1 /*
2 * OMAP2 Remote Frame Buffer Interface support
3 *
4 * Copyright (C) 2005 Nokia Corporation
5 * Author: Juha Yrj�l� <juha.yrjola@nokia.com>
6 * Imre Deak <imre.deak@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22 #include <linux/module.h>
23 #include <linux/delay.h>
24 #include <linux/i2c.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
29 #include <linux/platform_device.h>
30
31 #include "omapfb.h"
32 #include "dispc.h"
33
34 /* To work around an RFBI transfer rate limitation */
35 #define OMAP_RFBI_RATE_LIMIT 1
36
37 #define RFBI_BASE 0x48050800
38 #define RFBI_REVISION 0x0000
39 #define RFBI_SYSCONFIG 0x0010
40 #define RFBI_SYSSTATUS 0x0014
41 #define RFBI_CONTROL 0x0040
42 #define RFBI_PIXEL_CNT 0x0044
43 #define RFBI_LINE_NUMBER 0x0048
44 #define RFBI_CMD 0x004c
45 #define RFBI_PARAM 0x0050
46 #define RFBI_DATA 0x0054
47 #define RFBI_READ 0x0058
48 #define RFBI_STATUS 0x005c
49 #define RFBI_CONFIG0 0x0060
50 #define RFBI_ONOFF_TIME0 0x0064
51 #define RFBI_CYCLE_TIME0 0x0068
52 #define RFBI_DATA_CYCLE1_0 0x006c
53 #define RFBI_DATA_CYCLE2_0 0x0070
54 #define RFBI_DATA_CYCLE3_0 0x0074
55 #define RFBI_VSYNC_WIDTH 0x0090
56 #define RFBI_HSYNC_WIDTH 0x0094
57
58 #define DISPC_BASE 0x48050400
59 #define DISPC_CONTROL 0x0040
60 #define DISPC_IRQ_FRAMEMASK 0x0001
61
62 static struct {
63 void __iomem *base;
64 void (*lcdc_callback)(void *data);
65 void *lcdc_callback_data;
66 unsigned long l4_khz;
67 int bits_per_cycle;
68 struct omapfb_device *fbdev;
69 struct clk *dss_ick;
70 struct clk *dss1_fck;
71 unsigned tearsync_pin_cnt;
72 unsigned tearsync_mode;
73 } rfbi;
74
rfbi_write_reg(int idx,u32 val)75 static inline void rfbi_write_reg(int idx, u32 val)
76 {
77 __raw_writel(val, rfbi.base + idx);
78 }
79
rfbi_read_reg(int idx)80 static inline u32 rfbi_read_reg(int idx)
81 {
82 return __raw_readl(rfbi.base + idx);
83 }
84
rfbi_get_clocks(void)85 static int rfbi_get_clocks(void)
86 {
87 rfbi.dss_ick = clk_get(&rfbi.fbdev->dssdev->dev, "ick");
88 if (IS_ERR(rfbi.dss_ick)) {
89 dev_err(rfbi.fbdev->dev, "can't get ick\n");
90 return PTR_ERR(rfbi.dss_ick);
91 }
92
93 rfbi.dss1_fck = clk_get(&rfbi.fbdev->dssdev->dev, "dss1_fck");
94 if (IS_ERR(rfbi.dss1_fck)) {
95 dev_err(rfbi.fbdev->dev, "can't get dss1_fck\n");
96 clk_put(rfbi.dss_ick);
97 return PTR_ERR(rfbi.dss1_fck);
98 }
99
100 return 0;
101 }
102
rfbi_put_clocks(void)103 static void rfbi_put_clocks(void)
104 {
105 clk_put(rfbi.dss1_fck);
106 clk_put(rfbi.dss_ick);
107 }
108
rfbi_enable_clocks(int enable)109 static void rfbi_enable_clocks(int enable)
110 {
111 if (enable) {
112 clk_enable(rfbi.dss_ick);
113 clk_enable(rfbi.dss1_fck);
114 } else {
115 clk_disable(rfbi.dss1_fck);
116 clk_disable(rfbi.dss_ick);
117 }
118 }
119
120
121 #ifdef VERBOSE
rfbi_print_timings(void)122 static void rfbi_print_timings(void)
123 {
124 u32 l;
125 u32 time;
126
127 l = rfbi_read_reg(RFBI_CONFIG0);
128 time = 1000000000 / rfbi.l4_khz;
129 if (l & (1 << 4))
130 time *= 2;
131
132 dev_dbg(rfbi.fbdev->dev, "Tick time %u ps\n", time);
133 l = rfbi_read_reg(RFBI_ONOFF_TIME0);
134 dev_dbg(rfbi.fbdev->dev,
135 "CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, "
136 "REONTIME %d, REOFFTIME %d\n",
137 l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f,
138 (l >> 20) & 0x0f, (l >> 24) & 0x3f);
139
140 l = rfbi_read_reg(RFBI_CYCLE_TIME0);
141 dev_dbg(rfbi.fbdev->dev,
142 "WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, "
143 "ACCESSTIME %d\n",
144 (l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f,
145 (l >> 22) & 0x3f);
146 }
147 #else
rfbi_print_timings(void)148 static void rfbi_print_timings(void) {}
149 #endif
150
rfbi_set_timings(const struct extif_timings * t)151 static void rfbi_set_timings(const struct extif_timings *t)
152 {
153 u32 l;
154
155 BUG_ON(!t->converted);
156
157 rfbi_enable_clocks(1);
158 rfbi_write_reg(RFBI_ONOFF_TIME0, t->tim[0]);
159 rfbi_write_reg(RFBI_CYCLE_TIME0, t->tim[1]);
160
161 l = rfbi_read_reg(RFBI_CONFIG0);
162 l &= ~(1 << 4);
163 l |= (t->tim[2] ? 1 : 0) << 4;
164 rfbi_write_reg(RFBI_CONFIG0, l);
165
166 rfbi_print_timings();
167 rfbi_enable_clocks(0);
168 }
169
rfbi_get_clk_info(u32 * clk_period,u32 * max_clk_div)170 static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div)
171 {
172 *clk_period = 1000000000 / rfbi.l4_khz;
173 *max_clk_div = 2;
174 }
175
ps_to_rfbi_ticks(int time,int div)176 static int ps_to_rfbi_ticks(int time, int div)
177 {
178 unsigned long tick_ps;
179 int ret;
180
181 /* Calculate in picosecs to yield more exact results */
182 tick_ps = 1000000000 / (rfbi.l4_khz) * div;
183
184 ret = (time + tick_ps - 1) / tick_ps;
185
186 return ret;
187 }
188
189 #ifdef OMAP_RFBI_RATE_LIMIT
rfbi_get_max_tx_rate(void)190 static unsigned long rfbi_get_max_tx_rate(void)
191 {
192 unsigned long l4_rate, dss1_rate;
193 int min_l4_ticks = 0;
194 int i;
195
196 /* According to TI this can't be calculated so make the
197 * adjustments for a couple of known frequencies and warn for
198 * others.
199 */
200 static const struct {
201 unsigned long l4_clk; /* HZ */
202 unsigned long dss1_clk; /* HZ */
203 unsigned long min_l4_ticks;
204 } ftab[] = {
205 { 55, 132, 7, }, /* 7.86 MPix/s */
206 { 110, 110, 12, }, /* 9.16 MPix/s */
207 { 110, 132, 10, }, /* 11 Mpix/s */
208 { 120, 120, 10, }, /* 12 Mpix/s */
209 { 133, 133, 10, }, /* 13.3 Mpix/s */
210 };
211
212 l4_rate = rfbi.l4_khz / 1000;
213 dss1_rate = clk_get_rate(rfbi.dss1_fck) / 1000000;
214
215 for (i = 0; i < ARRAY_SIZE(ftab); i++) {
216 /* Use a window instead of an exact match, to account
217 * for different DPLL multiplier / divider pairs.
218 */
219 if (abs(ftab[i].l4_clk - l4_rate) < 3 &&
220 abs(ftab[i].dss1_clk - dss1_rate) < 3) {
221 min_l4_ticks = ftab[i].min_l4_ticks;
222 break;
223 }
224 }
225 if (i == ARRAY_SIZE(ftab)) {
226 /* Can't be sure, return anyway the maximum not
227 * rate-limited. This might cause a problem only for the
228 * tearing synchronisation.
229 */
230 dev_err(rfbi.fbdev->dev,
231 "can't determine maximum RFBI transfer rate\n");
232 return rfbi.l4_khz * 1000;
233 }
234 return rfbi.l4_khz * 1000 / min_l4_ticks;
235 }
236 #else
rfbi_get_max_tx_rate(void)237 static int rfbi_get_max_tx_rate(void)
238 {
239 return rfbi.l4_khz * 1000;
240 }
241 #endif
242
243
rfbi_convert_timings(struct extif_timings * t)244 static int rfbi_convert_timings(struct extif_timings *t)
245 {
246 u32 l;
247 int reon, reoff, weon, weoff, cson, csoff, cs_pulse;
248 int actim, recyc, wecyc;
249 int div = t->clk_div;
250
251 if (div <= 0 || div > 2)
252 return -1;
253
254 /* Make sure that after conversion it still holds that:
255 * weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff,
256 * csoff > cson, csoff >= max(weoff, reoff), actim > reon
257 */
258 weon = ps_to_rfbi_ticks(t->we_on_time, div);
259 weoff = ps_to_rfbi_ticks(t->we_off_time, div);
260 if (weoff <= weon)
261 weoff = weon + 1;
262 if (weon > 0x0f)
263 return -1;
264 if (weoff > 0x3f)
265 return -1;
266
267 reon = ps_to_rfbi_ticks(t->re_on_time, div);
268 reoff = ps_to_rfbi_ticks(t->re_off_time, div);
269 if (reoff <= reon)
270 reoff = reon + 1;
271 if (reon > 0x0f)
272 return -1;
273 if (reoff > 0x3f)
274 return -1;
275
276 cson = ps_to_rfbi_ticks(t->cs_on_time, div);
277 csoff = ps_to_rfbi_ticks(t->cs_off_time, div);
278 if (csoff <= cson)
279 csoff = cson + 1;
280 if (csoff < max(weoff, reoff))
281 csoff = max(weoff, reoff);
282 if (cson > 0x0f)
283 return -1;
284 if (csoff > 0x3f)
285 return -1;
286
287 l = cson;
288 l |= csoff << 4;
289 l |= weon << 10;
290 l |= weoff << 14;
291 l |= reon << 20;
292 l |= reoff << 24;
293
294 t->tim[0] = l;
295
296 actim = ps_to_rfbi_ticks(t->access_time, div);
297 if (actim <= reon)
298 actim = reon + 1;
299 if (actim > 0x3f)
300 return -1;
301
302 wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div);
303 if (wecyc < weoff)
304 wecyc = weoff;
305 if (wecyc > 0x3f)
306 return -1;
307
308 recyc = ps_to_rfbi_ticks(t->re_cycle_time, div);
309 if (recyc < reoff)
310 recyc = reoff;
311 if (recyc > 0x3f)
312 return -1;
313
314 cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div);
315 if (cs_pulse > 0x3f)
316 return -1;
317
318 l = wecyc;
319 l |= recyc << 6;
320 l |= cs_pulse << 12;
321 l |= actim << 22;
322
323 t->tim[1] = l;
324
325 t->tim[2] = div - 1;
326
327 t->converted = 1;
328
329 return 0;
330 }
331
rfbi_setup_tearsync(unsigned pin_cnt,unsigned hs_pulse_time,unsigned vs_pulse_time,int hs_pol_inv,int vs_pol_inv,int extif_div)332 static int rfbi_setup_tearsync(unsigned pin_cnt,
333 unsigned hs_pulse_time, unsigned vs_pulse_time,
334 int hs_pol_inv, int vs_pol_inv, int extif_div)
335 {
336 int hs, vs;
337 int min;
338 u32 l;
339
340 if (pin_cnt != 1 && pin_cnt != 2)
341 return -EINVAL;
342
343 hs = ps_to_rfbi_ticks(hs_pulse_time, 1);
344 vs = ps_to_rfbi_ticks(vs_pulse_time, 1);
345 if (hs < 2)
346 return -EDOM;
347 if (pin_cnt == 2)
348 min = 2;
349 else
350 min = 4;
351 if (vs < min)
352 return -EDOM;
353 if (vs == hs)
354 return -EINVAL;
355 rfbi.tearsync_pin_cnt = pin_cnt;
356 dev_dbg(rfbi.fbdev->dev,
357 "setup_tearsync: pins %d hs %d vs %d hs_inv %d vs_inv %d\n",
358 pin_cnt, hs, vs, hs_pol_inv, vs_pol_inv);
359
360 rfbi_enable_clocks(1);
361 rfbi_write_reg(RFBI_HSYNC_WIDTH, hs);
362 rfbi_write_reg(RFBI_VSYNC_WIDTH, vs);
363
364 l = rfbi_read_reg(RFBI_CONFIG0);
365 if (hs_pol_inv)
366 l &= ~(1 << 21);
367 else
368 l |= 1 << 21;
369 if (vs_pol_inv)
370 l &= ~(1 << 20);
371 else
372 l |= 1 << 20;
373 rfbi_enable_clocks(0);
374
375 return 0;
376 }
377
rfbi_enable_tearsync(int enable,unsigned line)378 static int rfbi_enable_tearsync(int enable, unsigned line)
379 {
380 u32 l;
381
382 dev_dbg(rfbi.fbdev->dev, "tearsync %d line %d mode %d\n",
383 enable, line, rfbi.tearsync_mode);
384 if (line > (1 << 11) - 1)
385 return -EINVAL;
386
387 rfbi_enable_clocks(1);
388 l = rfbi_read_reg(RFBI_CONFIG0);
389 l &= ~(0x3 << 2);
390 if (enable) {
391 rfbi.tearsync_mode = rfbi.tearsync_pin_cnt;
392 l |= rfbi.tearsync_mode << 2;
393 } else
394 rfbi.tearsync_mode = 0;
395 rfbi_write_reg(RFBI_CONFIG0, l);
396 rfbi_write_reg(RFBI_LINE_NUMBER, line);
397 rfbi_enable_clocks(0);
398
399 return 0;
400 }
401
rfbi_write_command(const void * buf,unsigned int len)402 static void rfbi_write_command(const void *buf, unsigned int len)
403 {
404 rfbi_enable_clocks(1);
405 if (rfbi.bits_per_cycle == 16) {
406 const u16 *w = buf;
407 BUG_ON(len & 1);
408 for (; len; len -= 2)
409 rfbi_write_reg(RFBI_CMD, *w++);
410 } else {
411 const u8 *b = buf;
412 BUG_ON(rfbi.bits_per_cycle != 8);
413 for (; len; len--)
414 rfbi_write_reg(RFBI_CMD, *b++);
415 }
416 rfbi_enable_clocks(0);
417 }
418
rfbi_read_data(void * buf,unsigned int len)419 static void rfbi_read_data(void *buf, unsigned int len)
420 {
421 rfbi_enable_clocks(1);
422 if (rfbi.bits_per_cycle == 16) {
423 u16 *w = buf;
424 BUG_ON(len & ~1);
425 for (; len; len -= 2) {
426 rfbi_write_reg(RFBI_READ, 0);
427 *w++ = rfbi_read_reg(RFBI_READ);
428 }
429 } else {
430 u8 *b = buf;
431 BUG_ON(rfbi.bits_per_cycle != 8);
432 for (; len; len--) {
433 rfbi_write_reg(RFBI_READ, 0);
434 *b++ = rfbi_read_reg(RFBI_READ);
435 }
436 }
437 rfbi_enable_clocks(0);
438 }
439
rfbi_write_data(const void * buf,unsigned int len)440 static void rfbi_write_data(const void *buf, unsigned int len)
441 {
442 rfbi_enable_clocks(1);
443 if (rfbi.bits_per_cycle == 16) {
444 const u16 *w = buf;
445 BUG_ON(len & 1);
446 for (; len; len -= 2)
447 rfbi_write_reg(RFBI_PARAM, *w++);
448 } else {
449 const u8 *b = buf;
450 BUG_ON(rfbi.bits_per_cycle != 8);
451 for (; len; len--)
452 rfbi_write_reg(RFBI_PARAM, *b++);
453 }
454 rfbi_enable_clocks(0);
455 }
456
rfbi_transfer_area(int width,int height,void (callback)(void * data),void * data)457 static void rfbi_transfer_area(int width, int height,
458 void (callback)(void * data), void *data)
459 {
460 u32 w;
461
462 BUG_ON(callback == NULL);
463
464 rfbi_enable_clocks(1);
465 omap_dispc_set_lcd_size(width, height);
466
467 rfbi.lcdc_callback = callback;
468 rfbi.lcdc_callback_data = data;
469
470 rfbi_write_reg(RFBI_PIXEL_CNT, width * height);
471
472 w = rfbi_read_reg(RFBI_CONTROL);
473 w |= 1; /* enable */
474 if (!rfbi.tearsync_mode)
475 w |= 1 << 4; /* internal trigger, reset by HW */
476 rfbi_write_reg(RFBI_CONTROL, w);
477
478 omap_dispc_enable_lcd_out(1);
479 }
480
_stop_transfer(void)481 static inline void _stop_transfer(void)
482 {
483 u32 w;
484
485 w = rfbi_read_reg(RFBI_CONTROL);
486 rfbi_write_reg(RFBI_CONTROL, w & ~(1 << 0));
487 rfbi_enable_clocks(0);
488 }
489
rfbi_dma_callback(void * data)490 static void rfbi_dma_callback(void *data)
491 {
492 _stop_transfer();
493 rfbi.lcdc_callback(rfbi.lcdc_callback_data);
494 }
495
rfbi_set_bits_per_cycle(int bpc)496 static void rfbi_set_bits_per_cycle(int bpc)
497 {
498 u32 l;
499
500 rfbi_enable_clocks(1);
501 l = rfbi_read_reg(RFBI_CONFIG0);
502 l &= ~(0x03 << 0);
503
504 switch (bpc) {
505 case 8:
506 break;
507 case 16:
508 l |= 3;
509 break;
510 default:
511 BUG();
512 }
513 rfbi_write_reg(RFBI_CONFIG0, l);
514 rfbi.bits_per_cycle = bpc;
515 rfbi_enable_clocks(0);
516 }
517
rfbi_init(struct omapfb_device * fbdev)518 static int rfbi_init(struct omapfb_device *fbdev)
519 {
520 u32 l;
521 int r;
522
523 rfbi.fbdev = fbdev;
524 rfbi.base = ioremap(RFBI_BASE, SZ_1K);
525 if (!rfbi.base) {
526 dev_err(fbdev->dev, "can't ioremap RFBI\n");
527 return -ENOMEM;
528 }
529
530 if ((r = rfbi_get_clocks()) < 0)
531 return r;
532 rfbi_enable_clocks(1);
533
534 rfbi.l4_khz = clk_get_rate(rfbi.dss_ick) / 1000;
535
536 /* Reset */
537 rfbi_write_reg(RFBI_SYSCONFIG, 1 << 1);
538 while (!(rfbi_read_reg(RFBI_SYSSTATUS) & (1 << 0)));
539
540 l = rfbi_read_reg(RFBI_SYSCONFIG);
541 /* Enable autoidle and smart-idle */
542 l |= (1 << 0) | (2 << 3);
543 rfbi_write_reg(RFBI_SYSCONFIG, l);
544
545 /* 16-bit interface, ITE trigger mode, 16-bit data */
546 l = (0x03 << 0) | (0x00 << 2) | (0x01 << 5) | (0x02 << 7);
547 l |= (0 << 9) | (1 << 20) | (1 << 21);
548 rfbi_write_reg(RFBI_CONFIG0, l);
549
550 rfbi_write_reg(RFBI_DATA_CYCLE1_0, 0x00000010);
551
552 l = rfbi_read_reg(RFBI_CONTROL);
553 /* Select CS0, clear bypass mode */
554 l = (0x01 << 2);
555 rfbi_write_reg(RFBI_CONTROL, l);
556
557 r = omap_dispc_request_irq(DISPC_IRQ_FRAMEMASK, rfbi_dma_callback,
558 NULL);
559 if (r < 0) {
560 dev_err(fbdev->dev, "can't get DISPC irq\n");
561 rfbi_enable_clocks(0);
562 return r;
563 }
564
565 l = rfbi_read_reg(RFBI_REVISION);
566 pr_info("omapfb: RFBI version %d.%d initialized\n",
567 (l >> 4) & 0x0f, l & 0x0f);
568
569 rfbi_enable_clocks(0);
570
571 return 0;
572 }
573
rfbi_cleanup(void)574 static void rfbi_cleanup(void)
575 {
576 omap_dispc_free_irq(DISPC_IRQ_FRAMEMASK, rfbi_dma_callback, NULL);
577 rfbi_put_clocks();
578 iounmap(rfbi.base);
579 }
580
581 const struct lcd_ctrl_extif omap2_ext_if = {
582 .init = rfbi_init,
583 .cleanup = rfbi_cleanup,
584 .get_clk_info = rfbi_get_clk_info,
585 .get_max_tx_rate = rfbi_get_max_tx_rate,
586 .set_bits_per_cycle = rfbi_set_bits_per_cycle,
587 .convert_timings = rfbi_convert_timings,
588 .set_timings = rfbi_set_timings,
589 .write_command = rfbi_write_command,
590 .read_data = rfbi_read_data,
591 .write_data = rfbi_write_data,
592 .transfer_area = rfbi_transfer_area,
593 .setup_tearsync = rfbi_setup_tearsync,
594 .enable_tearsync = rfbi_enable_tearsync,
595
596 .max_transmit_size = (u32) ~0,
597 };
598
599