1 /*
2  * Helper routines for SuperH Clock Pulse Generator blocks (CPG).
3  *
4  *  Copyright (C) 2010  Magnus Damm
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  */
10 #include <linux/clk.h>
11 #include <linux/compiler.h>
12 #include <linux/slab.h>
13 #include <linux/io.h>
14 #include <linux/sh_clk.h>
15 
sh_clk_mstp32_enable(struct clk * clk)16 static int sh_clk_mstp32_enable(struct clk *clk)
17 {
18 	__raw_writel(__raw_readl(clk->enable_reg) & ~(1 << clk->enable_bit),
19 		     clk->enable_reg);
20 	return 0;
21 }
22 
sh_clk_mstp32_disable(struct clk * clk)23 static void sh_clk_mstp32_disable(struct clk *clk)
24 {
25 	__raw_writel(__raw_readl(clk->enable_reg) | (1 << clk->enable_bit),
26 		     clk->enable_reg);
27 }
28 
29 static struct clk_ops sh_clk_mstp32_clk_ops = {
30 	.enable		= sh_clk_mstp32_enable,
31 	.disable	= sh_clk_mstp32_disable,
32 	.recalc		= followparent_recalc,
33 };
34 
sh_clk_mstp32_register(struct clk * clks,int nr)35 int __init sh_clk_mstp32_register(struct clk *clks, int nr)
36 {
37 	struct clk *clkp;
38 	int ret = 0;
39 	int k;
40 
41 	for (k = 0; !ret && (k < nr); k++) {
42 		clkp = clks + k;
43 		clkp->ops = &sh_clk_mstp32_clk_ops;
44 		ret |= clk_register(clkp);
45 	}
46 
47 	return ret;
48 }
49 
sh_clk_div_round_rate(struct clk * clk,unsigned long rate)50 static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate)
51 {
52 	return clk_rate_table_round(clk, clk->freq_table, rate);
53 }
54 
55 static int sh_clk_div6_divisors[64] = {
56 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
57 	17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
58 	33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
59 	49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
60 };
61 
62 static struct clk_div_mult_table sh_clk_div6_table = {
63 	.divisors = sh_clk_div6_divisors,
64 	.nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors),
65 };
66 
sh_clk_div6_recalc(struct clk * clk)67 static unsigned long sh_clk_div6_recalc(struct clk *clk)
68 {
69 	struct clk_div_mult_table *table = &sh_clk_div6_table;
70 	unsigned int idx;
71 
72 	clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
73 			     table, NULL);
74 
75 	idx = __raw_readl(clk->enable_reg) & 0x003f;
76 
77 	return clk->freq_table[idx].frequency;
78 }
79 
sh_clk_div6_set_parent(struct clk * clk,struct clk * parent)80 static int sh_clk_div6_set_parent(struct clk *clk, struct clk *parent)
81 {
82 	struct clk_div_mult_table *table = &sh_clk_div6_table;
83 	u32 value;
84 	int ret, i;
85 
86 	if (!clk->parent_table || !clk->parent_num)
87 		return -EINVAL;
88 
89 	/* Search the parent */
90 	for (i = 0; i < clk->parent_num; i++)
91 		if (clk->parent_table[i] == parent)
92 			break;
93 
94 	if (i == clk->parent_num)
95 		return -ENODEV;
96 
97 	ret = clk_reparent(clk, parent);
98 	if (ret < 0)
99 		return ret;
100 
101 	value = __raw_readl(clk->enable_reg) &
102 		~(((1 << clk->src_width) - 1) << clk->src_shift);
103 
104 	__raw_writel(value | (i << clk->src_shift), clk->enable_reg);
105 
106 	/* Rebuild the frequency table */
107 	clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
108 			     table, &clk->arch_flags);
109 
110 	return 0;
111 }
112 
sh_clk_div6_set_rate(struct clk * clk,unsigned long rate)113 static int sh_clk_div6_set_rate(struct clk *clk, unsigned long rate)
114 {
115 	unsigned long value;
116 	int idx;
117 
118 	idx = clk_rate_table_find(clk, clk->freq_table, rate);
119 	if (idx < 0)
120 		return idx;
121 
122 	value = __raw_readl(clk->enable_reg);
123 	value &= ~0x3f;
124 	value |= idx;
125 	__raw_writel(value, clk->enable_reg);
126 	return 0;
127 }
128 
sh_clk_div6_enable(struct clk * clk)129 static int sh_clk_div6_enable(struct clk *clk)
130 {
131 	unsigned long value;
132 	int ret;
133 
134 	ret = sh_clk_div6_set_rate(clk, clk->rate);
135 	if (ret == 0) {
136 		value = __raw_readl(clk->enable_reg);
137 		value &= ~0x100; /* clear stop bit to enable clock */
138 		__raw_writel(value, clk->enable_reg);
139 	}
140 	return ret;
141 }
142 
sh_clk_div6_disable(struct clk * clk)143 static void sh_clk_div6_disable(struct clk *clk)
144 {
145 	unsigned long value;
146 
147 	value = __raw_readl(clk->enable_reg);
148 	value |= 0x100; /* stop clock */
149 	value |= 0x3f; /* VDIV bits must be non-zero, overwrite divider */
150 	__raw_writel(value, clk->enable_reg);
151 }
152 
153 static struct clk_ops sh_clk_div6_clk_ops = {
154 	.recalc		= sh_clk_div6_recalc,
155 	.round_rate	= sh_clk_div_round_rate,
156 	.set_rate	= sh_clk_div6_set_rate,
157 	.enable		= sh_clk_div6_enable,
158 	.disable	= sh_clk_div6_disable,
159 };
160 
161 static struct clk_ops sh_clk_div6_reparent_clk_ops = {
162 	.recalc		= sh_clk_div6_recalc,
163 	.round_rate	= sh_clk_div_round_rate,
164 	.set_rate	= sh_clk_div6_set_rate,
165 	.enable		= sh_clk_div6_enable,
166 	.disable	= sh_clk_div6_disable,
167 	.set_parent	= sh_clk_div6_set_parent,
168 };
169 
sh_clk_div6_register_ops(struct clk * clks,int nr,struct clk_ops * ops)170 static int __init sh_clk_div6_register_ops(struct clk *clks, int nr,
171 					   struct clk_ops *ops)
172 {
173 	struct clk *clkp;
174 	void *freq_table;
175 	int nr_divs = sh_clk_div6_table.nr_divisors;
176 	int freq_table_size = sizeof(struct cpufreq_frequency_table);
177 	int ret = 0;
178 	int k;
179 
180 	freq_table_size *= (nr_divs + 1);
181 	freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
182 	if (!freq_table) {
183 		pr_err("sh_clk_div6_register: unable to alloc memory\n");
184 		return -ENOMEM;
185 	}
186 
187 	for (k = 0; !ret && (k < nr); k++) {
188 		clkp = clks + k;
189 
190 		clkp->ops = ops;
191 		clkp->freq_table = freq_table + (k * freq_table_size);
192 		clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
193 
194 		ret = clk_register(clkp);
195 	}
196 
197 	return ret;
198 }
199 
sh_clk_div6_register(struct clk * clks,int nr)200 int __init sh_clk_div6_register(struct clk *clks, int nr)
201 {
202 	return sh_clk_div6_register_ops(clks, nr, &sh_clk_div6_clk_ops);
203 }
204 
sh_clk_div6_reparent_register(struct clk * clks,int nr)205 int __init sh_clk_div6_reparent_register(struct clk *clks, int nr)
206 {
207 	return sh_clk_div6_register_ops(clks, nr,
208 					&sh_clk_div6_reparent_clk_ops);
209 }
210 
sh_clk_div4_recalc(struct clk * clk)211 static unsigned long sh_clk_div4_recalc(struct clk *clk)
212 {
213 	struct clk_div4_table *d4t = clk->priv;
214 	struct clk_div_mult_table *table = d4t->div_mult_table;
215 	unsigned int idx;
216 
217 	clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
218 			     table, &clk->arch_flags);
219 
220 	idx = (__raw_readl(clk->enable_reg) >> clk->enable_bit) & 0x000f;
221 
222 	return clk->freq_table[idx].frequency;
223 }
224 
sh_clk_div4_set_parent(struct clk * clk,struct clk * parent)225 static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent)
226 {
227 	struct clk_div4_table *d4t = clk->priv;
228 	struct clk_div_mult_table *table = d4t->div_mult_table;
229 	u32 value;
230 	int ret;
231 
232 	/* we really need a better way to determine parent index, but for
233 	 * now assume internal parent comes with CLK_ENABLE_ON_INIT set,
234 	 * no CLK_ENABLE_ON_INIT means external clock...
235 	 */
236 
237 	if (parent->flags & CLK_ENABLE_ON_INIT)
238 		value = __raw_readl(clk->enable_reg) & ~(1 << 7);
239 	else
240 		value = __raw_readl(clk->enable_reg) | (1 << 7);
241 
242 	ret = clk_reparent(clk, parent);
243 	if (ret < 0)
244 		return ret;
245 
246 	__raw_writel(value, clk->enable_reg);
247 
248 	/* Rebiuld the frequency table */
249 	clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
250 			     table, &clk->arch_flags);
251 
252 	return 0;
253 }
254 
sh_clk_div4_set_rate(struct clk * clk,unsigned long rate)255 static int sh_clk_div4_set_rate(struct clk *clk, unsigned long rate)
256 {
257 	struct clk_div4_table *d4t = clk->priv;
258 	unsigned long value;
259 	int idx = clk_rate_table_find(clk, clk->freq_table, rate);
260 	if (idx < 0)
261 		return idx;
262 
263 	value = __raw_readl(clk->enable_reg);
264 	value &= ~(0xf << clk->enable_bit);
265 	value |= (idx << clk->enable_bit);
266 	__raw_writel(value, clk->enable_reg);
267 
268 	if (d4t->kick)
269 		d4t->kick(clk);
270 
271 	return 0;
272 }
273 
sh_clk_div4_enable(struct clk * clk)274 static int sh_clk_div4_enable(struct clk *clk)
275 {
276 	__raw_writel(__raw_readl(clk->enable_reg) & ~(1 << 8), clk->enable_reg);
277 	return 0;
278 }
279 
sh_clk_div4_disable(struct clk * clk)280 static void sh_clk_div4_disable(struct clk *clk)
281 {
282 	__raw_writel(__raw_readl(clk->enable_reg) | (1 << 8), clk->enable_reg);
283 }
284 
285 static struct clk_ops sh_clk_div4_clk_ops = {
286 	.recalc		= sh_clk_div4_recalc,
287 	.set_rate	= sh_clk_div4_set_rate,
288 	.round_rate	= sh_clk_div_round_rate,
289 };
290 
291 static struct clk_ops sh_clk_div4_enable_clk_ops = {
292 	.recalc		= sh_clk_div4_recalc,
293 	.set_rate	= sh_clk_div4_set_rate,
294 	.round_rate	= sh_clk_div_round_rate,
295 	.enable		= sh_clk_div4_enable,
296 	.disable	= sh_clk_div4_disable,
297 };
298 
299 static struct clk_ops sh_clk_div4_reparent_clk_ops = {
300 	.recalc		= sh_clk_div4_recalc,
301 	.set_rate	= sh_clk_div4_set_rate,
302 	.round_rate	= sh_clk_div_round_rate,
303 	.enable		= sh_clk_div4_enable,
304 	.disable	= sh_clk_div4_disable,
305 	.set_parent	= sh_clk_div4_set_parent,
306 };
307 
sh_clk_div4_register_ops(struct clk * clks,int nr,struct clk_div4_table * table,struct clk_ops * ops)308 static int __init sh_clk_div4_register_ops(struct clk *clks, int nr,
309 			struct clk_div4_table *table, struct clk_ops *ops)
310 {
311 	struct clk *clkp;
312 	void *freq_table;
313 	int nr_divs = table->div_mult_table->nr_divisors;
314 	int freq_table_size = sizeof(struct cpufreq_frequency_table);
315 	int ret = 0;
316 	int k;
317 
318 	freq_table_size *= (nr_divs + 1);
319 	freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
320 	if (!freq_table) {
321 		pr_err("sh_clk_div4_register: unable to alloc memory\n");
322 		return -ENOMEM;
323 	}
324 
325 	for (k = 0; !ret && (k < nr); k++) {
326 		clkp = clks + k;
327 
328 		clkp->ops = ops;
329 		clkp->priv = table;
330 
331 		clkp->freq_table = freq_table + (k * freq_table_size);
332 		clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
333 
334 		ret = clk_register(clkp);
335 	}
336 
337 	return ret;
338 }
339 
sh_clk_div4_register(struct clk * clks,int nr,struct clk_div4_table * table)340 int __init sh_clk_div4_register(struct clk *clks, int nr,
341 				struct clk_div4_table *table)
342 {
343 	return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_clk_ops);
344 }
345 
sh_clk_div4_enable_register(struct clk * clks,int nr,struct clk_div4_table * table)346 int __init sh_clk_div4_enable_register(struct clk *clks, int nr,
347 				struct clk_div4_table *table)
348 {
349 	return sh_clk_div4_register_ops(clks, nr, table,
350 					&sh_clk_div4_enable_clk_ops);
351 }
352 
sh_clk_div4_reparent_register(struct clk * clks,int nr,struct clk_div4_table * table)353 int __init sh_clk_div4_reparent_register(struct clk *clks, int nr,
354 				struct clk_div4_table *table)
355 {
356 	return sh_clk_div4_register_ops(clks, nr, table,
357 					&sh_clk_div4_reparent_clk_ops);
358 }
359