
3550 	EXT4_SB(sb)->dio_unwritten_wq =
3551 		alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3552 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3553 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3554 		goto failed_mount_wq;
3555 	}
3556 
3557 	/*
3558 	 * The jbd2_journal_load will have done any necessary log recovery,
3559 	 * so we can safely mount the rest of the filesystem now.
3560 	 */
3561 
3562 	root = ext4_iget(sb, EXT4_ROOT_INO);
3563 	if (IS_ERR(root)) {
3564 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3565 		ret = PTR_ERR(root);
3566 		root = NULL;
3567 		goto failed_mount4;
3568 	}
3569 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3570 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3571 		goto failed_mount4;
3572 	}
3573 	sb->s_root = d_alloc_root(root);
3574 	if (!sb->s_root) {
3575 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3576 		ret = -ENOMEM;
3577 		goto failed_mount4;
3578 	}
3579 
3580 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3581 
3582 	/* determine the minimum size of new large inodes, if present */
3583 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3584 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3585 						     EXT4_GOOD_OLD_INODE_SIZE;
3586 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3587 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3588 			if (sbi->s_want_extra_isize <
3589 			    le16_to_cpu(es->s_want_extra_isize))
3590 				sbi->s_want_extra_isize =
3591 					le16_to_cpu(es->s_want_extra_isize);
3592 			if (sbi->s_want_extra_isize <
3593 			    le16_to_cpu(es->s_min_extra_isize))
3594 				sbi->s_want_extra_isize =
3595 					le16_to_cpu(es->s_min_extra_isize);
3596 		}
3597 	}
3598 	/* Check if enough inode space is available */
3599 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3600 							sbi->s_inode_size) {
3601 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3602 						       EXT4_GOOD_OLD_INODE_SIZE;
3603 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3604 			 "available");
3605 	}
3606 
3607 	if (test_opt(sb, DELALLOC) &&
3608 	    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3609 		ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3610 			 "requested data journaling mode");
3611 		clear_opt(sb, DELALLOC);
3612 	}
3613 	if (test_opt(sb, DIOREAD_NOLOCK)) {
3614 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3615 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3616 				"option - requested data journaling mode");
3617 			clear_opt(sb, DIOREAD_NOLOCK);
3618 		}
3619 		if (sb->s_blocksize < PAGE_SIZE) {
3620 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3621 				"option - block size is too small");
3622 			clear_opt(sb, DIOREAD_NOLOCK);
3623 		}
3624 	}
3625 
3626 	err = ext4_setup_system_zone(sb);
3627 	if (err) {
3628 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3629 			 "zone (%d)", err);
3630 		goto failed_mount4;
3631 	}
3632 
3633 	ext4_ext_init(sb);
3634 	err = ext4_mb_init(sb, needs_recovery);
3635 	if (err) {
3636 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3637 			 err);
3638 		goto failed_mount4;
3639 	}
3640 
3641 	err = ext4_register_li_request(sb, first_not_zeroed);
3642 	if (err)
3643 		goto failed_mount4;
3644 
3645 	sbi->s_kobj.kset = ext4_kset;
3646 	init_completion(&sbi->s_kobj_unregister);
3647 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3648 				   "%s", sb->s_id);
3649 	if (err) {
3650 		ext4_mb_release(sb);
3651 		ext4_ext_release(sb);
3652 		goto failed_mount4;
3653 	};
3654 
3655 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3656 	ext4_orphan_cleanup(sb, es);
3657 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3658 	if (needs_recovery) {
3659 		ext4_msg(sb, KERN_INFO, "recovery complete");
3660 		ext4_mark_recovery_complete(sb, es);
3661 	}
3662 	if (EXT4_SB(sb)->s_journal) {
3663 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3664 			descr = " journalled data mode";
3665 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3666 			descr = " ordered data mode";
3667 		else
3668 			descr = " writeback data mode";
3669 	} else
3670 		descr = "out journal";
3671 
3672 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3673 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3674 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3675 
3676 	if (es->s_error_count)
3677 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3678 
3679 	kfree(orig_data);
3680 	return 0;
3681 
3682 cantfind_ext4:
3683 	if (!silent)
3684 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3685 	goto failed_mount;
3686 
3687 failed_mount4:
3688 	iput(root);
3689 	sb->s_root = NULL;
3690 	ext4_msg(sb, KERN_ERR, "mount failed");
3691 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3692 failed_mount_wq:
3693 	ext4_release_system_zone(sb);
3694 	if (sbi->s_journal) {
3695 		jbd2_journal_destroy(sbi->s_journal);
3696 		sbi->s_journal = NULL;
3697 	}
3698 failed_mount3:
3699 	del_timer(&sbi->s_err_report);
3700 	if (sbi->s_flex_groups) {
3701 		if (is_vmalloc_addr(sbi->s_flex_groups))
3702 			vfree(sbi->s_flex_groups);
3703 		else
3704 			kfree(sbi->s_flex_groups);
3705 	}
3706 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
3707 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3708 	percpu_counter_destroy(&sbi->s_dirs_counter);
3709 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3710 failed_mount2:
3711 	for (i = 0; i < db_count; i++)
3712 		brelse(sbi->s_group_desc[i]);
3713 	kfree(sbi->s_group_desc);
3714 failed_mount:
3715 	if (sbi->s_proc) {
3716 		remove_proc_entry(sb->s_id, ext4_proc_root);
3717 	}
3718 #ifdef CONFIG_QUOTA
3719 	for (i = 0; i < MAXQUOTAS; i++)
3720 		kfree(sbi->s_qf_names[i]);
3721 #endif
3722 	ext4_blkdev_remove(sbi);
3723 	brelse(bh);
3724 out_fail:
3725 	sb->s_fs_info = NULL;
3726 	kfree(sbi->s_blockgroup_lock);
3727 	kfree(sbi);
3728 out_free_orig:
3729 	kfree(orig_data);
3730 	return ret;
3731 }
3732 
3733 /*
3734  * Setup any per-fs journal parameters now.  We'll do this both on
3735  * initial mount, once the journal has been initialised but before we've
3736  * done any recovery; and again on any subsequent remount.
3737  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)3738 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3739 {
3740 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3741 
3742 	journal->j_commit_interval = sbi->s_commit_interval;
3743 	journal->j_min_batch_time = sbi->s_min_batch_time;
3744 	journal->j_max_batch_time = sbi->s_max_batch_time;
3745 
3746 	write_lock(&journal->j_state_lock);
3747 	if (test_opt(sb, BARRIER))
3748 		journal->j_flags |= JBD2_BARRIER;
3749 	else
3750 		journal->j_flags &= ~JBD2_BARRIER;
3751 	if (test_opt(sb, DATA_ERR_ABORT))
3752 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3753 	else
3754 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3755 	write_unlock(&journal->j_state_lock);
3756 }
3757 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)3758 static journal_t *ext4_get_journal(struct super_block *sb,
3759 				   unsigned int journal_inum)
3760 {
3761 	struct inode *journal_inode;
3762 	journal_t *journal;
3763 
3764 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3765 
3766 	/* First, test for the existence of a valid inode on disk.  Bad
3767 	 * things happen if we iget() an unused inode, as the subsequent
3768 	 * iput() will try to delete it. */
3769 
3770 	journal_inode = ext4_iget(sb, journal_inum);
3771 	if (IS_ERR(journal_inode)) {
3772 		ext4_msg(sb, KERN_ERR, "no journal found");
3773 		return NULL;
3774 	}
3775 	if (!journal_inode->i_nlink) {
3776 		make_bad_inode(journal_inode);
3777 		iput(journal_inode);
3778 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3779 		return NULL;
3780 	}
3781 
3782 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3783 		  journal_inode, journal_inode->i_size);
3784 	if (!S_ISREG(journal_inode->i_mode)) {
3785 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3786 		iput(journal_inode);
3787 		return NULL;
3788 	}
3789 
3790 	journal = jbd2_journal_init_inode(journal_inode);
3791 	if (!journal) {
3792 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3793 		iput(journal_inode);
3794 		return NULL;
3795 	}
3796 	journal->j_private = sb;
3797 	ext4_init_journal_params(sb, journal);
3798 	return journal;
3799 }
3800 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)3801 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3802 				       dev_t j_dev)
3803 {
3804 	struct buffer_head *bh;
3805 	journal_t *journal;
3806 	ext4_fsblk_t start;
3807 	ext4_fsblk_t len;
3808 	int hblock, blocksize;
3809 	ext4_fsblk_t sb_block;
3810 	unsigned long offset;
3811 	struct ext4_super_block *es;
3812 	struct block_device *bdev;
3813 
3814 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3815 
3816 	bdev = ext4_blkdev_get(j_dev, sb);
3817 	if (bdev == NULL)
3818 		return NULL;
3819 
3820 	blocksize = sb->s_blocksize;
3821 	hblock = bdev_logical_block_size(bdev);
3822 	if (blocksize < hblock) {
3823 		ext4_msg(sb, KERN_ERR,
3824 			"blocksize too small for journal device");
3825 		goto out_bdev;
3826 	}
3827 
3828 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3829 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3830 	set_blocksize(bdev, blocksize);
3831 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3832 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3833 		       "external journal");
3834 		goto out_bdev;
3835 	}
3836 
3837 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3838 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3839 	    !(le32_to_cpu(es->s_feature_incompat) &
3840 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3841 		ext4_msg(sb, KERN_ERR, "external journal has "
3842 					"bad superblock");
3843 		brelse(bh);
3844 		goto out_bdev;
3845 	}
3846 
3847 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3848 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3849 		brelse(bh);
3850 		goto out_bdev;
3851 	}
3852 
3853 	len = ext4_blocks_count(es);
3854 	start = sb_block + 1;
3855 	brelse(bh);	/* we're done with the superblock */
3856 
3857 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3858 					start, len, blocksize);
3859 	if (!journal) {
3860 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3861 		goto out_bdev;
3862 	}
3863 	journal->j_private = sb;
3864 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
3865 	wait_on_buffer(journal->j_sb_buffer);
3866 	if (!buffer_uptodate(journal->j_sb_buffer)) {
3867 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3868 		goto out_journal;
3869 	}
3870 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3871 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
3872 					"user (unsupported) - %d",
3873 			be32_to_cpu(journal->j_superblock->s_nr_users));
3874 		goto out_journal;
3875 	}
3876 	EXT4_SB(sb)->journal_bdev = bdev;
3877 	ext4_init_journal_params(sb, journal);
3878 	return journal;
3879 
3880 out_journal:
3881 	jbd2_journal_destroy(journal);
3882 out_bdev:
3883 	ext4_blkdev_put(bdev);
3884 	return NULL;
3885 }
3886 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)3887 static int ext4_load_journal(struct super_block *sb,
3888 			     struct ext4_super_block *es,
3889 			     unsigned long journal_devnum)
3890 {
3891 	journal_t *journal;
3892 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3893 	dev_t journal_dev;
3894 	int err = 0;
3895 	int really_read_only;
3896 
3897 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3898 
3899 	if (journal_devnum &&
3900 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3901 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3902 			"numbers have changed");
3903 		journal_dev = new_decode_dev(journal_devnum);
3904 	} else
3905 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3906 
3907 	really_read_only = bdev_read_only(sb->s_bdev);
3908 
3909 	/*
3910 	 * Are we loading a blank journal or performing recovery after a
3911 	 * crash?  For recovery, we need to check in advance whether we
3912 	 * can get read-write access to the device.
3913 	 */
3914 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3915 		if (sb->s_flags & MS_RDONLY) {
3916 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
3917 					"required on readonly filesystem");
3918 			if (really_read_only) {
3919 				ext4_msg(sb, KERN_ERR, "write access "
3920 					"unavailable, cannot proceed");
3921 				return -EROFS;
3922 			}
3923 			ext4_msg(sb, KERN_INFO, "write access will "
3924 			       "be enabled during recovery");
3925 		}
3926 	}
3927 
3928 	if (journal_inum && journal_dev) {
3929 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3930 		       "and inode journals!");
3931 		return -EINVAL;
3932 	}
3933 
3934 	if (journal_inum) {
3935 		if (!(journal = ext4_get_journal(sb, journal_inum)))
3936 			return -EINVAL;
3937 	} else {
3938 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3939 			return -EINVAL;
3940 	}
3941 
3942 	if (!(journal->j_flags & JBD2_BARRIER))
3943 		ext4_msg(sb, KERN_INFO, "barriers disabled");
3944 
3945 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3946 		err = jbd2_journal_update_format(journal);
3947 		if (err)  {
3948 			ext4_msg(sb, KERN_ERR, "error updating journal");
3949 			jbd2_journal_destroy(journal);
3950 			return err;
3951 		}
3952 	}
3953 
3954 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3955 		err = jbd2_journal_wipe(journal, !really_read_only);
3956 	if (!err) {
3957 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3958 		if (save)
3959 			memcpy(save, ((char *) es) +
3960 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3961 		err = jbd2_journal_load(journal);
3962 		if (save)
3963 			memcpy(((char *) es) + EXT4_S_ERR_START,
3964 			       save, EXT4_S_ERR_LEN);
3965 		kfree(save);
3966 	}
3967 
3968 	if (err) {
3969 		ext4_msg(sb, KERN_ERR, "error loading journal");
3970 		jbd2_journal_destroy(journal);
3971 		return err;
3972 	}
3973 
3974 	EXT4_SB(sb)->s_journal = journal;
3975 	ext4_clear_journal_err(sb, es);
3976 
3977 	if (!really_read_only && journal_devnum &&
3978 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3979 		es->s_journal_dev = cpu_to_le32(journal_devnum);
3980 
3981 		/* Make sure we flush the recovery flag to disk. */
3982 		ext4_commit_super(sb, 1);
3983 	}
3984 
3985 	return 0;
3986 }
3987 
ext4_commit_super(struct super_block * sb,int sync)3988 static int ext4_commit_super(struct super_block *sb, int sync)
3989 {
3990 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3991 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3992 	int error = 0;
3993 
3994 	if (!sbh)
3995 		return error;
3996 	if (buffer_write_io_error(sbh)) {
3997 		/*
3998 		 * Oh, dear.  A previous attempt to write the
3999 		 * superblock failed.  This could happen because the
4000 		 * USB device was yanked out.  Or it could happen to
4001 		 * be a transient write error and maybe the block will
4002 		 * be remapped.  Nothing we can do but to retry the
4003 		 * write and hope for the best.
4004 		 */
4005 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4006 		       "superblock detected");
4007 		clear_buffer_write_io_error(sbh);
4008 		set_buffer_uptodate(sbh);
4009 	}
4010 	/*
4011 	 * If the file system is mounted read-only, don't update the
4012 	 * superblock write time.  This avoids updating the superblock
4013 	 * write time when we are mounting the root file system
4014 	 * read/only but we need to replay the journal; at that point,
4015 	 * for people who are east of GMT and who make their clock
4016 	 * tick in localtime for Windows bug-for-bug compatibility,
4017 	 * the clock is set in the future, and this will cause e2fsck
4018 	 * to complain and force a full file system check.
4019 	 */
4020 	if (!(sb->s_flags & MS_RDONLY))
4021 		es->s_wtime = cpu_to_le32(get_seconds());
4022 	if (sb->s_bdev->bd_part)
4023 		es->s_kbytes_written =
4024 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4025 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4026 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4027 	else
4028 		es->s_kbytes_written =
4029 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4030 	ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4031 					   &EXT4_SB(sb)->s_freeblocks_counter));
4032 	es->s_free_inodes_count =
4033 		cpu_to_le32(percpu_counter_sum_positive(
4034 				&EXT4_SB(sb)->s_freeinodes_counter));
4035 	sb->s_dirt = 0;
4036 	BUFFER_TRACE(sbh, "marking dirty");
4037 	mark_buffer_dirty(sbh);
4038 	if (sync) {
4039 		error = sync_dirty_buffer(sbh);
4040 		if (error)
4041 			return error;
4042 
4043 		error = buffer_write_io_error(sbh);
4044 		if (error) {
4045 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4046 			       "superblock");
4047 			clear_buffer_write_io_error(sbh);
4048 			set_buffer_uptodate(sbh);
4049 		}
4050 	}
4051 	return error;
4052 }
4053 
4054 /*
4055  * Have we just finished recovery?  If so, and if we are mounting (or
4056  * remounting) the filesystem readonly, then we will end up with a
4057  * consistent fs on disk.  Record that fact.
4058  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4059 static void ext4_mark_recovery_complete(struct super_block *sb,
4060 					struct ext4_super_block *es)
4061 {
4062 	journal_t *journal = EXT4_SB(sb)->s_journal;
4063 
4064 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4065 		BUG_ON(journal != NULL);
4066 		return;
4067 	}
4068 	jbd2_journal_lock_updates(journal);
4069 	if (jbd2_journal_flush(journal) < 0)
4070 		goto out;
4071 
4072 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4073 	    sb->s_flags & MS_RDONLY) {
4074 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4075 		ext4_commit_super(sb, 1);
4076 	}
4077 
4078 out:
4079 	jbd2_journal_unlock_updates(journal);
4080 }
4081 
4082 /*
4083  * If we are mounting (or read-write remounting) a filesystem whose journal
4084  * has recorded an error from a previous lifetime, move that error to the
4085  * main filesystem now.
4086  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4087 static void ext4_clear_journal_err(struct super_block *sb,
4088 				   struct ext4_super_block *es)
4089 {
4090 	journal_t *journal;
4091 	int j_errno;
4092 	const char *errstr;
4093 
4094 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4095 
4096 	journal = EXT4_SB(sb)->s_journal;
4097 
4098 	/*
4099 	 * Now check for any error status which may have been recorded in the
4100 	 * journal by a prior ext4_error() or ext4_abort()
4101 	 */
4102 
4103 	j_errno = jbd2_journal_errno(journal);
4104 	if (j_errno) {
4105 		char nbuf[16];
4106 
4107 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4108 		ext4_warning(sb, "Filesystem error recorded "
4109 			     "from previous mount: %s", errstr);
4110 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4111 
4112 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4113 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4114 		ext4_commit_super(sb, 1);
4115 
4116 		jbd2_journal_clear_err(journal);
4117 	}
4118 }
4119 
4120 /*
4121  * Force the running and committing transactions to commit,
4122  * and wait on the commit.
4123  */
ext4_force_commit(struct super_block * sb)4124 int ext4_force_commit(struct super_block *sb)
4125 {
4126 	journal_t *journal;
4127 	int ret = 0;
4128 
4129 	if (sb->s_flags & MS_RDONLY)
4130 		return 0;
4131 
4132 	journal = EXT4_SB(sb)->s_journal;
4133 	if (journal) {
4134 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4135 		ret = ext4_journal_force_commit(journal);
4136 	}
4137 
4138 	return ret;
4139 }
4140 
ext4_write_super(struct super_block * sb)4141 static void ext4_write_super(struct super_block *sb)
4142 {
4143 	lock_super(sb);
4144 	ext4_commit_super(sb, 1);
4145 	unlock_super(sb);
4146 }
4147 
ext4_sync_fs(struct super_block * sb,int wait)4148 static int ext4_sync_fs(struct super_block *sb, int wait)
4149 {
4150 	int ret = 0;
4151 	tid_t target;
4152 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4153 
4154 	trace_ext4_sync_fs(sb, wait);
4155 	flush_workqueue(sbi->dio_unwritten_wq);
4156 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4157 		if (wait)
4158 			jbd2_log_wait_commit(sbi->s_journal, target);
4159 	}
4160 	return ret;
4161 }
4162 
4163 /*
4164  * LVM calls this function before a (read-only) snapshot is created.  This
4165  * gives us a chance to flush the journal completely and mark the fs clean.
4166  *
4167  * Note that only this function cannot bring a filesystem to be in a clean
4168  * state independently, because ext4 prevents a new handle from being started
4169  * by @sb->s_frozen, which stays in an upper layer.  It thus needs help from
4170  * the upper layer.
4171  */
ext4_freeze(struct super_block * sb)4172 static int ext4_freeze(struct super_block *sb)
4173 {
4174 	int error = 0;
4175 	journal_t *journal;
4176 
4177 	if (sb->s_flags & MS_RDONLY)
4178 		return 0;
4179 
4180 	journal = EXT4_SB(sb)->s_journal;
4181 
4182 	/* Now we set up the journal barrier. */
4183 	jbd2_journal_lock_updates(journal);
4184 
4185 	/*
4186 	 * Don't clear the needs_recovery flag if we failed to flush
4187 	 * the journal.
4188 	 */
4189 	error = jbd2_journal_flush(journal);
4190 	if (error < 0)
4191 		goto out;
4192 
4193 	/* Journal blocked and flushed, clear needs_recovery flag. */
4194 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4195 	error = ext4_commit_super(sb, 1);
4196 out:
4197 	/* we rely on s_frozen to stop further updates */
4198 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4199 	return error;
4200 }
4201 
4202 /*
4203  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4204  * flag here, even though the filesystem is not technically dirty yet.
4205  */
ext4_unfreeze(struct super_block * sb)4206 static int ext4_unfreeze(struct super_block *sb)
4207 {
4208 	if (sb->s_flags & MS_RDONLY)
4209 		return 0;
4210 
4211 	lock_super(sb);
4212 	/* Reset the needs_recovery flag before the fs is unlocked. */
4213 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4214 	ext4_commit_super(sb, 1);
4215 	unlock_super(sb);
4216 	return 0;
4217 }
4218 
4219 /*
4220  * Structure to save mount options for ext4_remount's benefit
4221  */
4222 struct ext4_mount_options {
4223 	unsigned long s_mount_opt;
4224 	unsigned long s_mount_opt2;
4225 	uid_t s_resuid;
4226 	gid_t s_resgid;
4227 	unsigned long s_commit_interval;
4228 	u32 s_min_batch_time, s_max_batch_time;
4229 #ifdef CONFIG_QUOTA
4230 	int s_jquota_fmt;
4231 	char *s_qf_names[MAXQUOTAS];
4232 #endif
4233 };
4234 
ext4_remount(struct super_block * sb,int * flags,char * data)4235 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4236 {
4237 	struct ext4_super_block *es;
4238 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4239 	ext4_fsblk_t n_blocks_count = 0;
4240 	unsigned long old_sb_flags;
4241 	struct ext4_mount_options old_opts;
4242 	int enable_quota = 0;
4243 	ext4_group_t g;
4244 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4245 	int err;
4246 #ifdef CONFIG_QUOTA
4247 	int i;
4248 #endif
4249 	char *orig_data = kstrdup(data, GFP_KERNEL);
4250 
4251 	/* Store the original options */
4252 	lock_super(sb);
4253 	old_sb_flags = sb->s_flags;
4254 	old_opts.s_mount_opt = sbi->s_mount_opt;
4255 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4256 	old_opts.s_resuid = sbi->s_resuid;
4257 	old_opts.s_resgid = sbi->s_resgid;
4258 	old_opts.s_commit_interval = sbi->s_commit_interval;
4259 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4260 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4261 #ifdef CONFIG_QUOTA
4262 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4263 	for (i = 0; i < MAXQUOTAS; i++)
4264 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4265 #endif
4266 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4267 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4268 
4269 	/*
4270 	 * Allow the "check" option to be passed as a remount option.
4271 	 */
4272 	if (!parse_options(data, sb, NULL, &journal_ioprio,
4273 			   &n_blocks_count, 1)) {
4274 		err = -EINVAL;
4275 		goto restore_opts;
4276 	}
4277 
4278 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4279 		ext4_abort(sb, "Abort forced by user");
4280 
4281 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4282 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4283 
4284 	es = sbi->s_es;
4285 
4286 	if (sbi->s_journal) {
4287 		ext4_init_journal_params(sb, sbi->s_journal);
4288 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4289 	}
4290 
4291 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4292 		n_blocks_count > ext4_blocks_count(es)) {
4293 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4294 			err = -EROFS;
4295 			goto restore_opts;
4296 		}
4297 
4298 		if (*flags & MS_RDONLY) {
4299 			err = dquot_suspend(sb, -1);
4300 			if (err < 0)
4301 				goto restore_opts;
4302 
4303 			/*
4304 			 * First of all, the unconditional stuff we have to do
4305 			 * to disable replay of the journal when we next remount
4306 			 */
4307 			sb->s_flags |= MS_RDONLY;
4308 
4309 			/*
4310 			 * OK, test if we are remounting a valid rw partition
4311 			 * readonly, and if so set the rdonly flag and then
4312 			 * mark the partition as valid again.
4313 			 */
4314 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4315 			    (sbi->s_mount_state & EXT4_VALID_FS))
4316 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4317 
4318 			if (sbi->s_journal)
4319 				ext4_mark_recovery_complete(sb, es);
4320 		} else {
4321 			/* Make sure we can mount this feature set readwrite */
4322 			if (!ext4_feature_set_ok(sb, 0)) {
4323 				err = -EROFS;
4324 				goto restore_opts;
4325 			}
4326 			/*
4327 			 * Make sure the group descriptor checksums
4328 			 * are sane.  If they aren't, refuse to remount r/w.
4329 			 */
4330 			for (g = 0; g < sbi->s_groups_count; g++) {
4331 				struct ext4_group_desc *gdp =
4332 					ext4_get_group_desc(sb, g, NULL);
4333 
4334 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4335 					ext4_msg(sb, KERN_ERR,
4336 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4337 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4338 					       le16_to_cpu(gdp->bg_checksum));
4339 					err = -EINVAL;
4340 					goto restore_opts;
4341 				}
4342 			}
4343 
4344 			/*
4345 			 * If we have an unprocessed orphan list hanging
4346 			 * around from a previously readonly bdev mount,
4347 			 * require a full umount/remount for now.
4348 			 */
4349 			if (es->s_last_orphan) {
4350 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4351 				       "remount RDWR because of unprocessed "
4352 				       "orphan inode list.  Please "
4353 				       "umount/remount instead");
4354 				err = -EINVAL;
4355 				goto restore_opts;
4356 			}
4357 
4358 			/*
4359 			 * Mounting a RDONLY partition read-write, so reread
4360 			 * and store the current valid flag.  (It may have
4361 			 * been changed by e2fsck since we originally mounted
4362 			 * the partition.)
4363 			 */
4364 			if (sbi->s_journal)
4365 				ext4_clear_journal_err(sb, es);
4366 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4367 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4368 				goto restore_opts;
4369 			if (!ext4_setup_super(sb, es, 0))
4370 				sb->s_flags &= ~MS_RDONLY;
4371 			enable_quota = 1;
4372 		}
4373 	}
4374 
4375 	/*
4376 	 * Reinitialize lazy itable initialization thread based on
4377 	 * current settings
4378 	 */
4379 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4380 		ext4_unregister_li_request(sb);
4381 	else {
4382 		ext4_group_t first_not_zeroed;
4383 		first_not_zeroed = ext4_has_uninit_itable(sb);
4384 		ext4_register_li_request(sb, first_not_zeroed);
4385 	}
4386 
4387 	ext4_setup_system_zone(sb);
4388 	if (sbi->s_journal == NULL)
4389 		ext4_commit_super(sb, 1);
4390 
4391 #ifdef CONFIG_QUOTA
4392 	/* Release old quota file names */
4393 	for (i = 0; i < MAXQUOTAS; i++)
4394 		if (old_opts.s_qf_names[i] &&
4395 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4396 			kfree(old_opts.s_qf_names[i]);
4397 #endif
4398 	unlock_super(sb);
4399 	if (enable_quota)
4400 		dquot_resume(sb, -1);
4401 
4402 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4403 	kfree(orig_data);
4404 	return 0;
4405 
4406 restore_opts:
4407 	sb->s_flags = old_sb_flags;
4408 	sbi->s_mount_opt = old_opts.s_mount_opt;
4409 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4410 	sbi->s_resuid = old_opts.s_resuid;
4411 	sbi->s_resgid = old_opts.s_resgid;
4412 	sbi->s_commit_interval = old_opts.s_commit_interval;
4413 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4414 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4415 #ifdef CONFIG_QUOTA
4416 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4417 	for (i = 0; i < MAXQUOTAS; i++) {
4418 		if (sbi->s_qf_names[i] &&
4419 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4420 			kfree(sbi->s_qf_names[i]);
4421 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4422 	}
4423 #endif
4424 	unlock_super(sb);
4425 	kfree(orig_data);
4426 	return err;
4427 }
4428 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)4429 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4430 {
4431 	struct super_block *sb = dentry->d_sb;
4432 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4433 	struct ext4_super_block *es = sbi->s_es;
4434 	u64 fsid;
4435 
4436 	if (test_opt(sb, MINIX_DF)) {
4437 		sbi->s_overhead_last = 0;
4438 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4439 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4440 		ext4_fsblk_t overhead = 0;
4441 
4442 		/*
4443 		 * Compute the overhead (FS structures).  This is constant
4444 		 * for a given filesystem unless the number of block groups
4445 		 * changes so we cache the previous value until it does.
4446 		 */
4447 
4448 		/*
4449 		 * All of the blocks before first_data_block are
4450 		 * overhead
4451 		 */
4452 		overhead = le32_to_cpu(es->s_first_data_block);
4453 
4454 		/*
4455 		 * Add the overhead attributed to the superblock and
4456 		 * block group descriptors.  If the sparse superblocks
4457 		 * feature is turned on, then not all groups have this.
4458 		 */
4459 		for (i = 0; i < ngroups; i++) {
4460 			overhead += ext4_bg_has_super(sb, i) +
4461 				ext4_bg_num_gdb(sb, i);
4462 			cond_resched();
4463 		}
4464 
4465 		/*
4466 		 * Every block group has an inode bitmap, a block
4467 		 * bitmap, and an inode table.
4468 		 */
4469 		overhead += ngroups * (2 + sbi->s_itb_per_group);
4470 		sbi->s_overhead_last = overhead;
4471 		smp_wmb();
4472 		sbi->s_blocks_last = ext4_blocks_count(es);
4473 	}
4474 
4475 	buf->f_type = EXT4_SUPER_MAGIC;
4476 	buf->f_bsize = sb->s_blocksize;
4477 	buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4478 	buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4479 		       percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4480 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4481 	if (buf->f_bfree < ext4_r_blocks_count(es))
4482 		buf->f_bavail = 0;
4483 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4484 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4485 	buf->f_namelen = EXT4_NAME_LEN;
4486 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4487 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4488 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4489 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4490 
4491 	return 0;
4492 }
4493 
4494 /* Helper function for writing quotas on sync - we need to start transaction
4495  * before quota file is locked for write. Otherwise the are possible deadlocks:
4496  * Process 1                         Process 2
4497  * ext4_create()                     quota_sync()
4498  *   jbd2_journal_start()                  write_dquot()
4499  *   dquot_initialize()                         down(dqio_mutex)
4500  *     down(dqio_mutex)                    jbd2_journal_start()
4501  *
4502  */
4503 
4504 #ifdef CONFIG_QUOTA
4505 
dquot_to_inode(struct dquot * dquot)4506 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4507 {
4508 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4509 }
4510 
ext4_write_dquot(struct dquot * dquot)4511 static int ext4_write_dquot(struct dquot *dquot)
4512 {
4513 	int ret, err;
4514 	handle_t *handle;
4515 	struct inode *inode;
4516 
4517 	inode = dquot_to_inode(dquot);
4518 	handle = ext4_journal_start(inode,
4519 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4520 	if (IS_ERR(handle))
4521 		return PTR_ERR(handle);
4522 	ret = dquot_commit(dquot);
4523 	err = ext4_journal_stop(handle);
4524 	if (!ret)
4525 		ret = err;
4526 	return ret;
4527 }
4528 
ext4_acquire_dquot(struct dquot * dquot)4529 static int ext4_acquire_dquot(struct dquot *dquot)
4530 {
4531 	int ret, err;
4532 	handle_t *handle;
4533 
4534 	handle = ext4_journal_start(dquot_to_inode(dquot),
4535 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4536 	if (IS_ERR(handle))
4537 		return PTR_ERR(handle);
4538 	ret = dquot_acquire(dquot);
4539 	err = ext4_journal_stop(handle);
4540 	if (!ret)
4541 		ret = err;
4542 	return ret;
4543 }
4544 
ext4_release_dquot(struct dquot * dquot)4545 static int ext4_release_dquot(struct dquot *dquot)
4546 {
4547 	int ret, err;
4548 	handle_t *handle;
4549 
4550 	handle = ext4_journal_start(dquot_to_inode(dquot),
4551 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4552 	if (IS_ERR(handle)) {
4553 		/* Release dquot anyway to avoid endless cycle in dqput() */
4554 		dquot_release(dquot);
4555 		return PTR_ERR(handle);
4556 	}
4557 	ret = dquot_release(dquot);
4558 	err = ext4_journal_stop(handle);
4559 	if (!ret)
4560 		ret = err;
4561 	return ret;
4562 }
4563 
ext4_mark_dquot_dirty(struct dquot * dquot)4564 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4565 {
4566 	/* Are we journaling quotas? */
4567 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4568 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4569 		dquot_mark_dquot_dirty(dquot);
4570 		return ext4_write_dquot(dquot);
4571 	} else {
4572 		return dquot_mark_dquot_dirty(dquot);
4573 	}
4574 }
4575 
ext4_write_info(struct super_block * sb,int type)4576 static int ext4_write_info(struct super_block *sb, int type)
4577 {
4578 	int ret, err;
4579 	handle_t *handle;
4580 
4581 	/* Data block + inode block */
4582 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4583 	if (IS_ERR(handle))
4584 		return PTR_ERR(handle);
4585 	ret = dquot_commit_info(sb, type);
4586 	err = ext4_journal_stop(handle);
4587 	if (!ret)
4588 		ret = err;
4589 	return ret;
4590 }
4591 
4592 /*
4593  * Turn on quotas during mount time - we need to find
4594  * the quota file and such...
4595  */
ext4_quota_on_mount(struct super_block * sb,int type)4596 static int ext4_quota_on_mount(struct super_block *sb, int type)
4597 {
4598 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4599 					EXT4_SB(sb)->s_jquota_fmt, type);
4600 }
4601 
4602 /*
4603  * Standard function to be called on quota_on
4604  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)4605 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4606 			 struct path *path)
4607 {
4608 	int err;
4609 
4610 	if (!test_opt(sb, QUOTA))
4611 		return -EINVAL;
4612 
4613 	/* Quotafile not on the same filesystem? */
4614 	if (path->mnt->mnt_sb != sb)
4615 		return -EXDEV;
4616 	/* Journaling quota? */
4617 	if (EXT4_SB(sb)->s_qf_names[type]) {
4618 		/* Quotafile not in fs root? */
4619 		if (path->dentry->d_parent != sb->s_root)
4620 			ext4_msg(sb, KERN_WARNING,
4621 				"Quota file not on filesystem root. "
4622 				"Journaled quota will not work");
4623 	}
4624 
4625 	/*
4626 	 * When we journal data on quota file, we have to flush journal to see
4627 	 * all updates to the file when we bypass pagecache...
4628 	 */
4629 	if (EXT4_SB(sb)->s_journal &&
4630 	    ext4_should_journal_data(path->dentry->d_inode)) {
4631 		/*
4632 		 * We don't need to lock updates but journal_flush() could
4633 		 * otherwise be livelocked...
4634 		 */
4635 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4636 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4637 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4638 		if (err)
4639 			return err;
4640 	}
4641 
4642 	return dquot_quota_on(sb, type, format_id, path);
4643 }
4644 
ext4_quota_off(struct super_block * sb,int type)4645 static int ext4_quota_off(struct super_block *sb, int type)
4646 {
4647 	struct inode *inode = sb_dqopt(sb)->files[type];
4648 	handle_t *handle;
4649 
4650 	/* Force all delayed allocation blocks to be allocated.
4651 	 * Caller already holds s_umount sem */
4652 	if (test_opt(sb, DELALLOC))
4653 		sync_filesystem(sb);
4654 
4655 	/* Update modification times of quota files when userspace can
4656 	 * start looking at them */
4657 	handle = ext4_journal_start(inode, 1);
4658 	if (IS_ERR(handle))
4659 		goto out;
4660 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4661 	ext4_mark_inode_dirty(handle, inode);
4662 	ext4_journal_stop(handle);
4663 
4664 out:
4665 	return dquot_quota_off(sb, type);
4666 }
4667 
4668 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4669  * acquiring the locks... As quota files are never truncated and quota code
4670  * itself serializes the operations (and no one else should touch the files)
4671  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)4672 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4673 			       size_t len, loff_t off)
4674 {
4675 	struct inode *inode = sb_dqopt(sb)->files[type];
4676 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4677 	int err = 0;
4678 	int offset = off & (sb->s_blocksize - 1);
4679 	int tocopy;
4680 	size_t toread;
4681 	struct buffer_head *bh;
4682 	loff_t i_size = i_size_read(inode);
4683 
4684 	if (off > i_size)
4685 		return 0;
4686 	if (off+len > i_size)
4687 		len = i_size-off;
4688 	toread = len;
4689 	while (toread > 0) {
4690 		tocopy = sb->s_blocksize - offset < toread ?
4691 				sb->s_blocksize - offset : toread;
4692 		bh = ext4_bread(NULL, inode, blk, 0, &err);
4693 		if (err)
4694 			return err;
4695 		if (!bh)	/* A hole? */
4696 			memset(data, 0, tocopy);
4697 		else
4698 			memcpy(data, bh->b_data+offset, tocopy);
4699 		brelse(bh);
4700 		offset = 0;
4701 		toread -= tocopy;
4702 		data += tocopy;
4703 		blk++;
4704 	}
4705 	return len;
4706 }
4707 
4708 /* Write to quotafile (we know the transaction is already started and has
4709  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)4710 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4711 				const char *data, size_t len, loff_t off)
4712 {
4713 	struct inode *inode = sb_dqopt(sb)->files[type];
4714 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4715 	int err = 0;
4716 	int offset = off & (sb->s_blocksize - 1);
4717 	struct buffer_head *bh;
4718 	handle_t *handle = journal_current_handle();
4719 
4720 	if (EXT4_SB(sb)->s_journal && !handle) {
4721 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4722 			" cancelled because transaction is not started",
4723 			(unsigned long long)off, (unsigned long long)len);
4724 		return -EIO;
4725 	}
4726 	/*
4727 	 * Since we account only one data block in transaction credits,
4728 	 * then it is impossible to cross a block boundary.
4729 	 */
4730 	if (sb->s_blocksize - offset < len) {
4731 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4732 			" cancelled because not block aligned",
4733 			(unsigned long long)off, (unsigned long long)len);
4734 		return -EIO;
4735 	}
4736 
4737 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4738 	bh = ext4_bread(handle, inode, blk, 1, &err);
4739 	if (!bh)
4740 		goto out;
4741 	err = ext4_journal_get_write_access(handle, bh);
4742 	if (err) {
4743 		brelse(bh);
4744 		goto out;
4745 	}
4746 	lock_buffer(bh);
4747 	memcpy(bh->b_data+offset, data, len);
4748 	flush_dcache_page(bh->b_page);
4749 	unlock_buffer(bh);
4750 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
4751 	brelse(bh);
4752 out:
4753 	if (err) {
4754 		mutex_unlock(&inode->i_mutex);
4755 		return err;
4756 	}
4757 	if (inode->i_size < off + len) {
4758 		i_size_write(inode, off + len);
4759 		EXT4_I(inode)->i_disksize = inode->i_size;
4760 		ext4_mark_inode_dirty(handle, inode);
4761 	}
4762 	mutex_unlock(&inode->i_mutex);
4763 	return len;
4764 }
4765 
4766 #endif
4767 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4768 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4769 		       const char *dev_name, void *data)
4770 {
4771 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4772 }
4773 
4774 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4775 static struct file_system_type ext2_fs_type = {
4776 	.owner		= THIS_MODULE,
4777 	.name		= "ext2",
4778 	.mount		= ext4_mount,
4779 	.kill_sb	= kill_block_super,
4780 	.fs_flags	= FS_REQUIRES_DEV,
4781 };
4782 
register_as_ext2(void)4783 static inline void register_as_ext2(void)
4784 {
4785 	int err = register_filesystem(&ext2_fs_type);
4786 	if (err)
4787 		printk(KERN_WARNING
4788 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4789 }
4790 
unregister_as_ext2(void)4791 static inline void unregister_as_ext2(void)
4792 {
4793 	unregister_filesystem(&ext2_fs_type);
4794 }
4795 MODULE_ALIAS("ext2");
4796 #else
register_as_ext2(void)4797 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)4798 static inline void unregister_as_ext2(void) { }
4799 #endif
4800 
4801 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)4802 static inline void register_as_ext3(void)
4803 {
4804 	int err = register_filesystem(&ext3_fs_type);
4805 	if (err)
4806 		printk(KERN_WARNING
4807 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4808 }
4809 
unregister_as_ext3(void)4810 static inline void unregister_as_ext3(void)
4811 {
4812 	unregister_filesystem(&ext3_fs_type);
4813 }
4814 MODULE_ALIAS("ext3");
4815 #else
register_as_ext3(void)4816 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)4817 static inline void unregister_as_ext3(void) { }
4818 #endif
4819 
4820 static struct file_system_type ext4_fs_type = {
4821 	.owner		= THIS_MODULE,
4822 	.name		= "ext4",
4823 	.mount		= ext4_mount,
4824 	.kill_sb	= kill_block_super,
4825 	.fs_flags	= FS_REQUIRES_DEV,
4826 };
4827 
ext4_init_feat_adverts(void)4828 static int __init ext4_init_feat_adverts(void)
4829 {
4830 	struct ext4_features *ef;
4831 	int ret = -ENOMEM;
4832 
4833 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4834 	if (!ef)
4835 		goto out;
4836 
4837 	ef->f_kobj.kset = ext4_kset;
4838 	init_completion(&ef->f_kobj_unregister);
4839 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4840 				   "features");
4841 	if (ret) {
4842 		kfree(ef);
4843 		goto out;
4844 	}
4845 
4846 	ext4_feat = ef;
4847 	ret = 0;
4848 out:
4849 	return ret;
4850 }
4851 
ext4_exit_feat_adverts(void)4852 static void ext4_exit_feat_adverts(void)
4853 {
4854 	kobject_put(&ext4_feat->f_kobj);
4855 	wait_for_completion(&ext4_feat->f_kobj_unregister);
4856 	kfree(ext4_feat);
4857 }
4858 
4859 /* Shared across all ext4 file systems */
4860 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4861 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4862 
ext4_init_fs(void)4863 static int __init ext4_init_fs(void)
4864 {
4865 	int i, err;
4866 
4867 	ext4_check_flag_values();
4868 
4869 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4870 		mutex_init(&ext4__aio_mutex[i]);
4871 		init_waitqueue_head(&ext4__ioend_wq[i]);
4872 	}
4873 
4874 	err = ext4_init_pageio();
4875 	if (err)
4876 		return err;
4877 	err = ext4_init_system_zone();
4878 	if (err)
4879 		goto out7;
4880 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4881 	if (!ext4_kset)
4882 		goto out6;
4883 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4884 	if (!ext4_proc_root)
4885 		goto out5;
4886 
4887 	err = ext4_init_feat_adverts();
4888 	if (err)
4889 		goto out4;
4890 
4891 	err = ext4_init_mballoc();
4892 	if (err)
4893 		goto out3;
4894 
4895 	err = ext4_init_xattr();
4896 	if (err)
4897 		goto out2;
4898 	err = init_inodecache();
4899 	if (err)
4900 		goto out1;
4901 	register_as_ext2();
4902 	register_as_ext3();
4903 	err = register_filesystem(&ext4_fs_type);
4904 	if (err)
4905 		goto out;
4906 
4907 	ext4_li_info = NULL;
4908 	mutex_init(&ext4_li_mtx);
4909 	return 0;
4910 out:
4911 	unregister_as_ext2();
4912 	unregister_as_ext3();
4913 	destroy_inodecache();
4914 out1:
4915 	ext4_exit_xattr();
4916 out2:
4917 	ext4_exit_mballoc();
4918 out3:
4919 	ext4_exit_feat_adverts();
4920 out4:
4921 	remove_proc_entry("fs/ext4", NULL);
4922 out5:
4923 	kset_unregister(ext4_kset);
4924 out6:
4925 	ext4_exit_system_zone();
4926 out7:
4927 	ext4_exit_pageio();
4928 	return err;
4929 }
4930 
ext4_exit_fs(void)4931 static void __exit ext4_exit_fs(void)
4932 {
4933 	ext4_destroy_lazyinit_thread();
4934 	unregister_as_ext2();
4935 	unregister_as_ext3();
4936 	unregister_filesystem(&ext4_fs_type);
4937 	destroy_inodecache();
4938 	ext4_exit_xattr();
4939 	ext4_exit_mballoc();
4940 	ext4_exit_feat_adverts();
4941 	remove_proc_entry("fs/ext4", NULL);
4942 	kset_unregister(ext4_kset);
4943 	ext4_exit_system_zone();
4944 	ext4_exit_pageio();
4945 }
4946 
4947 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4948 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4949 MODULE_LICENSE("GPL");
4950 module_init(ext4_init_fs)
4951 module_exit(ext4_exit_fs)
4952