1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include "ctree.h"
24 #include "free-space-cache.h"
25 #include "transaction.h"
26 #include "disk-io.h"
27 #include "extent_io.h"
28 
29 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
30 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
31 
32 static void recalculate_thresholds(struct btrfs_block_group_cache
33 				   *block_group);
34 static int link_free_space(struct btrfs_block_group_cache *block_group,
35 			   struct btrfs_free_space *info);
36 
lookup_free_space_inode(struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)37 struct inode *lookup_free_space_inode(struct btrfs_root *root,
38 				      struct btrfs_block_group_cache
39 				      *block_group, struct btrfs_path *path)
40 {
41 	struct btrfs_key key;
42 	struct btrfs_key location;
43 	struct btrfs_disk_key disk_key;
44 	struct btrfs_free_space_header *header;
45 	struct extent_buffer *leaf;
46 	struct inode *inode = NULL;
47 	int ret;
48 
49 	spin_lock(&block_group->lock);
50 	if (block_group->inode)
51 		inode = igrab(block_group->inode);
52 	spin_unlock(&block_group->lock);
53 	if (inode)
54 		return inode;
55 
56 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
57 	key.offset = block_group->key.objectid;
58 	key.type = 0;
59 
60 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61 	if (ret < 0)
62 		return ERR_PTR(ret);
63 	if (ret > 0) {
64 		btrfs_release_path(root, path);
65 		return ERR_PTR(-ENOENT);
66 	}
67 
68 	leaf = path->nodes[0];
69 	header = btrfs_item_ptr(leaf, path->slots[0],
70 				struct btrfs_free_space_header);
71 	btrfs_free_space_key(leaf, header, &disk_key);
72 	btrfs_disk_key_to_cpu(&location, &disk_key);
73 	btrfs_release_path(root, path);
74 
75 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
76 	if (!inode)
77 		return ERR_PTR(-ENOENT);
78 	if (IS_ERR(inode))
79 		return inode;
80 	if (is_bad_inode(inode)) {
81 		iput(inode);
82 		return ERR_PTR(-ENOENT);
83 	}
84 
85 	inode->i_mapping->flags &= ~__GFP_FS;
86 
87 	spin_lock(&block_group->lock);
88 	if (!root->fs_info->closing) {
89 		block_group->inode = igrab(inode);
90 		block_group->iref = 1;
91 	}
92 	spin_unlock(&block_group->lock);
93 
94 	return inode;
95 }
96 
create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)97 int create_free_space_inode(struct btrfs_root *root,
98 			    struct btrfs_trans_handle *trans,
99 			    struct btrfs_block_group_cache *block_group,
100 			    struct btrfs_path *path)
101 {
102 	struct btrfs_key key;
103 	struct btrfs_disk_key disk_key;
104 	struct btrfs_free_space_header *header;
105 	struct btrfs_inode_item *inode_item;
106 	struct extent_buffer *leaf;
107 	u64 objectid;
108 	int ret;
109 
110 	ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
111 	if (ret < 0)
112 		return ret;
113 
114 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
115 	if (ret)
116 		return ret;
117 
118 	leaf = path->nodes[0];
119 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
120 				    struct btrfs_inode_item);
121 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
122 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
123 			     sizeof(*inode_item));
124 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
125 	btrfs_set_inode_size(leaf, inode_item, 0);
126 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
127 	btrfs_set_inode_uid(leaf, inode_item, 0);
128 	btrfs_set_inode_gid(leaf, inode_item, 0);
129 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
130 	btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
131 			      BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
132 	btrfs_set_inode_nlink(leaf, inode_item, 1);
133 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
134 	btrfs_set_inode_block_group(leaf, inode_item,
135 				    block_group->key.objectid);
136 	btrfs_mark_buffer_dirty(leaf);
137 	btrfs_release_path(root, path);
138 
139 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
140 	key.offset = block_group->key.objectid;
141 	key.type = 0;
142 
143 	ret = btrfs_insert_empty_item(trans, root, path, &key,
144 				      sizeof(struct btrfs_free_space_header));
145 	if (ret < 0) {
146 		btrfs_release_path(root, path);
147 		return ret;
148 	}
149 	leaf = path->nodes[0];
150 	header = btrfs_item_ptr(leaf, path->slots[0],
151 				struct btrfs_free_space_header);
152 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
153 	btrfs_set_free_space_key(leaf, header, &disk_key);
154 	btrfs_mark_buffer_dirty(leaf);
155 	btrfs_release_path(root, path);
156 
157 	return 0;
158 }
159 
btrfs_truncate_free_space_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct inode * inode)160 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
161 				    struct btrfs_trans_handle *trans,
162 				    struct btrfs_path *path,
163 				    struct inode *inode)
164 {
165 	loff_t oldsize;
166 	int ret = 0;
167 
168 	trans->block_rsv = root->orphan_block_rsv;
169 	ret = btrfs_block_rsv_check(trans, root,
170 				    root->orphan_block_rsv,
171 				    0, 5);
172 	if (ret)
173 		return ret;
174 
175 	oldsize = i_size_read(inode);
176 	btrfs_i_size_write(inode, 0);
177 	truncate_pagecache(inode, oldsize, 0);
178 
179 	/*
180 	 * We don't need an orphan item because truncating the free space cache
181 	 * will never be split across transactions.
182 	 */
183 	ret = btrfs_truncate_inode_items(trans, root, inode,
184 					 0, BTRFS_EXTENT_DATA_KEY);
185 	if (ret) {
186 		WARN_ON(1);
187 		return ret;
188 	}
189 
190 	return btrfs_update_inode(trans, root, inode);
191 }
192 
readahead_cache(struct inode * inode)193 static int readahead_cache(struct inode *inode)
194 {
195 	struct file_ra_state *ra;
196 	unsigned long last_index;
197 
198 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
199 	if (!ra)
200 		return -ENOMEM;
201 
202 	file_ra_state_init(ra, inode->i_mapping);
203 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
204 
205 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
206 
207 	kfree(ra);
208 
209 	return 0;
210 }
211 
load_free_space_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)212 int load_free_space_cache(struct btrfs_fs_info *fs_info,
213 			  struct btrfs_block_group_cache *block_group)
214 {
215 	struct btrfs_root *root = fs_info->tree_root;
216 	struct inode *inode;
217 	struct btrfs_free_space_header *header;
218 	struct extent_buffer *leaf;
219 	struct page *page;
220 	struct btrfs_path *path;
221 	u32 *checksums = NULL, *crc;
222 	char *disk_crcs = NULL;
223 	struct btrfs_key key;
224 	struct list_head bitmaps;
225 	u64 num_entries;
226 	u64 num_bitmaps;
227 	u64 generation;
228 	u64 used = btrfs_block_group_used(&block_group->item);
229 	u32 cur_crc = ~(u32)0;
230 	pgoff_t index = 0;
231 	unsigned long first_page_offset;
232 	int num_checksums;
233 	int ret = 0;
234 
235 	/*
236 	 * If we're unmounting then just return, since this does a search on the
237 	 * normal root and not the commit root and we could deadlock.
238 	 */
239 	smp_mb();
240 	if (fs_info->closing)
241 		return 0;
242 
243 	/*
244 	 * If this block group has been marked to be cleared for one reason or
245 	 * another then we can't trust the on disk cache, so just return.
246 	 */
247 	spin_lock(&block_group->lock);
248 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
249 		spin_unlock(&block_group->lock);
250 		return 0;
251 	}
252 	spin_unlock(&block_group->lock);
253 
254 	INIT_LIST_HEAD(&bitmaps);
255 
256 	path = btrfs_alloc_path();
257 	if (!path)
258 		return 0;
259 
260 	inode = lookup_free_space_inode(root, block_group, path);
261 	if (IS_ERR(inode)) {
262 		btrfs_free_path(path);
263 		return 0;
264 	}
265 
266 	/* Nothing in the space cache, goodbye */
267 	if (!i_size_read(inode)) {
268 		btrfs_free_path(path);
269 		goto out;
270 	}
271 
272 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
273 	key.offset = block_group->key.objectid;
274 	key.type = 0;
275 
276 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
277 	if (ret) {
278 		btrfs_free_path(path);
279 		goto out;
280 	}
281 
282 	leaf = path->nodes[0];
283 	header = btrfs_item_ptr(leaf, path->slots[0],
284 				struct btrfs_free_space_header);
285 	num_entries = btrfs_free_space_entries(leaf, header);
286 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
287 	generation = btrfs_free_space_generation(leaf, header);
288 	btrfs_free_path(path);
289 
290 	if (BTRFS_I(inode)->generation != generation) {
291 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
292 		       " not match free space cache generation (%llu) for "
293 		       "block group %llu\n",
294 		       (unsigned long long)BTRFS_I(inode)->generation,
295 		       (unsigned long long)generation,
296 		       (unsigned long long)block_group->key.objectid);
297 		goto free_cache;
298 	}
299 
300 	if (!num_entries)
301 		goto out;
302 
303 	/* Setup everything for doing checksumming */
304 	num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
305 	checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
306 	if (!checksums)
307 		goto out;
308 	first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
309 	disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
310 	if (!disk_crcs)
311 		goto out;
312 
313 	ret = readahead_cache(inode);
314 	if (ret) {
315 		ret = 0;
316 		goto out;
317 	}
318 
319 	while (1) {
320 		struct btrfs_free_space_entry *entry;
321 		struct btrfs_free_space *e;
322 		void *addr;
323 		unsigned long offset = 0;
324 		unsigned long start_offset = 0;
325 		int need_loop = 0;
326 
327 		if (!num_entries && !num_bitmaps)
328 			break;
329 
330 		if (index == 0) {
331 			start_offset = first_page_offset;
332 			offset = start_offset;
333 		}
334 
335 		page = grab_cache_page(inode->i_mapping, index);
336 		if (!page) {
337 			ret = 0;
338 			goto free_cache;
339 		}
340 
341 		if (!PageUptodate(page)) {
342 			btrfs_readpage(NULL, page);
343 			lock_page(page);
344 			if (!PageUptodate(page)) {
345 				unlock_page(page);
346 				page_cache_release(page);
347 				printk(KERN_ERR "btrfs: error reading free "
348 				       "space cache: %llu\n",
349 				       (unsigned long long)
350 				       block_group->key.objectid);
351 				goto free_cache;
352 			}
353 		}
354 		addr = kmap(page);
355 
356 		if (index == 0) {
357 			u64 *gen;
358 
359 			memcpy(disk_crcs, addr, first_page_offset);
360 			gen = addr + (sizeof(u32) * num_checksums);
361 			if (*gen != BTRFS_I(inode)->generation) {
362 				printk(KERN_ERR "btrfs: space cache generation"
363 				       " (%llu) does not match inode (%llu) "
364 				       "for block group %llu\n",
365 				       (unsigned long long)*gen,
366 				       (unsigned long long)
367 				       BTRFS_I(inode)->generation,
368 				       (unsigned long long)
369 				       block_group->key.objectid);
370 				kunmap(page);
371 				unlock_page(page);
372 				page_cache_release(page);
373 				goto free_cache;
374 			}
375 			crc = (u32 *)disk_crcs;
376 		}
377 		entry = addr + start_offset;
378 
379 		/* First lets check our crc before we do anything fun */
380 		cur_crc = ~(u32)0;
381 		cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
382 					  PAGE_CACHE_SIZE - start_offset);
383 		btrfs_csum_final(cur_crc, (char *)&cur_crc);
384 		if (cur_crc != *crc) {
385 			printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
386 			       "block group %llu\n", index,
387 			       (unsigned long long)block_group->key.objectid);
388 			kunmap(page);
389 			unlock_page(page);
390 			page_cache_release(page);
391 			goto free_cache;
392 		}
393 		crc++;
394 
395 		while (1) {
396 			if (!num_entries)
397 				break;
398 
399 			need_loop = 1;
400 			e = kmem_cache_zalloc(btrfs_free_space_cachep,
401 					      GFP_NOFS);
402 			if (!e) {
403 				kunmap(page);
404 				unlock_page(page);
405 				page_cache_release(page);
406 				goto free_cache;
407 			}
408 
409 			e->offset = le64_to_cpu(entry->offset);
410 			e->bytes = le64_to_cpu(entry->bytes);
411 			if (!e->bytes) {
412 				kunmap(page);
413 				kmem_cache_free(btrfs_free_space_cachep, e);
414 				unlock_page(page);
415 				page_cache_release(page);
416 				goto free_cache;
417 			}
418 
419 			if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
420 				spin_lock(&block_group->tree_lock);
421 				ret = link_free_space(block_group, e);
422 				spin_unlock(&block_group->tree_lock);
423 				BUG_ON(ret);
424 			} else {
425 				e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
426 				if (!e->bitmap) {
427 					kunmap(page);
428 					kmem_cache_free(
429 						btrfs_free_space_cachep, e);
430 					unlock_page(page);
431 					page_cache_release(page);
432 					goto free_cache;
433 				}
434 				spin_lock(&block_group->tree_lock);
435 				ret = link_free_space(block_group, e);
436 				block_group->total_bitmaps++;
437 				recalculate_thresholds(block_group);
438 				spin_unlock(&block_group->tree_lock);
439 				list_add_tail(&e->list, &bitmaps);
440 			}
441 
442 			num_entries--;
443 			offset += sizeof(struct btrfs_free_space_entry);
444 			if (offset + sizeof(struct btrfs_free_space_entry) >=
445 			    PAGE_CACHE_SIZE)
446 				break;
447 			entry++;
448 		}
449 
450 		/*
451 		 * We read an entry out of this page, we need to move on to the
452 		 * next page.
453 		 */
454 		if (need_loop) {
455 			kunmap(page);
456 			goto next;
457 		}
458 
459 		/*
460 		 * We add the bitmaps at the end of the entries in order that
461 		 * the bitmap entries are added to the cache.
462 		 */
463 		e = list_entry(bitmaps.next, struct btrfs_free_space, list);
464 		list_del_init(&e->list);
465 		memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
466 		kunmap(page);
467 		num_bitmaps--;
468 next:
469 		unlock_page(page);
470 		page_cache_release(page);
471 		index++;
472 	}
473 
474 	spin_lock(&block_group->tree_lock);
475 	if (block_group->free_space != (block_group->key.offset - used -
476 					block_group->bytes_super)) {
477 		spin_unlock(&block_group->tree_lock);
478 		printk(KERN_ERR "block group %llu has an wrong amount of free "
479 		       "space\n", block_group->key.objectid);
480 		ret = 0;
481 		goto free_cache;
482 	}
483 	spin_unlock(&block_group->tree_lock);
484 
485 	ret = 1;
486 out:
487 	kfree(checksums);
488 	kfree(disk_crcs);
489 	iput(inode);
490 	return ret;
491 
492 free_cache:
493 	/* This cache is bogus, make sure it gets cleared */
494 	spin_lock(&block_group->lock);
495 	block_group->disk_cache_state = BTRFS_DC_CLEAR;
496 	spin_unlock(&block_group->lock);
497 	btrfs_remove_free_space_cache(block_group);
498 	goto out;
499 }
500 
btrfs_write_out_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)501 int btrfs_write_out_cache(struct btrfs_root *root,
502 			  struct btrfs_trans_handle *trans,
503 			  struct btrfs_block_group_cache *block_group,
504 			  struct btrfs_path *path)
505 {
506 	struct btrfs_free_space_header *header;
507 	struct extent_buffer *leaf;
508 	struct inode *inode;
509 	struct rb_node *node;
510 	struct list_head *pos, *n;
511 	struct page **pages;
512 	struct page *page;
513 	struct extent_state *cached_state = NULL;
514 	struct btrfs_free_cluster *cluster = NULL;
515 	struct extent_io_tree *unpin = NULL;
516 	struct list_head bitmap_list;
517 	struct btrfs_key key;
518 	u64 start, end, len;
519 	u64 bytes = 0;
520 	u32 *crc, *checksums;
521 	unsigned long first_page_offset;
522 	int index = 0, num_pages = 0;
523 	int entries = 0;
524 	int bitmaps = 0;
525 	int ret = 0;
526 	bool next_page = false;
527 	bool out_of_space = false;
528 
529 	root = root->fs_info->tree_root;
530 
531 	INIT_LIST_HEAD(&bitmap_list);
532 
533 	spin_lock(&block_group->lock);
534 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
535 		spin_unlock(&block_group->lock);
536 		return 0;
537 	}
538 	spin_unlock(&block_group->lock);
539 
540 	inode = lookup_free_space_inode(root, block_group, path);
541 	if (IS_ERR(inode))
542 		return 0;
543 
544 	if (!i_size_read(inode)) {
545 		iput(inode);
546 		return 0;
547 	}
548 
549 	node = rb_first(&block_group->free_space_offset);
550 	if (!node) {
551 		iput(inode);
552 		return 0;
553 	}
554 
555 	num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
556 		PAGE_CACHE_SHIFT;
557 	filemap_write_and_wait(inode->i_mapping);
558 	btrfs_wait_ordered_range(inode, inode->i_size &
559 				 ~(root->sectorsize - 1), (u64)-1);
560 
561 	/* We need a checksum per page. */
562 	crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
563 	if (!crc) {
564 		iput(inode);
565 		return 0;
566 	}
567 
568 	pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
569 	if (!pages) {
570 		kfree(crc);
571 		iput(inode);
572 		return 0;
573 	}
574 
575 	/* Since the first page has all of our checksums and our generation we
576 	 * need to calculate the offset into the page that we can start writing
577 	 * our entries.
578 	 */
579 	first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
580 
581 	/* Get the cluster for this block_group if it exists */
582 	if (!list_empty(&block_group->cluster_list))
583 		cluster = list_entry(block_group->cluster_list.next,
584 				     struct btrfs_free_cluster,
585 				     block_group_list);
586 
587 	/*
588 	 * We shouldn't have switched the pinned extents yet so this is the
589 	 * right one
590 	 */
591 	unpin = root->fs_info->pinned_extents;
592 
593 	/*
594 	 * Lock all pages first so we can lock the extent safely.
595 	 *
596 	 * NOTE: Because we hold the ref the entire time we're going to write to
597 	 * the page find_get_page should never fail, so we don't do a check
598 	 * after find_get_page at this point.  Just putting this here so people
599 	 * know and don't freak out.
600 	 */
601 	while (index < num_pages) {
602 		page = grab_cache_page(inode->i_mapping, index);
603 		if (!page) {
604 			int i;
605 
606 			for (i = 0; i < num_pages; i++) {
607 				unlock_page(pages[i]);
608 				page_cache_release(pages[i]);
609 			}
610 			goto out_free;
611 		}
612 		pages[index] = page;
613 		index++;
614 	}
615 
616 	index = 0;
617 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
618 			 0, &cached_state, GFP_NOFS);
619 
620 	/*
621 	 * When searching for pinned extents, we need to start at our start
622 	 * offset.
623 	 */
624 	start = block_group->key.objectid;
625 
626 	/* Write out the extent entries */
627 	do {
628 		struct btrfs_free_space_entry *entry;
629 		void *addr;
630 		unsigned long offset = 0;
631 		unsigned long start_offset = 0;
632 
633 		next_page = false;
634 
635 		if (index == 0) {
636 			start_offset = first_page_offset;
637 			offset = start_offset;
638 		}
639 
640 		if (index >= num_pages) {
641 			out_of_space = true;
642 			break;
643 		}
644 
645 		page = pages[index];
646 
647 		addr = kmap(page);
648 		entry = addr + start_offset;
649 
650 		memset(addr, 0, PAGE_CACHE_SIZE);
651 		while (node && !next_page) {
652 			struct btrfs_free_space *e;
653 
654 			e = rb_entry(node, struct btrfs_free_space, offset_index);
655 			entries++;
656 
657 			entry->offset = cpu_to_le64(e->offset);
658 			entry->bytes = cpu_to_le64(e->bytes);
659 			if (e->bitmap) {
660 				entry->type = BTRFS_FREE_SPACE_BITMAP;
661 				list_add_tail(&e->list, &bitmap_list);
662 				bitmaps++;
663 			} else {
664 				entry->type = BTRFS_FREE_SPACE_EXTENT;
665 			}
666 			node = rb_next(node);
667 			if (!node && cluster) {
668 				node = rb_first(&cluster->root);
669 				cluster = NULL;
670 			}
671 			offset += sizeof(struct btrfs_free_space_entry);
672 			if (offset + sizeof(struct btrfs_free_space_entry) >=
673 			    PAGE_CACHE_SIZE)
674 				next_page = true;
675 			entry++;
676 		}
677 
678 		/*
679 		 * We want to add any pinned extents to our free space cache
680 		 * so we don't leak the space
681 		 */
682 		while (!next_page && (start < block_group->key.objectid +
683 				      block_group->key.offset)) {
684 			ret = find_first_extent_bit(unpin, start, &start, &end,
685 						    EXTENT_DIRTY);
686 			if (ret) {
687 				ret = 0;
688 				break;
689 			}
690 
691 			/* This pinned extent is out of our range */
692 			if (start >= block_group->key.objectid +
693 			    block_group->key.offset)
694 				break;
695 
696 			len = block_group->key.objectid +
697 				block_group->key.offset - start;
698 			len = min(len, end + 1 - start);
699 
700 			entries++;
701 			entry->offset = cpu_to_le64(start);
702 			entry->bytes = cpu_to_le64(len);
703 			entry->type = BTRFS_FREE_SPACE_EXTENT;
704 
705 			start = end + 1;
706 			offset += sizeof(struct btrfs_free_space_entry);
707 			if (offset + sizeof(struct btrfs_free_space_entry) >=
708 			    PAGE_CACHE_SIZE)
709 				next_page = true;
710 			entry++;
711 		}
712 		*crc = ~(u32)0;
713 		*crc = btrfs_csum_data(root, addr + start_offset, *crc,
714 				       PAGE_CACHE_SIZE - start_offset);
715 		kunmap(page);
716 
717 		btrfs_csum_final(*crc, (char *)crc);
718 		crc++;
719 
720 		bytes += PAGE_CACHE_SIZE;
721 
722 		index++;
723 	} while (node || next_page);
724 
725 	/* Write out the bitmaps */
726 	list_for_each_safe(pos, n, &bitmap_list) {
727 		void *addr;
728 		struct btrfs_free_space *entry =
729 			list_entry(pos, struct btrfs_free_space, list);
730 
731 		if (index >= num_pages) {
732 			out_of_space = true;
733 			break;
734 		}
735 		page = pages[index];
736 
737 		addr = kmap(page);
738 		memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
739 		*crc = ~(u32)0;
740 		*crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
741 		kunmap(page);
742 		btrfs_csum_final(*crc, (char *)crc);
743 		crc++;
744 		bytes += PAGE_CACHE_SIZE;
745 
746 		list_del_init(&entry->list);
747 		index++;
748 	}
749 
750 	if (out_of_space) {
751 		btrfs_drop_pages(pages, num_pages);
752 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
753 				     i_size_read(inode) - 1, &cached_state,
754 				     GFP_NOFS);
755 		ret = 0;
756 		goto out_free;
757 	}
758 
759 	/* Zero out the rest of the pages just to make sure */
760 	while (index < num_pages) {
761 		void *addr;
762 
763 		page = pages[index];
764 		addr = kmap(page);
765 		memset(addr, 0, PAGE_CACHE_SIZE);
766 		kunmap(page);
767 		bytes += PAGE_CACHE_SIZE;
768 		index++;
769 	}
770 
771 	/* Write the checksums and trans id to the first page */
772 	{
773 		void *addr;
774 		u64 *gen;
775 
776 		page = pages[0];
777 
778 		addr = kmap(page);
779 		memcpy(addr, checksums, sizeof(u32) * num_pages);
780 		gen = addr + (sizeof(u32) * num_pages);
781 		*gen = trans->transid;
782 		kunmap(page);
783 	}
784 
785 	ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
786 					    bytes, &cached_state);
787 	btrfs_drop_pages(pages, num_pages);
788 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
789 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
790 
791 	if (ret) {
792 		ret = 0;
793 		goto out_free;
794 	}
795 
796 	BTRFS_I(inode)->generation = trans->transid;
797 
798 	filemap_write_and_wait(inode->i_mapping);
799 
800 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
801 	key.offset = block_group->key.objectid;
802 	key.type = 0;
803 
804 	ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
805 	if (ret < 0) {
806 		ret = 0;
807 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
808 				 EXTENT_DIRTY | EXTENT_DELALLOC |
809 				 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
810 		goto out_free;
811 	}
812 	leaf = path->nodes[0];
813 	if (ret > 0) {
814 		struct btrfs_key found_key;
815 		BUG_ON(!path->slots[0]);
816 		path->slots[0]--;
817 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
818 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
819 		    found_key.offset != block_group->key.objectid) {
820 			ret = 0;
821 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
822 					 EXTENT_DIRTY | EXTENT_DELALLOC |
823 					 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
824 					 GFP_NOFS);
825 			btrfs_release_path(root, path);
826 			goto out_free;
827 		}
828 	}
829 	header = btrfs_item_ptr(leaf, path->slots[0],
830 				struct btrfs_free_space_header);
831 	btrfs_set_free_space_entries(leaf, header, entries);
832 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
833 	btrfs_set_free_space_generation(leaf, header, trans->transid);
834 	btrfs_mark_buffer_dirty(leaf);
835 	btrfs_release_path(root, path);
836 
837 	ret = 1;
838 
839 out_free:
840 	if (ret == 0) {
841 		invalidate_inode_pages2_range(inode->i_mapping, 0, index);
842 		spin_lock(&block_group->lock);
843 		block_group->disk_cache_state = BTRFS_DC_ERROR;
844 		spin_unlock(&block_group->lock);
845 		BTRFS_I(inode)->generation = 0;
846 	}
847 	kfree(checksums);
848 	kfree(pages);
849 	btrfs_update_inode(trans, root, inode);
850 	iput(inode);
851 	return ret;
852 }
853 
offset_to_bit(u64 bitmap_start,u64 sectorsize,u64 offset)854 static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
855 					  u64 offset)
856 {
857 	BUG_ON(offset < bitmap_start);
858 	offset -= bitmap_start;
859 	return (unsigned long)(div64_u64(offset, sectorsize));
860 }
861 
bytes_to_bits(u64 bytes,u64 sectorsize)862 static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
863 {
864 	return (unsigned long)(div64_u64(bytes, sectorsize));
865 }
866 
offset_to_bitmap(struct btrfs_block_group_cache * block_group,u64 offset)867 static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
868 				   u64 offset)
869 {
870 	u64 bitmap_start;
871 	u64 bytes_per_bitmap;
872 
873 	bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
874 	bitmap_start = offset - block_group->key.objectid;
875 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
876 	bitmap_start *= bytes_per_bitmap;
877 	bitmap_start += block_group->key.objectid;
878 
879 	return bitmap_start;
880 }
881 
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)882 static int tree_insert_offset(struct rb_root *root, u64 offset,
883 			      struct rb_node *node, int bitmap)
884 {
885 	struct rb_node **p = &root->rb_node;
886 	struct rb_node *parent = NULL;
887 	struct btrfs_free_space *info;
888 
889 	while (*p) {
890 		parent = *p;
891 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
892 
893 		if (offset < info->offset) {
894 			p = &(*p)->rb_left;
895 		} else if (offset > info->offset) {
896 			p = &(*p)->rb_right;
897 		} else {
898 			/*
899 			 * we could have a bitmap entry and an extent entry
900 			 * share the same offset.  If this is the case, we want
901 			 * the extent entry to always be found first if we do a
902 			 * linear search through the tree, since we want to have
903 			 * the quickest allocation time, and allocating from an
904 			 * extent is faster than allocating from a bitmap.  So
905 			 * if we're inserting a bitmap and we find an entry at
906 			 * this offset, we want to go right, or after this entry
907 			 * logically.  If we are inserting an extent and we've
908 			 * found a bitmap, we want to go left, or before
909 			 * logically.
910 			 */
911 			if (bitmap) {
912 				WARN_ON(info->bitmap);
913 				p = &(*p)->rb_right;
914 			} else {
915 				WARN_ON(!info->bitmap);
916 				p = &(*p)->rb_left;
917 			}
918 		}
919 	}
920 
921 	rb_link_node(node, parent, p);
922 	rb_insert_color(node, root);
923 
924 	return 0;
925 }
926 
927 /*
928  * searches the tree for the given offset.
929  *
930  * fuzzy - If this is set, then we are trying to make an allocation, and we just
931  * want a section that has at least bytes size and comes at or after the given
932  * offset.
933  */
934 static struct btrfs_free_space *
tree_search_offset(struct btrfs_block_group_cache * block_group,u64 offset,int bitmap_only,int fuzzy)935 tree_search_offset(struct btrfs_block_group_cache *block_group,
936 		   u64 offset, int bitmap_only, int fuzzy)
937 {
938 	struct rb_node *n = block_group->free_space_offset.rb_node;
939 	struct btrfs_free_space *entry, *prev = NULL;
940 
941 	/* find entry that is closest to the 'offset' */
942 	while (1) {
943 		if (!n) {
944 			entry = NULL;
945 			break;
946 		}
947 
948 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
949 		prev = entry;
950 
951 		if (offset < entry->offset)
952 			n = n->rb_left;
953 		else if (offset > entry->offset)
954 			n = n->rb_right;
955 		else
956 			break;
957 	}
958 
959 	if (bitmap_only) {
960 		if (!entry)
961 			return NULL;
962 		if (entry->bitmap)
963 			return entry;
964 
965 		/*
966 		 * bitmap entry and extent entry may share same offset,
967 		 * in that case, bitmap entry comes after extent entry.
968 		 */
969 		n = rb_next(n);
970 		if (!n)
971 			return NULL;
972 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
973 		if (entry->offset != offset)
974 			return NULL;
975 
976 		WARN_ON(!entry->bitmap);
977 		return entry;
978 	} else if (entry) {
979 		if (entry->bitmap) {
980 			/*
981 			 * if previous extent entry covers the offset,
982 			 * we should return it instead of the bitmap entry
983 			 */
984 			n = &entry->offset_index;
985 			while (1) {
986 				n = rb_prev(n);
987 				if (!n)
988 					break;
989 				prev = rb_entry(n, struct btrfs_free_space,
990 						offset_index);
991 				if (!prev->bitmap) {
992 					if (prev->offset + prev->bytes > offset)
993 						entry = prev;
994 					break;
995 				}
996 			}
997 		}
998 		return entry;
999 	}
1000 
1001 	if (!prev)
1002 		return NULL;
1003 
1004 	/* find last entry before the 'offset' */
1005 	entry = prev;
1006 	if (entry->offset > offset) {
1007 		n = rb_prev(&entry->offset_index);
1008 		if (n) {
1009 			entry = rb_entry(n, struct btrfs_free_space,
1010 					offset_index);
1011 			BUG_ON(entry->offset > offset);
1012 		} else {
1013 			if (fuzzy)
1014 				return entry;
1015 			else
1016 				return NULL;
1017 		}
1018 	}
1019 
1020 	if (entry->bitmap) {
1021 		n = &entry->offset_index;
1022 		while (1) {
1023 			n = rb_prev(n);
1024 			if (!n)
1025 				break;
1026 			prev = rb_entry(n, struct btrfs_free_space,
1027 					offset_index);
1028 			if (!prev->bitmap) {
1029 				if (prev->offset + prev->bytes > offset)
1030 					return prev;
1031 				break;
1032 			}
1033 		}
1034 		if (entry->offset + BITS_PER_BITMAP *
1035 		    block_group->sectorsize > offset)
1036 			return entry;
1037 	} else if (entry->offset + entry->bytes > offset)
1038 		return entry;
1039 
1040 	if (!fuzzy)
1041 		return NULL;
1042 
1043 	while (1) {
1044 		if (entry->bitmap) {
1045 			if (entry->offset + BITS_PER_BITMAP *
1046 			    block_group->sectorsize > offset)
1047 				break;
1048 		} else {
1049 			if (entry->offset + entry->bytes > offset)
1050 				break;
1051 		}
1052 
1053 		n = rb_next(&entry->offset_index);
1054 		if (!n)
1055 			return NULL;
1056 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1057 	}
1058 	return entry;
1059 }
1060 
1061 static inline void
__unlink_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info)1062 __unlink_free_space(struct btrfs_block_group_cache *block_group,
1063 		    struct btrfs_free_space *info)
1064 {
1065 	rb_erase(&info->offset_index, &block_group->free_space_offset);
1066 	block_group->free_extents--;
1067 }
1068 
unlink_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info)1069 static void unlink_free_space(struct btrfs_block_group_cache *block_group,
1070 			      struct btrfs_free_space *info)
1071 {
1072 	__unlink_free_space(block_group, info);
1073 	block_group->free_space -= info->bytes;
1074 }
1075 
link_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info)1076 static int link_free_space(struct btrfs_block_group_cache *block_group,
1077 			   struct btrfs_free_space *info)
1078 {
1079 	int ret = 0;
1080 
1081 	BUG_ON(!info->bitmap && !info->bytes);
1082 	ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
1083 				 &info->offset_index, (info->bitmap != NULL));
1084 	if (ret)
1085 		return ret;
1086 
1087 	block_group->free_space += info->bytes;
1088 	block_group->free_extents++;
1089 	return ret;
1090 }
1091 
recalculate_thresholds(struct btrfs_block_group_cache * block_group)1092 static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
1093 {
1094 	u64 max_bytes;
1095 	u64 bitmap_bytes;
1096 	u64 extent_bytes;
1097 	u64 size = block_group->key.offset;
1098 
1099 	/*
1100 	 * The goal is to keep the total amount of memory used per 1gb of space
1101 	 * at or below 32k, so we need to adjust how much memory we allow to be
1102 	 * used by extent based free space tracking
1103 	 */
1104 	if (size < 1024 * 1024 * 1024)
1105 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1106 	else
1107 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1108 			div64_u64(size, 1024 * 1024 * 1024);
1109 
1110 	/*
1111 	 * we want to account for 1 more bitmap than what we have so we can make
1112 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1113 	 * we add more bitmaps.
1114 	 */
1115 	bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1116 
1117 	if (bitmap_bytes >= max_bytes) {
1118 		block_group->extents_thresh = 0;
1119 		return;
1120 	}
1121 
1122 	/*
1123 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1124 	 * bytes we can have, or whatever is less than that.
1125 	 */
1126 	extent_bytes = max_bytes - bitmap_bytes;
1127 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1128 
1129 	block_group->extents_thresh =
1130 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1131 }
1132 
bitmap_clear_bits(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info,u64 offset,u64 bytes)1133 static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
1134 			      struct btrfs_free_space *info, u64 offset,
1135 			      u64 bytes)
1136 {
1137 	unsigned long start, end;
1138 	unsigned long i;
1139 
1140 	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
1141 	end = start + bytes_to_bits(bytes, block_group->sectorsize);
1142 	BUG_ON(end > BITS_PER_BITMAP);
1143 
1144 	for (i = start; i < end; i++)
1145 		clear_bit(i, info->bitmap);
1146 
1147 	info->bytes -= bytes;
1148 	block_group->free_space -= bytes;
1149 }
1150 
bitmap_set_bits(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info,u64 offset,u64 bytes)1151 static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
1152 			    struct btrfs_free_space *info, u64 offset,
1153 			    u64 bytes)
1154 {
1155 	unsigned long start, end;
1156 	unsigned long i;
1157 
1158 	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
1159 	end = start + bytes_to_bits(bytes, block_group->sectorsize);
1160 	BUG_ON(end > BITS_PER_BITMAP);
1161 
1162 	for (i = start; i < end; i++)
1163 		set_bit(i, info->bitmap);
1164 
1165 	info->bytes += bytes;
1166 	block_group->free_space += bytes;
1167 }
1168 
search_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1169 static int search_bitmap(struct btrfs_block_group_cache *block_group,
1170 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1171 			 u64 *bytes)
1172 {
1173 	unsigned long found_bits = 0;
1174 	unsigned long bits, i;
1175 	unsigned long next_zero;
1176 
1177 	i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
1178 			  max_t(u64, *offset, bitmap_info->offset));
1179 	bits = bytes_to_bits(*bytes, block_group->sectorsize);
1180 
1181 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1182 	     i < BITS_PER_BITMAP;
1183 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1184 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1185 					       BITS_PER_BITMAP, i);
1186 		if ((next_zero - i) >= bits) {
1187 			found_bits = next_zero - i;
1188 			break;
1189 		}
1190 		i = next_zero;
1191 	}
1192 
1193 	if (found_bits) {
1194 		*offset = (u64)(i * block_group->sectorsize) +
1195 			bitmap_info->offset;
1196 		*bytes = (u64)(found_bits) * block_group->sectorsize;
1197 		return 0;
1198 	}
1199 
1200 	return -1;
1201 }
1202 
find_free_space(struct btrfs_block_group_cache * block_group,u64 * offset,u64 * bytes,int debug)1203 static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
1204 						*block_group, u64 *offset,
1205 						u64 *bytes, int debug)
1206 {
1207 	struct btrfs_free_space *entry;
1208 	struct rb_node *node;
1209 	int ret;
1210 
1211 	if (!block_group->free_space_offset.rb_node)
1212 		return NULL;
1213 
1214 	entry = tree_search_offset(block_group,
1215 				   offset_to_bitmap(block_group, *offset),
1216 				   0, 1);
1217 	if (!entry)
1218 		return NULL;
1219 
1220 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1221 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1222 		if (entry->bytes < *bytes)
1223 			continue;
1224 
1225 		if (entry->bitmap) {
1226 			ret = search_bitmap(block_group, entry, offset, bytes);
1227 			if (!ret)
1228 				return entry;
1229 			continue;
1230 		}
1231 
1232 		*offset = entry->offset;
1233 		*bytes = entry->bytes;
1234 		return entry;
1235 	}
1236 
1237 	return NULL;
1238 }
1239 
add_new_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info,u64 offset)1240 static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
1241 			   struct btrfs_free_space *info, u64 offset)
1242 {
1243 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1244 	int max_bitmaps = (int)div64_u64(block_group->key.offset +
1245 					 bytes_per_bg - 1, bytes_per_bg);
1246 	BUG_ON(block_group->total_bitmaps >= max_bitmaps);
1247 
1248 	info->offset = offset_to_bitmap(block_group, offset);
1249 	info->bytes = 0;
1250 	link_free_space(block_group, info);
1251 	block_group->total_bitmaps++;
1252 
1253 	recalculate_thresholds(block_group);
1254 }
1255 
free_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * bitmap_info)1256 static void free_bitmap(struct btrfs_block_group_cache *block_group,
1257 			struct btrfs_free_space *bitmap_info)
1258 {
1259 	unlink_free_space(block_group, bitmap_info);
1260 	kfree(bitmap_info->bitmap);
1261 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1262 	block_group->total_bitmaps--;
1263 	recalculate_thresholds(block_group);
1264 }
1265 
remove_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1266 static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
1267 			      struct btrfs_free_space *bitmap_info,
1268 			      u64 *offset, u64 *bytes)
1269 {
1270 	u64 end;
1271 	u64 search_start, search_bytes;
1272 	int ret;
1273 
1274 again:
1275 	end = bitmap_info->offset +
1276 		(u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
1277 
1278 	/*
1279 	 * XXX - this can go away after a few releases.
1280 	 *
1281 	 * since the only user of btrfs_remove_free_space is the tree logging
1282 	 * stuff, and the only way to test that is under crash conditions, we
1283 	 * want to have this debug stuff here just in case somethings not
1284 	 * working.  Search the bitmap for the space we are trying to use to
1285 	 * make sure its actually there.  If its not there then we need to stop
1286 	 * because something has gone wrong.
1287 	 */
1288 	search_start = *offset;
1289 	search_bytes = *bytes;
1290 	search_bytes = min(search_bytes, end - search_start + 1);
1291 	ret = search_bitmap(block_group, bitmap_info, &search_start,
1292 			    &search_bytes);
1293 	BUG_ON(ret < 0 || search_start != *offset);
1294 
1295 	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1296 		bitmap_clear_bits(block_group, bitmap_info, *offset,
1297 				  end - *offset + 1);
1298 		*bytes -= end - *offset + 1;
1299 		*offset = end + 1;
1300 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1301 		bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
1302 		*bytes = 0;
1303 	}
1304 
1305 	if (*bytes) {
1306 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1307 		if (!bitmap_info->bytes)
1308 			free_bitmap(block_group, bitmap_info);
1309 
1310 		/*
1311 		 * no entry after this bitmap, but we still have bytes to
1312 		 * remove, so something has gone wrong.
1313 		 */
1314 		if (!next)
1315 			return -EINVAL;
1316 
1317 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1318 				       offset_index);
1319 
1320 		/*
1321 		 * if the next entry isn't a bitmap we need to return to let the
1322 		 * extent stuff do its work.
1323 		 */
1324 		if (!bitmap_info->bitmap)
1325 			return -EAGAIN;
1326 
1327 		/*
1328 		 * Ok the next item is a bitmap, but it may not actually hold
1329 		 * the information for the rest of this free space stuff, so
1330 		 * look for it, and if we don't find it return so we can try
1331 		 * everything over again.
1332 		 */
1333 		search_start = *offset;
1334 		search_bytes = *bytes;
1335 		ret = search_bitmap(block_group, bitmap_info, &search_start,
1336 				    &search_bytes);
1337 		if (ret < 0 || search_start != *offset)
1338 			return -EAGAIN;
1339 
1340 		goto again;
1341 	} else if (!bitmap_info->bytes)
1342 		free_bitmap(block_group, bitmap_info);
1343 
1344 	return 0;
1345 }
1346 
insert_into_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info)1347 static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
1348 			      struct btrfs_free_space *info)
1349 {
1350 	struct btrfs_free_space *bitmap_info;
1351 	int added = 0;
1352 	u64 bytes, offset, end;
1353 	int ret;
1354 
1355 	/*
1356 	 * If we are below the extents threshold then we can add this as an
1357 	 * extent, and don't have to deal with the bitmap
1358 	 */
1359 	if (block_group->free_extents < block_group->extents_thresh) {
1360 		/*
1361 		 * If this block group has some small extents we don't want to
1362 		 * use up all of our free slots in the cache with them, we want
1363 		 * to reserve them to larger extents, however if we have plent
1364 		 * of cache left then go ahead an dadd them, no sense in adding
1365 		 * the overhead of a bitmap if we don't have to.
1366 		 */
1367 		if (info->bytes <= block_group->sectorsize * 4) {
1368 			if (block_group->free_extents * 2 <=
1369 			    block_group->extents_thresh)
1370 				return 0;
1371 		} else {
1372 			return 0;
1373 		}
1374 	}
1375 
1376 	/*
1377 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1378 	 * don't even bother to create a bitmap for this
1379 	 */
1380 	if (BITS_PER_BITMAP * block_group->sectorsize >
1381 	    block_group->key.offset)
1382 		return 0;
1383 
1384 	bytes = info->bytes;
1385 	offset = info->offset;
1386 
1387 again:
1388 	bitmap_info = tree_search_offset(block_group,
1389 					 offset_to_bitmap(block_group, offset),
1390 					 1, 0);
1391 	if (!bitmap_info) {
1392 		BUG_ON(added);
1393 		goto new_bitmap;
1394 	}
1395 
1396 	end = bitmap_info->offset +
1397 		(u64)(BITS_PER_BITMAP * block_group->sectorsize);
1398 
1399 	if (offset >= bitmap_info->offset && offset + bytes > end) {
1400 		bitmap_set_bits(block_group, bitmap_info, offset,
1401 				end - offset);
1402 		bytes -= end - offset;
1403 		offset = end;
1404 		added = 0;
1405 	} else if (offset >= bitmap_info->offset && offset + bytes <= end) {
1406 		bitmap_set_bits(block_group, bitmap_info, offset, bytes);
1407 		bytes = 0;
1408 	} else {
1409 		BUG();
1410 	}
1411 
1412 	if (!bytes) {
1413 		ret = 1;
1414 		goto out;
1415 	} else
1416 		goto again;
1417 
1418 new_bitmap:
1419 	if (info && info->bitmap) {
1420 		add_new_bitmap(block_group, info, offset);
1421 		added = 1;
1422 		info = NULL;
1423 		goto again;
1424 	} else {
1425 		spin_unlock(&block_group->tree_lock);
1426 
1427 		/* no pre-allocated info, allocate a new one */
1428 		if (!info) {
1429 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1430 						 GFP_NOFS);
1431 			if (!info) {
1432 				spin_lock(&block_group->tree_lock);
1433 				ret = -ENOMEM;
1434 				goto out;
1435 			}
1436 		}
1437 
1438 		/* allocate the bitmap */
1439 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1440 		spin_lock(&block_group->tree_lock);
1441 		if (!info->bitmap) {
1442 			ret = -ENOMEM;
1443 			goto out;
1444 		}
1445 		goto again;
1446 	}
1447 
1448 out:
1449 	if (info) {
1450 		if (info->bitmap)
1451 			kfree(info->bitmap);
1452 		kmem_cache_free(btrfs_free_space_cachep, info);
1453 	}
1454 
1455 	return ret;
1456 }
1457 
try_merge_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * info,bool update_stat)1458 bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
1459 			  struct btrfs_free_space *info, bool update_stat)
1460 {
1461 	struct btrfs_free_space *left_info;
1462 	struct btrfs_free_space *right_info;
1463 	bool merged = false;
1464 	u64 offset = info->offset;
1465 	u64 bytes = info->bytes;
1466 
1467 	/*
1468 	 * first we want to see if there is free space adjacent to the range we
1469 	 * are adding, if there is remove that struct and add a new one to
1470 	 * cover the entire range
1471 	 */
1472 	right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
1473 	if (right_info && rb_prev(&right_info->offset_index))
1474 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1475 				     struct btrfs_free_space, offset_index);
1476 	else
1477 		left_info = tree_search_offset(block_group, offset - 1, 0, 0);
1478 
1479 	if (right_info && !right_info->bitmap) {
1480 		if (update_stat)
1481 			unlink_free_space(block_group, right_info);
1482 		else
1483 			__unlink_free_space(block_group, right_info);
1484 		info->bytes += right_info->bytes;
1485 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1486 		merged = true;
1487 	}
1488 
1489 	if (left_info && !left_info->bitmap &&
1490 	    left_info->offset + left_info->bytes == offset) {
1491 		if (update_stat)
1492 			unlink_free_space(block_group, left_info);
1493 		else
1494 			__unlink_free_space(block_group, left_info);
1495 		info->offset = left_info->offset;
1496 		info->bytes += left_info->bytes;
1497 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1498 		merged = true;
1499 	}
1500 
1501 	return merged;
1502 }
1503 
btrfs_add_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)1504 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
1505 			 u64 offset, u64 bytes)
1506 {
1507 	struct btrfs_free_space *info;
1508 	int ret = 0;
1509 
1510 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1511 	if (!info)
1512 		return -ENOMEM;
1513 
1514 	info->offset = offset;
1515 	info->bytes = bytes;
1516 
1517 	spin_lock(&block_group->tree_lock);
1518 
1519 	if (try_merge_free_space(block_group, info, true))
1520 		goto link;
1521 
1522 	/*
1523 	 * There was no extent directly to the left or right of this new
1524 	 * extent then we know we're going to have to allocate a new extent, so
1525 	 * before we do that see if we need to drop this into a bitmap
1526 	 */
1527 	ret = insert_into_bitmap(block_group, info);
1528 	if (ret < 0) {
1529 		goto out;
1530 	} else if (ret) {
1531 		ret = 0;
1532 		goto out;
1533 	}
1534 link:
1535 	ret = link_free_space(block_group, info);
1536 	if (ret)
1537 		kmem_cache_free(btrfs_free_space_cachep, info);
1538 out:
1539 	spin_unlock(&block_group->tree_lock);
1540 
1541 	if (ret) {
1542 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1543 		BUG_ON(ret == -EEXIST);
1544 	}
1545 
1546 	return ret;
1547 }
1548 
btrfs_remove_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)1549 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1550 			    u64 offset, u64 bytes)
1551 {
1552 	struct btrfs_free_space *info;
1553 	struct btrfs_free_space *next_info = NULL;
1554 	int ret = 0;
1555 
1556 	spin_lock(&block_group->tree_lock);
1557 
1558 again:
1559 	info = tree_search_offset(block_group, offset, 0, 0);
1560 	if (!info) {
1561 		/*
1562 		 * oops didn't find an extent that matched the space we wanted
1563 		 * to remove, look for a bitmap instead
1564 		 */
1565 		info = tree_search_offset(block_group,
1566 					  offset_to_bitmap(block_group, offset),
1567 					  1, 0);
1568 		if (!info) {
1569 			WARN_ON(1);
1570 			goto out_lock;
1571 		}
1572 	}
1573 
1574 	if (info->bytes < bytes && rb_next(&info->offset_index)) {
1575 		u64 end;
1576 		next_info = rb_entry(rb_next(&info->offset_index),
1577 					     struct btrfs_free_space,
1578 					     offset_index);
1579 
1580 		if (next_info->bitmap)
1581 			end = next_info->offset + BITS_PER_BITMAP *
1582 				block_group->sectorsize - 1;
1583 		else
1584 			end = next_info->offset + next_info->bytes;
1585 
1586 		if (next_info->bytes < bytes ||
1587 		    next_info->offset > offset || offset > end) {
1588 			printk(KERN_CRIT "Found free space at %llu, size %llu,"
1589 			      " trying to use %llu\n",
1590 			      (unsigned long long)info->offset,
1591 			      (unsigned long long)info->bytes,
1592 			      (unsigned long long)bytes);
1593 			WARN_ON(1);
1594 			ret = -EINVAL;
1595 			goto out_lock;
1596 		}
1597 
1598 		info = next_info;
1599 	}
1600 
1601 	if (info->bytes == bytes) {
1602 		unlink_free_space(block_group, info);
1603 		if (info->bitmap) {
1604 			kfree(info->bitmap);
1605 			block_group->total_bitmaps--;
1606 		}
1607 		kmem_cache_free(btrfs_free_space_cachep, info);
1608 		goto out_lock;
1609 	}
1610 
1611 	if (!info->bitmap && info->offset == offset) {
1612 		unlink_free_space(block_group, info);
1613 		info->offset += bytes;
1614 		info->bytes -= bytes;
1615 		link_free_space(block_group, info);
1616 		goto out_lock;
1617 	}
1618 
1619 	if (!info->bitmap && info->offset <= offset &&
1620 	    info->offset + info->bytes >= offset + bytes) {
1621 		u64 old_start = info->offset;
1622 		/*
1623 		 * we're freeing space in the middle of the info,
1624 		 * this can happen during tree log replay
1625 		 *
1626 		 * first unlink the old info and then
1627 		 * insert it again after the hole we're creating
1628 		 */
1629 		unlink_free_space(block_group, info);
1630 		if (offset + bytes < info->offset + info->bytes) {
1631 			u64 old_end = info->offset + info->bytes;
1632 
1633 			info->offset = offset + bytes;
1634 			info->bytes = old_end - info->offset;
1635 			ret = link_free_space(block_group, info);
1636 			WARN_ON(ret);
1637 			if (ret)
1638 				goto out_lock;
1639 		} else {
1640 			/* the hole we're creating ends at the end
1641 			 * of the info struct, just free the info
1642 			 */
1643 			kmem_cache_free(btrfs_free_space_cachep, info);
1644 		}
1645 		spin_unlock(&block_group->tree_lock);
1646 
1647 		/* step two, insert a new info struct to cover
1648 		 * anything before the hole
1649 		 */
1650 		ret = btrfs_add_free_space(block_group, old_start,
1651 					   offset - old_start);
1652 		WARN_ON(ret);
1653 		goto out;
1654 	}
1655 
1656 	ret = remove_from_bitmap(block_group, info, &offset, &bytes);
1657 	if (ret == -EAGAIN)
1658 		goto again;
1659 	BUG_ON(ret);
1660 out_lock:
1661 	spin_unlock(&block_group->tree_lock);
1662 out:
1663 	return ret;
1664 }
1665 
btrfs_dump_free_space(struct btrfs_block_group_cache * block_group,u64 bytes)1666 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1667 			   u64 bytes)
1668 {
1669 	struct btrfs_free_space *info;
1670 	struct rb_node *n;
1671 	int count = 0;
1672 
1673 	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
1674 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1675 		if (info->bytes >= bytes)
1676 			count++;
1677 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1678 		       (unsigned long long)info->offset,
1679 		       (unsigned long long)info->bytes,
1680 		       (info->bitmap) ? "yes" : "no");
1681 	}
1682 	printk(KERN_INFO "block group has cluster?: %s\n",
1683 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1684 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1685 	       "\n", count);
1686 }
1687 
btrfs_block_group_free_space(struct btrfs_block_group_cache * block_group)1688 u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
1689 {
1690 	struct btrfs_free_space *info;
1691 	struct rb_node *n;
1692 	u64 ret = 0;
1693 
1694 	for (n = rb_first(&block_group->free_space_offset); n;
1695 	     n = rb_next(n)) {
1696 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1697 		ret += info->bytes;
1698 	}
1699 
1700 	return ret;
1701 }
1702 
1703 /*
1704  * for a given cluster, put all of its extents back into the free
1705  * space cache.  If the block group passed doesn't match the block group
1706  * pointed to by the cluster, someone else raced in and freed the
1707  * cluster already.  In that case, we just return without changing anything
1708  */
1709 static int
__btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)1710 __btrfs_return_cluster_to_free_space(
1711 			     struct btrfs_block_group_cache *block_group,
1712 			     struct btrfs_free_cluster *cluster)
1713 {
1714 	struct btrfs_free_space *entry;
1715 	struct rb_node *node;
1716 
1717 	spin_lock(&cluster->lock);
1718 	if (cluster->block_group != block_group)
1719 		goto out;
1720 
1721 	cluster->block_group = NULL;
1722 	cluster->window_start = 0;
1723 	list_del_init(&cluster->block_group_list);
1724 
1725 	node = rb_first(&cluster->root);
1726 	while (node) {
1727 		bool bitmap;
1728 
1729 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1730 		node = rb_next(&entry->offset_index);
1731 		rb_erase(&entry->offset_index, &cluster->root);
1732 
1733 		bitmap = (entry->bitmap != NULL);
1734 		if (!bitmap)
1735 			try_merge_free_space(block_group, entry, false);
1736 		tree_insert_offset(&block_group->free_space_offset,
1737 				   entry->offset, &entry->offset_index, bitmap);
1738 	}
1739 	cluster->root = RB_ROOT;
1740 
1741 out:
1742 	spin_unlock(&cluster->lock);
1743 	btrfs_put_block_group(block_group);
1744 	return 0;
1745 }
1746 
btrfs_remove_free_space_cache(struct btrfs_block_group_cache * block_group)1747 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1748 {
1749 	struct btrfs_free_space *info;
1750 	struct rb_node *node;
1751 	struct btrfs_free_cluster *cluster;
1752 	struct list_head *head;
1753 
1754 	spin_lock(&block_group->tree_lock);
1755 	while ((head = block_group->cluster_list.next) !=
1756 	       &block_group->cluster_list) {
1757 		cluster = list_entry(head, struct btrfs_free_cluster,
1758 				     block_group_list);
1759 
1760 		WARN_ON(cluster->block_group != block_group);
1761 		__btrfs_return_cluster_to_free_space(block_group, cluster);
1762 		if (need_resched()) {
1763 			spin_unlock(&block_group->tree_lock);
1764 			cond_resched();
1765 			spin_lock(&block_group->tree_lock);
1766 		}
1767 	}
1768 
1769 	while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
1770 		info = rb_entry(node, struct btrfs_free_space, offset_index);
1771 		if (!info->bitmap) {
1772 			unlink_free_space(block_group, info);
1773 			kmem_cache_free(btrfs_free_space_cachep, info);
1774 		} else {
1775 			free_bitmap(block_group, info);
1776 		}
1777 
1778 		if (need_resched()) {
1779 			spin_unlock(&block_group->tree_lock);
1780 			cond_resched();
1781 			spin_lock(&block_group->tree_lock);
1782 		}
1783 	}
1784 
1785 	spin_unlock(&block_group->tree_lock);
1786 }
1787 
btrfs_find_space_for_alloc(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes,u64 empty_size)1788 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1789 			       u64 offset, u64 bytes, u64 empty_size)
1790 {
1791 	struct btrfs_free_space *entry = NULL;
1792 	u64 bytes_search = bytes + empty_size;
1793 	u64 ret = 0;
1794 
1795 	spin_lock(&block_group->tree_lock);
1796 	entry = find_free_space(block_group, &offset, &bytes_search, 0);
1797 	if (!entry)
1798 		goto out;
1799 
1800 	ret = offset;
1801 	if (entry->bitmap) {
1802 		bitmap_clear_bits(block_group, entry, offset, bytes);
1803 		if (!entry->bytes)
1804 			free_bitmap(block_group, entry);
1805 	} else {
1806 		unlink_free_space(block_group, entry);
1807 		entry->offset += bytes;
1808 		entry->bytes -= bytes;
1809 		if (!entry->bytes)
1810 			kmem_cache_free(btrfs_free_space_cachep, entry);
1811 		else
1812 			link_free_space(block_group, entry);
1813 	}
1814 
1815 out:
1816 	spin_unlock(&block_group->tree_lock);
1817 
1818 	return ret;
1819 }
1820 
1821 /*
1822  * given a cluster, put all of its extents back into the free space
1823  * cache.  If a block group is passed, this function will only free
1824  * a cluster that belongs to the passed block group.
1825  *
1826  * Otherwise, it'll get a reference on the block group pointed to by the
1827  * cluster and remove the cluster from it.
1828  */
btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)1829 int btrfs_return_cluster_to_free_space(
1830 			       struct btrfs_block_group_cache *block_group,
1831 			       struct btrfs_free_cluster *cluster)
1832 {
1833 	int ret;
1834 
1835 	/* first, get a safe pointer to the block group */
1836 	spin_lock(&cluster->lock);
1837 	if (!block_group) {
1838 		block_group = cluster->block_group;
1839 		if (!block_group) {
1840 			spin_unlock(&cluster->lock);
1841 			return 0;
1842 		}
1843 	} else if (cluster->block_group != block_group) {
1844 		/* someone else has already freed it don't redo their work */
1845 		spin_unlock(&cluster->lock);
1846 		return 0;
1847 	}
1848 	atomic_inc(&block_group->count);
1849 	spin_unlock(&cluster->lock);
1850 
1851 	/* now return any extents the cluster had on it */
1852 	spin_lock(&block_group->tree_lock);
1853 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
1854 	spin_unlock(&block_group->tree_lock);
1855 
1856 	/* finally drop our ref */
1857 	btrfs_put_block_group(block_group);
1858 	return ret;
1859 }
1860 
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start)1861 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1862 				   struct btrfs_free_cluster *cluster,
1863 				   struct btrfs_free_space *entry,
1864 				   u64 bytes, u64 min_start)
1865 {
1866 	int err;
1867 	u64 search_start = cluster->window_start;
1868 	u64 search_bytes = bytes;
1869 	u64 ret = 0;
1870 
1871 	search_start = min_start;
1872 	search_bytes = bytes;
1873 
1874 	err = search_bitmap(block_group, entry, &search_start,
1875 			    &search_bytes);
1876 	if (err)
1877 		return 0;
1878 
1879 	ret = search_start;
1880 	bitmap_clear_bits(block_group, entry, ret, bytes);
1881 
1882 	return ret;
1883 }
1884 
1885 /*
1886  * given a cluster, try to allocate 'bytes' from it, returns 0
1887  * if it couldn't find anything suitably large, or a logical disk offset
1888  * if things worked out
1889  */
btrfs_alloc_from_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start)1890 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
1891 			     struct btrfs_free_cluster *cluster, u64 bytes,
1892 			     u64 min_start)
1893 {
1894 	struct btrfs_free_space *entry = NULL;
1895 	struct rb_node *node;
1896 	u64 ret = 0;
1897 
1898 	spin_lock(&cluster->lock);
1899 	if (bytes > cluster->max_size)
1900 		goto out;
1901 
1902 	if (cluster->block_group != block_group)
1903 		goto out;
1904 
1905 	node = rb_first(&cluster->root);
1906 	if (!node)
1907 		goto out;
1908 
1909 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
1910 	while(1) {
1911 		if (entry->bytes < bytes ||
1912 		    (!entry->bitmap && entry->offset < min_start)) {
1913 			struct rb_node *node;
1914 
1915 			node = rb_next(&entry->offset_index);
1916 			if (!node)
1917 				break;
1918 			entry = rb_entry(node, struct btrfs_free_space,
1919 					 offset_index);
1920 			continue;
1921 		}
1922 
1923 		if (entry->bitmap) {
1924 			ret = btrfs_alloc_from_bitmap(block_group,
1925 						      cluster, entry, bytes,
1926 						      min_start);
1927 			if (ret == 0) {
1928 				struct rb_node *node;
1929 				node = rb_next(&entry->offset_index);
1930 				if (!node)
1931 					break;
1932 				entry = rb_entry(node, struct btrfs_free_space,
1933 						 offset_index);
1934 				continue;
1935 			}
1936 		} else {
1937 
1938 			ret = entry->offset;
1939 
1940 			entry->offset += bytes;
1941 			entry->bytes -= bytes;
1942 		}
1943 
1944 		if (entry->bytes == 0)
1945 			rb_erase(&entry->offset_index, &cluster->root);
1946 		break;
1947 	}
1948 out:
1949 	spin_unlock(&cluster->lock);
1950 
1951 	if (!ret)
1952 		return 0;
1953 
1954 	spin_lock(&block_group->tree_lock);
1955 
1956 	block_group->free_space -= bytes;
1957 	if (entry->bytes == 0) {
1958 		block_group->free_extents--;
1959 		if (entry->bitmap) {
1960 			kfree(entry->bitmap);
1961 			block_group->total_bitmaps--;
1962 			recalculate_thresholds(block_group);
1963 		}
1964 		kmem_cache_free(btrfs_free_space_cachep, entry);
1965 	}
1966 
1967 	spin_unlock(&block_group->tree_lock);
1968 
1969 	return ret;
1970 }
1971 
btrfs_bitmap_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 min_bytes)1972 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
1973 				struct btrfs_free_space *entry,
1974 				struct btrfs_free_cluster *cluster,
1975 				u64 offset, u64 bytes, u64 min_bytes)
1976 {
1977 	unsigned long next_zero;
1978 	unsigned long i;
1979 	unsigned long search_bits;
1980 	unsigned long total_bits;
1981 	unsigned long found_bits;
1982 	unsigned long start = 0;
1983 	unsigned long total_found = 0;
1984 	int ret;
1985 	bool found = false;
1986 
1987 	i = offset_to_bit(entry->offset, block_group->sectorsize,
1988 			  max_t(u64, offset, entry->offset));
1989 	search_bits = bytes_to_bits(bytes, block_group->sectorsize);
1990 	total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
1991 
1992 again:
1993 	found_bits = 0;
1994 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
1995 	     i < BITS_PER_BITMAP;
1996 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
1997 		next_zero = find_next_zero_bit(entry->bitmap,
1998 					       BITS_PER_BITMAP, i);
1999 		if (next_zero - i >= search_bits) {
2000 			found_bits = next_zero - i;
2001 			break;
2002 		}
2003 		i = next_zero;
2004 	}
2005 
2006 	if (!found_bits)
2007 		return -ENOSPC;
2008 
2009 	if (!found) {
2010 		start = i;
2011 		found = true;
2012 	}
2013 
2014 	total_found += found_bits;
2015 
2016 	if (cluster->max_size < found_bits * block_group->sectorsize)
2017 		cluster->max_size = found_bits * block_group->sectorsize;
2018 
2019 	if (total_found < total_bits) {
2020 		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2021 		if (i - start > total_bits * 2) {
2022 			total_found = 0;
2023 			cluster->max_size = 0;
2024 			found = false;
2025 		}
2026 		goto again;
2027 	}
2028 
2029 	cluster->window_start = start * block_group->sectorsize +
2030 		entry->offset;
2031 	rb_erase(&entry->offset_index, &block_group->free_space_offset);
2032 	ret = tree_insert_offset(&cluster->root, entry->offset,
2033 				 &entry->offset_index, 1);
2034 	BUG_ON(ret);
2035 
2036 	return 0;
2037 }
2038 
2039 /*
2040  * This searches the block group for just extents to fill the cluster with.
2041  */
setup_cluster_no_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 min_bytes)2042 static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2043 				   struct btrfs_free_cluster *cluster,
2044 				   u64 offset, u64 bytes, u64 min_bytes)
2045 {
2046 	struct btrfs_free_space *first = NULL;
2047 	struct btrfs_free_space *entry = NULL;
2048 	struct btrfs_free_space *prev = NULL;
2049 	struct btrfs_free_space *last;
2050 	struct rb_node *node;
2051 	u64 window_start;
2052 	u64 window_free;
2053 	u64 max_extent;
2054 	u64 max_gap = 128 * 1024;
2055 
2056 	entry = tree_search_offset(block_group, offset, 0, 1);
2057 	if (!entry)
2058 		return -ENOSPC;
2059 
2060 	/*
2061 	 * We don't want bitmaps, so just move along until we find a normal
2062 	 * extent entry.
2063 	 */
2064 	while (entry->bitmap) {
2065 		node = rb_next(&entry->offset_index);
2066 		if (!node)
2067 			return -ENOSPC;
2068 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2069 	}
2070 
2071 	window_start = entry->offset;
2072 	window_free = entry->bytes;
2073 	max_extent = entry->bytes;
2074 	first = entry;
2075 	last = entry;
2076 	prev = entry;
2077 
2078 	while (window_free <= min_bytes) {
2079 		node = rb_next(&entry->offset_index);
2080 		if (!node)
2081 			return -ENOSPC;
2082 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2083 
2084 		if (entry->bitmap)
2085 			continue;
2086 		/*
2087 		 * we haven't filled the empty size and the window is
2088 		 * very large.  reset and try again
2089 		 */
2090 		if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2091 		    entry->offset - window_start > (min_bytes * 2)) {
2092 			first = entry;
2093 			window_start = entry->offset;
2094 			window_free = entry->bytes;
2095 			last = entry;
2096 			max_extent = entry->bytes;
2097 		} else {
2098 			last = entry;
2099 			window_free += entry->bytes;
2100 			if (entry->bytes > max_extent)
2101 				max_extent = entry->bytes;
2102 		}
2103 		prev = entry;
2104 	}
2105 
2106 	cluster->window_start = first->offset;
2107 
2108 	node = &first->offset_index;
2109 
2110 	/*
2111 	 * now we've found our entries, pull them out of the free space
2112 	 * cache and put them into the cluster rbtree
2113 	 */
2114 	do {
2115 		int ret;
2116 
2117 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2118 		node = rb_next(&entry->offset_index);
2119 		if (entry->bitmap)
2120 			continue;
2121 
2122 		rb_erase(&entry->offset_index, &block_group->free_space_offset);
2123 		ret = tree_insert_offset(&cluster->root, entry->offset,
2124 					 &entry->offset_index, 0);
2125 		BUG_ON(ret);
2126 	} while (node && entry != last);
2127 
2128 	cluster->max_size = max_extent;
2129 
2130 	return 0;
2131 }
2132 
2133 /*
2134  * This specifically looks for bitmaps that may work in the cluster, we assume
2135  * that we have already failed to find extents that will work.
2136  */
setup_cluster_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 min_bytes)2137 static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2138 				struct btrfs_free_cluster *cluster,
2139 				u64 offset, u64 bytes, u64 min_bytes)
2140 {
2141 	struct btrfs_free_space *entry;
2142 	struct rb_node *node;
2143 	int ret = -ENOSPC;
2144 
2145 	if (block_group->total_bitmaps == 0)
2146 		return -ENOSPC;
2147 
2148 	entry = tree_search_offset(block_group,
2149 				   offset_to_bitmap(block_group, offset),
2150 				   0, 1);
2151 	if (!entry)
2152 		return -ENOSPC;
2153 
2154 	node = &entry->offset_index;
2155 	do {
2156 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2157 		node = rb_next(&entry->offset_index);
2158 		if (!entry->bitmap)
2159 			continue;
2160 		if (entry->bytes < min_bytes)
2161 			continue;
2162 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2163 					   bytes, min_bytes);
2164 	} while (ret && node);
2165 
2166 	return ret;
2167 }
2168 
2169 /*
2170  * here we try to find a cluster of blocks in a block group.  The goal
2171  * is to find at least bytes free and up to empty_size + bytes free.
2172  * We might not find them all in one contiguous area.
2173  *
2174  * returns zero and sets up cluster if things worked out, otherwise
2175  * it returns -enospc
2176  */
btrfs_find_space_cluster(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)2177 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2178 			     struct btrfs_root *root,
2179 			     struct btrfs_block_group_cache *block_group,
2180 			     struct btrfs_free_cluster *cluster,
2181 			     u64 offset, u64 bytes, u64 empty_size)
2182 {
2183 	u64 min_bytes;
2184 	int ret;
2185 
2186 	/* for metadata, allow allocates with more holes */
2187 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2188 		min_bytes = bytes + empty_size;
2189 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2190 		/*
2191 		 * we want to do larger allocations when we are
2192 		 * flushing out the delayed refs, it helps prevent
2193 		 * making more work as we go along.
2194 		 */
2195 		if (trans->transaction->delayed_refs.flushing)
2196 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
2197 		else
2198 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
2199 	} else
2200 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
2201 
2202 	spin_lock(&block_group->tree_lock);
2203 
2204 	/*
2205 	 * If we know we don't have enough space to make a cluster don't even
2206 	 * bother doing all the work to try and find one.
2207 	 */
2208 	if (block_group->free_space < min_bytes) {
2209 		spin_unlock(&block_group->tree_lock);
2210 		return -ENOSPC;
2211 	}
2212 
2213 	spin_lock(&cluster->lock);
2214 
2215 	/* someone already found a cluster, hooray */
2216 	if (cluster->block_group) {
2217 		ret = 0;
2218 		goto out;
2219 	}
2220 
2221 	ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
2222 				      min_bytes);
2223 	if (ret)
2224 		ret = setup_cluster_bitmap(block_group, cluster, offset,
2225 					   bytes, min_bytes);
2226 
2227 	if (!ret) {
2228 		atomic_inc(&block_group->count);
2229 		list_add_tail(&cluster->block_group_list,
2230 			      &block_group->cluster_list);
2231 		cluster->block_group = block_group;
2232 	}
2233 out:
2234 	spin_unlock(&cluster->lock);
2235 	spin_unlock(&block_group->tree_lock);
2236 
2237 	return ret;
2238 }
2239 
2240 /*
2241  * simple code to zero out a cluster
2242  */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)2243 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2244 {
2245 	spin_lock_init(&cluster->lock);
2246 	spin_lock_init(&cluster->refill_lock);
2247 	cluster->root = RB_ROOT;
2248 	cluster->max_size = 0;
2249 	INIT_LIST_HEAD(&cluster->block_group_list);
2250 	cluster->block_group = NULL;
2251 }
2252 
btrfs_trim_block_group(struct btrfs_block_group_cache * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)2253 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2254 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2255 {
2256 	struct btrfs_free_space *entry = NULL;
2257 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2258 	u64 bytes = 0;
2259 	u64 actually_trimmed;
2260 	int ret = 0;
2261 
2262 	*trimmed = 0;
2263 
2264 	while (start < end) {
2265 		spin_lock(&block_group->tree_lock);
2266 
2267 		if (block_group->free_space < minlen) {
2268 			spin_unlock(&block_group->tree_lock);
2269 			break;
2270 		}
2271 
2272 		entry = tree_search_offset(block_group, start, 0, 1);
2273 		if (!entry)
2274 			entry = tree_search_offset(block_group,
2275 						   offset_to_bitmap(block_group,
2276 								    start),
2277 						   1, 1);
2278 
2279 		if (!entry || entry->offset >= end) {
2280 			spin_unlock(&block_group->tree_lock);
2281 			break;
2282 		}
2283 
2284 		if (entry->bitmap) {
2285 			ret = search_bitmap(block_group, entry, &start, &bytes);
2286 			if (!ret) {
2287 				if (start >= end) {
2288 					spin_unlock(&block_group->tree_lock);
2289 					break;
2290 				}
2291 				bytes = min(bytes, end - start);
2292 				bitmap_clear_bits(block_group, entry,
2293 						  start, bytes);
2294 				if (entry->bytes == 0)
2295 					free_bitmap(block_group, entry);
2296 			} else {
2297 				start = entry->offset + BITS_PER_BITMAP *
2298 					block_group->sectorsize;
2299 				spin_unlock(&block_group->tree_lock);
2300 				ret = 0;
2301 				continue;
2302 			}
2303 		} else {
2304 			start = entry->offset;
2305 			bytes = min(entry->bytes, end - start);
2306 			unlink_free_space(block_group, entry);
2307 			kmem_cache_free(btrfs_free_space_cachep, entry);
2308 		}
2309 
2310 		spin_unlock(&block_group->tree_lock);
2311 
2312 		if (bytes >= minlen) {
2313 			int update_ret;
2314 			update_ret = btrfs_update_reserved_bytes(block_group,
2315 								 bytes, 1, 1);
2316 
2317 			ret = btrfs_error_discard_extent(fs_info->extent_root,
2318 							 start,
2319 							 bytes,
2320 							 &actually_trimmed);
2321 
2322 			btrfs_add_free_space(block_group,
2323 					     start, bytes);
2324 			if (!update_ret)
2325 				btrfs_update_reserved_bytes(block_group,
2326 							    bytes, 0, 1);
2327 
2328 			if (ret)
2329 				break;
2330 			*trimmed += actually_trimmed;
2331 		}
2332 		start += bytes;
2333 		bytes = 0;
2334 
2335 		if (fatal_signal_pending(current)) {
2336 			ret = -ERESTARTSYS;
2337 			break;
2338 		}
2339 
2340 		cond_resched();
2341 	}
2342 
2343 	return ret;
2344 }
2345