1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35
36 static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
40
41 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
42 (sizeof(struct btrfs_bio_stripe) * (n)))
43
44 static DEFINE_MUTEX(uuid_mutex);
45 static LIST_HEAD(fs_uuids);
46
btrfs_lock_volumes(void)47 void btrfs_lock_volumes(void)
48 {
49 mutex_lock(&uuid_mutex);
50 }
51
btrfs_unlock_volumes(void)52 void btrfs_unlock_volumes(void)
53 {
54 mutex_unlock(&uuid_mutex);
55 }
56
lock_chunks(struct btrfs_root * root)57 static void lock_chunks(struct btrfs_root *root)
58 {
59 mutex_lock(&root->fs_info->chunk_mutex);
60 }
61
unlock_chunks(struct btrfs_root * root)62 static void unlock_chunks(struct btrfs_root *root)
63 {
64 mutex_unlock(&root->fs_info->chunk_mutex);
65 }
66
free_fs_devices(struct btrfs_fs_devices * fs_devices)67 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
68 {
69 struct btrfs_device *device;
70 WARN_ON(fs_devices->opened);
71 while (!list_empty(&fs_devices->devices)) {
72 device = list_entry(fs_devices->devices.next,
73 struct btrfs_device, dev_list);
74 list_del(&device->dev_list);
75 kfree(device->name);
76 kfree(device);
77 }
78 kfree(fs_devices);
79 }
80
btrfs_cleanup_fs_uuids(void)81 int btrfs_cleanup_fs_uuids(void)
82 {
83 struct btrfs_fs_devices *fs_devices;
84
85 while (!list_empty(&fs_uuids)) {
86 fs_devices = list_entry(fs_uuids.next,
87 struct btrfs_fs_devices, list);
88 list_del(&fs_devices->list);
89 free_fs_devices(fs_devices);
90 }
91 return 0;
92 }
93
__find_device(struct list_head * head,u64 devid,u8 * uuid)94 static noinline struct btrfs_device *__find_device(struct list_head *head,
95 u64 devid, u8 *uuid)
96 {
97 struct btrfs_device *dev;
98
99 list_for_each_entry(dev, head, dev_list) {
100 if (dev->devid == devid &&
101 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
102 return dev;
103 }
104 }
105 return NULL;
106 }
107
find_fsid(u8 * fsid)108 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
109 {
110 struct btrfs_fs_devices *fs_devices;
111
112 list_for_each_entry(fs_devices, &fs_uuids, list) {
113 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
114 return fs_devices;
115 }
116 return NULL;
117 }
118
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)119 static void requeue_list(struct btrfs_pending_bios *pending_bios,
120 struct bio *head, struct bio *tail)
121 {
122
123 struct bio *old_head;
124
125 old_head = pending_bios->head;
126 pending_bios->head = head;
127 if (pending_bios->tail)
128 tail->bi_next = old_head;
129 else
130 pending_bios->tail = tail;
131 }
132
133 /*
134 * we try to collect pending bios for a device so we don't get a large
135 * number of procs sending bios down to the same device. This greatly
136 * improves the schedulers ability to collect and merge the bios.
137 *
138 * But, it also turns into a long list of bios to process and that is sure
139 * to eventually make the worker thread block. The solution here is to
140 * make some progress and then put this work struct back at the end of
141 * the list if the block device is congested. This way, multiple devices
142 * can make progress from a single worker thread.
143 */
run_scheduled_bios(struct btrfs_device * device)144 static noinline int run_scheduled_bios(struct btrfs_device *device)
145 {
146 struct bio *pending;
147 struct backing_dev_info *bdi;
148 struct btrfs_fs_info *fs_info;
149 struct btrfs_pending_bios *pending_bios;
150 struct bio *tail;
151 struct bio *cur;
152 int again = 0;
153 unsigned long num_run;
154 unsigned long batch_run = 0;
155 unsigned long limit;
156 unsigned long last_waited = 0;
157 int force_reg = 0;
158 struct blk_plug plug;
159
160 /*
161 * this function runs all the bios we've collected for
162 * a particular device. We don't want to wander off to
163 * another device without first sending all of these down.
164 * So, setup a plug here and finish it off before we return
165 */
166 blk_start_plug(&plug);
167
168 bdi = blk_get_backing_dev_info(device->bdev);
169 fs_info = device->dev_root->fs_info;
170 limit = btrfs_async_submit_limit(fs_info);
171 limit = limit * 2 / 3;
172
173 loop:
174 spin_lock(&device->io_lock);
175
176 loop_lock:
177 num_run = 0;
178
179 /* take all the bios off the list at once and process them
180 * later on (without the lock held). But, remember the
181 * tail and other pointers so the bios can be properly reinserted
182 * into the list if we hit congestion
183 */
184 if (!force_reg && device->pending_sync_bios.head) {
185 pending_bios = &device->pending_sync_bios;
186 force_reg = 1;
187 } else {
188 pending_bios = &device->pending_bios;
189 force_reg = 0;
190 }
191
192 pending = pending_bios->head;
193 tail = pending_bios->tail;
194 WARN_ON(pending && !tail);
195
196 /*
197 * if pending was null this time around, no bios need processing
198 * at all and we can stop. Otherwise it'll loop back up again
199 * and do an additional check so no bios are missed.
200 *
201 * device->running_pending is used to synchronize with the
202 * schedule_bio code.
203 */
204 if (device->pending_sync_bios.head == NULL &&
205 device->pending_bios.head == NULL) {
206 again = 0;
207 device->running_pending = 0;
208 } else {
209 again = 1;
210 device->running_pending = 1;
211 }
212
213 pending_bios->head = NULL;
214 pending_bios->tail = NULL;
215
216 spin_unlock(&device->io_lock);
217
218 while (pending) {
219
220 rmb();
221 /* we want to work on both lists, but do more bios on the
222 * sync list than the regular list
223 */
224 if ((num_run > 32 &&
225 pending_bios != &device->pending_sync_bios &&
226 device->pending_sync_bios.head) ||
227 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
228 device->pending_bios.head)) {
229 spin_lock(&device->io_lock);
230 requeue_list(pending_bios, pending, tail);
231 goto loop_lock;
232 }
233
234 cur = pending;
235 pending = pending->bi_next;
236 cur->bi_next = NULL;
237 atomic_dec(&fs_info->nr_async_bios);
238
239 if (atomic_read(&fs_info->nr_async_bios) < limit &&
240 waitqueue_active(&fs_info->async_submit_wait))
241 wake_up(&fs_info->async_submit_wait);
242
243 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
244
245 submit_bio(cur->bi_rw, cur);
246 num_run++;
247 batch_run++;
248 if (need_resched())
249 cond_resched();
250
251 /*
252 * we made progress, there is more work to do and the bdi
253 * is now congested. Back off and let other work structs
254 * run instead
255 */
256 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
257 fs_info->fs_devices->open_devices > 1) {
258 struct io_context *ioc;
259
260 ioc = current->io_context;
261
262 /*
263 * the main goal here is that we don't want to
264 * block if we're going to be able to submit
265 * more requests without blocking.
266 *
267 * This code does two great things, it pokes into
268 * the elevator code from a filesystem _and_
269 * it makes assumptions about how batching works.
270 */
271 if (ioc && ioc->nr_batch_requests > 0 &&
272 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
273 (last_waited == 0 ||
274 ioc->last_waited == last_waited)) {
275 /*
276 * we want to go through our batch of
277 * requests and stop. So, we copy out
278 * the ioc->last_waited time and test
279 * against it before looping
280 */
281 last_waited = ioc->last_waited;
282 if (need_resched())
283 cond_resched();
284 continue;
285 }
286 spin_lock(&device->io_lock);
287 requeue_list(pending_bios, pending, tail);
288 device->running_pending = 1;
289
290 spin_unlock(&device->io_lock);
291 btrfs_requeue_work(&device->work);
292 goto done;
293 }
294 }
295
296 cond_resched();
297 if (again)
298 goto loop;
299
300 spin_lock(&device->io_lock);
301 if (device->pending_bios.head || device->pending_sync_bios.head)
302 goto loop_lock;
303 spin_unlock(&device->io_lock);
304
305 done:
306 blk_finish_plug(&plug);
307 return 0;
308 }
309
pending_bios_fn(struct btrfs_work * work)310 static void pending_bios_fn(struct btrfs_work *work)
311 {
312 struct btrfs_device *device;
313
314 device = container_of(work, struct btrfs_device, work);
315 run_scheduled_bios(device);
316 }
317
device_list_add(const char * path,struct btrfs_super_block * disk_super,u64 devid,struct btrfs_fs_devices ** fs_devices_ret)318 static noinline int device_list_add(const char *path,
319 struct btrfs_super_block *disk_super,
320 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
321 {
322 struct btrfs_device *device;
323 struct btrfs_fs_devices *fs_devices;
324 u64 found_transid = btrfs_super_generation(disk_super);
325 char *name;
326
327 fs_devices = find_fsid(disk_super->fsid);
328 if (!fs_devices) {
329 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
330 if (!fs_devices)
331 return -ENOMEM;
332 INIT_LIST_HEAD(&fs_devices->devices);
333 INIT_LIST_HEAD(&fs_devices->alloc_list);
334 list_add(&fs_devices->list, &fs_uuids);
335 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
336 fs_devices->latest_devid = devid;
337 fs_devices->latest_trans = found_transid;
338 mutex_init(&fs_devices->device_list_mutex);
339 device = NULL;
340 } else {
341 device = __find_device(&fs_devices->devices, devid,
342 disk_super->dev_item.uuid);
343 }
344 if (!device) {
345 if (fs_devices->opened)
346 return -EBUSY;
347
348 device = kzalloc(sizeof(*device), GFP_NOFS);
349 if (!device) {
350 /* we can safely leave the fs_devices entry around */
351 return -ENOMEM;
352 }
353 device->devid = devid;
354 device->work.func = pending_bios_fn;
355 memcpy(device->uuid, disk_super->dev_item.uuid,
356 BTRFS_UUID_SIZE);
357 spin_lock_init(&device->io_lock);
358 device->name = kstrdup(path, GFP_NOFS);
359 if (!device->name) {
360 kfree(device);
361 return -ENOMEM;
362 }
363 INIT_LIST_HEAD(&device->dev_alloc_list);
364
365 mutex_lock(&fs_devices->device_list_mutex);
366 list_add(&device->dev_list, &fs_devices->devices);
367 mutex_unlock(&fs_devices->device_list_mutex);
368
369 device->fs_devices = fs_devices;
370 fs_devices->num_devices++;
371 } else if (!device->name || strcmp(device->name, path)) {
372 name = kstrdup(path, GFP_NOFS);
373 if (!name)
374 return -ENOMEM;
375 kfree(device->name);
376 device->name = name;
377 if (device->missing) {
378 fs_devices->missing_devices--;
379 device->missing = 0;
380 }
381 }
382
383 if (found_transid > fs_devices->latest_trans) {
384 fs_devices->latest_devid = devid;
385 fs_devices->latest_trans = found_transid;
386 }
387 *fs_devices_ret = fs_devices;
388 return 0;
389 }
390
clone_fs_devices(struct btrfs_fs_devices * orig)391 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
392 {
393 struct btrfs_fs_devices *fs_devices;
394 struct btrfs_device *device;
395 struct btrfs_device *orig_dev;
396
397 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
398 if (!fs_devices)
399 return ERR_PTR(-ENOMEM);
400
401 INIT_LIST_HEAD(&fs_devices->devices);
402 INIT_LIST_HEAD(&fs_devices->alloc_list);
403 INIT_LIST_HEAD(&fs_devices->list);
404 mutex_init(&fs_devices->device_list_mutex);
405 fs_devices->latest_devid = orig->latest_devid;
406 fs_devices->latest_trans = orig->latest_trans;
407 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
408
409 mutex_lock(&orig->device_list_mutex);
410 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
411 device = kzalloc(sizeof(*device), GFP_NOFS);
412 if (!device)
413 goto error;
414
415 device->name = kstrdup(orig_dev->name, GFP_NOFS);
416 if (!device->name) {
417 kfree(device);
418 goto error;
419 }
420
421 device->devid = orig_dev->devid;
422 device->work.func = pending_bios_fn;
423 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
424 spin_lock_init(&device->io_lock);
425 INIT_LIST_HEAD(&device->dev_list);
426 INIT_LIST_HEAD(&device->dev_alloc_list);
427
428 list_add(&device->dev_list, &fs_devices->devices);
429 device->fs_devices = fs_devices;
430 fs_devices->num_devices++;
431 }
432 mutex_unlock(&orig->device_list_mutex);
433 return fs_devices;
434 error:
435 mutex_unlock(&orig->device_list_mutex);
436 free_fs_devices(fs_devices);
437 return ERR_PTR(-ENOMEM);
438 }
439
btrfs_close_extra_devices(struct btrfs_fs_devices * fs_devices)440 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
441 {
442 struct btrfs_device *device, *next;
443
444 mutex_lock(&uuid_mutex);
445 again:
446 mutex_lock(&fs_devices->device_list_mutex);
447 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
448 if (device->in_fs_metadata)
449 continue;
450
451 if (device->bdev) {
452 blkdev_put(device->bdev, device->mode);
453 device->bdev = NULL;
454 fs_devices->open_devices--;
455 }
456 if (device->writeable) {
457 list_del_init(&device->dev_alloc_list);
458 device->writeable = 0;
459 fs_devices->rw_devices--;
460 }
461 list_del_init(&device->dev_list);
462 fs_devices->num_devices--;
463 kfree(device->name);
464 kfree(device);
465 }
466 mutex_unlock(&fs_devices->device_list_mutex);
467
468 if (fs_devices->seed) {
469 fs_devices = fs_devices->seed;
470 goto again;
471 }
472
473 mutex_unlock(&uuid_mutex);
474 return 0;
475 }
476
__btrfs_close_devices(struct btrfs_fs_devices * fs_devices)477 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
478 {
479 struct btrfs_device *device;
480
481 if (--fs_devices->opened > 0)
482 return 0;
483
484 list_for_each_entry(device, &fs_devices->devices, dev_list) {
485 if (device->bdev) {
486 blkdev_put(device->bdev, device->mode);
487 fs_devices->open_devices--;
488 }
489 if (device->writeable) {
490 list_del_init(&device->dev_alloc_list);
491 fs_devices->rw_devices--;
492 }
493
494 device->bdev = NULL;
495 device->writeable = 0;
496 device->in_fs_metadata = 0;
497 }
498 WARN_ON(fs_devices->open_devices);
499 WARN_ON(fs_devices->rw_devices);
500 fs_devices->opened = 0;
501 fs_devices->seeding = 0;
502
503 return 0;
504 }
505
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)506 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
507 {
508 struct btrfs_fs_devices *seed_devices = NULL;
509 int ret;
510
511 mutex_lock(&uuid_mutex);
512 ret = __btrfs_close_devices(fs_devices);
513 if (!fs_devices->opened) {
514 seed_devices = fs_devices->seed;
515 fs_devices->seed = NULL;
516 }
517 mutex_unlock(&uuid_mutex);
518
519 while (seed_devices) {
520 fs_devices = seed_devices;
521 seed_devices = fs_devices->seed;
522 __btrfs_close_devices(fs_devices);
523 free_fs_devices(fs_devices);
524 }
525 return ret;
526 }
527
__btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)528 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
529 fmode_t flags, void *holder)
530 {
531 struct block_device *bdev;
532 struct list_head *head = &fs_devices->devices;
533 struct btrfs_device *device;
534 struct block_device *latest_bdev = NULL;
535 struct buffer_head *bh;
536 struct btrfs_super_block *disk_super;
537 u64 latest_devid = 0;
538 u64 latest_transid = 0;
539 u64 devid;
540 int seeding = 1;
541 int ret = 0;
542
543 flags |= FMODE_EXCL;
544
545 list_for_each_entry(device, head, dev_list) {
546 if (device->bdev)
547 continue;
548 if (!device->name)
549 continue;
550
551 bdev = blkdev_get_by_path(device->name, flags, holder);
552 if (IS_ERR(bdev)) {
553 printk(KERN_INFO "open %s failed\n", device->name);
554 goto error;
555 }
556 set_blocksize(bdev, 4096);
557
558 bh = btrfs_read_dev_super(bdev);
559 if (!bh) {
560 ret = -EINVAL;
561 goto error_close;
562 }
563
564 disk_super = (struct btrfs_super_block *)bh->b_data;
565 devid = btrfs_stack_device_id(&disk_super->dev_item);
566 if (devid != device->devid)
567 goto error_brelse;
568
569 if (memcmp(device->uuid, disk_super->dev_item.uuid,
570 BTRFS_UUID_SIZE))
571 goto error_brelse;
572
573 device->generation = btrfs_super_generation(disk_super);
574 if (!latest_transid || device->generation > latest_transid) {
575 latest_devid = devid;
576 latest_transid = device->generation;
577 latest_bdev = bdev;
578 }
579
580 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
581 device->writeable = 0;
582 } else {
583 device->writeable = !bdev_read_only(bdev);
584 seeding = 0;
585 }
586
587 device->bdev = bdev;
588 device->in_fs_metadata = 0;
589 device->mode = flags;
590
591 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
592 fs_devices->rotating = 1;
593
594 fs_devices->open_devices++;
595 if (device->writeable) {
596 fs_devices->rw_devices++;
597 list_add(&device->dev_alloc_list,
598 &fs_devices->alloc_list);
599 }
600 continue;
601
602 error_brelse:
603 brelse(bh);
604 error_close:
605 blkdev_put(bdev, flags);
606 error:
607 continue;
608 }
609 if (fs_devices->open_devices == 0) {
610 ret = -EIO;
611 goto out;
612 }
613 fs_devices->seeding = seeding;
614 fs_devices->opened = 1;
615 fs_devices->latest_bdev = latest_bdev;
616 fs_devices->latest_devid = latest_devid;
617 fs_devices->latest_trans = latest_transid;
618 fs_devices->total_rw_bytes = 0;
619 out:
620 return ret;
621 }
622
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)623 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
624 fmode_t flags, void *holder)
625 {
626 int ret;
627
628 mutex_lock(&uuid_mutex);
629 if (fs_devices->opened) {
630 fs_devices->opened++;
631 ret = 0;
632 } else {
633 ret = __btrfs_open_devices(fs_devices, flags, holder);
634 }
635 mutex_unlock(&uuid_mutex);
636 return ret;
637 }
638
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder,struct btrfs_fs_devices ** fs_devices_ret)639 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
640 struct btrfs_fs_devices **fs_devices_ret)
641 {
642 struct btrfs_super_block *disk_super;
643 struct block_device *bdev;
644 struct buffer_head *bh;
645 int ret;
646 u64 devid;
647 u64 transid;
648
649 mutex_lock(&uuid_mutex);
650
651 flags |= FMODE_EXCL;
652 bdev = blkdev_get_by_path(path, flags, holder);
653
654 if (IS_ERR(bdev)) {
655 ret = PTR_ERR(bdev);
656 goto error;
657 }
658
659 ret = set_blocksize(bdev, 4096);
660 if (ret)
661 goto error_close;
662 bh = btrfs_read_dev_super(bdev);
663 if (!bh) {
664 ret = -EINVAL;
665 goto error_close;
666 }
667 disk_super = (struct btrfs_super_block *)bh->b_data;
668 devid = btrfs_stack_device_id(&disk_super->dev_item);
669 transid = btrfs_super_generation(disk_super);
670 if (disk_super->label[0])
671 printk(KERN_INFO "device label %s ", disk_super->label);
672 else {
673 /* FIXME, make a readl uuid parser */
674 printk(KERN_INFO "device fsid %llx-%llx ",
675 *(unsigned long long *)disk_super->fsid,
676 *(unsigned long long *)(disk_super->fsid + 8));
677 }
678 printk(KERN_CONT "devid %llu transid %llu %s\n",
679 (unsigned long long)devid, (unsigned long long)transid, path);
680 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
681
682 brelse(bh);
683 error_close:
684 blkdev_put(bdev, flags);
685 error:
686 mutex_unlock(&uuid_mutex);
687 return ret;
688 }
689
690 /* helper to account the used device space in the range */
btrfs_account_dev_extents_size(struct btrfs_device * device,u64 start,u64 end,u64 * length)691 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
692 u64 end, u64 *length)
693 {
694 struct btrfs_key key;
695 struct btrfs_root *root = device->dev_root;
696 struct btrfs_dev_extent *dev_extent;
697 struct btrfs_path *path;
698 u64 extent_end;
699 int ret;
700 int slot;
701 struct extent_buffer *l;
702
703 *length = 0;
704
705 if (start >= device->total_bytes)
706 return 0;
707
708 path = btrfs_alloc_path();
709 if (!path)
710 return -ENOMEM;
711 path->reada = 2;
712
713 key.objectid = device->devid;
714 key.offset = start;
715 key.type = BTRFS_DEV_EXTENT_KEY;
716
717 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
718 if (ret < 0)
719 goto out;
720 if (ret > 0) {
721 ret = btrfs_previous_item(root, path, key.objectid, key.type);
722 if (ret < 0)
723 goto out;
724 }
725
726 while (1) {
727 l = path->nodes[0];
728 slot = path->slots[0];
729 if (slot >= btrfs_header_nritems(l)) {
730 ret = btrfs_next_leaf(root, path);
731 if (ret == 0)
732 continue;
733 if (ret < 0)
734 goto out;
735
736 break;
737 }
738 btrfs_item_key_to_cpu(l, &key, slot);
739
740 if (key.objectid < device->devid)
741 goto next;
742
743 if (key.objectid > device->devid)
744 break;
745
746 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
747 goto next;
748
749 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
750 extent_end = key.offset + btrfs_dev_extent_length(l,
751 dev_extent);
752 if (key.offset <= start && extent_end > end) {
753 *length = end - start + 1;
754 break;
755 } else if (key.offset <= start && extent_end > start)
756 *length += extent_end - start;
757 else if (key.offset > start && extent_end <= end)
758 *length += extent_end - key.offset;
759 else if (key.offset > start && key.offset <= end) {
760 *length += end - key.offset + 1;
761 break;
762 } else if (key.offset > end)
763 break;
764
765 next:
766 path->slots[0]++;
767 }
768 ret = 0;
769 out:
770 btrfs_free_path(path);
771 return ret;
772 }
773
774 /*
775 * find_free_dev_extent - find free space in the specified device
776 * @trans: transaction handler
777 * @device: the device which we search the free space in
778 * @num_bytes: the size of the free space that we need
779 * @start: store the start of the free space.
780 * @len: the size of the free space. that we find, or the size of the max
781 * free space if we don't find suitable free space
782 *
783 * this uses a pretty simple search, the expectation is that it is
784 * called very infrequently and that a given device has a small number
785 * of extents
786 *
787 * @start is used to store the start of the free space if we find. But if we
788 * don't find suitable free space, it will be used to store the start position
789 * of the max free space.
790 *
791 * @len is used to store the size of the free space that we find.
792 * But if we don't find suitable free space, it is used to store the size of
793 * the max free space.
794 */
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)795 int find_free_dev_extent(struct btrfs_trans_handle *trans,
796 struct btrfs_device *device, u64 num_bytes,
797 u64 *start, u64 *len)
798 {
799 struct btrfs_key key;
800 struct btrfs_root *root = device->dev_root;
801 struct btrfs_dev_extent *dev_extent;
802 struct btrfs_path *path;
803 u64 hole_size;
804 u64 max_hole_start;
805 u64 max_hole_size;
806 u64 extent_end;
807 u64 search_start;
808 u64 search_end = device->total_bytes;
809 int ret;
810 int slot;
811 struct extent_buffer *l;
812
813 /* FIXME use last free of some kind */
814
815 /* we don't want to overwrite the superblock on the drive,
816 * so we make sure to start at an offset of at least 1MB
817 */
818 search_start = 1024 * 1024;
819
820 if (root->fs_info->alloc_start + num_bytes <= search_end)
821 search_start = max(root->fs_info->alloc_start, search_start);
822
823 max_hole_start = search_start;
824 max_hole_size = 0;
825
826 if (search_start >= search_end) {
827 ret = -ENOSPC;
828 goto error;
829 }
830
831 path = btrfs_alloc_path();
832 if (!path) {
833 ret = -ENOMEM;
834 goto error;
835 }
836 path->reada = 2;
837
838 key.objectid = device->devid;
839 key.offset = search_start;
840 key.type = BTRFS_DEV_EXTENT_KEY;
841
842 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
843 if (ret < 0)
844 goto out;
845 if (ret > 0) {
846 ret = btrfs_previous_item(root, path, key.objectid, key.type);
847 if (ret < 0)
848 goto out;
849 }
850
851 while (1) {
852 l = path->nodes[0];
853 slot = path->slots[0];
854 if (slot >= btrfs_header_nritems(l)) {
855 ret = btrfs_next_leaf(root, path);
856 if (ret == 0)
857 continue;
858 if (ret < 0)
859 goto out;
860
861 break;
862 }
863 btrfs_item_key_to_cpu(l, &key, slot);
864
865 if (key.objectid < device->devid)
866 goto next;
867
868 if (key.objectid > device->devid)
869 break;
870
871 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
872 goto next;
873
874 if (key.offset > search_start) {
875 hole_size = key.offset - search_start;
876
877 if (hole_size > max_hole_size) {
878 max_hole_start = search_start;
879 max_hole_size = hole_size;
880 }
881
882 /*
883 * If this free space is greater than which we need,
884 * it must be the max free space that we have found
885 * until now, so max_hole_start must point to the start
886 * of this free space and the length of this free space
887 * is stored in max_hole_size. Thus, we return
888 * max_hole_start and max_hole_size and go back to the
889 * caller.
890 */
891 if (hole_size >= num_bytes) {
892 ret = 0;
893 goto out;
894 }
895 }
896
897 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
898 extent_end = key.offset + btrfs_dev_extent_length(l,
899 dev_extent);
900 if (extent_end > search_start)
901 search_start = extent_end;
902 next:
903 path->slots[0]++;
904 cond_resched();
905 }
906
907 hole_size = search_end- search_start;
908 if (hole_size > max_hole_size) {
909 max_hole_start = search_start;
910 max_hole_size = hole_size;
911 }
912
913 /* See above. */
914 if (hole_size < num_bytes)
915 ret = -ENOSPC;
916 else
917 ret = 0;
918
919 out:
920 btrfs_free_path(path);
921 error:
922 *start = max_hole_start;
923 if (len)
924 *len = max_hole_size;
925 return ret;
926 }
927
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start)928 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
929 struct btrfs_device *device,
930 u64 start)
931 {
932 int ret;
933 struct btrfs_path *path;
934 struct btrfs_root *root = device->dev_root;
935 struct btrfs_key key;
936 struct btrfs_key found_key;
937 struct extent_buffer *leaf = NULL;
938 struct btrfs_dev_extent *extent = NULL;
939
940 path = btrfs_alloc_path();
941 if (!path)
942 return -ENOMEM;
943
944 key.objectid = device->devid;
945 key.offset = start;
946 key.type = BTRFS_DEV_EXTENT_KEY;
947
948 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
949 if (ret > 0) {
950 ret = btrfs_previous_item(root, path, key.objectid,
951 BTRFS_DEV_EXTENT_KEY);
952 BUG_ON(ret);
953 leaf = path->nodes[0];
954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
955 extent = btrfs_item_ptr(leaf, path->slots[0],
956 struct btrfs_dev_extent);
957 BUG_ON(found_key.offset > start || found_key.offset +
958 btrfs_dev_extent_length(leaf, extent) < start);
959 ret = 0;
960 } else if (ret == 0) {
961 leaf = path->nodes[0];
962 extent = btrfs_item_ptr(leaf, path->slots[0],
963 struct btrfs_dev_extent);
964 }
965 BUG_ON(ret);
966
967 if (device->bytes_used > 0)
968 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
969 ret = btrfs_del_item(trans, root, path);
970 BUG_ON(ret);
971
972 btrfs_free_path(path);
973 return ret;
974 }
975
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 start,u64 num_bytes)976 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
977 struct btrfs_device *device,
978 u64 chunk_tree, u64 chunk_objectid,
979 u64 chunk_offset, u64 start, u64 num_bytes)
980 {
981 int ret;
982 struct btrfs_path *path;
983 struct btrfs_root *root = device->dev_root;
984 struct btrfs_dev_extent *extent;
985 struct extent_buffer *leaf;
986 struct btrfs_key key;
987
988 WARN_ON(!device->in_fs_metadata);
989 path = btrfs_alloc_path();
990 if (!path)
991 return -ENOMEM;
992
993 key.objectid = device->devid;
994 key.offset = start;
995 key.type = BTRFS_DEV_EXTENT_KEY;
996 ret = btrfs_insert_empty_item(trans, root, path, &key,
997 sizeof(*extent));
998 BUG_ON(ret);
999
1000 leaf = path->nodes[0];
1001 extent = btrfs_item_ptr(leaf, path->slots[0],
1002 struct btrfs_dev_extent);
1003 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1004 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1005 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1006
1007 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1008 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1009 BTRFS_UUID_SIZE);
1010
1011 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1012 btrfs_mark_buffer_dirty(leaf);
1013 btrfs_free_path(path);
1014 return ret;
1015 }
1016
find_next_chunk(struct btrfs_root * root,u64 objectid,u64 * offset)1017 static noinline int find_next_chunk(struct btrfs_root *root,
1018 u64 objectid, u64 *offset)
1019 {
1020 struct btrfs_path *path;
1021 int ret;
1022 struct btrfs_key key;
1023 struct btrfs_chunk *chunk;
1024 struct btrfs_key found_key;
1025
1026 path = btrfs_alloc_path();
1027 BUG_ON(!path);
1028
1029 key.objectid = objectid;
1030 key.offset = (u64)-1;
1031 key.type = BTRFS_CHUNK_ITEM_KEY;
1032
1033 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1034 if (ret < 0)
1035 goto error;
1036
1037 BUG_ON(ret == 0);
1038
1039 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1040 if (ret) {
1041 *offset = 0;
1042 } else {
1043 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1044 path->slots[0]);
1045 if (found_key.objectid != objectid)
1046 *offset = 0;
1047 else {
1048 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1049 struct btrfs_chunk);
1050 *offset = found_key.offset +
1051 btrfs_chunk_length(path->nodes[0], chunk);
1052 }
1053 }
1054 ret = 0;
1055 error:
1056 btrfs_free_path(path);
1057 return ret;
1058 }
1059
find_next_devid(struct btrfs_root * root,u64 * objectid)1060 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1061 {
1062 int ret;
1063 struct btrfs_key key;
1064 struct btrfs_key found_key;
1065 struct btrfs_path *path;
1066
1067 root = root->fs_info->chunk_root;
1068
1069 path = btrfs_alloc_path();
1070 if (!path)
1071 return -ENOMEM;
1072
1073 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1074 key.type = BTRFS_DEV_ITEM_KEY;
1075 key.offset = (u64)-1;
1076
1077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1078 if (ret < 0)
1079 goto error;
1080
1081 BUG_ON(ret == 0);
1082
1083 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1084 BTRFS_DEV_ITEM_KEY);
1085 if (ret) {
1086 *objectid = 1;
1087 } else {
1088 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1089 path->slots[0]);
1090 *objectid = found_key.offset + 1;
1091 }
1092 ret = 0;
1093 error:
1094 btrfs_free_path(path);
1095 return ret;
1096 }
1097
1098 /*
1099 * the device information is stored in the chunk root
1100 * the btrfs_device struct should be fully filled in
1101 */
btrfs_add_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)1102 int btrfs_add_device(struct btrfs_trans_handle *trans,
1103 struct btrfs_root *root,
1104 struct btrfs_device *device)
1105 {
1106 int ret;
1107 struct btrfs_path *path;
1108 struct btrfs_dev_item *dev_item;
1109 struct extent_buffer *leaf;
1110 struct btrfs_key key;
1111 unsigned long ptr;
1112
1113 root = root->fs_info->chunk_root;
1114
1115 path = btrfs_alloc_path();
1116 if (!path)
1117 return -ENOMEM;
1118
1119 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1120 key.type = BTRFS_DEV_ITEM_KEY;
1121 key.offset = device->devid;
1122
1123 ret = btrfs_insert_empty_item(trans, root, path, &key,
1124 sizeof(*dev_item));
1125 if (ret)
1126 goto out;
1127
1128 leaf = path->nodes[0];
1129 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1130
1131 btrfs_set_device_id(leaf, dev_item, device->devid);
1132 btrfs_set_device_generation(leaf, dev_item, 0);
1133 btrfs_set_device_type(leaf, dev_item, device->type);
1134 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1135 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1136 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1137 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1138 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1139 btrfs_set_device_group(leaf, dev_item, 0);
1140 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1141 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1142 btrfs_set_device_start_offset(leaf, dev_item, 0);
1143
1144 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1145 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1146 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1147 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1148 btrfs_mark_buffer_dirty(leaf);
1149
1150 ret = 0;
1151 out:
1152 btrfs_free_path(path);
1153 return ret;
1154 }
1155
btrfs_rm_dev_item(struct btrfs_root * root,struct btrfs_device * device)1156 static int btrfs_rm_dev_item(struct btrfs_root *root,
1157 struct btrfs_device *device)
1158 {
1159 int ret;
1160 struct btrfs_path *path;
1161 struct btrfs_key key;
1162 struct btrfs_trans_handle *trans;
1163
1164 root = root->fs_info->chunk_root;
1165
1166 path = btrfs_alloc_path();
1167 if (!path)
1168 return -ENOMEM;
1169
1170 trans = btrfs_start_transaction(root, 0);
1171 if (IS_ERR(trans)) {
1172 btrfs_free_path(path);
1173 return PTR_ERR(trans);
1174 }
1175 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1176 key.type = BTRFS_DEV_ITEM_KEY;
1177 key.offset = device->devid;
1178 lock_chunks(root);
1179
1180 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1181 if (ret < 0)
1182 goto out;
1183
1184 if (ret > 0) {
1185 ret = -ENOENT;
1186 goto out;
1187 }
1188
1189 ret = btrfs_del_item(trans, root, path);
1190 if (ret)
1191 goto out;
1192 out:
1193 btrfs_free_path(path);
1194 unlock_chunks(root);
1195 btrfs_commit_transaction(trans, root);
1196 return ret;
1197 }
1198
btrfs_rm_device(struct btrfs_root * root,char * device_path)1199 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1200 {
1201 struct btrfs_device *device;
1202 struct btrfs_device *next_device;
1203 struct block_device *bdev;
1204 struct buffer_head *bh = NULL;
1205 struct btrfs_super_block *disk_super;
1206 u64 all_avail;
1207 u64 devid;
1208 u64 num_devices;
1209 u8 *dev_uuid;
1210 int ret = 0;
1211
1212 mutex_lock(&uuid_mutex);
1213 mutex_lock(&root->fs_info->volume_mutex);
1214
1215 all_avail = root->fs_info->avail_data_alloc_bits |
1216 root->fs_info->avail_system_alloc_bits |
1217 root->fs_info->avail_metadata_alloc_bits;
1218
1219 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1220 root->fs_info->fs_devices->num_devices <= 4) {
1221 printk(KERN_ERR "btrfs: unable to go below four devices "
1222 "on raid10\n");
1223 ret = -EINVAL;
1224 goto out;
1225 }
1226
1227 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1228 root->fs_info->fs_devices->num_devices <= 2) {
1229 printk(KERN_ERR "btrfs: unable to go below two "
1230 "devices on raid1\n");
1231 ret = -EINVAL;
1232 goto out;
1233 }
1234
1235 if (strcmp(device_path, "missing") == 0) {
1236 struct list_head *devices;
1237 struct btrfs_device *tmp;
1238
1239 device = NULL;
1240 devices = &root->fs_info->fs_devices->devices;
1241 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1242 list_for_each_entry(tmp, devices, dev_list) {
1243 if (tmp->in_fs_metadata && !tmp->bdev) {
1244 device = tmp;
1245 break;
1246 }
1247 }
1248 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1249 bdev = NULL;
1250 bh = NULL;
1251 disk_super = NULL;
1252 if (!device) {
1253 printk(KERN_ERR "btrfs: no missing devices found to "
1254 "remove\n");
1255 goto out;
1256 }
1257 } else {
1258 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1259 root->fs_info->bdev_holder);
1260 if (IS_ERR(bdev)) {
1261 ret = PTR_ERR(bdev);
1262 goto out;
1263 }
1264
1265 set_blocksize(bdev, 4096);
1266 bh = btrfs_read_dev_super(bdev);
1267 if (!bh) {
1268 ret = -EINVAL;
1269 goto error_close;
1270 }
1271 disk_super = (struct btrfs_super_block *)bh->b_data;
1272 devid = btrfs_stack_device_id(&disk_super->dev_item);
1273 dev_uuid = disk_super->dev_item.uuid;
1274 device = btrfs_find_device(root, devid, dev_uuid,
1275 disk_super->fsid);
1276 if (!device) {
1277 ret = -ENOENT;
1278 goto error_brelse;
1279 }
1280 }
1281
1282 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1283 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1284 "device\n");
1285 ret = -EINVAL;
1286 goto error_brelse;
1287 }
1288
1289 if (device->writeable) {
1290 list_del_init(&device->dev_alloc_list);
1291 root->fs_info->fs_devices->rw_devices--;
1292 }
1293
1294 ret = btrfs_shrink_device(device, 0);
1295 if (ret)
1296 goto error_undo;
1297
1298 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1299 if (ret)
1300 goto error_undo;
1301
1302 device->in_fs_metadata = 0;
1303
1304 /*
1305 * the device list mutex makes sure that we don't change
1306 * the device list while someone else is writing out all
1307 * the device supers.
1308 */
1309 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1310 list_del_init(&device->dev_list);
1311 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1312
1313 device->fs_devices->num_devices--;
1314
1315 if (device->missing)
1316 root->fs_info->fs_devices->missing_devices--;
1317
1318 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1319 struct btrfs_device, dev_list);
1320 if (device->bdev == root->fs_info->sb->s_bdev)
1321 root->fs_info->sb->s_bdev = next_device->bdev;
1322 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1323 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1324
1325 if (device->bdev) {
1326 blkdev_put(device->bdev, device->mode);
1327 device->bdev = NULL;
1328 device->fs_devices->open_devices--;
1329 }
1330
1331 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1332 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1333
1334 if (device->fs_devices->open_devices == 0) {
1335 struct btrfs_fs_devices *fs_devices;
1336 fs_devices = root->fs_info->fs_devices;
1337 while (fs_devices) {
1338 if (fs_devices->seed == device->fs_devices)
1339 break;
1340 fs_devices = fs_devices->seed;
1341 }
1342 fs_devices->seed = device->fs_devices->seed;
1343 device->fs_devices->seed = NULL;
1344 __btrfs_close_devices(device->fs_devices);
1345 free_fs_devices(device->fs_devices);
1346 }
1347
1348 /*
1349 * at this point, the device is zero sized. We want to
1350 * remove it from the devices list and zero out the old super
1351 */
1352 if (device->writeable) {
1353 /* make sure this device isn't detected as part of
1354 * the FS anymore
1355 */
1356 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1357 set_buffer_dirty(bh);
1358 sync_dirty_buffer(bh);
1359 }
1360
1361 kfree(device->name);
1362 kfree(device);
1363 ret = 0;
1364
1365 error_brelse:
1366 brelse(bh);
1367 error_close:
1368 if (bdev)
1369 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1370 out:
1371 mutex_unlock(&root->fs_info->volume_mutex);
1372 mutex_unlock(&uuid_mutex);
1373 return ret;
1374 error_undo:
1375 if (device->writeable) {
1376 list_add(&device->dev_alloc_list,
1377 &root->fs_info->fs_devices->alloc_list);
1378 root->fs_info->fs_devices->rw_devices++;
1379 }
1380 goto error_brelse;
1381 }
1382
1383 /*
1384 * does all the dirty work required for changing file system's UUID.
1385 */
btrfs_prepare_sprout(struct btrfs_trans_handle * trans,struct btrfs_root * root)1386 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root)
1388 {
1389 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1390 struct btrfs_fs_devices *old_devices;
1391 struct btrfs_fs_devices *seed_devices;
1392 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1393 struct btrfs_device *device;
1394 u64 super_flags;
1395
1396 BUG_ON(!mutex_is_locked(&uuid_mutex));
1397 if (!fs_devices->seeding)
1398 return -EINVAL;
1399
1400 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1401 if (!seed_devices)
1402 return -ENOMEM;
1403
1404 old_devices = clone_fs_devices(fs_devices);
1405 if (IS_ERR(old_devices)) {
1406 kfree(seed_devices);
1407 return PTR_ERR(old_devices);
1408 }
1409
1410 list_add(&old_devices->list, &fs_uuids);
1411
1412 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1413 seed_devices->opened = 1;
1414 INIT_LIST_HEAD(&seed_devices->devices);
1415 INIT_LIST_HEAD(&seed_devices->alloc_list);
1416 mutex_init(&seed_devices->device_list_mutex);
1417 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1418 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1419 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1420 device->fs_devices = seed_devices;
1421 }
1422
1423 fs_devices->seeding = 0;
1424 fs_devices->num_devices = 0;
1425 fs_devices->open_devices = 0;
1426 fs_devices->seed = seed_devices;
1427
1428 generate_random_uuid(fs_devices->fsid);
1429 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1430 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1431 super_flags = btrfs_super_flags(disk_super) &
1432 ~BTRFS_SUPER_FLAG_SEEDING;
1433 btrfs_set_super_flags(disk_super, super_flags);
1434
1435 return 0;
1436 }
1437
1438 /*
1439 * strore the expected generation for seed devices in device items.
1440 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_root * root)1441 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1442 struct btrfs_root *root)
1443 {
1444 struct btrfs_path *path;
1445 struct extent_buffer *leaf;
1446 struct btrfs_dev_item *dev_item;
1447 struct btrfs_device *device;
1448 struct btrfs_key key;
1449 u8 fs_uuid[BTRFS_UUID_SIZE];
1450 u8 dev_uuid[BTRFS_UUID_SIZE];
1451 u64 devid;
1452 int ret;
1453
1454 path = btrfs_alloc_path();
1455 if (!path)
1456 return -ENOMEM;
1457
1458 root = root->fs_info->chunk_root;
1459 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1460 key.offset = 0;
1461 key.type = BTRFS_DEV_ITEM_KEY;
1462
1463 while (1) {
1464 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1465 if (ret < 0)
1466 goto error;
1467
1468 leaf = path->nodes[0];
1469 next_slot:
1470 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1471 ret = btrfs_next_leaf(root, path);
1472 if (ret > 0)
1473 break;
1474 if (ret < 0)
1475 goto error;
1476 leaf = path->nodes[0];
1477 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1478 btrfs_release_path(root, path);
1479 continue;
1480 }
1481
1482 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1483 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1484 key.type != BTRFS_DEV_ITEM_KEY)
1485 break;
1486
1487 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_dev_item);
1489 devid = btrfs_device_id(leaf, dev_item);
1490 read_extent_buffer(leaf, dev_uuid,
1491 (unsigned long)btrfs_device_uuid(dev_item),
1492 BTRFS_UUID_SIZE);
1493 read_extent_buffer(leaf, fs_uuid,
1494 (unsigned long)btrfs_device_fsid(dev_item),
1495 BTRFS_UUID_SIZE);
1496 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1497 BUG_ON(!device);
1498
1499 if (device->fs_devices->seeding) {
1500 btrfs_set_device_generation(leaf, dev_item,
1501 device->generation);
1502 btrfs_mark_buffer_dirty(leaf);
1503 }
1504
1505 path->slots[0]++;
1506 goto next_slot;
1507 }
1508 ret = 0;
1509 error:
1510 btrfs_free_path(path);
1511 return ret;
1512 }
1513
btrfs_init_new_device(struct btrfs_root * root,char * device_path)1514 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1515 {
1516 struct btrfs_trans_handle *trans;
1517 struct btrfs_device *device;
1518 struct block_device *bdev;
1519 struct list_head *devices;
1520 struct super_block *sb = root->fs_info->sb;
1521 u64 total_bytes;
1522 int seeding_dev = 0;
1523 int ret = 0;
1524
1525 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1526 return -EINVAL;
1527
1528 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1529 root->fs_info->bdev_holder);
1530 if (IS_ERR(bdev))
1531 return PTR_ERR(bdev);
1532
1533 if (root->fs_info->fs_devices->seeding) {
1534 seeding_dev = 1;
1535 down_write(&sb->s_umount);
1536 mutex_lock(&uuid_mutex);
1537 }
1538
1539 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1540 mutex_lock(&root->fs_info->volume_mutex);
1541
1542 devices = &root->fs_info->fs_devices->devices;
1543 /*
1544 * we have the volume lock, so we don't need the extra
1545 * device list mutex while reading the list here.
1546 */
1547 list_for_each_entry(device, devices, dev_list) {
1548 if (device->bdev == bdev) {
1549 ret = -EEXIST;
1550 goto error;
1551 }
1552 }
1553
1554 device = kzalloc(sizeof(*device), GFP_NOFS);
1555 if (!device) {
1556 /* we can safely leave the fs_devices entry around */
1557 ret = -ENOMEM;
1558 goto error;
1559 }
1560
1561 device->name = kstrdup(device_path, GFP_NOFS);
1562 if (!device->name) {
1563 kfree(device);
1564 ret = -ENOMEM;
1565 goto error;
1566 }
1567
1568 ret = find_next_devid(root, &device->devid);
1569 if (ret) {
1570 kfree(device->name);
1571 kfree(device);
1572 goto error;
1573 }
1574
1575 trans = btrfs_start_transaction(root, 0);
1576 if (IS_ERR(trans)) {
1577 kfree(device->name);
1578 kfree(device);
1579 ret = PTR_ERR(trans);
1580 goto error;
1581 }
1582
1583 lock_chunks(root);
1584
1585 device->writeable = 1;
1586 device->work.func = pending_bios_fn;
1587 generate_random_uuid(device->uuid);
1588 spin_lock_init(&device->io_lock);
1589 device->generation = trans->transid;
1590 device->io_width = root->sectorsize;
1591 device->io_align = root->sectorsize;
1592 device->sector_size = root->sectorsize;
1593 device->total_bytes = i_size_read(bdev->bd_inode);
1594 device->disk_total_bytes = device->total_bytes;
1595 device->dev_root = root->fs_info->dev_root;
1596 device->bdev = bdev;
1597 device->in_fs_metadata = 1;
1598 device->mode = FMODE_EXCL;
1599 set_blocksize(device->bdev, 4096);
1600
1601 if (seeding_dev) {
1602 sb->s_flags &= ~MS_RDONLY;
1603 ret = btrfs_prepare_sprout(trans, root);
1604 BUG_ON(ret);
1605 }
1606
1607 device->fs_devices = root->fs_info->fs_devices;
1608
1609 /*
1610 * we don't want write_supers to jump in here with our device
1611 * half setup
1612 */
1613 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1614 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1615 list_add(&device->dev_alloc_list,
1616 &root->fs_info->fs_devices->alloc_list);
1617 root->fs_info->fs_devices->num_devices++;
1618 root->fs_info->fs_devices->open_devices++;
1619 root->fs_info->fs_devices->rw_devices++;
1620 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1621
1622 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1623 root->fs_info->fs_devices->rotating = 1;
1624
1625 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1626 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1627 total_bytes + device->total_bytes);
1628
1629 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1630 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1631 total_bytes + 1);
1632 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1633
1634 if (seeding_dev) {
1635 ret = init_first_rw_device(trans, root, device);
1636 BUG_ON(ret);
1637 ret = btrfs_finish_sprout(trans, root);
1638 BUG_ON(ret);
1639 } else {
1640 ret = btrfs_add_device(trans, root, device);
1641 }
1642
1643 /*
1644 * we've got more storage, clear any full flags on the space
1645 * infos
1646 */
1647 btrfs_clear_space_info_full(root->fs_info);
1648
1649 unlock_chunks(root);
1650 btrfs_commit_transaction(trans, root);
1651
1652 if (seeding_dev) {
1653 mutex_unlock(&uuid_mutex);
1654 up_write(&sb->s_umount);
1655
1656 ret = btrfs_relocate_sys_chunks(root);
1657 BUG_ON(ret);
1658 }
1659 out:
1660 mutex_unlock(&root->fs_info->volume_mutex);
1661 return ret;
1662 error:
1663 blkdev_put(bdev, FMODE_EXCL);
1664 if (seeding_dev) {
1665 mutex_unlock(&uuid_mutex);
1666 up_write(&sb->s_umount);
1667 }
1668 goto out;
1669 }
1670
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)1671 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1672 struct btrfs_device *device)
1673 {
1674 int ret;
1675 struct btrfs_path *path;
1676 struct btrfs_root *root;
1677 struct btrfs_dev_item *dev_item;
1678 struct extent_buffer *leaf;
1679 struct btrfs_key key;
1680
1681 root = device->dev_root->fs_info->chunk_root;
1682
1683 path = btrfs_alloc_path();
1684 if (!path)
1685 return -ENOMEM;
1686
1687 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 key.type = BTRFS_DEV_ITEM_KEY;
1689 key.offset = device->devid;
1690
1691 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1692 if (ret < 0)
1693 goto out;
1694
1695 if (ret > 0) {
1696 ret = -ENOENT;
1697 goto out;
1698 }
1699
1700 leaf = path->nodes[0];
1701 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1702
1703 btrfs_set_device_id(leaf, dev_item, device->devid);
1704 btrfs_set_device_type(leaf, dev_item, device->type);
1705 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1706 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1707 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1708 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1709 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1710 btrfs_mark_buffer_dirty(leaf);
1711
1712 out:
1713 btrfs_free_path(path);
1714 return ret;
1715 }
1716
__btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)1717 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1718 struct btrfs_device *device, u64 new_size)
1719 {
1720 struct btrfs_super_block *super_copy =
1721 &device->dev_root->fs_info->super_copy;
1722 u64 old_total = btrfs_super_total_bytes(super_copy);
1723 u64 diff = new_size - device->total_bytes;
1724
1725 if (!device->writeable)
1726 return -EACCES;
1727 if (new_size <= device->total_bytes)
1728 return -EINVAL;
1729
1730 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1731 device->fs_devices->total_rw_bytes += diff;
1732
1733 device->total_bytes = new_size;
1734 device->disk_total_bytes = new_size;
1735 btrfs_clear_space_info_full(device->dev_root->fs_info);
1736
1737 return btrfs_update_device(trans, device);
1738 }
1739
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)1740 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1741 struct btrfs_device *device, u64 new_size)
1742 {
1743 int ret;
1744 lock_chunks(device->dev_root);
1745 ret = __btrfs_grow_device(trans, device, new_size);
1746 unlock_chunks(device->dev_root);
1747 return ret;
1748 }
1749
btrfs_free_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset)1750 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1751 struct btrfs_root *root,
1752 u64 chunk_tree, u64 chunk_objectid,
1753 u64 chunk_offset)
1754 {
1755 int ret;
1756 struct btrfs_path *path;
1757 struct btrfs_key key;
1758
1759 root = root->fs_info->chunk_root;
1760 path = btrfs_alloc_path();
1761 if (!path)
1762 return -ENOMEM;
1763
1764 key.objectid = chunk_objectid;
1765 key.offset = chunk_offset;
1766 key.type = BTRFS_CHUNK_ITEM_KEY;
1767
1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 BUG_ON(ret);
1770
1771 ret = btrfs_del_item(trans, root, path);
1772 BUG_ON(ret);
1773
1774 btrfs_free_path(path);
1775 return 0;
1776 }
1777
btrfs_del_sys_chunk(struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)1778 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1779 chunk_offset)
1780 {
1781 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1782 struct btrfs_disk_key *disk_key;
1783 struct btrfs_chunk *chunk;
1784 u8 *ptr;
1785 int ret = 0;
1786 u32 num_stripes;
1787 u32 array_size;
1788 u32 len = 0;
1789 u32 cur;
1790 struct btrfs_key key;
1791
1792 array_size = btrfs_super_sys_array_size(super_copy);
1793
1794 ptr = super_copy->sys_chunk_array;
1795 cur = 0;
1796
1797 while (cur < array_size) {
1798 disk_key = (struct btrfs_disk_key *)ptr;
1799 btrfs_disk_key_to_cpu(&key, disk_key);
1800
1801 len = sizeof(*disk_key);
1802
1803 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1804 chunk = (struct btrfs_chunk *)(ptr + len);
1805 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1806 len += btrfs_chunk_item_size(num_stripes);
1807 } else {
1808 ret = -EIO;
1809 break;
1810 }
1811 if (key.objectid == chunk_objectid &&
1812 key.offset == chunk_offset) {
1813 memmove(ptr, ptr + len, array_size - (cur + len));
1814 array_size -= len;
1815 btrfs_set_super_sys_array_size(super_copy, array_size);
1816 } else {
1817 ptr += len;
1818 cur += len;
1819 }
1820 }
1821 return ret;
1822 }
1823
btrfs_relocate_chunk(struct btrfs_root * root,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset)1824 static int btrfs_relocate_chunk(struct btrfs_root *root,
1825 u64 chunk_tree, u64 chunk_objectid,
1826 u64 chunk_offset)
1827 {
1828 struct extent_map_tree *em_tree;
1829 struct btrfs_root *extent_root;
1830 struct btrfs_trans_handle *trans;
1831 struct extent_map *em;
1832 struct map_lookup *map;
1833 int ret;
1834 int i;
1835
1836 root = root->fs_info->chunk_root;
1837 extent_root = root->fs_info->extent_root;
1838 em_tree = &root->fs_info->mapping_tree.map_tree;
1839
1840 ret = btrfs_can_relocate(extent_root, chunk_offset);
1841 if (ret)
1842 return -ENOSPC;
1843
1844 /* step one, relocate all the extents inside this chunk */
1845 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1846 if (ret)
1847 return ret;
1848
1849 trans = btrfs_start_transaction(root, 0);
1850 BUG_ON(IS_ERR(trans));
1851
1852 lock_chunks(root);
1853
1854 /*
1855 * step two, delete the device extents and the
1856 * chunk tree entries
1857 */
1858 read_lock(&em_tree->lock);
1859 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1860 read_unlock(&em_tree->lock);
1861
1862 BUG_ON(em->start > chunk_offset ||
1863 em->start + em->len < chunk_offset);
1864 map = (struct map_lookup *)em->bdev;
1865
1866 for (i = 0; i < map->num_stripes; i++) {
1867 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1868 map->stripes[i].physical);
1869 BUG_ON(ret);
1870
1871 if (map->stripes[i].dev) {
1872 ret = btrfs_update_device(trans, map->stripes[i].dev);
1873 BUG_ON(ret);
1874 }
1875 }
1876 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1877 chunk_offset);
1878
1879 BUG_ON(ret);
1880
1881 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1882
1883 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1884 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1885 BUG_ON(ret);
1886 }
1887
1888 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1889 BUG_ON(ret);
1890
1891 write_lock(&em_tree->lock);
1892 remove_extent_mapping(em_tree, em);
1893 write_unlock(&em_tree->lock);
1894
1895 kfree(map);
1896 em->bdev = NULL;
1897
1898 /* once for the tree */
1899 free_extent_map(em);
1900 /* once for us */
1901 free_extent_map(em);
1902
1903 unlock_chunks(root);
1904 btrfs_end_transaction(trans, root);
1905 return 0;
1906 }
1907
btrfs_relocate_sys_chunks(struct btrfs_root * root)1908 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1909 {
1910 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1911 struct btrfs_path *path;
1912 struct extent_buffer *leaf;
1913 struct btrfs_chunk *chunk;
1914 struct btrfs_key key;
1915 struct btrfs_key found_key;
1916 u64 chunk_tree = chunk_root->root_key.objectid;
1917 u64 chunk_type;
1918 bool retried = false;
1919 int failed = 0;
1920 int ret;
1921
1922 path = btrfs_alloc_path();
1923 if (!path)
1924 return -ENOMEM;
1925
1926 again:
1927 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1928 key.offset = (u64)-1;
1929 key.type = BTRFS_CHUNK_ITEM_KEY;
1930
1931 while (1) {
1932 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1933 if (ret < 0)
1934 goto error;
1935 BUG_ON(ret == 0);
1936
1937 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1938 key.type);
1939 if (ret < 0)
1940 goto error;
1941 if (ret > 0)
1942 break;
1943
1944 leaf = path->nodes[0];
1945 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1946
1947 chunk = btrfs_item_ptr(leaf, path->slots[0],
1948 struct btrfs_chunk);
1949 chunk_type = btrfs_chunk_type(leaf, chunk);
1950 btrfs_release_path(chunk_root, path);
1951
1952 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1953 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1954 found_key.objectid,
1955 found_key.offset);
1956 if (ret == -ENOSPC)
1957 failed++;
1958 else if (ret)
1959 BUG();
1960 }
1961
1962 if (found_key.offset == 0)
1963 break;
1964 key.offset = found_key.offset - 1;
1965 }
1966 ret = 0;
1967 if (failed && !retried) {
1968 failed = 0;
1969 retried = true;
1970 goto again;
1971 } else if (failed && retried) {
1972 WARN_ON(1);
1973 ret = -ENOSPC;
1974 }
1975 error:
1976 btrfs_free_path(path);
1977 return ret;
1978 }
1979
div_factor(u64 num,int factor)1980 static u64 div_factor(u64 num, int factor)
1981 {
1982 if (factor == 10)
1983 return num;
1984 num *= factor;
1985 do_div(num, 10);
1986 return num;
1987 }
1988
btrfs_balance(struct btrfs_root * dev_root)1989 int btrfs_balance(struct btrfs_root *dev_root)
1990 {
1991 int ret;
1992 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1993 struct btrfs_device *device;
1994 u64 old_size;
1995 u64 size_to_free;
1996 struct btrfs_path *path;
1997 struct btrfs_key key;
1998 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1999 struct btrfs_trans_handle *trans;
2000 struct btrfs_key found_key;
2001
2002 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2003 return -EROFS;
2004
2005 if (!capable(CAP_SYS_ADMIN))
2006 return -EPERM;
2007
2008 mutex_lock(&dev_root->fs_info->volume_mutex);
2009 dev_root = dev_root->fs_info->dev_root;
2010
2011 /* step one make some room on all the devices */
2012 list_for_each_entry(device, devices, dev_list) {
2013 old_size = device->total_bytes;
2014 size_to_free = div_factor(old_size, 1);
2015 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2016 if (!device->writeable ||
2017 device->total_bytes - device->bytes_used > size_to_free)
2018 continue;
2019
2020 ret = btrfs_shrink_device(device, old_size - size_to_free);
2021 if (ret == -ENOSPC)
2022 break;
2023 BUG_ON(ret);
2024
2025 trans = btrfs_start_transaction(dev_root, 0);
2026 BUG_ON(IS_ERR(trans));
2027
2028 ret = btrfs_grow_device(trans, device, old_size);
2029 BUG_ON(ret);
2030
2031 btrfs_end_transaction(trans, dev_root);
2032 }
2033
2034 /* step two, relocate all the chunks */
2035 path = btrfs_alloc_path();
2036 BUG_ON(!path);
2037
2038 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2039 key.offset = (u64)-1;
2040 key.type = BTRFS_CHUNK_ITEM_KEY;
2041
2042 while (1) {
2043 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2044 if (ret < 0)
2045 goto error;
2046
2047 /*
2048 * this shouldn't happen, it means the last relocate
2049 * failed
2050 */
2051 if (ret == 0)
2052 break;
2053
2054 ret = btrfs_previous_item(chunk_root, path, 0,
2055 BTRFS_CHUNK_ITEM_KEY);
2056 if (ret)
2057 break;
2058
2059 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2060 path->slots[0]);
2061 if (found_key.objectid != key.objectid)
2062 break;
2063
2064 /* chunk zero is special */
2065 if (found_key.offset == 0)
2066 break;
2067
2068 btrfs_release_path(chunk_root, path);
2069 ret = btrfs_relocate_chunk(chunk_root,
2070 chunk_root->root_key.objectid,
2071 found_key.objectid,
2072 found_key.offset);
2073 BUG_ON(ret && ret != -ENOSPC);
2074 key.offset = found_key.offset - 1;
2075 }
2076 ret = 0;
2077 error:
2078 btrfs_free_path(path);
2079 mutex_unlock(&dev_root->fs_info->volume_mutex);
2080 return ret;
2081 }
2082
2083 /*
2084 * shrinking a device means finding all of the device extents past
2085 * the new size, and then following the back refs to the chunks.
2086 * The chunk relocation code actually frees the device extent
2087 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)2088 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2089 {
2090 struct btrfs_trans_handle *trans;
2091 struct btrfs_root *root = device->dev_root;
2092 struct btrfs_dev_extent *dev_extent = NULL;
2093 struct btrfs_path *path;
2094 u64 length;
2095 u64 chunk_tree;
2096 u64 chunk_objectid;
2097 u64 chunk_offset;
2098 int ret;
2099 int slot;
2100 int failed = 0;
2101 bool retried = false;
2102 struct extent_buffer *l;
2103 struct btrfs_key key;
2104 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2105 u64 old_total = btrfs_super_total_bytes(super_copy);
2106 u64 old_size = device->total_bytes;
2107 u64 diff = device->total_bytes - new_size;
2108
2109 if (new_size >= device->total_bytes)
2110 return -EINVAL;
2111
2112 path = btrfs_alloc_path();
2113 if (!path)
2114 return -ENOMEM;
2115
2116 path->reada = 2;
2117
2118 lock_chunks(root);
2119
2120 device->total_bytes = new_size;
2121 if (device->writeable)
2122 device->fs_devices->total_rw_bytes -= diff;
2123 unlock_chunks(root);
2124
2125 again:
2126 key.objectid = device->devid;
2127 key.offset = (u64)-1;
2128 key.type = BTRFS_DEV_EXTENT_KEY;
2129
2130 while (1) {
2131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2132 if (ret < 0)
2133 goto done;
2134
2135 ret = btrfs_previous_item(root, path, 0, key.type);
2136 if (ret < 0)
2137 goto done;
2138 if (ret) {
2139 ret = 0;
2140 btrfs_release_path(root, path);
2141 break;
2142 }
2143
2144 l = path->nodes[0];
2145 slot = path->slots[0];
2146 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2147
2148 if (key.objectid != device->devid) {
2149 btrfs_release_path(root, path);
2150 break;
2151 }
2152
2153 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2154 length = btrfs_dev_extent_length(l, dev_extent);
2155
2156 if (key.offset + length <= new_size) {
2157 btrfs_release_path(root, path);
2158 break;
2159 }
2160
2161 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2162 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2163 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2164 btrfs_release_path(root, path);
2165
2166 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2167 chunk_offset);
2168 if (ret && ret != -ENOSPC)
2169 goto done;
2170 if (ret == -ENOSPC)
2171 failed++;
2172 key.offset -= 1;
2173 }
2174
2175 if (failed && !retried) {
2176 failed = 0;
2177 retried = true;
2178 goto again;
2179 } else if (failed && retried) {
2180 ret = -ENOSPC;
2181 lock_chunks(root);
2182
2183 device->total_bytes = old_size;
2184 if (device->writeable)
2185 device->fs_devices->total_rw_bytes += diff;
2186 unlock_chunks(root);
2187 goto done;
2188 }
2189
2190 /* Shrinking succeeded, else we would be at "done". */
2191 trans = btrfs_start_transaction(root, 0);
2192 if (IS_ERR(trans)) {
2193 ret = PTR_ERR(trans);
2194 goto done;
2195 }
2196
2197 lock_chunks(root);
2198
2199 device->disk_total_bytes = new_size;
2200 /* Now btrfs_update_device() will change the on-disk size. */
2201 ret = btrfs_update_device(trans, device);
2202 if (ret) {
2203 unlock_chunks(root);
2204 btrfs_end_transaction(trans, root);
2205 goto done;
2206 }
2207 WARN_ON(diff > old_total);
2208 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2209 unlock_chunks(root);
2210 btrfs_end_transaction(trans, root);
2211 done:
2212 btrfs_free_path(path);
2213 return ret;
2214 }
2215
btrfs_add_system_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)2216 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2217 struct btrfs_root *root,
2218 struct btrfs_key *key,
2219 struct btrfs_chunk *chunk, int item_size)
2220 {
2221 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2222 struct btrfs_disk_key disk_key;
2223 u32 array_size;
2224 u8 *ptr;
2225
2226 array_size = btrfs_super_sys_array_size(super_copy);
2227 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2228 return -EFBIG;
2229
2230 ptr = super_copy->sys_chunk_array + array_size;
2231 btrfs_cpu_key_to_disk(&disk_key, key);
2232 memcpy(ptr, &disk_key, sizeof(disk_key));
2233 ptr += sizeof(disk_key);
2234 memcpy(ptr, chunk, item_size);
2235 item_size += sizeof(disk_key);
2236 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2237 return 0;
2238 }
2239
chunk_bytes_by_type(u64 type,u64 calc_size,int num_stripes,int sub_stripes)2240 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2241 int num_stripes, int sub_stripes)
2242 {
2243 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2244 return calc_size;
2245 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2246 return calc_size * (num_stripes / sub_stripes);
2247 else
2248 return calc_size * num_stripes;
2249 }
2250
2251 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)2252 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2253 {
2254 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2255 ((struct btrfs_device_info *)dev_info2)->max_avail)
2256 return -1;
2257 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2258 ((struct btrfs_device_info *)dev_info2)->max_avail)
2259 return 1;
2260 else
2261 return 0;
2262 }
2263
__btrfs_calc_nstripes(struct btrfs_fs_devices * fs_devices,u64 type,int * num_stripes,int * min_stripes,int * sub_stripes)2264 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2265 int *num_stripes, int *min_stripes,
2266 int *sub_stripes)
2267 {
2268 *num_stripes = 1;
2269 *min_stripes = 1;
2270 *sub_stripes = 0;
2271
2272 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2273 *num_stripes = fs_devices->rw_devices;
2274 *min_stripes = 2;
2275 }
2276 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2277 *num_stripes = 2;
2278 *min_stripes = 2;
2279 }
2280 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2281 if (fs_devices->rw_devices < 2)
2282 return -ENOSPC;
2283 *num_stripes = 2;
2284 *min_stripes = 2;
2285 }
2286 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2287 *num_stripes = fs_devices->rw_devices;
2288 if (*num_stripes < 4)
2289 return -ENOSPC;
2290 *num_stripes &= ~(u32)1;
2291 *sub_stripes = 2;
2292 *min_stripes = 4;
2293 }
2294
2295 return 0;
2296 }
2297
__btrfs_calc_stripe_size(struct btrfs_fs_devices * fs_devices,u64 proposed_size,u64 type,int num_stripes,int small_stripe)2298 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2299 u64 proposed_size, u64 type,
2300 int num_stripes, int small_stripe)
2301 {
2302 int min_stripe_size = 1 * 1024 * 1024;
2303 u64 calc_size = proposed_size;
2304 u64 max_chunk_size = calc_size;
2305 int ncopies = 1;
2306
2307 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2308 BTRFS_BLOCK_GROUP_DUP |
2309 BTRFS_BLOCK_GROUP_RAID10))
2310 ncopies = 2;
2311
2312 if (type & BTRFS_BLOCK_GROUP_DATA) {
2313 max_chunk_size = 10 * calc_size;
2314 min_stripe_size = 64 * 1024 * 1024;
2315 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2316 max_chunk_size = 256 * 1024 * 1024;
2317 min_stripe_size = 32 * 1024 * 1024;
2318 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2319 calc_size = 8 * 1024 * 1024;
2320 max_chunk_size = calc_size * 2;
2321 min_stripe_size = 1 * 1024 * 1024;
2322 }
2323
2324 /* we don't want a chunk larger than 10% of writeable space */
2325 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2326 max_chunk_size);
2327
2328 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2329 calc_size = max_chunk_size * ncopies;
2330 do_div(calc_size, num_stripes);
2331 do_div(calc_size, BTRFS_STRIPE_LEN);
2332 calc_size *= BTRFS_STRIPE_LEN;
2333 }
2334
2335 /* we don't want tiny stripes */
2336 if (!small_stripe)
2337 calc_size = max_t(u64, min_stripe_size, calc_size);
2338
2339 /*
2340 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2341 * we end up with something bigger than a stripe
2342 */
2343 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2344
2345 do_div(calc_size, BTRFS_STRIPE_LEN);
2346 calc_size *= BTRFS_STRIPE_LEN;
2347
2348 return calc_size;
2349 }
2350
__shrink_map_lookup_stripes(struct map_lookup * map,int num_stripes)2351 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2352 int num_stripes)
2353 {
2354 struct map_lookup *new;
2355 size_t len = map_lookup_size(num_stripes);
2356
2357 BUG_ON(map->num_stripes < num_stripes);
2358
2359 if (map->num_stripes == num_stripes)
2360 return map;
2361
2362 new = kmalloc(len, GFP_NOFS);
2363 if (!new) {
2364 /* just change map->num_stripes */
2365 map->num_stripes = num_stripes;
2366 return map;
2367 }
2368
2369 memcpy(new, map, len);
2370 new->num_stripes = num_stripes;
2371 kfree(map);
2372 return new;
2373 }
2374
2375 /*
2376 * helper to allocate device space from btrfs_device_info, in which we stored
2377 * max free space information of every device. It is used when we can not
2378 * allocate chunks by default size.
2379 *
2380 * By this helper, we can allocate a new chunk as larger as possible.
2381 */
__btrfs_alloc_tiny_space(struct btrfs_trans_handle * trans,struct btrfs_fs_devices * fs_devices,struct btrfs_device_info * devices,int nr_device,u64 type,struct map_lookup ** map_lookup,int min_stripes,u64 * stripe_size)2382 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2383 struct btrfs_fs_devices *fs_devices,
2384 struct btrfs_device_info *devices,
2385 int nr_device, u64 type,
2386 struct map_lookup **map_lookup,
2387 int min_stripes, u64 *stripe_size)
2388 {
2389 int i, index, sort_again = 0;
2390 int min_devices = min_stripes;
2391 u64 max_avail, min_free;
2392 struct map_lookup *map = *map_lookup;
2393 int ret;
2394
2395 if (nr_device < min_stripes)
2396 return -ENOSPC;
2397
2398 btrfs_descending_sort_devices(devices, nr_device);
2399
2400 max_avail = devices[0].max_avail;
2401 if (!max_avail)
2402 return -ENOSPC;
2403
2404 for (i = 0; i < nr_device; i++) {
2405 /*
2406 * if dev_offset = 0, it means the free space of this device
2407 * is less than what we need, and we didn't search max avail
2408 * extent on this device, so do it now.
2409 */
2410 if (!devices[i].dev_offset) {
2411 ret = find_free_dev_extent(trans, devices[i].dev,
2412 max_avail,
2413 &devices[i].dev_offset,
2414 &devices[i].max_avail);
2415 if (ret != 0 && ret != -ENOSPC)
2416 return ret;
2417 sort_again = 1;
2418 }
2419 }
2420
2421 /* we update the max avail free extent of each devices, sort again */
2422 if (sort_again)
2423 btrfs_descending_sort_devices(devices, nr_device);
2424
2425 if (type & BTRFS_BLOCK_GROUP_DUP)
2426 min_devices = 1;
2427
2428 if (!devices[min_devices - 1].max_avail)
2429 return -ENOSPC;
2430
2431 max_avail = devices[min_devices - 1].max_avail;
2432 if (type & BTRFS_BLOCK_GROUP_DUP)
2433 do_div(max_avail, 2);
2434
2435 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2436 min_stripes, 1);
2437 if (type & BTRFS_BLOCK_GROUP_DUP)
2438 min_free = max_avail * 2;
2439 else
2440 min_free = max_avail;
2441
2442 if (min_free > devices[min_devices - 1].max_avail)
2443 return -ENOSPC;
2444
2445 map = __shrink_map_lookup_stripes(map, min_stripes);
2446 *stripe_size = max_avail;
2447
2448 index = 0;
2449 for (i = 0; i < min_stripes; i++) {
2450 map->stripes[i].dev = devices[index].dev;
2451 map->stripes[i].physical = devices[index].dev_offset;
2452 if (type & BTRFS_BLOCK_GROUP_DUP) {
2453 i++;
2454 map->stripes[i].dev = devices[index].dev;
2455 map->stripes[i].physical = devices[index].dev_offset +
2456 max_avail;
2457 }
2458 index++;
2459 }
2460 *map_lookup = map;
2461
2462 return 0;
2463 }
2464
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,struct map_lookup ** map_ret,u64 * num_bytes,u64 * stripe_size,u64 start,u64 type)2465 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2466 struct btrfs_root *extent_root,
2467 struct map_lookup **map_ret,
2468 u64 *num_bytes, u64 *stripe_size,
2469 u64 start, u64 type)
2470 {
2471 struct btrfs_fs_info *info = extent_root->fs_info;
2472 struct btrfs_device *device = NULL;
2473 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2474 struct list_head *cur;
2475 struct map_lookup *map;
2476 struct extent_map_tree *em_tree;
2477 struct extent_map *em;
2478 struct btrfs_device_info *devices_info;
2479 struct list_head private_devs;
2480 u64 calc_size = 1024 * 1024 * 1024;
2481 u64 min_free;
2482 u64 avail;
2483 u64 dev_offset;
2484 int num_stripes;
2485 int min_stripes;
2486 int sub_stripes;
2487 int min_devices; /* the min number of devices we need */
2488 int i;
2489 int ret;
2490 int index;
2491
2492 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2493 (type & BTRFS_BLOCK_GROUP_DUP)) {
2494 WARN_ON(1);
2495 type &= ~BTRFS_BLOCK_GROUP_DUP;
2496 }
2497 if (list_empty(&fs_devices->alloc_list))
2498 return -ENOSPC;
2499
2500 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2501 &min_stripes, &sub_stripes);
2502 if (ret)
2503 return ret;
2504
2505 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2506 GFP_NOFS);
2507 if (!devices_info)
2508 return -ENOMEM;
2509
2510 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2511 if (!map) {
2512 ret = -ENOMEM;
2513 goto error;
2514 }
2515 map->num_stripes = num_stripes;
2516
2517 cur = fs_devices->alloc_list.next;
2518 index = 0;
2519 i = 0;
2520
2521 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2522 num_stripes, 0);
2523
2524 if (type & BTRFS_BLOCK_GROUP_DUP) {
2525 min_free = calc_size * 2;
2526 min_devices = 1;
2527 } else {
2528 min_free = calc_size;
2529 min_devices = min_stripes;
2530 }
2531
2532 INIT_LIST_HEAD(&private_devs);
2533 while (index < num_stripes) {
2534 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2535 BUG_ON(!device->writeable);
2536 if (device->total_bytes > device->bytes_used)
2537 avail = device->total_bytes - device->bytes_used;
2538 else
2539 avail = 0;
2540 cur = cur->next;
2541
2542 if (device->in_fs_metadata && avail >= min_free) {
2543 ret = find_free_dev_extent(trans, device, min_free,
2544 &devices_info[i].dev_offset,
2545 &devices_info[i].max_avail);
2546 if (ret == 0) {
2547 list_move_tail(&device->dev_alloc_list,
2548 &private_devs);
2549 map->stripes[index].dev = device;
2550 map->stripes[index].physical =
2551 devices_info[i].dev_offset;
2552 index++;
2553 if (type & BTRFS_BLOCK_GROUP_DUP) {
2554 map->stripes[index].dev = device;
2555 map->stripes[index].physical =
2556 devices_info[i].dev_offset +
2557 calc_size;
2558 index++;
2559 }
2560 } else if (ret != -ENOSPC)
2561 goto error;
2562
2563 devices_info[i].dev = device;
2564 i++;
2565 } else if (device->in_fs_metadata &&
2566 avail >= BTRFS_STRIPE_LEN) {
2567 devices_info[i].dev = device;
2568 devices_info[i].max_avail = avail;
2569 i++;
2570 }
2571
2572 if (cur == &fs_devices->alloc_list)
2573 break;
2574 }
2575
2576 list_splice(&private_devs, &fs_devices->alloc_list);
2577 if (index < num_stripes) {
2578 if (index >= min_stripes) {
2579 num_stripes = index;
2580 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2581 num_stripes /= sub_stripes;
2582 num_stripes *= sub_stripes;
2583 }
2584
2585 map = __shrink_map_lookup_stripes(map, num_stripes);
2586 } else if (i >= min_devices) {
2587 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2588 devices_info, i, type,
2589 &map, min_stripes,
2590 &calc_size);
2591 if (ret)
2592 goto error;
2593 } else {
2594 ret = -ENOSPC;
2595 goto error;
2596 }
2597 }
2598 map->sector_size = extent_root->sectorsize;
2599 map->stripe_len = BTRFS_STRIPE_LEN;
2600 map->io_align = BTRFS_STRIPE_LEN;
2601 map->io_width = BTRFS_STRIPE_LEN;
2602 map->type = type;
2603 map->sub_stripes = sub_stripes;
2604
2605 *map_ret = map;
2606 *stripe_size = calc_size;
2607 *num_bytes = chunk_bytes_by_type(type, calc_size,
2608 map->num_stripes, sub_stripes);
2609
2610 trace_btrfs_chunk_alloc(info->chunk_root, map, start, *num_bytes);
2611
2612 em = alloc_extent_map(GFP_NOFS);
2613 if (!em) {
2614 ret = -ENOMEM;
2615 goto error;
2616 }
2617 em->bdev = (struct block_device *)map;
2618 em->start = start;
2619 em->len = *num_bytes;
2620 em->block_start = 0;
2621 em->block_len = em->len;
2622
2623 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2624 write_lock(&em_tree->lock);
2625 ret = add_extent_mapping(em_tree, em);
2626 write_unlock(&em_tree->lock);
2627 BUG_ON(ret);
2628 free_extent_map(em);
2629
2630 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2631 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2632 start, *num_bytes);
2633 BUG_ON(ret);
2634
2635 index = 0;
2636 while (index < map->num_stripes) {
2637 device = map->stripes[index].dev;
2638 dev_offset = map->stripes[index].physical;
2639
2640 ret = btrfs_alloc_dev_extent(trans, device,
2641 info->chunk_root->root_key.objectid,
2642 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2643 start, dev_offset, calc_size);
2644 BUG_ON(ret);
2645 index++;
2646 }
2647
2648 kfree(devices_info);
2649 return 0;
2650
2651 error:
2652 kfree(map);
2653 kfree(devices_info);
2654 return ret;
2655 }
2656
__finish_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,struct map_lookup * map,u64 chunk_offset,u64 chunk_size,u64 stripe_size)2657 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2658 struct btrfs_root *extent_root,
2659 struct map_lookup *map, u64 chunk_offset,
2660 u64 chunk_size, u64 stripe_size)
2661 {
2662 u64 dev_offset;
2663 struct btrfs_key key;
2664 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2665 struct btrfs_device *device;
2666 struct btrfs_chunk *chunk;
2667 struct btrfs_stripe *stripe;
2668 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2669 int index = 0;
2670 int ret;
2671
2672 chunk = kzalloc(item_size, GFP_NOFS);
2673 if (!chunk)
2674 return -ENOMEM;
2675
2676 index = 0;
2677 while (index < map->num_stripes) {
2678 device = map->stripes[index].dev;
2679 device->bytes_used += stripe_size;
2680 ret = btrfs_update_device(trans, device);
2681 BUG_ON(ret);
2682 index++;
2683 }
2684
2685 index = 0;
2686 stripe = &chunk->stripe;
2687 while (index < map->num_stripes) {
2688 device = map->stripes[index].dev;
2689 dev_offset = map->stripes[index].physical;
2690
2691 btrfs_set_stack_stripe_devid(stripe, device->devid);
2692 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2693 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2694 stripe++;
2695 index++;
2696 }
2697
2698 btrfs_set_stack_chunk_length(chunk, chunk_size);
2699 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2700 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2701 btrfs_set_stack_chunk_type(chunk, map->type);
2702 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2703 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2704 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2705 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2706 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2707
2708 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2709 key.type = BTRFS_CHUNK_ITEM_KEY;
2710 key.offset = chunk_offset;
2711
2712 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2713 BUG_ON(ret);
2714
2715 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2716 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2717 item_size);
2718 BUG_ON(ret);
2719 }
2720
2721 kfree(chunk);
2722 return 0;
2723 }
2724
2725 /*
2726 * Chunk allocation falls into two parts. The first part does works
2727 * that make the new allocated chunk useable, but not do any operation
2728 * that modifies the chunk tree. The second part does the works that
2729 * require modifying the chunk tree. This division is important for the
2730 * bootstrap process of adding storage to a seed btrfs.
2731 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 type)2732 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2733 struct btrfs_root *extent_root, u64 type)
2734 {
2735 u64 chunk_offset;
2736 u64 chunk_size;
2737 u64 stripe_size;
2738 struct map_lookup *map;
2739 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2740 int ret;
2741
2742 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2743 &chunk_offset);
2744 if (ret)
2745 return ret;
2746
2747 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2748 &stripe_size, chunk_offset, type);
2749 if (ret)
2750 return ret;
2751
2752 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2753 chunk_size, stripe_size);
2754 BUG_ON(ret);
2755 return 0;
2756 }
2757
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)2758 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *root,
2760 struct btrfs_device *device)
2761 {
2762 u64 chunk_offset;
2763 u64 sys_chunk_offset;
2764 u64 chunk_size;
2765 u64 sys_chunk_size;
2766 u64 stripe_size;
2767 u64 sys_stripe_size;
2768 u64 alloc_profile;
2769 struct map_lookup *map;
2770 struct map_lookup *sys_map;
2771 struct btrfs_fs_info *fs_info = root->fs_info;
2772 struct btrfs_root *extent_root = fs_info->extent_root;
2773 int ret;
2774
2775 ret = find_next_chunk(fs_info->chunk_root,
2776 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2777 BUG_ON(ret);
2778
2779 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2780 (fs_info->metadata_alloc_profile &
2781 fs_info->avail_metadata_alloc_bits);
2782 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2783
2784 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2785 &stripe_size, chunk_offset, alloc_profile);
2786 BUG_ON(ret);
2787
2788 sys_chunk_offset = chunk_offset + chunk_size;
2789
2790 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2791 (fs_info->system_alloc_profile &
2792 fs_info->avail_system_alloc_bits);
2793 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2794
2795 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2796 &sys_chunk_size, &sys_stripe_size,
2797 sys_chunk_offset, alloc_profile);
2798 BUG_ON(ret);
2799
2800 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2801 BUG_ON(ret);
2802
2803 /*
2804 * Modifying chunk tree needs allocating new blocks from both
2805 * system block group and metadata block group. So we only can
2806 * do operations require modifying the chunk tree after both
2807 * block groups were created.
2808 */
2809 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2810 chunk_size, stripe_size);
2811 BUG_ON(ret);
2812
2813 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2814 sys_chunk_offset, sys_chunk_size,
2815 sys_stripe_size);
2816 BUG_ON(ret);
2817 return 0;
2818 }
2819
btrfs_chunk_readonly(struct btrfs_root * root,u64 chunk_offset)2820 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2821 {
2822 struct extent_map *em;
2823 struct map_lookup *map;
2824 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2825 int readonly = 0;
2826 int i;
2827
2828 read_lock(&map_tree->map_tree.lock);
2829 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2830 read_unlock(&map_tree->map_tree.lock);
2831 if (!em)
2832 return 1;
2833
2834 if (btrfs_test_opt(root, DEGRADED)) {
2835 free_extent_map(em);
2836 return 0;
2837 }
2838
2839 map = (struct map_lookup *)em->bdev;
2840 for (i = 0; i < map->num_stripes; i++) {
2841 if (!map->stripes[i].dev->writeable) {
2842 readonly = 1;
2843 break;
2844 }
2845 }
2846 free_extent_map(em);
2847 return readonly;
2848 }
2849
btrfs_mapping_init(struct btrfs_mapping_tree * tree)2850 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2851 {
2852 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2853 }
2854
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)2855 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2856 {
2857 struct extent_map *em;
2858
2859 while (1) {
2860 write_lock(&tree->map_tree.lock);
2861 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2862 if (em)
2863 remove_extent_mapping(&tree->map_tree, em);
2864 write_unlock(&tree->map_tree.lock);
2865 if (!em)
2866 break;
2867 kfree(em->bdev);
2868 /* once for us */
2869 free_extent_map(em);
2870 /* once for the tree */
2871 free_extent_map(em);
2872 }
2873 }
2874
btrfs_num_copies(struct btrfs_mapping_tree * map_tree,u64 logical,u64 len)2875 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2876 {
2877 struct extent_map *em;
2878 struct map_lookup *map;
2879 struct extent_map_tree *em_tree = &map_tree->map_tree;
2880 int ret;
2881
2882 read_lock(&em_tree->lock);
2883 em = lookup_extent_mapping(em_tree, logical, len);
2884 read_unlock(&em_tree->lock);
2885 BUG_ON(!em);
2886
2887 BUG_ON(em->start > logical || em->start + em->len < logical);
2888 map = (struct map_lookup *)em->bdev;
2889 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2890 ret = map->num_stripes;
2891 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2892 ret = map->sub_stripes;
2893 else
2894 ret = 1;
2895 free_extent_map(em);
2896 return ret;
2897 }
2898
find_live_mirror(struct map_lookup * map,int first,int num,int optimal)2899 static int find_live_mirror(struct map_lookup *map, int first, int num,
2900 int optimal)
2901 {
2902 int i;
2903 if (map->stripes[optimal].dev->bdev)
2904 return optimal;
2905 for (i = first; i < first + num; i++) {
2906 if (map->stripes[i].dev->bdev)
2907 return i;
2908 }
2909 /* we couldn't find one that doesn't fail. Just return something
2910 * and the io error handling code will clean up eventually
2911 */
2912 return optimal;
2913 }
2914
__btrfs_map_block(struct btrfs_mapping_tree * map_tree,int rw,u64 logical,u64 * length,struct btrfs_multi_bio ** multi_ret,int mirror_num)2915 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2916 u64 logical, u64 *length,
2917 struct btrfs_multi_bio **multi_ret,
2918 int mirror_num)
2919 {
2920 struct extent_map *em;
2921 struct map_lookup *map;
2922 struct extent_map_tree *em_tree = &map_tree->map_tree;
2923 u64 offset;
2924 u64 stripe_offset;
2925 u64 stripe_end_offset;
2926 u64 stripe_nr;
2927 u64 stripe_nr_orig;
2928 u64 stripe_nr_end;
2929 int stripes_allocated = 8;
2930 int stripes_required = 1;
2931 int stripe_index;
2932 int i;
2933 int num_stripes;
2934 int max_errors = 0;
2935 struct btrfs_multi_bio *multi = NULL;
2936
2937 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
2938 stripes_allocated = 1;
2939 again:
2940 if (multi_ret) {
2941 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2942 GFP_NOFS);
2943 if (!multi)
2944 return -ENOMEM;
2945
2946 atomic_set(&multi->error, 0);
2947 }
2948
2949 read_lock(&em_tree->lock);
2950 em = lookup_extent_mapping(em_tree, logical, *length);
2951 read_unlock(&em_tree->lock);
2952
2953 if (!em) {
2954 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2955 (unsigned long long)logical,
2956 (unsigned long long)*length);
2957 BUG();
2958 }
2959
2960 BUG_ON(em->start > logical || em->start + em->len < logical);
2961 map = (struct map_lookup *)em->bdev;
2962 offset = logical - em->start;
2963
2964 if (mirror_num > map->num_stripes)
2965 mirror_num = 0;
2966
2967 /* if our multi bio struct is too small, back off and try again */
2968 if (rw & REQ_WRITE) {
2969 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2970 BTRFS_BLOCK_GROUP_DUP)) {
2971 stripes_required = map->num_stripes;
2972 max_errors = 1;
2973 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2974 stripes_required = map->sub_stripes;
2975 max_errors = 1;
2976 }
2977 }
2978 if (rw & REQ_DISCARD) {
2979 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2980 BTRFS_BLOCK_GROUP_RAID1 |
2981 BTRFS_BLOCK_GROUP_DUP |
2982 BTRFS_BLOCK_GROUP_RAID10)) {
2983 stripes_required = map->num_stripes;
2984 }
2985 }
2986 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
2987 stripes_allocated < stripes_required) {
2988 stripes_allocated = map->num_stripes;
2989 free_extent_map(em);
2990 kfree(multi);
2991 goto again;
2992 }
2993 stripe_nr = offset;
2994 /*
2995 * stripe_nr counts the total number of stripes we have to stride
2996 * to get to this block
2997 */
2998 do_div(stripe_nr, map->stripe_len);
2999
3000 stripe_offset = stripe_nr * map->stripe_len;
3001 BUG_ON(offset < stripe_offset);
3002
3003 /* stripe_offset is the offset of this block in its stripe*/
3004 stripe_offset = offset - stripe_offset;
3005
3006 if (rw & REQ_DISCARD)
3007 *length = min_t(u64, em->len - offset, *length);
3008 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3009 BTRFS_BLOCK_GROUP_RAID1 |
3010 BTRFS_BLOCK_GROUP_RAID10 |
3011 BTRFS_BLOCK_GROUP_DUP)) {
3012 /* we limit the length of each bio to what fits in a stripe */
3013 *length = min_t(u64, em->len - offset,
3014 map->stripe_len - stripe_offset);
3015 } else {
3016 *length = em->len - offset;
3017 }
3018
3019 if (!multi_ret)
3020 goto out;
3021
3022 num_stripes = 1;
3023 stripe_index = 0;
3024 stripe_nr_orig = stripe_nr;
3025 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3026 (~(map->stripe_len - 1));
3027 do_div(stripe_nr_end, map->stripe_len);
3028 stripe_end_offset = stripe_nr_end * map->stripe_len -
3029 (offset + *length);
3030 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3031 if (rw & REQ_DISCARD)
3032 num_stripes = min_t(u64, map->num_stripes,
3033 stripe_nr_end - stripe_nr_orig);
3034 stripe_index = do_div(stripe_nr, map->num_stripes);
3035 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3036 if (rw & (REQ_WRITE | REQ_DISCARD))
3037 num_stripes = map->num_stripes;
3038 else if (mirror_num)
3039 stripe_index = mirror_num - 1;
3040 else {
3041 stripe_index = find_live_mirror(map, 0,
3042 map->num_stripes,
3043 current->pid % map->num_stripes);
3044 }
3045
3046 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3047 if (rw & (REQ_WRITE | REQ_DISCARD))
3048 num_stripes = map->num_stripes;
3049 else if (mirror_num)
3050 stripe_index = mirror_num - 1;
3051
3052 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3053 int factor = map->num_stripes / map->sub_stripes;
3054
3055 stripe_index = do_div(stripe_nr, factor);
3056 stripe_index *= map->sub_stripes;
3057
3058 if (rw & REQ_WRITE)
3059 num_stripes = map->sub_stripes;
3060 else if (rw & REQ_DISCARD)
3061 num_stripes = min_t(u64, map->sub_stripes *
3062 (stripe_nr_end - stripe_nr_orig),
3063 map->num_stripes);
3064 else if (mirror_num)
3065 stripe_index += mirror_num - 1;
3066 else {
3067 stripe_index = find_live_mirror(map, stripe_index,
3068 map->sub_stripes, stripe_index +
3069 current->pid % map->sub_stripes);
3070 }
3071 } else {
3072 /*
3073 * after this do_div call, stripe_nr is the number of stripes
3074 * on this device we have to walk to find the data, and
3075 * stripe_index is the number of our device in the stripe array
3076 */
3077 stripe_index = do_div(stripe_nr, map->num_stripes);
3078 }
3079 BUG_ON(stripe_index >= map->num_stripes);
3080
3081 if (rw & REQ_DISCARD) {
3082 for (i = 0; i < num_stripes; i++) {
3083 multi->stripes[i].physical =
3084 map->stripes[stripe_index].physical +
3085 stripe_offset + stripe_nr * map->stripe_len;
3086 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3087
3088 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3089 u64 stripes;
3090 u32 last_stripe = 0;
3091 int j;
3092
3093 div_u64_rem(stripe_nr_end - 1,
3094 map->num_stripes,
3095 &last_stripe);
3096
3097 for (j = 0; j < map->num_stripes; j++) {
3098 u32 test;
3099
3100 div_u64_rem(stripe_nr_end - 1 - j,
3101 map->num_stripes, &test);
3102 if (test == stripe_index)
3103 break;
3104 }
3105 stripes = stripe_nr_end - 1 - j;
3106 do_div(stripes, map->num_stripes);
3107 multi->stripes[i].length = map->stripe_len *
3108 (stripes - stripe_nr + 1);
3109
3110 if (i == 0) {
3111 multi->stripes[i].length -=
3112 stripe_offset;
3113 stripe_offset = 0;
3114 }
3115 if (stripe_index == last_stripe)
3116 multi->stripes[i].length -=
3117 stripe_end_offset;
3118 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3119 u64 stripes;
3120 int j;
3121 int factor = map->num_stripes /
3122 map->sub_stripes;
3123 u32 last_stripe = 0;
3124
3125 div_u64_rem(stripe_nr_end - 1,
3126 factor, &last_stripe);
3127 last_stripe *= map->sub_stripes;
3128
3129 for (j = 0; j < factor; j++) {
3130 u32 test;
3131
3132 div_u64_rem(stripe_nr_end - 1 - j,
3133 factor, &test);
3134
3135 if (test ==
3136 stripe_index / map->sub_stripes)
3137 break;
3138 }
3139 stripes = stripe_nr_end - 1 - j;
3140 do_div(stripes, factor);
3141 multi->stripes[i].length = map->stripe_len *
3142 (stripes - stripe_nr + 1);
3143
3144 if (i < map->sub_stripes) {
3145 multi->stripes[i].length -=
3146 stripe_offset;
3147 if (i == map->sub_stripes - 1)
3148 stripe_offset = 0;
3149 }
3150 if (stripe_index >= last_stripe &&
3151 stripe_index <= (last_stripe +
3152 map->sub_stripes - 1)) {
3153 multi->stripes[i].length -=
3154 stripe_end_offset;
3155 }
3156 } else
3157 multi->stripes[i].length = *length;
3158
3159 stripe_index++;
3160 if (stripe_index == map->num_stripes) {
3161 /* This could only happen for RAID0/10 */
3162 stripe_index = 0;
3163 stripe_nr++;
3164 }
3165 }
3166 } else {
3167 for (i = 0; i < num_stripes; i++) {
3168 multi->stripes[i].physical =
3169 map->stripes[stripe_index].physical +
3170 stripe_offset +
3171 stripe_nr * map->stripe_len;
3172 multi->stripes[i].dev =
3173 map->stripes[stripe_index].dev;
3174 stripe_index++;
3175 }
3176 }
3177 if (multi_ret) {
3178 *multi_ret = multi;
3179 multi->num_stripes = num_stripes;
3180 multi->max_errors = max_errors;
3181 }
3182 out:
3183 free_extent_map(em);
3184 return 0;
3185 }
3186
btrfs_map_block(struct btrfs_mapping_tree * map_tree,int rw,u64 logical,u64 * length,struct btrfs_multi_bio ** multi_ret,int mirror_num)3187 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3188 u64 logical, u64 *length,
3189 struct btrfs_multi_bio **multi_ret, int mirror_num)
3190 {
3191 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3192 mirror_num);
3193 }
3194
btrfs_rmap_block(struct btrfs_mapping_tree * map_tree,u64 chunk_start,u64 physical,u64 devid,u64 ** logical,int * naddrs,int * stripe_len)3195 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3196 u64 chunk_start, u64 physical, u64 devid,
3197 u64 **logical, int *naddrs, int *stripe_len)
3198 {
3199 struct extent_map_tree *em_tree = &map_tree->map_tree;
3200 struct extent_map *em;
3201 struct map_lookup *map;
3202 u64 *buf;
3203 u64 bytenr;
3204 u64 length;
3205 u64 stripe_nr;
3206 int i, j, nr = 0;
3207
3208 read_lock(&em_tree->lock);
3209 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3210 read_unlock(&em_tree->lock);
3211
3212 BUG_ON(!em || em->start != chunk_start);
3213 map = (struct map_lookup *)em->bdev;
3214
3215 length = em->len;
3216 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3217 do_div(length, map->num_stripes / map->sub_stripes);
3218 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3219 do_div(length, map->num_stripes);
3220
3221 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3222 BUG_ON(!buf);
3223
3224 for (i = 0; i < map->num_stripes; i++) {
3225 if (devid && map->stripes[i].dev->devid != devid)
3226 continue;
3227 if (map->stripes[i].physical > physical ||
3228 map->stripes[i].physical + length <= physical)
3229 continue;
3230
3231 stripe_nr = physical - map->stripes[i].physical;
3232 do_div(stripe_nr, map->stripe_len);
3233
3234 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3235 stripe_nr = stripe_nr * map->num_stripes + i;
3236 do_div(stripe_nr, map->sub_stripes);
3237 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3238 stripe_nr = stripe_nr * map->num_stripes + i;
3239 }
3240 bytenr = chunk_start + stripe_nr * map->stripe_len;
3241 WARN_ON(nr >= map->num_stripes);
3242 for (j = 0; j < nr; j++) {
3243 if (buf[j] == bytenr)
3244 break;
3245 }
3246 if (j == nr) {
3247 WARN_ON(nr >= map->num_stripes);
3248 buf[nr++] = bytenr;
3249 }
3250 }
3251
3252 *logical = buf;
3253 *naddrs = nr;
3254 *stripe_len = map->stripe_len;
3255
3256 free_extent_map(em);
3257 return 0;
3258 }
3259
end_bio_multi_stripe(struct bio * bio,int err)3260 static void end_bio_multi_stripe(struct bio *bio, int err)
3261 {
3262 struct btrfs_multi_bio *multi = bio->bi_private;
3263 int is_orig_bio = 0;
3264
3265 if (err)
3266 atomic_inc(&multi->error);
3267
3268 if (bio == multi->orig_bio)
3269 is_orig_bio = 1;
3270
3271 if (atomic_dec_and_test(&multi->stripes_pending)) {
3272 if (!is_orig_bio) {
3273 bio_put(bio);
3274 bio = multi->orig_bio;
3275 }
3276 bio->bi_private = multi->private;
3277 bio->bi_end_io = multi->end_io;
3278 /* only send an error to the higher layers if it is
3279 * beyond the tolerance of the multi-bio
3280 */
3281 if (atomic_read(&multi->error) > multi->max_errors) {
3282 err = -EIO;
3283 } else if (err) {
3284 /*
3285 * this bio is actually up to date, we didn't
3286 * go over the max number of errors
3287 */
3288 set_bit(BIO_UPTODATE, &bio->bi_flags);
3289 err = 0;
3290 }
3291 kfree(multi);
3292
3293 bio_endio(bio, err);
3294 } else if (!is_orig_bio) {
3295 bio_put(bio);
3296 }
3297 }
3298
3299 struct async_sched {
3300 struct bio *bio;
3301 int rw;
3302 struct btrfs_fs_info *info;
3303 struct btrfs_work work;
3304 };
3305
3306 /*
3307 * see run_scheduled_bios for a description of why bios are collected for
3308 * async submit.
3309 *
3310 * This will add one bio to the pending list for a device and make sure
3311 * the work struct is scheduled.
3312 */
schedule_bio(struct btrfs_root * root,struct btrfs_device * device,int rw,struct bio * bio)3313 static noinline int schedule_bio(struct btrfs_root *root,
3314 struct btrfs_device *device,
3315 int rw, struct bio *bio)
3316 {
3317 int should_queue = 1;
3318 struct btrfs_pending_bios *pending_bios;
3319
3320 /* don't bother with additional async steps for reads, right now */
3321 if (!(rw & REQ_WRITE)) {
3322 bio_get(bio);
3323 submit_bio(rw, bio);
3324 bio_put(bio);
3325 return 0;
3326 }
3327
3328 /*
3329 * nr_async_bios allows us to reliably return congestion to the
3330 * higher layers. Otherwise, the async bio makes it appear we have
3331 * made progress against dirty pages when we've really just put it
3332 * on a queue for later
3333 */
3334 atomic_inc(&root->fs_info->nr_async_bios);
3335 WARN_ON(bio->bi_next);
3336 bio->bi_next = NULL;
3337 bio->bi_rw |= rw;
3338
3339 spin_lock(&device->io_lock);
3340 if (bio->bi_rw & REQ_SYNC)
3341 pending_bios = &device->pending_sync_bios;
3342 else
3343 pending_bios = &device->pending_bios;
3344
3345 if (pending_bios->tail)
3346 pending_bios->tail->bi_next = bio;
3347
3348 pending_bios->tail = bio;
3349 if (!pending_bios->head)
3350 pending_bios->head = bio;
3351 if (device->running_pending)
3352 should_queue = 0;
3353
3354 spin_unlock(&device->io_lock);
3355
3356 if (should_queue)
3357 btrfs_queue_worker(&root->fs_info->submit_workers,
3358 &device->work);
3359 return 0;
3360 }
3361
btrfs_map_bio(struct btrfs_root * root,int rw,struct bio * bio,int mirror_num,int async_submit)3362 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3363 int mirror_num, int async_submit)
3364 {
3365 struct btrfs_mapping_tree *map_tree;
3366 struct btrfs_device *dev;
3367 struct bio *first_bio = bio;
3368 u64 logical = (u64)bio->bi_sector << 9;
3369 u64 length = 0;
3370 u64 map_length;
3371 struct btrfs_multi_bio *multi = NULL;
3372 int ret;
3373 int dev_nr = 0;
3374 int total_devs = 1;
3375
3376 length = bio->bi_size;
3377 map_tree = &root->fs_info->mapping_tree;
3378 map_length = length;
3379
3380 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3381 mirror_num);
3382 BUG_ON(ret);
3383
3384 total_devs = multi->num_stripes;
3385 if (map_length < length) {
3386 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3387 "len %llu\n", (unsigned long long)logical,
3388 (unsigned long long)length,
3389 (unsigned long long)map_length);
3390 BUG();
3391 }
3392 multi->end_io = first_bio->bi_end_io;
3393 multi->private = first_bio->bi_private;
3394 multi->orig_bio = first_bio;
3395 atomic_set(&multi->stripes_pending, multi->num_stripes);
3396
3397 while (dev_nr < total_devs) {
3398 if (total_devs > 1) {
3399 if (dev_nr < total_devs - 1) {
3400 bio = bio_clone(first_bio, GFP_NOFS);
3401 BUG_ON(!bio);
3402 } else {
3403 bio = first_bio;
3404 }
3405 bio->bi_private = multi;
3406 bio->bi_end_io = end_bio_multi_stripe;
3407 }
3408 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3409 dev = multi->stripes[dev_nr].dev;
3410 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3411 bio->bi_bdev = dev->bdev;
3412 if (async_submit)
3413 schedule_bio(root, dev, rw, bio);
3414 else
3415 submit_bio(rw, bio);
3416 } else {
3417 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3418 bio->bi_sector = logical >> 9;
3419 bio_endio(bio, -EIO);
3420 }
3421 dev_nr++;
3422 }
3423 if (total_devs == 1)
3424 kfree(multi);
3425 return 0;
3426 }
3427
btrfs_find_device(struct btrfs_root * root,u64 devid,u8 * uuid,u8 * fsid)3428 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3429 u8 *uuid, u8 *fsid)
3430 {
3431 struct btrfs_device *device;
3432 struct btrfs_fs_devices *cur_devices;
3433
3434 cur_devices = root->fs_info->fs_devices;
3435 while (cur_devices) {
3436 if (!fsid ||
3437 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3438 device = __find_device(&cur_devices->devices,
3439 devid, uuid);
3440 if (device)
3441 return device;
3442 }
3443 cur_devices = cur_devices->seed;
3444 }
3445 return NULL;
3446 }
3447
add_missing_dev(struct btrfs_root * root,u64 devid,u8 * dev_uuid)3448 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3449 u64 devid, u8 *dev_uuid)
3450 {
3451 struct btrfs_device *device;
3452 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3453
3454 device = kzalloc(sizeof(*device), GFP_NOFS);
3455 if (!device)
3456 return NULL;
3457 list_add(&device->dev_list,
3458 &fs_devices->devices);
3459 device->dev_root = root->fs_info->dev_root;
3460 device->devid = devid;
3461 device->work.func = pending_bios_fn;
3462 device->fs_devices = fs_devices;
3463 device->missing = 1;
3464 fs_devices->num_devices++;
3465 fs_devices->missing_devices++;
3466 spin_lock_init(&device->io_lock);
3467 INIT_LIST_HEAD(&device->dev_alloc_list);
3468 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3469 return device;
3470 }
3471
read_one_chunk(struct btrfs_root * root,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)3472 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3473 struct extent_buffer *leaf,
3474 struct btrfs_chunk *chunk)
3475 {
3476 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3477 struct map_lookup *map;
3478 struct extent_map *em;
3479 u64 logical;
3480 u64 length;
3481 u64 devid;
3482 u8 uuid[BTRFS_UUID_SIZE];
3483 int num_stripes;
3484 int ret;
3485 int i;
3486
3487 logical = key->offset;
3488 length = btrfs_chunk_length(leaf, chunk);
3489
3490 read_lock(&map_tree->map_tree.lock);
3491 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3492 read_unlock(&map_tree->map_tree.lock);
3493
3494 /* already mapped? */
3495 if (em && em->start <= logical && em->start + em->len > logical) {
3496 free_extent_map(em);
3497 return 0;
3498 } else if (em) {
3499 free_extent_map(em);
3500 }
3501
3502 em = alloc_extent_map(GFP_NOFS);
3503 if (!em)
3504 return -ENOMEM;
3505 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3506 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3507 if (!map) {
3508 free_extent_map(em);
3509 return -ENOMEM;
3510 }
3511
3512 em->bdev = (struct block_device *)map;
3513 em->start = logical;
3514 em->len = length;
3515 em->block_start = 0;
3516 em->block_len = em->len;
3517
3518 map->num_stripes = num_stripes;
3519 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3520 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3521 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3522 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3523 map->type = btrfs_chunk_type(leaf, chunk);
3524 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3525 for (i = 0; i < num_stripes; i++) {
3526 map->stripes[i].physical =
3527 btrfs_stripe_offset_nr(leaf, chunk, i);
3528 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3529 read_extent_buffer(leaf, uuid, (unsigned long)
3530 btrfs_stripe_dev_uuid_nr(chunk, i),
3531 BTRFS_UUID_SIZE);
3532 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3533 NULL);
3534 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3535 kfree(map);
3536 free_extent_map(em);
3537 return -EIO;
3538 }
3539 if (!map->stripes[i].dev) {
3540 map->stripes[i].dev =
3541 add_missing_dev(root, devid, uuid);
3542 if (!map->stripes[i].dev) {
3543 kfree(map);
3544 free_extent_map(em);
3545 return -EIO;
3546 }
3547 }
3548 map->stripes[i].dev->in_fs_metadata = 1;
3549 }
3550
3551 write_lock(&map_tree->map_tree.lock);
3552 ret = add_extent_mapping(&map_tree->map_tree, em);
3553 write_unlock(&map_tree->map_tree.lock);
3554 BUG_ON(ret);
3555 free_extent_map(em);
3556
3557 return 0;
3558 }
3559
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)3560 static int fill_device_from_item(struct extent_buffer *leaf,
3561 struct btrfs_dev_item *dev_item,
3562 struct btrfs_device *device)
3563 {
3564 unsigned long ptr;
3565
3566 device->devid = btrfs_device_id(leaf, dev_item);
3567 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3568 device->total_bytes = device->disk_total_bytes;
3569 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3570 device->type = btrfs_device_type(leaf, dev_item);
3571 device->io_align = btrfs_device_io_align(leaf, dev_item);
3572 device->io_width = btrfs_device_io_width(leaf, dev_item);
3573 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3574
3575 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3576 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3577
3578 return 0;
3579 }
3580
open_seed_devices(struct btrfs_root * root,u8 * fsid)3581 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3582 {
3583 struct btrfs_fs_devices *fs_devices;
3584 int ret;
3585
3586 mutex_lock(&uuid_mutex);
3587
3588 fs_devices = root->fs_info->fs_devices->seed;
3589 while (fs_devices) {
3590 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3591 ret = 0;
3592 goto out;
3593 }
3594 fs_devices = fs_devices->seed;
3595 }
3596
3597 fs_devices = find_fsid(fsid);
3598 if (!fs_devices) {
3599 ret = -ENOENT;
3600 goto out;
3601 }
3602
3603 fs_devices = clone_fs_devices(fs_devices);
3604 if (IS_ERR(fs_devices)) {
3605 ret = PTR_ERR(fs_devices);
3606 goto out;
3607 }
3608
3609 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3610 root->fs_info->bdev_holder);
3611 if (ret)
3612 goto out;
3613
3614 if (!fs_devices->seeding) {
3615 __btrfs_close_devices(fs_devices);
3616 free_fs_devices(fs_devices);
3617 ret = -EINVAL;
3618 goto out;
3619 }
3620
3621 fs_devices->seed = root->fs_info->fs_devices->seed;
3622 root->fs_info->fs_devices->seed = fs_devices;
3623 out:
3624 mutex_unlock(&uuid_mutex);
3625 return ret;
3626 }
3627
read_one_dev(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)3628 static int read_one_dev(struct btrfs_root *root,
3629 struct extent_buffer *leaf,
3630 struct btrfs_dev_item *dev_item)
3631 {
3632 struct btrfs_device *device;
3633 u64 devid;
3634 int ret;
3635 u8 fs_uuid[BTRFS_UUID_SIZE];
3636 u8 dev_uuid[BTRFS_UUID_SIZE];
3637
3638 devid = btrfs_device_id(leaf, dev_item);
3639 read_extent_buffer(leaf, dev_uuid,
3640 (unsigned long)btrfs_device_uuid(dev_item),
3641 BTRFS_UUID_SIZE);
3642 read_extent_buffer(leaf, fs_uuid,
3643 (unsigned long)btrfs_device_fsid(dev_item),
3644 BTRFS_UUID_SIZE);
3645
3646 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3647 ret = open_seed_devices(root, fs_uuid);
3648 if (ret && !btrfs_test_opt(root, DEGRADED))
3649 return ret;
3650 }
3651
3652 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3653 if (!device || !device->bdev) {
3654 if (!btrfs_test_opt(root, DEGRADED))
3655 return -EIO;
3656
3657 if (!device) {
3658 printk(KERN_WARNING "warning devid %llu missing\n",
3659 (unsigned long long)devid);
3660 device = add_missing_dev(root, devid, dev_uuid);
3661 if (!device)
3662 return -ENOMEM;
3663 } else if (!device->missing) {
3664 /*
3665 * this happens when a device that was properly setup
3666 * in the device info lists suddenly goes bad.
3667 * device->bdev is NULL, and so we have to set
3668 * device->missing to one here
3669 */
3670 root->fs_info->fs_devices->missing_devices++;
3671 device->missing = 1;
3672 }
3673 }
3674
3675 if (device->fs_devices != root->fs_info->fs_devices) {
3676 BUG_ON(device->writeable);
3677 if (device->generation !=
3678 btrfs_device_generation(leaf, dev_item))
3679 return -EINVAL;
3680 }
3681
3682 fill_device_from_item(leaf, dev_item, device);
3683 device->dev_root = root->fs_info->dev_root;
3684 device->in_fs_metadata = 1;
3685 if (device->writeable)
3686 device->fs_devices->total_rw_bytes += device->total_bytes;
3687 ret = 0;
3688 return ret;
3689 }
3690
btrfs_read_super_device(struct btrfs_root * root,struct extent_buffer * buf)3691 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3692 {
3693 struct btrfs_dev_item *dev_item;
3694
3695 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3696 dev_item);
3697 return read_one_dev(root, buf, dev_item);
3698 }
3699
btrfs_read_sys_array(struct btrfs_root * root)3700 int btrfs_read_sys_array(struct btrfs_root *root)
3701 {
3702 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3703 struct extent_buffer *sb;
3704 struct btrfs_disk_key *disk_key;
3705 struct btrfs_chunk *chunk;
3706 u8 *ptr;
3707 unsigned long sb_ptr;
3708 int ret = 0;
3709 u32 num_stripes;
3710 u32 array_size;
3711 u32 len = 0;
3712 u32 cur;
3713 struct btrfs_key key;
3714
3715 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3716 BTRFS_SUPER_INFO_SIZE);
3717 if (!sb)
3718 return -ENOMEM;
3719 btrfs_set_buffer_uptodate(sb);
3720 btrfs_set_buffer_lockdep_class(sb, 0);
3721
3722 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3723 array_size = btrfs_super_sys_array_size(super_copy);
3724
3725 ptr = super_copy->sys_chunk_array;
3726 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3727 cur = 0;
3728
3729 while (cur < array_size) {
3730 disk_key = (struct btrfs_disk_key *)ptr;
3731 btrfs_disk_key_to_cpu(&key, disk_key);
3732
3733 len = sizeof(*disk_key); ptr += len;
3734 sb_ptr += len;
3735 cur += len;
3736
3737 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3738 chunk = (struct btrfs_chunk *)sb_ptr;
3739 ret = read_one_chunk(root, &key, sb, chunk);
3740 if (ret)
3741 break;
3742 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3743 len = btrfs_chunk_item_size(num_stripes);
3744 } else {
3745 ret = -EIO;
3746 break;
3747 }
3748 ptr += len;
3749 sb_ptr += len;
3750 cur += len;
3751 }
3752 free_extent_buffer(sb);
3753 return ret;
3754 }
3755
btrfs_read_chunk_tree(struct btrfs_root * root)3756 int btrfs_read_chunk_tree(struct btrfs_root *root)
3757 {
3758 struct btrfs_path *path;
3759 struct extent_buffer *leaf;
3760 struct btrfs_key key;
3761 struct btrfs_key found_key;
3762 int ret;
3763 int slot;
3764
3765 root = root->fs_info->chunk_root;
3766
3767 path = btrfs_alloc_path();
3768 if (!path)
3769 return -ENOMEM;
3770
3771 /* first we search for all of the device items, and then we
3772 * read in all of the chunk items. This way we can create chunk
3773 * mappings that reference all of the devices that are afound
3774 */
3775 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3776 key.offset = 0;
3777 key.type = 0;
3778 again:
3779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3780 if (ret < 0)
3781 goto error;
3782 while (1) {
3783 leaf = path->nodes[0];
3784 slot = path->slots[0];
3785 if (slot >= btrfs_header_nritems(leaf)) {
3786 ret = btrfs_next_leaf(root, path);
3787 if (ret == 0)
3788 continue;
3789 if (ret < 0)
3790 goto error;
3791 break;
3792 }
3793 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3794 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3795 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3796 break;
3797 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3798 struct btrfs_dev_item *dev_item;
3799 dev_item = btrfs_item_ptr(leaf, slot,
3800 struct btrfs_dev_item);
3801 ret = read_one_dev(root, leaf, dev_item);
3802 if (ret)
3803 goto error;
3804 }
3805 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3806 struct btrfs_chunk *chunk;
3807 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3808 ret = read_one_chunk(root, &found_key, leaf, chunk);
3809 if (ret)
3810 goto error;
3811 }
3812 path->slots[0]++;
3813 }
3814 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3815 key.objectid = 0;
3816 btrfs_release_path(root, path);
3817 goto again;
3818 }
3819 ret = 0;
3820 error:
3821 btrfs_free_path(path);
3822 return ret;
3823 }
3824