1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
49
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
52
53 /* inode that owns this data */
54 struct inode *inode;
55
56 /* starting offset in the inode for our pages */
57 u64 start;
58
59 /* number of bytes in the inode we're working on */
60 unsigned long len;
61
62 /* number of bytes on disk */
63 unsigned long compressed_len;
64
65 /* the compression algorithm for this bio */
66 int compress_type;
67
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
70
71 /* IO errors */
72 int errors;
73 int mirror_num;
74
75 /* for reads, this is the bio we are copying the data into */
76 struct bio *orig_bio;
77
78 /*
79 * the start of a variable length array of checksums only
80 * used by reads
81 */
82 u32 sums;
83 };
84
compressed_bio_size(struct btrfs_root * root,unsigned long disk_size)85 static inline int compressed_bio_size(struct btrfs_root *root,
86 unsigned long disk_size)
87 {
88 u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89 return sizeof(struct compressed_bio) +
90 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
91 csum_size;
92 }
93
compressed_bio_alloc(struct block_device * bdev,u64 first_byte,gfp_t gfp_flags)94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95 u64 first_byte, gfp_t gfp_flags)
96 {
97 int nr_vecs;
98
99 nr_vecs = bio_get_nr_vecs(bdev);
100 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102
check_compressed_csum(struct inode * inode,struct compressed_bio * cb,u64 disk_start)103 static int check_compressed_csum(struct inode *inode,
104 struct compressed_bio *cb,
105 u64 disk_start)
106 {
107 int ret;
108 struct btrfs_root *root = BTRFS_I(inode)->root;
109 struct page *page;
110 unsigned long i;
111 char *kaddr;
112 u32 csum;
113 u32 *cb_sum = &cb->sums;
114
115 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116 return 0;
117
118 for (i = 0; i < cb->nr_pages; i++) {
119 page = cb->compressed_pages[i];
120 csum = ~(u32)0;
121
122 kaddr = kmap_atomic(page, KM_USER0);
123 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124 btrfs_csum_final(csum, (char *)&csum);
125 kunmap_atomic(kaddr, KM_USER0);
126
127 if (csum != *cb_sum) {
128 printk(KERN_INFO "btrfs csum failed ino %lu "
129 "extent %llu csum %u "
130 "wanted %u mirror %d\n", inode->i_ino,
131 (unsigned long long)disk_start,
132 csum, *cb_sum, cb->mirror_num);
133 ret = -EIO;
134 goto fail;
135 }
136 cb_sum++;
137
138 }
139 ret = 0;
140 fail:
141 return ret;
142 }
143
144 /* when we finish reading compressed pages from the disk, we
145 * decompress them and then run the bio end_io routines on the
146 * decompressed pages (in the inode address space).
147 *
148 * This allows the checksumming and other IO error handling routines
149 * to work normally
150 *
151 * The compressed pages are freed here, and it must be run
152 * in process context
153 */
end_compressed_bio_read(struct bio * bio,int err)154 static void end_compressed_bio_read(struct bio *bio, int err)
155 {
156 struct compressed_bio *cb = bio->bi_private;
157 struct inode *inode;
158 struct page *page;
159 unsigned long index;
160 int ret;
161
162 if (err)
163 cb->errors = 1;
164
165 /* if there are more bios still pending for this compressed
166 * extent, just exit
167 */
168 if (!atomic_dec_and_test(&cb->pending_bios))
169 goto out;
170
171 inode = cb->inode;
172 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
173 if (ret)
174 goto csum_failed;
175
176 /* ok, we're the last bio for this extent, lets start
177 * the decompression.
178 */
179 ret = btrfs_decompress_biovec(cb->compress_type,
180 cb->compressed_pages,
181 cb->start,
182 cb->orig_bio->bi_io_vec,
183 cb->orig_bio->bi_vcnt,
184 cb->compressed_len);
185 csum_failed:
186 if (ret)
187 cb->errors = 1;
188
189 /* release the compressed pages */
190 index = 0;
191 for (index = 0; index < cb->nr_pages; index++) {
192 page = cb->compressed_pages[index];
193 page->mapping = NULL;
194 page_cache_release(page);
195 }
196
197 /* do io completion on the original bio */
198 if (cb->errors) {
199 bio_io_error(cb->orig_bio);
200 } else {
201 int bio_index = 0;
202 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
203
204 /*
205 * we have verified the checksum already, set page
206 * checked so the end_io handlers know about it
207 */
208 while (bio_index < cb->orig_bio->bi_vcnt) {
209 SetPageChecked(bvec->bv_page);
210 bvec++;
211 bio_index++;
212 }
213 bio_endio(cb->orig_bio, 0);
214 }
215
216 /* finally free the cb struct */
217 kfree(cb->compressed_pages);
218 kfree(cb);
219 out:
220 bio_put(bio);
221 }
222
223 /*
224 * Clear the writeback bits on all of the file
225 * pages for a compressed write
226 */
end_compressed_writeback(struct inode * inode,u64 start,unsigned long ram_size)227 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
228 unsigned long ram_size)
229 {
230 unsigned long index = start >> PAGE_CACHE_SHIFT;
231 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
232 struct page *pages[16];
233 unsigned long nr_pages = end_index - index + 1;
234 int i;
235 int ret;
236
237 while (nr_pages > 0) {
238 ret = find_get_pages_contig(inode->i_mapping, index,
239 min_t(unsigned long,
240 nr_pages, ARRAY_SIZE(pages)), pages);
241 if (ret == 0) {
242 nr_pages -= 1;
243 index += 1;
244 continue;
245 }
246 for (i = 0; i < ret; i++) {
247 end_page_writeback(pages[i]);
248 page_cache_release(pages[i]);
249 }
250 nr_pages -= ret;
251 index += ret;
252 }
253 /* the inode may be gone now */
254 return 0;
255 }
256
257 /*
258 * do the cleanup once all the compressed pages hit the disk.
259 * This will clear writeback on the file pages and free the compressed
260 * pages.
261 *
262 * This also calls the writeback end hooks for the file pages so that
263 * metadata and checksums can be updated in the file.
264 */
end_compressed_bio_write(struct bio * bio,int err)265 static void end_compressed_bio_write(struct bio *bio, int err)
266 {
267 struct extent_io_tree *tree;
268 struct compressed_bio *cb = bio->bi_private;
269 struct inode *inode;
270 struct page *page;
271 unsigned long index;
272
273 if (err)
274 cb->errors = 1;
275
276 /* if there are more bios still pending for this compressed
277 * extent, just exit
278 */
279 if (!atomic_dec_and_test(&cb->pending_bios))
280 goto out;
281
282 /* ok, we're the last bio for this extent, step one is to
283 * call back into the FS and do all the end_io operations
284 */
285 inode = cb->inode;
286 tree = &BTRFS_I(inode)->io_tree;
287 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
288 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289 cb->start,
290 cb->start + cb->len - 1,
291 NULL, 1);
292 cb->compressed_pages[0]->mapping = NULL;
293
294 end_compressed_writeback(inode, cb->start, cb->len);
295 /* note, our inode could be gone now */
296
297 /*
298 * release the compressed pages, these came from alloc_page and
299 * are not attached to the inode at all
300 */
301 index = 0;
302 for (index = 0; index < cb->nr_pages; index++) {
303 page = cb->compressed_pages[index];
304 page->mapping = NULL;
305 page_cache_release(page);
306 }
307
308 /* finally free the cb struct */
309 kfree(cb->compressed_pages);
310 kfree(cb);
311 out:
312 bio_put(bio);
313 }
314
315 /*
316 * worker function to build and submit bios for previously compressed pages.
317 * The corresponding pages in the inode should be marked for writeback
318 * and the compressed pages should have a reference on them for dropping
319 * when the IO is complete.
320 *
321 * This also checksums the file bytes and gets things ready for
322 * the end io hooks.
323 */
btrfs_submit_compressed_write(struct inode * inode,u64 start,unsigned long len,u64 disk_start,unsigned long compressed_len,struct page ** compressed_pages,unsigned long nr_pages)324 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
325 unsigned long len, u64 disk_start,
326 unsigned long compressed_len,
327 struct page **compressed_pages,
328 unsigned long nr_pages)
329 {
330 struct bio *bio = NULL;
331 struct btrfs_root *root = BTRFS_I(inode)->root;
332 struct compressed_bio *cb;
333 unsigned long bytes_left;
334 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
335 int page_index = 0;
336 struct page *page;
337 u64 first_byte = disk_start;
338 struct block_device *bdev;
339 int ret;
340
341 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
342 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
343 if (!cb)
344 return -ENOMEM;
345 atomic_set(&cb->pending_bios, 0);
346 cb->errors = 0;
347 cb->inode = inode;
348 cb->start = start;
349 cb->len = len;
350 cb->mirror_num = 0;
351 cb->compressed_pages = compressed_pages;
352 cb->compressed_len = compressed_len;
353 cb->orig_bio = NULL;
354 cb->nr_pages = nr_pages;
355
356 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
357
358 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
359 if(!bio) {
360 kfree(cb);
361 return -ENOMEM;
362 }
363 bio->bi_private = cb;
364 bio->bi_end_io = end_compressed_bio_write;
365 atomic_inc(&cb->pending_bios);
366
367 /* create and submit bios for the compressed pages */
368 bytes_left = compressed_len;
369 for (page_index = 0; page_index < cb->nr_pages; page_index++) {
370 page = compressed_pages[page_index];
371 page->mapping = inode->i_mapping;
372 if (bio->bi_size)
373 ret = io_tree->ops->merge_bio_hook(page, 0,
374 PAGE_CACHE_SIZE,
375 bio, 0);
376 else
377 ret = 0;
378
379 page->mapping = NULL;
380 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
381 PAGE_CACHE_SIZE) {
382 bio_get(bio);
383
384 /*
385 * inc the count before we submit the bio so
386 * we know the end IO handler won't happen before
387 * we inc the count. Otherwise, the cb might get
388 * freed before we're done setting it up
389 */
390 atomic_inc(&cb->pending_bios);
391 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
392 BUG_ON(ret);
393
394 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
395 BUG_ON(ret);
396
397 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
398 BUG_ON(ret);
399
400 bio_put(bio);
401
402 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
403 bio->bi_private = cb;
404 bio->bi_end_io = end_compressed_bio_write;
405 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
406 }
407 if (bytes_left < PAGE_CACHE_SIZE) {
408 printk("bytes left %lu compress len %lu nr %lu\n",
409 bytes_left, cb->compressed_len, cb->nr_pages);
410 }
411 bytes_left -= PAGE_CACHE_SIZE;
412 first_byte += PAGE_CACHE_SIZE;
413 cond_resched();
414 }
415 bio_get(bio);
416
417 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
418 BUG_ON(ret);
419
420 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
421 BUG_ON(ret);
422
423 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
424 BUG_ON(ret);
425
426 bio_put(bio);
427 return 0;
428 }
429
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)430 static noinline int add_ra_bio_pages(struct inode *inode,
431 u64 compressed_end,
432 struct compressed_bio *cb)
433 {
434 unsigned long end_index;
435 unsigned long page_index;
436 u64 last_offset;
437 u64 isize = i_size_read(inode);
438 int ret;
439 struct page *page;
440 unsigned long nr_pages = 0;
441 struct extent_map *em;
442 struct address_space *mapping = inode->i_mapping;
443 struct extent_map_tree *em_tree;
444 struct extent_io_tree *tree;
445 u64 end;
446 int misses = 0;
447
448 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
449 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
450 em_tree = &BTRFS_I(inode)->extent_tree;
451 tree = &BTRFS_I(inode)->io_tree;
452
453 if (isize == 0)
454 return 0;
455
456 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
457
458 while (last_offset < compressed_end) {
459 page_index = last_offset >> PAGE_CACHE_SHIFT;
460
461 if (page_index > end_index)
462 break;
463
464 rcu_read_lock();
465 page = radix_tree_lookup(&mapping->page_tree, page_index);
466 rcu_read_unlock();
467 if (page) {
468 misses++;
469 if (misses > 4)
470 break;
471 goto next;
472 }
473
474 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
475 ~__GFP_FS);
476 if (!page)
477 break;
478
479 if (add_to_page_cache_lru(page, mapping, page_index,
480 GFP_NOFS)) {
481 page_cache_release(page);
482 goto next;
483 }
484
485 end = last_offset + PAGE_CACHE_SIZE - 1;
486 /*
487 * at this point, we have a locked page in the page cache
488 * for these bytes in the file. But, we have to make
489 * sure they map to this compressed extent on disk.
490 */
491 set_page_extent_mapped(page);
492 lock_extent(tree, last_offset, end, GFP_NOFS);
493 read_lock(&em_tree->lock);
494 em = lookup_extent_mapping(em_tree, last_offset,
495 PAGE_CACHE_SIZE);
496 read_unlock(&em_tree->lock);
497
498 if (!em || last_offset < em->start ||
499 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
500 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
501 free_extent_map(em);
502 unlock_extent(tree, last_offset, end, GFP_NOFS);
503 unlock_page(page);
504 page_cache_release(page);
505 break;
506 }
507 free_extent_map(em);
508
509 if (page->index == end_index) {
510 char *userpage;
511 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
512
513 if (zero_offset) {
514 int zeros;
515 zeros = PAGE_CACHE_SIZE - zero_offset;
516 userpage = kmap_atomic(page, KM_USER0);
517 memset(userpage + zero_offset, 0, zeros);
518 flush_dcache_page(page);
519 kunmap_atomic(userpage, KM_USER0);
520 }
521 }
522
523 ret = bio_add_page(cb->orig_bio, page,
524 PAGE_CACHE_SIZE, 0);
525
526 if (ret == PAGE_CACHE_SIZE) {
527 nr_pages++;
528 page_cache_release(page);
529 } else {
530 unlock_extent(tree, last_offset, end, GFP_NOFS);
531 unlock_page(page);
532 page_cache_release(page);
533 break;
534 }
535 next:
536 last_offset += PAGE_CACHE_SIZE;
537 }
538 return 0;
539 }
540
541 /*
542 * for a compressed read, the bio we get passed has all the inode pages
543 * in it. We don't actually do IO on those pages but allocate new ones
544 * to hold the compressed pages on disk.
545 *
546 * bio->bi_sector points to the compressed extent on disk
547 * bio->bi_io_vec points to all of the inode pages
548 * bio->bi_vcnt is a count of pages
549 *
550 * After the compressed pages are read, we copy the bytes into the
551 * bio we were passed and then call the bio end_io calls
552 */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)553 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
554 int mirror_num, unsigned long bio_flags)
555 {
556 struct extent_io_tree *tree;
557 struct extent_map_tree *em_tree;
558 struct compressed_bio *cb;
559 struct btrfs_root *root = BTRFS_I(inode)->root;
560 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
561 unsigned long compressed_len;
562 unsigned long nr_pages;
563 unsigned long page_index;
564 struct page *page;
565 struct block_device *bdev;
566 struct bio *comp_bio;
567 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
568 u64 em_len;
569 u64 em_start;
570 struct extent_map *em;
571 int ret = -ENOMEM;
572 u32 *sums;
573
574 tree = &BTRFS_I(inode)->io_tree;
575 em_tree = &BTRFS_I(inode)->extent_tree;
576
577 /* we need the actual starting offset of this extent in the file */
578 read_lock(&em_tree->lock);
579 em = lookup_extent_mapping(em_tree,
580 page_offset(bio->bi_io_vec->bv_page),
581 PAGE_CACHE_SIZE);
582 read_unlock(&em_tree->lock);
583
584 compressed_len = em->block_len;
585 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
586 if (!cb)
587 goto out;
588
589 atomic_set(&cb->pending_bios, 0);
590 cb->errors = 0;
591 cb->inode = inode;
592 cb->mirror_num = mirror_num;
593 sums = &cb->sums;
594
595 cb->start = em->orig_start;
596 em_len = em->len;
597 em_start = em->start;
598
599 free_extent_map(em);
600 em = NULL;
601
602 cb->len = uncompressed_len;
603 cb->compressed_len = compressed_len;
604 cb->compress_type = extent_compress_type(bio_flags);
605 cb->orig_bio = bio;
606
607 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
608 PAGE_CACHE_SIZE;
609 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
610 GFP_NOFS);
611 if (!cb->compressed_pages)
612 goto fail1;
613
614 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
615
616 for (page_index = 0; page_index < nr_pages; page_index++) {
617 cb->compressed_pages[page_index] = alloc_page(GFP_NOFS |
618 __GFP_HIGHMEM);
619 if (!cb->compressed_pages[page_index])
620 goto fail2;
621 }
622 cb->nr_pages = nr_pages;
623
624 add_ra_bio_pages(inode, em_start + em_len, cb);
625
626 /* include any pages we added in add_ra-bio_pages */
627 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
628 cb->len = uncompressed_len;
629
630 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
631 if (!comp_bio)
632 goto fail2;
633 comp_bio->bi_private = cb;
634 comp_bio->bi_end_io = end_compressed_bio_read;
635 atomic_inc(&cb->pending_bios);
636
637 for (page_index = 0; page_index < nr_pages; page_index++) {
638 page = cb->compressed_pages[page_index];
639 page->mapping = inode->i_mapping;
640 page->index = em_start >> PAGE_CACHE_SHIFT;
641
642 if (comp_bio->bi_size)
643 ret = tree->ops->merge_bio_hook(page, 0,
644 PAGE_CACHE_SIZE,
645 comp_bio, 0);
646 else
647 ret = 0;
648
649 page->mapping = NULL;
650 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
651 PAGE_CACHE_SIZE) {
652 bio_get(comp_bio);
653
654 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
655 BUG_ON(ret);
656
657 /*
658 * inc the count before we submit the bio so
659 * we know the end IO handler won't happen before
660 * we inc the count. Otherwise, the cb might get
661 * freed before we're done setting it up
662 */
663 atomic_inc(&cb->pending_bios);
664
665 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
666 ret = btrfs_lookup_bio_sums(root, inode,
667 comp_bio, sums);
668 BUG_ON(ret);
669 }
670 sums += (comp_bio->bi_size + root->sectorsize - 1) /
671 root->sectorsize;
672
673 ret = btrfs_map_bio(root, READ, comp_bio,
674 mirror_num, 0);
675 BUG_ON(ret);
676
677 bio_put(comp_bio);
678
679 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
680 GFP_NOFS);
681 comp_bio->bi_private = cb;
682 comp_bio->bi_end_io = end_compressed_bio_read;
683
684 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
685 }
686 cur_disk_byte += PAGE_CACHE_SIZE;
687 }
688 bio_get(comp_bio);
689
690 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
691 BUG_ON(ret);
692
693 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
694 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
695 BUG_ON(ret);
696 }
697
698 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
699 BUG_ON(ret);
700
701 bio_put(comp_bio);
702 return 0;
703
704 fail2:
705 for (page_index = 0; page_index < nr_pages; page_index++)
706 free_page((unsigned long)cb->compressed_pages[page_index]);
707
708 kfree(cb->compressed_pages);
709 fail1:
710 kfree(cb);
711 out:
712 free_extent_map(em);
713 return ret;
714 }
715
716 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
717 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
718 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
719 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
720 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
721
722 struct btrfs_compress_op *btrfs_compress_op[] = {
723 &btrfs_zlib_compress,
724 &btrfs_lzo_compress,
725 };
726
btrfs_init_compress(void)727 int __init btrfs_init_compress(void)
728 {
729 int i;
730
731 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
732 INIT_LIST_HEAD(&comp_idle_workspace[i]);
733 spin_lock_init(&comp_workspace_lock[i]);
734 atomic_set(&comp_alloc_workspace[i], 0);
735 init_waitqueue_head(&comp_workspace_wait[i]);
736 }
737 return 0;
738 }
739
740 /*
741 * this finds an available workspace or allocates a new one
742 * ERR_PTR is returned if things go bad.
743 */
find_workspace(int type)744 static struct list_head *find_workspace(int type)
745 {
746 struct list_head *workspace;
747 int cpus = num_online_cpus();
748 int idx = type - 1;
749
750 struct list_head *idle_workspace = &comp_idle_workspace[idx];
751 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
752 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
753 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
754 int *num_workspace = &comp_num_workspace[idx];
755 again:
756 spin_lock(workspace_lock);
757 if (!list_empty(idle_workspace)) {
758 workspace = idle_workspace->next;
759 list_del(workspace);
760 (*num_workspace)--;
761 spin_unlock(workspace_lock);
762 return workspace;
763
764 }
765 if (atomic_read(alloc_workspace) > cpus) {
766 DEFINE_WAIT(wait);
767
768 spin_unlock(workspace_lock);
769 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
770 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
771 schedule();
772 finish_wait(workspace_wait, &wait);
773 goto again;
774 }
775 atomic_inc(alloc_workspace);
776 spin_unlock(workspace_lock);
777
778 workspace = btrfs_compress_op[idx]->alloc_workspace();
779 if (IS_ERR(workspace)) {
780 atomic_dec(alloc_workspace);
781 wake_up(workspace_wait);
782 }
783 return workspace;
784 }
785
786 /*
787 * put a workspace struct back on the list or free it if we have enough
788 * idle ones sitting around
789 */
free_workspace(int type,struct list_head * workspace)790 static void free_workspace(int type, struct list_head *workspace)
791 {
792 int idx = type - 1;
793 struct list_head *idle_workspace = &comp_idle_workspace[idx];
794 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
795 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
796 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
797 int *num_workspace = &comp_num_workspace[idx];
798
799 spin_lock(workspace_lock);
800 if (*num_workspace < num_online_cpus()) {
801 list_add_tail(workspace, idle_workspace);
802 (*num_workspace)++;
803 spin_unlock(workspace_lock);
804 goto wake;
805 }
806 spin_unlock(workspace_lock);
807
808 btrfs_compress_op[idx]->free_workspace(workspace);
809 atomic_dec(alloc_workspace);
810 wake:
811 if (waitqueue_active(workspace_wait))
812 wake_up(workspace_wait);
813 }
814
815 /*
816 * cleanup function for module exit
817 */
free_workspaces(void)818 static void free_workspaces(void)
819 {
820 struct list_head *workspace;
821 int i;
822
823 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
824 while (!list_empty(&comp_idle_workspace[i])) {
825 workspace = comp_idle_workspace[i].next;
826 list_del(workspace);
827 btrfs_compress_op[i]->free_workspace(workspace);
828 atomic_dec(&comp_alloc_workspace[i]);
829 }
830 }
831 }
832
833 /*
834 * given an address space and start/len, compress the bytes.
835 *
836 * pages are allocated to hold the compressed result and stored
837 * in 'pages'
838 *
839 * out_pages is used to return the number of pages allocated. There
840 * may be pages allocated even if we return an error
841 *
842 * total_in is used to return the number of bytes actually read. It
843 * may be smaller then len if we had to exit early because we
844 * ran out of room in the pages array or because we cross the
845 * max_out threshold.
846 *
847 * total_out is used to return the total number of compressed bytes
848 *
849 * max_out tells us the max number of bytes that we're allowed to
850 * stuff into pages
851 */
btrfs_compress_pages(int type,struct address_space * mapping,u64 start,unsigned long len,struct page ** pages,unsigned long nr_dest_pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out,unsigned long max_out)852 int btrfs_compress_pages(int type, struct address_space *mapping,
853 u64 start, unsigned long len,
854 struct page **pages,
855 unsigned long nr_dest_pages,
856 unsigned long *out_pages,
857 unsigned long *total_in,
858 unsigned long *total_out,
859 unsigned long max_out)
860 {
861 struct list_head *workspace;
862 int ret;
863
864 workspace = find_workspace(type);
865 if (IS_ERR(workspace))
866 return -1;
867
868 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
869 start, len, pages,
870 nr_dest_pages, out_pages,
871 total_in, total_out,
872 max_out);
873 free_workspace(type, workspace);
874 return ret;
875 }
876
877 /*
878 * pages_in is an array of pages with compressed data.
879 *
880 * disk_start is the starting logical offset of this array in the file
881 *
882 * bvec is a bio_vec of pages from the file that we want to decompress into
883 *
884 * vcnt is the count of pages in the biovec
885 *
886 * srclen is the number of bytes in pages_in
887 *
888 * The basic idea is that we have a bio that was created by readpages.
889 * The pages in the bio are for the uncompressed data, and they may not
890 * be contiguous. They all correspond to the range of bytes covered by
891 * the compressed extent.
892 */
btrfs_decompress_biovec(int type,struct page ** pages_in,u64 disk_start,struct bio_vec * bvec,int vcnt,size_t srclen)893 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
894 struct bio_vec *bvec, int vcnt, size_t srclen)
895 {
896 struct list_head *workspace;
897 int ret;
898
899 workspace = find_workspace(type);
900 if (IS_ERR(workspace))
901 return -ENOMEM;
902
903 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
904 disk_start,
905 bvec, vcnt, srclen);
906 free_workspace(type, workspace);
907 return ret;
908 }
909
910 /*
911 * a less complex decompression routine. Our compressed data fits in a
912 * single page, and we want to read a single page out of it.
913 * start_byte tells us the offset into the compressed data we're interested in
914 */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)915 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
916 unsigned long start_byte, size_t srclen, size_t destlen)
917 {
918 struct list_head *workspace;
919 int ret;
920
921 workspace = find_workspace(type);
922 if (IS_ERR(workspace))
923 return -ENOMEM;
924
925 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
926 dest_page, start_byte,
927 srclen, destlen);
928
929 free_workspace(type, workspace);
930 return ret;
931 }
932
btrfs_exit_compress(void)933 void btrfs_exit_compress(void)
934 {
935 free_workspaces();
936 }
937
938 /*
939 * Copy uncompressed data from working buffer to pages.
940 *
941 * buf_start is the byte offset we're of the start of our workspace buffer.
942 *
943 * total_out is the last byte of the buffer
944 */
btrfs_decompress_buf2page(char * buf,unsigned long buf_start,unsigned long total_out,u64 disk_start,struct bio_vec * bvec,int vcnt,unsigned long * page_index,unsigned long * pg_offset)945 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
946 unsigned long total_out, u64 disk_start,
947 struct bio_vec *bvec, int vcnt,
948 unsigned long *page_index,
949 unsigned long *pg_offset)
950 {
951 unsigned long buf_offset;
952 unsigned long current_buf_start;
953 unsigned long start_byte;
954 unsigned long working_bytes = total_out - buf_start;
955 unsigned long bytes;
956 char *kaddr;
957 struct page *page_out = bvec[*page_index].bv_page;
958
959 /*
960 * start byte is the first byte of the page we're currently
961 * copying into relative to the start of the compressed data.
962 */
963 start_byte = page_offset(page_out) - disk_start;
964
965 /* we haven't yet hit data corresponding to this page */
966 if (total_out <= start_byte)
967 return 1;
968
969 /*
970 * the start of the data we care about is offset into
971 * the middle of our working buffer
972 */
973 if (total_out > start_byte && buf_start < start_byte) {
974 buf_offset = start_byte - buf_start;
975 working_bytes -= buf_offset;
976 } else {
977 buf_offset = 0;
978 }
979 current_buf_start = buf_start;
980
981 /* copy bytes from the working buffer into the pages */
982 while (working_bytes > 0) {
983 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
984 PAGE_CACHE_SIZE - buf_offset);
985 bytes = min(bytes, working_bytes);
986 kaddr = kmap_atomic(page_out, KM_USER0);
987 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
988 kunmap_atomic(kaddr, KM_USER0);
989 flush_dcache_page(page_out);
990
991 *pg_offset += bytes;
992 buf_offset += bytes;
993 working_bytes -= bytes;
994 current_buf_start += bytes;
995
996 /* check if we need to pick another page */
997 if (*pg_offset == PAGE_CACHE_SIZE) {
998 (*page_index)++;
999 if (*page_index >= vcnt)
1000 return 0;
1001
1002 page_out = bvec[*page_index].bv_page;
1003 *pg_offset = 0;
1004 start_byte = page_offset(page_out) - disk_start;
1005
1006 /*
1007 * make sure our new page is covered by this
1008 * working buffer
1009 */
1010 if (total_out <= start_byte)
1011 return 1;
1012
1013 /*
1014 * the next page in the biovec might not be adjacent
1015 * to the last page, but it might still be found
1016 * inside this working buffer. bump our offset pointer
1017 */
1018 if (total_out > start_byte &&
1019 current_buf_start < start_byte) {
1020 buf_offset = start_byte - buf_start;
1021 working_bytes = total_out - start_byte;
1022 current_buf_start = buf_start + buf_offset;
1023 }
1024 }
1025 }
1026
1027 return 1;
1028 }
1029