1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE			0x00
61 #define SENCODE_END_OF_DATA			0x00
62 #define SENCODE_BECOMING_READY			0x04
63 #define SENCODE_INIT_CMD_REQUIRED		0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
65 #define SENCODE_INVALID_COMMAND			0x20
66 #define SENCODE_LBA_OUT_OF_RANGE		0x21
67 #define SENCODE_INVALID_CDB_FIELD		0x24
68 #define SENCODE_LUN_NOT_SUPPORTED		0x25
69 #define SENCODE_INVALID_PARAM_FIELD		0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
71 #define SENCODE_PARAM_VALUE_INVALID		0x26
72 #define SENCODE_RESET_OCCURRED			0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
80 #define SENCODE_OVERLAPPED_COMMAND		0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE			0x00
87 #define ASENCODE_END_OF_DATA			0x05
88 #define ASENCODE_BECOMING_READY			0x01
89 #define ASENCODE_INIT_CMD_REQUIRED		0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
91 #define ASENCODE_INVALID_COMMAND		0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
93 #define ASENCODE_INVALID_CDB_FIELD		0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
95 #define ASENCODE_INVALID_PARAM_FIELD		0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
97 #define ASENCODE_PARAM_VALUE_INVALID		0x02
98 #define ASENCODE_RESET_OCCURRED			0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
106 #define ASENCODE_OVERLAPPED_COMMAND		0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141 
142 /*
143  *	Non dasd selection is handled entirely in aachba now
144  */
145 
146 static int nondasd = -1;
147 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
148 static int dacmode = -1;
149 int aac_msi;
150 int aac_commit = -1;
151 int startup_timeout = 180;
152 int aif_timeout = 120;
153 
154 module_param(nondasd, int, S_IRUGO|S_IWUSR);
155 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
156 	" 0=off, 1=on");
157 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
159 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
160 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
161 	"\tbit 2 - Disable only if Battery is protecting Cache");
162 module_param(dacmode, int, S_IRUGO|S_IWUSR);
163 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
164 	" 0=off, 1=on");
165 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
167 	" adapter for foreign arrays.\n"
168 	"This is typically needed in systems that do not have a BIOS."
169 	" 0=off, 1=on");
170 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
171 MODULE_PARM_DESC(msi, "IRQ handling."
172 	" 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
173 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
175 	" adapter to have it's kernel up and\n"
176 	"running. This is typically adjusted for large systems that do not"
177 	" have a BIOS.");
178 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
179 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
180 	" applications to pick up AIFs before\n"
181 	"deregistering them. This is typically adjusted for heavily burdened"
182 	" systems.");
183 
184 int numacb = -1;
185 module_param(numacb, int, S_IRUGO|S_IWUSR);
186 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
187 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
188 	" to use suggestion from Firmware.");
189 
190 int acbsize = -1;
191 module_param(acbsize, int, S_IRUGO|S_IWUSR);
192 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
193 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
194 	" suggestion from Firmware.");
195 
196 int update_interval = 30 * 60;
197 module_param(update_interval, int, S_IRUGO|S_IWUSR);
198 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
199 	" updates issued to adapter.");
200 
201 int check_interval = 24 * 60 * 60;
202 module_param(check_interval, int, S_IRUGO|S_IWUSR);
203 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
204 	" checks.");
205 
206 int aac_check_reset = 1;
207 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
208 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
209 	" adapter. a value of -1 forces the reset to adapters programmed to"
210 	" ignore it.");
211 
212 int expose_physicals = -1;
213 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
214 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
215 	" -1=protect 0=off, 1=on");
216 
217 int aac_reset_devices;
218 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
219 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
220 
221 int aac_wwn = 1;
222 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
223 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
224 	"\t0 - Disable\n"
225 	"\t1 - Array Meta Data Signature (default)\n"
226 	"\t2 - Adapter Serial Number");
227 
228 
aac_valid_context(struct scsi_cmnd * scsicmd,struct fib * fibptr)229 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
230 		struct fib *fibptr) {
231 	struct scsi_device *device;
232 
233 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
234 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
235 		aac_fib_complete(fibptr);
236 		aac_fib_free(fibptr);
237 		return 0;
238 	}
239 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
240 	device = scsicmd->device;
241 	if (unlikely(!device || !scsi_device_online(device))) {
242 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
243 		aac_fib_complete(fibptr);
244 		aac_fib_free(fibptr);
245 		return 0;
246 	}
247 	return 1;
248 }
249 
250 /**
251  *	aac_get_config_status	-	check the adapter configuration
252  *	@common: adapter to query
253  *
254  *	Query config status, and commit the configuration if needed.
255  */
aac_get_config_status(struct aac_dev * dev,int commit_flag)256 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
257 {
258 	int status = 0;
259 	struct fib * fibptr;
260 
261 	if (!(fibptr = aac_fib_alloc(dev)))
262 		return -ENOMEM;
263 
264 	aac_fib_init(fibptr);
265 	{
266 		struct aac_get_config_status *dinfo;
267 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
268 
269 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
270 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
271 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
272 	}
273 
274 	status = aac_fib_send(ContainerCommand,
275 			    fibptr,
276 			    sizeof (struct aac_get_config_status),
277 			    FsaNormal,
278 			    1, 1,
279 			    NULL, NULL);
280 	if (status < 0) {
281 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
282 	} else {
283 		struct aac_get_config_status_resp *reply
284 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
285 		dprintk((KERN_WARNING
286 		  "aac_get_config_status: response=%d status=%d action=%d\n",
287 		  le32_to_cpu(reply->response),
288 		  le32_to_cpu(reply->status),
289 		  le32_to_cpu(reply->data.action)));
290 		if ((le32_to_cpu(reply->response) != ST_OK) ||
291 		     (le32_to_cpu(reply->status) != CT_OK) ||
292 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
293 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
294 			status = -EINVAL;
295 		}
296 	}
297 	/* Do not set XferState to zero unless receives a response from F/W */
298 	if (status >= 0)
299 		aac_fib_complete(fibptr);
300 
301 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
302 	if (status >= 0) {
303 		if ((aac_commit == 1) || commit_flag) {
304 			struct aac_commit_config * dinfo;
305 			aac_fib_init(fibptr);
306 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
307 
308 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
309 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
310 
311 			status = aac_fib_send(ContainerCommand,
312 				    fibptr,
313 				    sizeof (struct aac_commit_config),
314 				    FsaNormal,
315 				    1, 1,
316 				    NULL, NULL);
317 			/* Do not set XferState to zero unless
318 			 * receives a response from F/W */
319 			if (status >= 0)
320 				aac_fib_complete(fibptr);
321 		} else if (aac_commit == 0) {
322 			printk(KERN_WARNING
323 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
324 		}
325 	}
326 	/* FIB should be freed only after getting the response from the F/W */
327 	if (status != -ERESTARTSYS)
328 		aac_fib_free(fibptr);
329 	return status;
330 }
331 
aac_expose_phy_device(struct scsi_cmnd * scsicmd)332 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
333 {
334 	char inq_data;
335 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
336 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
337 		inq_data &= 0xdf;
338 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
339 	}
340 }
341 
342 /**
343  *	aac_get_containers	-	list containers
344  *	@common: adapter to probe
345  *
346  *	Make a list of all containers on this controller
347  */
aac_get_containers(struct aac_dev * dev)348 int aac_get_containers(struct aac_dev *dev)
349 {
350 	struct fsa_dev_info *fsa_dev_ptr;
351 	u32 index;
352 	int status = 0;
353 	struct fib * fibptr;
354 	struct aac_get_container_count *dinfo;
355 	struct aac_get_container_count_resp *dresp;
356 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
357 
358 	if (!(fibptr = aac_fib_alloc(dev)))
359 		return -ENOMEM;
360 
361 	aac_fib_init(fibptr);
362 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
363 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
364 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
365 
366 	status = aac_fib_send(ContainerCommand,
367 		    fibptr,
368 		    sizeof (struct aac_get_container_count),
369 		    FsaNormal,
370 		    1, 1,
371 		    NULL, NULL);
372 	if (status >= 0) {
373 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
374 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
375 		aac_fib_complete(fibptr);
376 	}
377 	/* FIB should be freed only after getting the response from the F/W */
378 	if (status != -ERESTARTSYS)
379 		aac_fib_free(fibptr);
380 
381 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
382 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
383 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
384 			GFP_KERNEL);
385 	if (!fsa_dev_ptr)
386 		return -ENOMEM;
387 
388 	dev->fsa_dev = fsa_dev_ptr;
389 	dev->maximum_num_containers = maximum_num_containers;
390 
391 	for (index = 0; index < dev->maximum_num_containers; ) {
392 		fsa_dev_ptr[index].devname[0] = '\0';
393 
394 		status = aac_probe_container(dev, index);
395 
396 		if (status < 0) {
397 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
398 			break;
399 		}
400 
401 		/*
402 		 *	If there are no more containers, then stop asking.
403 		 */
404 		if (++index >= status)
405 			break;
406 	}
407 	return status;
408 }
409 
get_container_name_callback(void * context,struct fib * fibptr)410 static void get_container_name_callback(void *context, struct fib * fibptr)
411 {
412 	struct aac_get_name_resp * get_name_reply;
413 	struct scsi_cmnd * scsicmd;
414 
415 	scsicmd = (struct scsi_cmnd *) context;
416 
417 	if (!aac_valid_context(scsicmd, fibptr))
418 		return;
419 
420 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
421 	BUG_ON(fibptr == NULL);
422 
423 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
424 	/* Failure is irrelevant, using default value instead */
425 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
426 	 && (get_name_reply->data[0] != '\0')) {
427 		char *sp = get_name_reply->data;
428 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
429 		while (*sp == ' ')
430 			++sp;
431 		if (*sp) {
432 			struct inquiry_data inq;
433 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
434 			int count = sizeof(d);
435 			char *dp = d;
436 			do {
437 				*dp++ = (*sp) ? *sp++ : ' ';
438 			} while (--count > 0);
439 
440 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
441 			memcpy(inq.inqd_pid, d, sizeof(d));
442 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
443 		}
444 	}
445 
446 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
447 
448 	aac_fib_complete(fibptr);
449 	aac_fib_free(fibptr);
450 	scsicmd->scsi_done(scsicmd);
451 }
452 
453 /**
454  *	aac_get_container_name	-	get container name, none blocking.
455  */
aac_get_container_name(struct scsi_cmnd * scsicmd)456 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
457 {
458 	int status;
459 	struct aac_get_name *dinfo;
460 	struct fib * cmd_fibcontext;
461 	struct aac_dev * dev;
462 
463 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
464 
465 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
466 		return -ENOMEM;
467 
468 	aac_fib_init(cmd_fibcontext);
469 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
470 
471 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
472 	dinfo->type = cpu_to_le32(CT_READ_NAME);
473 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
474 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
475 
476 	status = aac_fib_send(ContainerCommand,
477 		  cmd_fibcontext,
478 		  sizeof (struct aac_get_name),
479 		  FsaNormal,
480 		  0, 1,
481 		  (fib_callback)get_container_name_callback,
482 		  (void *) scsicmd);
483 
484 	/*
485 	 *	Check that the command queued to the controller
486 	 */
487 	if (status == -EINPROGRESS) {
488 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
489 		return 0;
490 	}
491 
492 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
493 	aac_fib_complete(cmd_fibcontext);
494 	aac_fib_free(cmd_fibcontext);
495 	return -1;
496 }
497 
aac_probe_container_callback2(struct scsi_cmnd * scsicmd)498 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
499 {
500 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
501 
502 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
503 		return aac_scsi_cmd(scsicmd);
504 
505 	scsicmd->result = DID_NO_CONNECT << 16;
506 	scsicmd->scsi_done(scsicmd);
507 	return 0;
508 }
509 
_aac_probe_container2(void * context,struct fib * fibptr)510 static void _aac_probe_container2(void * context, struct fib * fibptr)
511 {
512 	struct fsa_dev_info *fsa_dev_ptr;
513 	int (*callback)(struct scsi_cmnd *);
514 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
515 
516 
517 	if (!aac_valid_context(scsicmd, fibptr))
518 		return;
519 
520 	scsicmd->SCp.Status = 0;
521 	fsa_dev_ptr = fibptr->dev->fsa_dev;
522 	if (fsa_dev_ptr) {
523 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
524 		fsa_dev_ptr += scmd_id(scsicmd);
525 
526 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
527 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
528 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
529 			fsa_dev_ptr->valid = 1;
530 			/* sense_key holds the current state of the spin-up */
531 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
532 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
533 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
534 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
535 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
536 			fsa_dev_ptr->size
537 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
538 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
539 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
540 		}
541 		if ((fsa_dev_ptr->valid & 1) == 0)
542 			fsa_dev_ptr->valid = 0;
543 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
544 	}
545 	aac_fib_complete(fibptr);
546 	aac_fib_free(fibptr);
547 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
548 	scsicmd->SCp.ptr = NULL;
549 	(*callback)(scsicmd);
550 	return;
551 }
552 
_aac_probe_container1(void * context,struct fib * fibptr)553 static void _aac_probe_container1(void * context, struct fib * fibptr)
554 {
555 	struct scsi_cmnd * scsicmd;
556 	struct aac_mount * dresp;
557 	struct aac_query_mount *dinfo;
558 	int status;
559 
560 	dresp = (struct aac_mount *) fib_data(fibptr);
561 	dresp->mnt[0].capacityhigh = 0;
562 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
563 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
564 		_aac_probe_container2(context, fibptr);
565 		return;
566 	}
567 	scsicmd = (struct scsi_cmnd *) context;
568 
569 	if (!aac_valid_context(scsicmd, fibptr))
570 		return;
571 
572 	aac_fib_init(fibptr);
573 
574 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
575 
576 	dinfo->command = cpu_to_le32(VM_NameServe64);
577 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
578 	dinfo->type = cpu_to_le32(FT_FILESYS);
579 
580 	status = aac_fib_send(ContainerCommand,
581 			  fibptr,
582 			  sizeof(struct aac_query_mount),
583 			  FsaNormal,
584 			  0, 1,
585 			  _aac_probe_container2,
586 			  (void *) scsicmd);
587 	/*
588 	 *	Check that the command queued to the controller
589 	 */
590 	if (status == -EINPROGRESS)
591 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
592 	else if (status < 0) {
593 		/* Inherit results from VM_NameServe, if any */
594 		dresp->status = cpu_to_le32(ST_OK);
595 		_aac_probe_container2(context, fibptr);
596 	}
597 }
598 
_aac_probe_container(struct scsi_cmnd * scsicmd,int (* callback)(struct scsi_cmnd *))599 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
600 {
601 	struct fib * fibptr;
602 	int status = -ENOMEM;
603 
604 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
605 		struct aac_query_mount *dinfo;
606 
607 		aac_fib_init(fibptr);
608 
609 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
610 
611 		dinfo->command = cpu_to_le32(VM_NameServe);
612 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
613 		dinfo->type = cpu_to_le32(FT_FILESYS);
614 		scsicmd->SCp.ptr = (char *)callback;
615 
616 		status = aac_fib_send(ContainerCommand,
617 			  fibptr,
618 			  sizeof(struct aac_query_mount),
619 			  FsaNormal,
620 			  0, 1,
621 			  _aac_probe_container1,
622 			  (void *) scsicmd);
623 		/*
624 		 *	Check that the command queued to the controller
625 		 */
626 		if (status == -EINPROGRESS) {
627 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
628 			return 0;
629 		}
630 		if (status < 0) {
631 			scsicmd->SCp.ptr = NULL;
632 			aac_fib_complete(fibptr);
633 			aac_fib_free(fibptr);
634 		}
635 	}
636 	if (status < 0) {
637 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
638 		if (fsa_dev_ptr) {
639 			fsa_dev_ptr += scmd_id(scsicmd);
640 			if ((fsa_dev_ptr->valid & 1) == 0) {
641 				fsa_dev_ptr->valid = 0;
642 				return (*callback)(scsicmd);
643 			}
644 		}
645 	}
646 	return status;
647 }
648 
649 /**
650  *	aac_probe_container		-	query a logical volume
651  *	@dev: device to query
652  *	@cid: container identifier
653  *
654  *	Queries the controller about the given volume. The volume information
655  *	is updated in the struct fsa_dev_info structure rather than returned.
656  */
aac_probe_container_callback1(struct scsi_cmnd * scsicmd)657 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
658 {
659 	scsicmd->device = NULL;
660 	return 0;
661 }
662 
aac_probe_container(struct aac_dev * dev,int cid)663 int aac_probe_container(struct aac_dev *dev, int cid)
664 {
665 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
666 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
667 	int status;
668 
669 	if (!scsicmd || !scsidev) {
670 		kfree(scsicmd);
671 		kfree(scsidev);
672 		return -ENOMEM;
673 	}
674 	scsicmd->list.next = NULL;
675 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
676 
677 	scsicmd->device = scsidev;
678 	scsidev->sdev_state = 0;
679 	scsidev->id = cid;
680 	scsidev->host = dev->scsi_host_ptr;
681 
682 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
683 		while (scsicmd->device == scsidev)
684 			schedule();
685 	kfree(scsidev);
686 	status = scsicmd->SCp.Status;
687 	kfree(scsicmd);
688 	return status;
689 }
690 
691 /* Local Structure to set SCSI inquiry data strings */
692 struct scsi_inq {
693 	char vid[8];         /* Vendor ID */
694 	char pid[16];        /* Product ID */
695 	char prl[4];         /* Product Revision Level */
696 };
697 
698 /**
699  *	InqStrCopy	-	string merge
700  *	@a:	string to copy from
701  *	@b:	string to copy to
702  *
703  *	Copy a String from one location to another
704  *	without copying \0
705  */
706 
inqstrcpy(char * a,char * b)707 static void inqstrcpy(char *a, char *b)
708 {
709 
710 	while (*a != (char)0)
711 		*b++ = *a++;
712 }
713 
714 static char *container_types[] = {
715 	"None",
716 	"Volume",
717 	"Mirror",
718 	"Stripe",
719 	"RAID5",
720 	"SSRW",
721 	"SSRO",
722 	"Morph",
723 	"Legacy",
724 	"RAID4",
725 	"RAID10",
726 	"RAID00",
727 	"V-MIRRORS",
728 	"PSEUDO R4",
729 	"RAID50",
730 	"RAID5D",
731 	"RAID5D0",
732 	"RAID1E",
733 	"RAID6",
734 	"RAID60",
735 	"Unknown"
736 };
737 
get_container_type(unsigned tindex)738 char * get_container_type(unsigned tindex)
739 {
740 	if (tindex >= ARRAY_SIZE(container_types))
741 		tindex = ARRAY_SIZE(container_types) - 1;
742 	return container_types[tindex];
743 }
744 
745 /* Function: setinqstr
746  *
747  * Arguments: [1] pointer to void [1] int
748  *
749  * Purpose: Sets SCSI inquiry data strings for vendor, product
750  * and revision level. Allows strings to be set in platform dependent
751  * files instead of in OS dependent driver source.
752  */
753 
setinqstr(struct aac_dev * dev,void * data,int tindex)754 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
755 {
756 	struct scsi_inq *str;
757 
758 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
759 	memset(str, ' ', sizeof(*str));
760 
761 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
762 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
763 		int c;
764 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
765 			inqstrcpy("SMC", str->vid);
766 		else {
767 			c = sizeof(str->vid);
768 			while (*cp && *cp != ' ' && --c)
769 				++cp;
770 			c = *cp;
771 			*cp = '\0';
772 			inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
773 				   str->vid);
774 			*cp = c;
775 			while (*cp && *cp != ' ')
776 				++cp;
777 		}
778 		while (*cp == ' ')
779 			++cp;
780 		/* last six chars reserved for vol type */
781 		c = 0;
782 		if (strlen(cp) > sizeof(str->pid)) {
783 			c = cp[sizeof(str->pid)];
784 			cp[sizeof(str->pid)] = '\0';
785 		}
786 		inqstrcpy (cp, str->pid);
787 		if (c)
788 			cp[sizeof(str->pid)] = c;
789 	} else {
790 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
791 
792 		inqstrcpy (mp->vname, str->vid);
793 		/* last six chars reserved for vol type */
794 		inqstrcpy (mp->model, str->pid);
795 	}
796 
797 	if (tindex < ARRAY_SIZE(container_types)){
798 		char *findit = str->pid;
799 
800 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
801 		/* RAID is superfluous in the context of a RAID device */
802 		if (memcmp(findit-4, "RAID", 4) == 0)
803 			*(findit -= 4) = ' ';
804 		if (((findit - str->pid) + strlen(container_types[tindex]))
805 		 < (sizeof(str->pid) + sizeof(str->prl)))
806 			inqstrcpy (container_types[tindex], findit + 1);
807 	}
808 	inqstrcpy ("V1.0", str->prl);
809 }
810 
get_container_serial_callback(void * context,struct fib * fibptr)811 static void get_container_serial_callback(void *context, struct fib * fibptr)
812 {
813 	struct aac_get_serial_resp * get_serial_reply;
814 	struct scsi_cmnd * scsicmd;
815 
816 	BUG_ON(fibptr == NULL);
817 
818 	scsicmd = (struct scsi_cmnd *) context;
819 	if (!aac_valid_context(scsicmd, fibptr))
820 		return;
821 
822 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
823 	/* Failure is irrelevant, using default value instead */
824 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
825 		char sp[13];
826 		/* EVPD bit set */
827 		sp[0] = INQD_PDT_DA;
828 		sp[1] = scsicmd->cmnd[2];
829 		sp[2] = 0;
830 		sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
831 		  le32_to_cpu(get_serial_reply->uid));
832 		scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
833 	}
834 
835 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
836 
837 	aac_fib_complete(fibptr);
838 	aac_fib_free(fibptr);
839 	scsicmd->scsi_done(scsicmd);
840 }
841 
842 /**
843  *	aac_get_container_serial - get container serial, none blocking.
844  */
aac_get_container_serial(struct scsi_cmnd * scsicmd)845 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
846 {
847 	int status;
848 	struct aac_get_serial *dinfo;
849 	struct fib * cmd_fibcontext;
850 	struct aac_dev * dev;
851 
852 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
853 
854 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
855 		return -ENOMEM;
856 
857 	aac_fib_init(cmd_fibcontext);
858 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
859 
860 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
861 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
862 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
863 
864 	status = aac_fib_send(ContainerCommand,
865 		  cmd_fibcontext,
866 		  sizeof (struct aac_get_serial),
867 		  FsaNormal,
868 		  0, 1,
869 		  (fib_callback) get_container_serial_callback,
870 		  (void *) scsicmd);
871 
872 	/*
873 	 *	Check that the command queued to the controller
874 	 */
875 	if (status == -EINPROGRESS) {
876 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
877 		return 0;
878 	}
879 
880 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
881 	aac_fib_complete(cmd_fibcontext);
882 	aac_fib_free(cmd_fibcontext);
883 	return -1;
884 }
885 
886 /* Function: setinqserial
887  *
888  * Arguments: [1] pointer to void [1] int
889  *
890  * Purpose: Sets SCSI Unit Serial number.
891  *          This is a fake. We should read a proper
892  *          serial number from the container. <SuSE>But
893  *          without docs it's quite hard to do it :-)
894  *          So this will have to do in the meantime.</SuSE>
895  */
896 
setinqserial(struct aac_dev * dev,void * data,int cid)897 static int setinqserial(struct aac_dev *dev, void *data, int cid)
898 {
899 	/*
900 	 *	This breaks array migration.
901 	 */
902 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
903 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
904 }
905 
set_sense(struct sense_data * sense_data,u8 sense_key,u8 sense_code,u8 a_sense_code,u8 bit_pointer,u16 field_pointer)906 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
907 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
908 {
909 	u8 *sense_buf = (u8 *)sense_data;
910 	/* Sense data valid, err code 70h */
911 	sense_buf[0] = 0x70; /* No info field */
912 	sense_buf[1] = 0;	/* Segment number, always zero */
913 
914 	sense_buf[2] = sense_key;	/* Sense key */
915 
916 	sense_buf[12] = sense_code;	/* Additional sense code */
917 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
918 
919 	if (sense_key == ILLEGAL_REQUEST) {
920 		sense_buf[7] = 10;	/* Additional sense length */
921 
922 		sense_buf[15] = bit_pointer;
923 		/* Illegal parameter is in the parameter block */
924 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
925 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
926 		/* Illegal parameter is in the CDB block */
927 		sense_buf[16] = field_pointer >> 8;	/* MSB */
928 		sense_buf[17] = field_pointer;		/* LSB */
929 	} else
930 		sense_buf[7] = 6;	/* Additional sense length */
931 }
932 
aac_bounds_32(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)933 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
934 {
935 	if (lba & 0xffffffff00000000LL) {
936 		int cid = scmd_id(cmd);
937 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
938 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
939 			SAM_STAT_CHECK_CONDITION;
940 		set_sense(&dev->fsa_dev[cid].sense_data,
941 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
942 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
943 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
944 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
945 			     SCSI_SENSE_BUFFERSIZE));
946 		cmd->scsi_done(cmd);
947 		return 1;
948 	}
949 	return 0;
950 }
951 
aac_bounds_64(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)952 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
953 {
954 	return 0;
955 }
956 
957 static void io_callback(void *context, struct fib * fibptr);
958 
aac_read_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)959 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
960 {
961 	u16 fibsize;
962 	struct aac_raw_io *readcmd;
963 	aac_fib_init(fib);
964 	readcmd = (struct aac_raw_io *) fib_data(fib);
965 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
966 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
967 	readcmd->count = cpu_to_le32(count<<9);
968 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
969 	readcmd->flags = cpu_to_le16(IO_TYPE_READ);
970 	readcmd->bpTotal = 0;
971 	readcmd->bpComplete = 0;
972 
973 	aac_build_sgraw(cmd, &readcmd->sg);
974 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
975 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
976 	/*
977 	 *	Now send the Fib to the adapter
978 	 */
979 	return aac_fib_send(ContainerRawIo,
980 			  fib,
981 			  fibsize,
982 			  FsaNormal,
983 			  0, 1,
984 			  (fib_callback) io_callback,
985 			  (void *) cmd);
986 }
987 
aac_read_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)988 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
989 {
990 	u16 fibsize;
991 	struct aac_read64 *readcmd;
992 	aac_fib_init(fib);
993 	readcmd = (struct aac_read64 *) fib_data(fib);
994 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
995 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
996 	readcmd->sector_count = cpu_to_le16(count);
997 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
998 	readcmd->pad   = 0;
999 	readcmd->flags = 0;
1000 
1001 	aac_build_sg64(cmd, &readcmd->sg);
1002 	fibsize = sizeof(struct aac_read64) +
1003 		((le32_to_cpu(readcmd->sg.count) - 1) *
1004 		 sizeof (struct sgentry64));
1005 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1006 				sizeof(struct aac_fibhdr)));
1007 	/*
1008 	 *	Now send the Fib to the adapter
1009 	 */
1010 	return aac_fib_send(ContainerCommand64,
1011 			  fib,
1012 			  fibsize,
1013 			  FsaNormal,
1014 			  0, 1,
1015 			  (fib_callback) io_callback,
1016 			  (void *) cmd);
1017 }
1018 
aac_read_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1019 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1020 {
1021 	u16 fibsize;
1022 	struct aac_read *readcmd;
1023 	aac_fib_init(fib);
1024 	readcmd = (struct aac_read *) fib_data(fib);
1025 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1026 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1027 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1028 	readcmd->count = cpu_to_le32(count * 512);
1029 
1030 	aac_build_sg(cmd, &readcmd->sg);
1031 	fibsize = sizeof(struct aac_read) +
1032 			((le32_to_cpu(readcmd->sg.count) - 1) *
1033 			 sizeof (struct sgentry));
1034 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1035 				sizeof(struct aac_fibhdr)));
1036 	/*
1037 	 *	Now send the Fib to the adapter
1038 	 */
1039 	return aac_fib_send(ContainerCommand,
1040 			  fib,
1041 			  fibsize,
1042 			  FsaNormal,
1043 			  0, 1,
1044 			  (fib_callback) io_callback,
1045 			  (void *) cmd);
1046 }
1047 
aac_write_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1048 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1049 {
1050 	u16 fibsize;
1051 	struct aac_raw_io *writecmd;
1052 	aac_fib_init(fib);
1053 	writecmd = (struct aac_raw_io *) fib_data(fib);
1054 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1055 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1056 	writecmd->count = cpu_to_le32(count<<9);
1057 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1058 	writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1059 	  (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1060 		cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1061 		cpu_to_le16(IO_TYPE_WRITE);
1062 	writecmd->bpTotal = 0;
1063 	writecmd->bpComplete = 0;
1064 
1065 	aac_build_sgraw(cmd, &writecmd->sg);
1066 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1067 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1068 	/*
1069 	 *	Now send the Fib to the adapter
1070 	 */
1071 	return aac_fib_send(ContainerRawIo,
1072 			  fib,
1073 			  fibsize,
1074 			  FsaNormal,
1075 			  0, 1,
1076 			  (fib_callback) io_callback,
1077 			  (void *) cmd);
1078 }
1079 
aac_write_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1080 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1081 {
1082 	u16 fibsize;
1083 	struct aac_write64 *writecmd;
1084 	aac_fib_init(fib);
1085 	writecmd = (struct aac_write64 *) fib_data(fib);
1086 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1087 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1088 	writecmd->sector_count = cpu_to_le16(count);
1089 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1090 	writecmd->pad	= 0;
1091 	writecmd->flags	= 0;
1092 
1093 	aac_build_sg64(cmd, &writecmd->sg);
1094 	fibsize = sizeof(struct aac_write64) +
1095 		((le32_to_cpu(writecmd->sg.count) - 1) *
1096 		 sizeof (struct sgentry64));
1097 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1098 				sizeof(struct aac_fibhdr)));
1099 	/*
1100 	 *	Now send the Fib to the adapter
1101 	 */
1102 	return aac_fib_send(ContainerCommand64,
1103 			  fib,
1104 			  fibsize,
1105 			  FsaNormal,
1106 			  0, 1,
1107 			  (fib_callback) io_callback,
1108 			  (void *) cmd);
1109 }
1110 
aac_write_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1111 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1112 {
1113 	u16 fibsize;
1114 	struct aac_write *writecmd;
1115 	aac_fib_init(fib);
1116 	writecmd = (struct aac_write *) fib_data(fib);
1117 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1118 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1119 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1120 	writecmd->count = cpu_to_le32(count * 512);
1121 	writecmd->sg.count = cpu_to_le32(1);
1122 	/* ->stable is not used - it did mean which type of write */
1123 
1124 	aac_build_sg(cmd, &writecmd->sg);
1125 	fibsize = sizeof(struct aac_write) +
1126 		((le32_to_cpu(writecmd->sg.count) - 1) *
1127 		 sizeof (struct sgentry));
1128 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1129 				sizeof(struct aac_fibhdr)));
1130 	/*
1131 	 *	Now send the Fib to the adapter
1132 	 */
1133 	return aac_fib_send(ContainerCommand,
1134 			  fib,
1135 			  fibsize,
1136 			  FsaNormal,
1137 			  0, 1,
1138 			  (fib_callback) io_callback,
1139 			  (void *) cmd);
1140 }
1141 
aac_scsi_common(struct fib * fib,struct scsi_cmnd * cmd)1142 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1143 {
1144 	struct aac_srb * srbcmd;
1145 	u32 flag;
1146 	u32 timeout;
1147 
1148 	aac_fib_init(fib);
1149 	switch(cmd->sc_data_direction){
1150 	case DMA_TO_DEVICE:
1151 		flag = SRB_DataOut;
1152 		break;
1153 	case DMA_BIDIRECTIONAL:
1154 		flag = SRB_DataIn | SRB_DataOut;
1155 		break;
1156 	case DMA_FROM_DEVICE:
1157 		flag = SRB_DataIn;
1158 		break;
1159 	case DMA_NONE:
1160 	default:	/* shuts up some versions of gcc */
1161 		flag = SRB_NoDataXfer;
1162 		break;
1163 	}
1164 
1165 	srbcmd = (struct aac_srb*) fib_data(fib);
1166 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1167 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1168 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1169 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1170 	srbcmd->flags    = cpu_to_le32(flag);
1171 	timeout = cmd->request->timeout/HZ;
1172 	if (timeout == 0)
1173 		timeout = 1;
1174 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1175 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1176 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1177 	return srbcmd;
1178 }
1179 
1180 static void aac_srb_callback(void *context, struct fib * fibptr);
1181 
aac_scsi_64(struct fib * fib,struct scsi_cmnd * cmd)1182 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1183 {
1184 	u16 fibsize;
1185 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1186 
1187 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1188 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1189 
1190 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1191 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1192 	/*
1193 	 *	Build Scatter/Gather list
1194 	 */
1195 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1196 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1197 		 sizeof (struct sgentry64));
1198 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1199 				sizeof(struct aac_fibhdr)));
1200 
1201 	/*
1202 	 *	Now send the Fib to the adapter
1203 	 */
1204 	return aac_fib_send(ScsiPortCommand64, fib,
1205 				fibsize, FsaNormal, 0, 1,
1206 				  (fib_callback) aac_srb_callback,
1207 				  (void *) cmd);
1208 }
1209 
aac_scsi_32(struct fib * fib,struct scsi_cmnd * cmd)1210 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1211 {
1212 	u16 fibsize;
1213 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1214 
1215 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1216 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1217 
1218 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1219 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1220 	/*
1221 	 *	Build Scatter/Gather list
1222 	 */
1223 	fibsize = sizeof (struct aac_srb) +
1224 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1225 		 sizeof (struct sgentry));
1226 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1227 				sizeof(struct aac_fibhdr)));
1228 
1229 	/*
1230 	 *	Now send the Fib to the adapter
1231 	 */
1232 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1233 				  (fib_callback) aac_srb_callback, (void *) cmd);
1234 }
1235 
aac_scsi_32_64(struct fib * fib,struct scsi_cmnd * cmd)1236 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1237 {
1238 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1239 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1240 		return FAILED;
1241 	return aac_scsi_32(fib, cmd);
1242 }
1243 
aac_get_adapter_info(struct aac_dev * dev)1244 int aac_get_adapter_info(struct aac_dev* dev)
1245 {
1246 	struct fib* fibptr;
1247 	int rcode;
1248 	u32 tmp;
1249 	struct aac_adapter_info *info;
1250 	struct aac_bus_info *command;
1251 	struct aac_bus_info_response *bus_info;
1252 
1253 	if (!(fibptr = aac_fib_alloc(dev)))
1254 		return -ENOMEM;
1255 
1256 	aac_fib_init(fibptr);
1257 	info = (struct aac_adapter_info *) fib_data(fibptr);
1258 	memset(info,0,sizeof(*info));
1259 
1260 	rcode = aac_fib_send(RequestAdapterInfo,
1261 			 fibptr,
1262 			 sizeof(*info),
1263 			 FsaNormal,
1264 			 -1, 1, /* First `interrupt' command uses special wait */
1265 			 NULL,
1266 			 NULL);
1267 
1268 	if (rcode < 0) {
1269 		/* FIB should be freed only after
1270 		 * getting the response from the F/W */
1271 		if (rcode != -ERESTARTSYS) {
1272 			aac_fib_complete(fibptr);
1273 			aac_fib_free(fibptr);
1274 		}
1275 		return rcode;
1276 	}
1277 	memcpy(&dev->adapter_info, info, sizeof(*info));
1278 
1279 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1280 		struct aac_supplement_adapter_info * sinfo;
1281 
1282 		aac_fib_init(fibptr);
1283 
1284 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1285 
1286 		memset(sinfo,0,sizeof(*sinfo));
1287 
1288 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1289 				 fibptr,
1290 				 sizeof(*sinfo),
1291 				 FsaNormal,
1292 				 1, 1,
1293 				 NULL,
1294 				 NULL);
1295 
1296 		if (rcode >= 0)
1297 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1298 		if (rcode == -ERESTARTSYS) {
1299 			fibptr = aac_fib_alloc(dev);
1300 			if (!fibptr)
1301 				return -ENOMEM;
1302 		}
1303 
1304 	}
1305 
1306 
1307 	/*
1308 	 * GetBusInfo
1309 	 */
1310 
1311 	aac_fib_init(fibptr);
1312 
1313 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1314 
1315 	memset(bus_info, 0, sizeof(*bus_info));
1316 
1317 	command = (struct aac_bus_info *)bus_info;
1318 
1319 	command->Command = cpu_to_le32(VM_Ioctl);
1320 	command->ObjType = cpu_to_le32(FT_DRIVE);
1321 	command->MethodId = cpu_to_le32(1);
1322 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1323 
1324 	rcode = aac_fib_send(ContainerCommand,
1325 			 fibptr,
1326 			 sizeof (*bus_info),
1327 			 FsaNormal,
1328 			 1, 1,
1329 			 NULL, NULL);
1330 
1331 	/* reasoned default */
1332 	dev->maximum_num_physicals = 16;
1333 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1334 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1335 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1336 	}
1337 
1338 	if (!dev->in_reset) {
1339 		char buffer[16];
1340 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1341 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1342 			dev->name,
1343 			dev->id,
1344 			tmp>>24,
1345 			(tmp>>16)&0xff,
1346 			tmp&0xff,
1347 			le32_to_cpu(dev->adapter_info.kernelbuild),
1348 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1349 			dev->supplement_adapter_info.BuildDate);
1350 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1351 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1352 			dev->name, dev->id,
1353 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1354 			le32_to_cpu(dev->adapter_info.monitorbuild));
1355 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1356 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1357 			dev->name, dev->id,
1358 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1359 			le32_to_cpu(dev->adapter_info.biosbuild));
1360 		buffer[0] = '\0';
1361 		if (aac_get_serial_number(
1362 		  shost_to_class(dev->scsi_host_ptr), buffer))
1363 			printk(KERN_INFO "%s%d: serial %s",
1364 			  dev->name, dev->id, buffer);
1365 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1366 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1367 			  dev->name, dev->id,
1368 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1369 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1370 		}
1371 		if (!aac_check_reset || ((aac_check_reset == 1) &&
1372 		  (dev->supplement_adapter_info.SupportedOptions2 &
1373 		  AAC_OPTION_IGNORE_RESET))) {
1374 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1375 			  dev->name, dev->id);
1376 		}
1377 	}
1378 
1379 	dev->cache_protected = 0;
1380 	dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1381 		AAC_FEATURE_JBOD) != 0);
1382 	dev->nondasd_support = 0;
1383 	dev->raid_scsi_mode = 0;
1384 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
1385 		dev->nondasd_support = 1;
1386 
1387 	/*
1388 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1389 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1390 	 * force nondasd support on. If we decide to allow the non-dasd flag
1391 	 * additional changes changes will have to be made to support
1392 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1393 	 * changed to support the new dev->raid_scsi_mode flag instead of
1394 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1395 	 * function aac_detect will have to be modified where it sets up the
1396 	 * max number of channels based on the aac->nondasd_support flag only.
1397 	 */
1398 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1399 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1400 		dev->nondasd_support = 1;
1401 		dev->raid_scsi_mode = 1;
1402 	}
1403 	if (dev->raid_scsi_mode != 0)
1404 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1405 				dev->name, dev->id);
1406 
1407 	if (nondasd != -1)
1408 		dev->nondasd_support = (nondasd!=0);
1409 	if (dev->nondasd_support && !dev->in_reset)
1410 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1411 
1412 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1413 		dev->needs_dac = 1;
1414 	dev->dac_support = 0;
1415 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1416 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1417 		if (!dev->in_reset)
1418 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1419 				dev->name, dev->id);
1420 		dev->dac_support = 1;
1421 	}
1422 
1423 	if(dacmode != -1) {
1424 		dev->dac_support = (dacmode!=0);
1425 	}
1426 
1427 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1428 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
1429 		& AAC_QUIRK_SCSI_32)) {
1430 		dev->nondasd_support = 0;
1431 		dev->jbod = 0;
1432 		expose_physicals = 0;
1433 	}
1434 
1435 	if(dev->dac_support != 0) {
1436 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1437 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1438 			if (!dev->in_reset)
1439 				printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1440 					dev->name, dev->id);
1441 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1442 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1443 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1444 				dev->name, dev->id);
1445 			dev->dac_support = 0;
1446 		} else {
1447 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1448 				dev->name, dev->id);
1449 			rcode = -ENOMEM;
1450 		}
1451 	}
1452 	/*
1453 	 * Deal with configuring for the individualized limits of each packet
1454 	 * interface.
1455 	 */
1456 	dev->a_ops.adapter_scsi = (dev->dac_support)
1457 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1458 				? aac_scsi_32_64
1459 				: aac_scsi_64)
1460 				: aac_scsi_32;
1461 	if (dev->raw_io_interface) {
1462 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1463 					? aac_bounds_64
1464 					: aac_bounds_32;
1465 		dev->a_ops.adapter_read = aac_read_raw_io;
1466 		dev->a_ops.adapter_write = aac_write_raw_io;
1467 	} else {
1468 		dev->a_ops.adapter_bounds = aac_bounds_32;
1469 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1470 			sizeof(struct aac_fibhdr) -
1471 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1472 				sizeof(struct sgentry);
1473 		if (dev->dac_support) {
1474 			dev->a_ops.adapter_read = aac_read_block64;
1475 			dev->a_ops.adapter_write = aac_write_block64;
1476 			/*
1477 			 * 38 scatter gather elements
1478 			 */
1479 			dev->scsi_host_ptr->sg_tablesize =
1480 				(dev->max_fib_size -
1481 				sizeof(struct aac_fibhdr) -
1482 				sizeof(struct aac_write64) +
1483 				sizeof(struct sgentry64)) /
1484 					sizeof(struct sgentry64);
1485 		} else {
1486 			dev->a_ops.adapter_read = aac_read_block;
1487 			dev->a_ops.adapter_write = aac_write_block;
1488 		}
1489 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1490 		if (dev->adapter_info.options & AAC_OPT_NEW_COMM_TYPE1)
1491 			dev->adapter_info.options |= AAC_OPT_NEW_COMM;
1492 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1493 			/*
1494 			 * Worst case size that could cause sg overflow when
1495 			 * we break up SG elements that are larger than 64KB.
1496 			 * Would be nice if we could tell the SCSI layer what
1497 			 * the maximum SG element size can be. Worst case is
1498 			 * (sg_tablesize-1) 4KB elements with one 64KB
1499 			 * element.
1500 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1501 			 */
1502 			dev->scsi_host_ptr->max_sectors =
1503 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1504 		}
1505 	}
1506 	/* FIB should be freed only after getting the response from the F/W */
1507 	if (rcode != -ERESTARTSYS) {
1508 		aac_fib_complete(fibptr);
1509 		aac_fib_free(fibptr);
1510 	}
1511 
1512 	return rcode;
1513 }
1514 
1515 
io_callback(void * context,struct fib * fibptr)1516 static void io_callback(void *context, struct fib * fibptr)
1517 {
1518 	struct aac_dev *dev;
1519 	struct aac_read_reply *readreply;
1520 	struct scsi_cmnd *scsicmd;
1521 	u32 cid;
1522 
1523 	scsicmd = (struct scsi_cmnd *) context;
1524 
1525 	if (!aac_valid_context(scsicmd, fibptr))
1526 		return;
1527 
1528 	dev = fibptr->dev;
1529 	cid = scmd_id(scsicmd);
1530 
1531 	if (nblank(dprintk(x))) {
1532 		u64 lba;
1533 		switch (scsicmd->cmnd[0]) {
1534 		case WRITE_6:
1535 		case READ_6:
1536 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1537 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1538 			break;
1539 		case WRITE_16:
1540 		case READ_16:
1541 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1542 			      ((u64)scsicmd->cmnd[3] << 48) |
1543 			      ((u64)scsicmd->cmnd[4] << 40) |
1544 			      ((u64)scsicmd->cmnd[5] << 32) |
1545 			      ((u64)scsicmd->cmnd[6] << 24) |
1546 			      (scsicmd->cmnd[7] << 16) |
1547 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1548 			break;
1549 		case WRITE_12:
1550 		case READ_12:
1551 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1552 			      (scsicmd->cmnd[3] << 16) |
1553 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1554 			break;
1555 		default:
1556 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1557 			       (scsicmd->cmnd[3] << 16) |
1558 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1559 			break;
1560 		}
1561 		printk(KERN_DEBUG
1562 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1563 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1564 	}
1565 
1566 	BUG_ON(fibptr == NULL);
1567 
1568 	scsi_dma_unmap(scsicmd);
1569 
1570 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1571 	switch (le32_to_cpu(readreply->status)) {
1572 	case ST_OK:
1573 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1574 			SAM_STAT_GOOD;
1575 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1576 		break;
1577 	case ST_NOT_READY:
1578 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1579 			SAM_STAT_CHECK_CONDITION;
1580 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1581 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1582 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1583 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1584 			     SCSI_SENSE_BUFFERSIZE));
1585 		break;
1586 	default:
1587 #ifdef AAC_DETAILED_STATUS_INFO
1588 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1589 		  le32_to_cpu(readreply->status));
1590 #endif
1591 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1592 			SAM_STAT_CHECK_CONDITION;
1593 		set_sense(&dev->fsa_dev[cid].sense_data,
1594 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1595 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1596 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1597 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1598 			     SCSI_SENSE_BUFFERSIZE));
1599 		break;
1600 	}
1601 	aac_fib_complete(fibptr);
1602 	aac_fib_free(fibptr);
1603 
1604 	scsicmd->scsi_done(scsicmd);
1605 }
1606 
aac_read(struct scsi_cmnd * scsicmd)1607 static int aac_read(struct scsi_cmnd * scsicmd)
1608 {
1609 	u64 lba;
1610 	u32 count;
1611 	int status;
1612 	struct aac_dev *dev;
1613 	struct fib * cmd_fibcontext;
1614 	int cid;
1615 
1616 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1617 	/*
1618 	 *	Get block address and transfer length
1619 	 */
1620 	switch (scsicmd->cmnd[0]) {
1621 	case READ_6:
1622 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1623 
1624 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1625 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1626 		count = scsicmd->cmnd[4];
1627 
1628 		if (count == 0)
1629 			count = 256;
1630 		break;
1631 	case READ_16:
1632 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1633 
1634 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1635 			((u64)scsicmd->cmnd[3] << 48) |
1636 			((u64)scsicmd->cmnd[4] << 40) |
1637 			((u64)scsicmd->cmnd[5] << 32) |
1638 			((u64)scsicmd->cmnd[6] << 24) |
1639 			(scsicmd->cmnd[7] << 16) |
1640 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1641 		count = (scsicmd->cmnd[10] << 24) |
1642 			(scsicmd->cmnd[11] << 16) |
1643 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1644 		break;
1645 	case READ_12:
1646 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1647 
1648 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1649 			(scsicmd->cmnd[3] << 16) |
1650 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1651 		count = (scsicmd->cmnd[6] << 24) |
1652 			(scsicmd->cmnd[7] << 16) |
1653 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1654 		break;
1655 	default:
1656 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1657 
1658 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1659 			(scsicmd->cmnd[3] << 16) |
1660 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1661 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1662 		break;
1663 	}
1664 
1665 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1666 		cid = scmd_id(scsicmd);
1667 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1668 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1669 			SAM_STAT_CHECK_CONDITION;
1670 		set_sense(&dev->fsa_dev[cid].sense_data,
1671 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1672 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1673 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1674 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1675 			     SCSI_SENSE_BUFFERSIZE));
1676 		scsicmd->scsi_done(scsicmd);
1677 		return 1;
1678 	}
1679 
1680 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1681 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1682 	if (aac_adapter_bounds(dev,scsicmd,lba))
1683 		return 0;
1684 	/*
1685 	 *	Alocate and initialize a Fib
1686 	 */
1687 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1688 		printk(KERN_WARNING "aac_read: fib allocation failed\n");
1689 		return -1;
1690 	}
1691 
1692 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1693 
1694 	/*
1695 	 *	Check that the command queued to the controller
1696 	 */
1697 	if (status == -EINPROGRESS) {
1698 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1699 		return 0;
1700 	}
1701 
1702 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1703 	/*
1704 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1705 	 */
1706 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1707 	scsicmd->scsi_done(scsicmd);
1708 	aac_fib_complete(cmd_fibcontext);
1709 	aac_fib_free(cmd_fibcontext);
1710 	return 0;
1711 }
1712 
aac_write(struct scsi_cmnd * scsicmd)1713 static int aac_write(struct scsi_cmnd * scsicmd)
1714 {
1715 	u64 lba;
1716 	u32 count;
1717 	int fua;
1718 	int status;
1719 	struct aac_dev *dev;
1720 	struct fib * cmd_fibcontext;
1721 	int cid;
1722 
1723 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1724 	/*
1725 	 *	Get block address and transfer length
1726 	 */
1727 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1728 	{
1729 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1730 		count = scsicmd->cmnd[4];
1731 		if (count == 0)
1732 			count = 256;
1733 		fua = 0;
1734 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1735 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1736 
1737 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1738 			((u64)scsicmd->cmnd[3] << 48) |
1739 			((u64)scsicmd->cmnd[4] << 40) |
1740 			((u64)scsicmd->cmnd[5] << 32) |
1741 			((u64)scsicmd->cmnd[6] << 24) |
1742 			(scsicmd->cmnd[7] << 16) |
1743 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1744 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1745 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1746 		fua = scsicmd->cmnd[1] & 0x8;
1747 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1748 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1749 
1750 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1751 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1752 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1753 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1754 		fua = scsicmd->cmnd[1] & 0x8;
1755 	} else {
1756 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1757 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1758 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1759 		fua = scsicmd->cmnd[1] & 0x8;
1760 	}
1761 
1762 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1763 		cid = scmd_id(scsicmd);
1764 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1765 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1766 			SAM_STAT_CHECK_CONDITION;
1767 		set_sense(&dev->fsa_dev[cid].sense_data,
1768 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1769 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1770 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1771 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1772 			     SCSI_SENSE_BUFFERSIZE));
1773 		scsicmd->scsi_done(scsicmd);
1774 		return 1;
1775 	}
1776 
1777 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1778 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1779 	if (aac_adapter_bounds(dev,scsicmd,lba))
1780 		return 0;
1781 	/*
1782 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1783 	 */
1784 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1785 		/* FIB temporarily unavailable,not catastrophic failure */
1786 
1787 		/* scsicmd->result = DID_ERROR << 16;
1788 		 * scsicmd->scsi_done(scsicmd);
1789 		 * return 0;
1790 		 */
1791 		printk(KERN_WARNING "aac_write: fib allocation failed\n");
1792 		return -1;
1793 	}
1794 
1795 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1796 
1797 	/*
1798 	 *	Check that the command queued to the controller
1799 	 */
1800 	if (status == -EINPROGRESS) {
1801 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1802 		return 0;
1803 	}
1804 
1805 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1806 	/*
1807 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1808 	 */
1809 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1810 	scsicmd->scsi_done(scsicmd);
1811 
1812 	aac_fib_complete(cmd_fibcontext);
1813 	aac_fib_free(cmd_fibcontext);
1814 	return 0;
1815 }
1816 
synchronize_callback(void * context,struct fib * fibptr)1817 static void synchronize_callback(void *context, struct fib *fibptr)
1818 {
1819 	struct aac_synchronize_reply *synchronizereply;
1820 	struct scsi_cmnd *cmd;
1821 
1822 	cmd = context;
1823 
1824 	if (!aac_valid_context(cmd, fibptr))
1825 		return;
1826 
1827 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1828 				smp_processor_id(), jiffies));
1829 	BUG_ON(fibptr == NULL);
1830 
1831 
1832 	synchronizereply = fib_data(fibptr);
1833 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1834 		cmd->result = DID_OK << 16 |
1835 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1836 	else {
1837 		struct scsi_device *sdev = cmd->device;
1838 		struct aac_dev *dev = fibptr->dev;
1839 		u32 cid = sdev_id(sdev);
1840 		printk(KERN_WARNING
1841 		     "synchronize_callback: synchronize failed, status = %d\n",
1842 		     le32_to_cpu(synchronizereply->status));
1843 		cmd->result = DID_OK << 16 |
1844 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1845 		set_sense(&dev->fsa_dev[cid].sense_data,
1846 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1847 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1848 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1849 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1850 			     SCSI_SENSE_BUFFERSIZE));
1851 	}
1852 
1853 	aac_fib_complete(fibptr);
1854 	aac_fib_free(fibptr);
1855 	cmd->scsi_done(cmd);
1856 }
1857 
aac_synchronize(struct scsi_cmnd * scsicmd)1858 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1859 {
1860 	int status;
1861 	struct fib *cmd_fibcontext;
1862 	struct aac_synchronize *synchronizecmd;
1863 	struct scsi_cmnd *cmd;
1864 	struct scsi_device *sdev = scsicmd->device;
1865 	int active = 0;
1866 	struct aac_dev *aac;
1867 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1868 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1869 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1870 	unsigned long flags;
1871 
1872 	/*
1873 	 * Wait for all outstanding queued commands to complete to this
1874 	 * specific target (block).
1875 	 */
1876 	spin_lock_irqsave(&sdev->list_lock, flags);
1877 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1878 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1879 			u64 cmnd_lba;
1880 			u32 cmnd_count;
1881 
1882 			if (cmd->cmnd[0] == WRITE_6) {
1883 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1884 					(cmd->cmnd[2] << 8) |
1885 					cmd->cmnd[3];
1886 				cmnd_count = cmd->cmnd[4];
1887 				if (cmnd_count == 0)
1888 					cmnd_count = 256;
1889 			} else if (cmd->cmnd[0] == WRITE_16) {
1890 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1891 					((u64)cmd->cmnd[3] << 48) |
1892 					((u64)cmd->cmnd[4] << 40) |
1893 					((u64)cmd->cmnd[5] << 32) |
1894 					((u64)cmd->cmnd[6] << 24) |
1895 					(cmd->cmnd[7] << 16) |
1896 					(cmd->cmnd[8] << 8) |
1897 					cmd->cmnd[9];
1898 				cmnd_count = (cmd->cmnd[10] << 24) |
1899 					(cmd->cmnd[11] << 16) |
1900 					(cmd->cmnd[12] << 8) |
1901 					cmd->cmnd[13];
1902 			} else if (cmd->cmnd[0] == WRITE_12) {
1903 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1904 					(cmd->cmnd[3] << 16) |
1905 					(cmd->cmnd[4] << 8) |
1906 					cmd->cmnd[5];
1907 				cmnd_count = (cmd->cmnd[6] << 24) |
1908 					(cmd->cmnd[7] << 16) |
1909 					(cmd->cmnd[8] << 8) |
1910 					cmd->cmnd[9];
1911 			} else if (cmd->cmnd[0] == WRITE_10) {
1912 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1913 					(cmd->cmnd[3] << 16) |
1914 					(cmd->cmnd[4] << 8) |
1915 					cmd->cmnd[5];
1916 				cmnd_count = (cmd->cmnd[7] << 8) |
1917 					cmd->cmnd[8];
1918 			} else
1919 				continue;
1920 			if (((cmnd_lba + cmnd_count) < lba) ||
1921 			  (count && ((lba + count) < cmnd_lba)))
1922 				continue;
1923 			++active;
1924 			break;
1925 		}
1926 
1927 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1928 
1929 	/*
1930 	 *	Yield the processor (requeue for later)
1931 	 */
1932 	if (active)
1933 		return SCSI_MLQUEUE_DEVICE_BUSY;
1934 
1935 	aac = (struct aac_dev *)sdev->host->hostdata;
1936 	if (aac->in_reset)
1937 		return SCSI_MLQUEUE_HOST_BUSY;
1938 
1939 	/*
1940 	 *	Allocate and initialize a Fib
1941 	 */
1942 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1943 		return SCSI_MLQUEUE_HOST_BUSY;
1944 
1945 	aac_fib_init(cmd_fibcontext);
1946 
1947 	synchronizecmd = fib_data(cmd_fibcontext);
1948 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1949 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1950 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1951 	synchronizecmd->count =
1952 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1953 
1954 	/*
1955 	 *	Now send the Fib to the adapter
1956 	 */
1957 	status = aac_fib_send(ContainerCommand,
1958 		  cmd_fibcontext,
1959 		  sizeof(struct aac_synchronize),
1960 		  FsaNormal,
1961 		  0, 1,
1962 		  (fib_callback)synchronize_callback,
1963 		  (void *)scsicmd);
1964 
1965 	/*
1966 	 *	Check that the command queued to the controller
1967 	 */
1968 	if (status == -EINPROGRESS) {
1969 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1970 		return 0;
1971 	}
1972 
1973 	printk(KERN_WARNING
1974 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1975 	aac_fib_complete(cmd_fibcontext);
1976 	aac_fib_free(cmd_fibcontext);
1977 	return SCSI_MLQUEUE_HOST_BUSY;
1978 }
1979 
aac_start_stop_callback(void * context,struct fib * fibptr)1980 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1981 {
1982 	struct scsi_cmnd *scsicmd = context;
1983 
1984 	if (!aac_valid_context(scsicmd, fibptr))
1985 		return;
1986 
1987 	BUG_ON(fibptr == NULL);
1988 
1989 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1990 
1991 	aac_fib_complete(fibptr);
1992 	aac_fib_free(fibptr);
1993 	scsicmd->scsi_done(scsicmd);
1994 }
1995 
aac_start_stop(struct scsi_cmnd * scsicmd)1996 static int aac_start_stop(struct scsi_cmnd *scsicmd)
1997 {
1998 	int status;
1999 	struct fib *cmd_fibcontext;
2000 	struct aac_power_management *pmcmd;
2001 	struct scsi_device *sdev = scsicmd->device;
2002 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2003 
2004 	if (!(aac->supplement_adapter_info.SupportedOptions2 &
2005 	      AAC_OPTION_POWER_MANAGEMENT)) {
2006 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2007 				  SAM_STAT_GOOD;
2008 		scsicmd->scsi_done(scsicmd);
2009 		return 0;
2010 	}
2011 
2012 	if (aac->in_reset)
2013 		return SCSI_MLQUEUE_HOST_BUSY;
2014 
2015 	/*
2016 	 *	Allocate and initialize a Fib
2017 	 */
2018 	cmd_fibcontext = aac_fib_alloc(aac);
2019 	if (!cmd_fibcontext)
2020 		return SCSI_MLQUEUE_HOST_BUSY;
2021 
2022 	aac_fib_init(cmd_fibcontext);
2023 
2024 	pmcmd = fib_data(cmd_fibcontext);
2025 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2026 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2027 	/* Eject bit ignored, not relevant */
2028 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2029 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2030 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2031 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2032 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2033 
2034 	/*
2035 	 *	Now send the Fib to the adapter
2036 	 */
2037 	status = aac_fib_send(ContainerCommand,
2038 		  cmd_fibcontext,
2039 		  sizeof(struct aac_power_management),
2040 		  FsaNormal,
2041 		  0, 1,
2042 		  (fib_callback)aac_start_stop_callback,
2043 		  (void *)scsicmd);
2044 
2045 	/*
2046 	 *	Check that the command queued to the controller
2047 	 */
2048 	if (status == -EINPROGRESS) {
2049 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2050 		return 0;
2051 	}
2052 
2053 	aac_fib_complete(cmd_fibcontext);
2054 	aac_fib_free(cmd_fibcontext);
2055 	return SCSI_MLQUEUE_HOST_BUSY;
2056 }
2057 
2058 /**
2059  *	aac_scsi_cmd()		-	Process SCSI command
2060  *	@scsicmd:		SCSI command block
2061  *
2062  *	Emulate a SCSI command and queue the required request for the
2063  *	aacraid firmware.
2064  */
2065 
aac_scsi_cmd(struct scsi_cmnd * scsicmd)2066 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2067 {
2068 	u32 cid;
2069 	struct Scsi_Host *host = scsicmd->device->host;
2070 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2071 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2072 
2073 	if (fsa_dev_ptr == NULL)
2074 		return -1;
2075 	/*
2076 	 *	If the bus, id or lun is out of range, return fail
2077 	 *	Test does not apply to ID 16, the pseudo id for the controller
2078 	 *	itself.
2079 	 */
2080 	cid = scmd_id(scsicmd);
2081 	if (cid != host->this_id) {
2082 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2083 			if((cid >= dev->maximum_num_containers) ||
2084 					(scsicmd->device->lun != 0)) {
2085 				scsicmd->result = DID_NO_CONNECT << 16;
2086 				scsicmd->scsi_done(scsicmd);
2087 				return 0;
2088 			}
2089 
2090 			/*
2091 			 *	If the target container doesn't exist, it may have
2092 			 *	been newly created
2093 			 */
2094 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2095 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2096 			   NOT_READY)) {
2097 				switch (scsicmd->cmnd[0]) {
2098 				case SERVICE_ACTION_IN:
2099 					if (!(dev->raw_io_interface) ||
2100 					    !(dev->raw_io_64) ||
2101 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2102 						break;
2103 				case INQUIRY:
2104 				case READ_CAPACITY:
2105 				case TEST_UNIT_READY:
2106 					if (dev->in_reset)
2107 						return -1;
2108 					return _aac_probe_container(scsicmd,
2109 							aac_probe_container_callback2);
2110 				default:
2111 					break;
2112 				}
2113 			}
2114 		} else {  /* check for physical non-dasd devices */
2115 			if (dev->nondasd_support || expose_physicals ||
2116 					dev->jbod) {
2117 				if (dev->in_reset)
2118 					return -1;
2119 				return aac_send_srb_fib(scsicmd);
2120 			} else {
2121 				scsicmd->result = DID_NO_CONNECT << 16;
2122 				scsicmd->scsi_done(scsicmd);
2123 				return 0;
2124 			}
2125 		}
2126 	}
2127 	/*
2128 	 * else Command for the controller itself
2129 	 */
2130 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2131 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2132 	{
2133 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2134 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2135 		set_sense(&dev->fsa_dev[cid].sense_data,
2136 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2137 		  ASENCODE_INVALID_COMMAND, 0, 0);
2138 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2139 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2140 			     SCSI_SENSE_BUFFERSIZE));
2141 		scsicmd->scsi_done(scsicmd);
2142 		return 0;
2143 	}
2144 
2145 
2146 	/* Handle commands here that don't really require going out to the adapter */
2147 	switch (scsicmd->cmnd[0]) {
2148 	case INQUIRY:
2149 	{
2150 		struct inquiry_data inq_data;
2151 
2152 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2153 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2154 
2155 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2156 			char *arr = (char *)&inq_data;
2157 
2158 			/* EVPD bit set */
2159 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2160 			  INQD_PDT_PROC : INQD_PDT_DA;
2161 			if (scsicmd->cmnd[2] == 0) {
2162 				/* supported vital product data pages */
2163 				arr[3] = 2;
2164 				arr[4] = 0x0;
2165 				arr[5] = 0x80;
2166 				arr[1] = scsicmd->cmnd[2];
2167 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2168 							 sizeof(inq_data));
2169 				scsicmd->result = DID_OK << 16 |
2170 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2171 			} else if (scsicmd->cmnd[2] == 0x80) {
2172 				/* unit serial number page */
2173 				arr[3] = setinqserial(dev, &arr[4],
2174 				  scmd_id(scsicmd));
2175 				arr[1] = scsicmd->cmnd[2];
2176 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2177 							 sizeof(inq_data));
2178 				if (aac_wwn != 2)
2179 					return aac_get_container_serial(
2180 						scsicmd);
2181 				/* SLES 10 SP1 special */
2182 				scsicmd->result = DID_OK << 16 |
2183 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2184 			} else {
2185 				/* vpd page not implemented */
2186 				scsicmd->result = DID_OK << 16 |
2187 				  COMMAND_COMPLETE << 8 |
2188 				  SAM_STAT_CHECK_CONDITION;
2189 				set_sense(&dev->fsa_dev[cid].sense_data,
2190 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2191 				  ASENCODE_NO_SENSE, 7, 2);
2192 				memcpy(scsicmd->sense_buffer,
2193 				  &dev->fsa_dev[cid].sense_data,
2194 				  min_t(size_t,
2195 					sizeof(dev->fsa_dev[cid].sense_data),
2196 					SCSI_SENSE_BUFFERSIZE));
2197 			}
2198 			scsicmd->scsi_done(scsicmd);
2199 			return 0;
2200 		}
2201 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2202 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2203 		inq_data.inqd_len = 31;
2204 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2205 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2206 		/*
2207 		 *	Set the Vendor, Product, and Revision Level
2208 		 *	see: <vendor>.c i.e. aac.c
2209 		 */
2210 		if (cid == host->this_id) {
2211 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2212 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2213 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2214 						 sizeof(inq_data));
2215 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2216 			scsicmd->scsi_done(scsicmd);
2217 			return 0;
2218 		}
2219 		if (dev->in_reset)
2220 			return -1;
2221 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2222 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2223 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2224 		return aac_get_container_name(scsicmd);
2225 	}
2226 	case SERVICE_ACTION_IN:
2227 		if (!(dev->raw_io_interface) ||
2228 		    !(dev->raw_io_64) ||
2229 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2230 			break;
2231 	{
2232 		u64 capacity;
2233 		char cp[13];
2234 		unsigned int alloc_len;
2235 
2236 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2237 		capacity = fsa_dev_ptr[cid].size - 1;
2238 		cp[0] = (capacity >> 56) & 0xff;
2239 		cp[1] = (capacity >> 48) & 0xff;
2240 		cp[2] = (capacity >> 40) & 0xff;
2241 		cp[3] = (capacity >> 32) & 0xff;
2242 		cp[4] = (capacity >> 24) & 0xff;
2243 		cp[5] = (capacity >> 16) & 0xff;
2244 		cp[6] = (capacity >> 8) & 0xff;
2245 		cp[7] = (capacity >> 0) & 0xff;
2246 		cp[8] = 0;
2247 		cp[9] = 0;
2248 		cp[10] = 2;
2249 		cp[11] = 0;
2250 		cp[12] = 0;
2251 
2252 		alloc_len = ((scsicmd->cmnd[10] << 24)
2253 			     + (scsicmd->cmnd[11] << 16)
2254 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2255 
2256 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2257 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2258 		if (alloc_len < scsi_bufflen(scsicmd))
2259 			scsi_set_resid(scsicmd,
2260 				       scsi_bufflen(scsicmd) - alloc_len);
2261 
2262 		/* Do not cache partition table for arrays */
2263 		scsicmd->device->removable = 1;
2264 
2265 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2266 		scsicmd->scsi_done(scsicmd);
2267 
2268 		return 0;
2269 	}
2270 
2271 	case READ_CAPACITY:
2272 	{
2273 		u32 capacity;
2274 		char cp[8];
2275 
2276 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2277 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2278 			capacity = fsa_dev_ptr[cid].size - 1;
2279 		else
2280 			capacity = (u32)-1;
2281 
2282 		cp[0] = (capacity >> 24) & 0xff;
2283 		cp[1] = (capacity >> 16) & 0xff;
2284 		cp[2] = (capacity >> 8) & 0xff;
2285 		cp[3] = (capacity >> 0) & 0xff;
2286 		cp[4] = 0;
2287 		cp[5] = 0;
2288 		cp[6] = 2;
2289 		cp[7] = 0;
2290 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2291 		/* Do not cache partition table for arrays */
2292 		scsicmd->device->removable = 1;
2293 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2294 		  SAM_STAT_GOOD;
2295 		scsicmd->scsi_done(scsicmd);
2296 
2297 		return 0;
2298 	}
2299 
2300 	case MODE_SENSE:
2301 	{
2302 		char mode_buf[7];
2303 		int mode_buf_length = 4;
2304 
2305 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2306 		mode_buf[0] = 3;	/* Mode data length */
2307 		mode_buf[1] = 0;	/* Medium type - default */
2308 		mode_buf[2] = 0;	/* Device-specific param,
2309 					   bit 8: 0/1 = write enabled/protected
2310 					   bit 4: 0/1 = FUA enabled */
2311 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2312 			mode_buf[2] = 0x10;
2313 		mode_buf[3] = 0;	/* Block descriptor length */
2314 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2315 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2316 			mode_buf[0] = 6;
2317 			mode_buf[4] = 8;
2318 			mode_buf[5] = 1;
2319 			mode_buf[6] = ((aac_cache & 6) == 2)
2320 				? 0 : 0x04; /* WCE */
2321 			mode_buf_length = 7;
2322 			if (mode_buf_length > scsicmd->cmnd[4])
2323 				mode_buf_length = scsicmd->cmnd[4];
2324 		}
2325 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2326 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2327 		scsicmd->scsi_done(scsicmd);
2328 
2329 		return 0;
2330 	}
2331 	case MODE_SENSE_10:
2332 	{
2333 		char mode_buf[11];
2334 		int mode_buf_length = 8;
2335 
2336 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2337 		mode_buf[0] = 0;	/* Mode data length (MSB) */
2338 		mode_buf[1] = 6;	/* Mode data length (LSB) */
2339 		mode_buf[2] = 0;	/* Medium type - default */
2340 		mode_buf[3] = 0;	/* Device-specific param,
2341 					   bit 8: 0/1 = write enabled/protected
2342 					   bit 4: 0/1 = FUA enabled */
2343 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2344 			mode_buf[3] = 0x10;
2345 		mode_buf[4] = 0;	/* reserved */
2346 		mode_buf[5] = 0;	/* reserved */
2347 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
2348 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
2349 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2350 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2351 			mode_buf[1] = 9;
2352 			mode_buf[8] = 8;
2353 			mode_buf[9] = 1;
2354 			mode_buf[10] = ((aac_cache & 6) == 2)
2355 				? 0 : 0x04; /* WCE */
2356 			mode_buf_length = 11;
2357 			if (mode_buf_length > scsicmd->cmnd[8])
2358 				mode_buf_length = scsicmd->cmnd[8];
2359 		}
2360 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2361 
2362 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2363 		scsicmd->scsi_done(scsicmd);
2364 
2365 		return 0;
2366 	}
2367 	case REQUEST_SENSE:
2368 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2369 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2370 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2371 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2372 		scsicmd->scsi_done(scsicmd);
2373 		return 0;
2374 
2375 	case ALLOW_MEDIUM_REMOVAL:
2376 		dprintk((KERN_DEBUG "LOCK command.\n"));
2377 		if (scsicmd->cmnd[4])
2378 			fsa_dev_ptr[cid].locked = 1;
2379 		else
2380 			fsa_dev_ptr[cid].locked = 0;
2381 
2382 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2383 		scsicmd->scsi_done(scsicmd);
2384 		return 0;
2385 	/*
2386 	 *	These commands are all No-Ops
2387 	 */
2388 	case TEST_UNIT_READY:
2389 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2390 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2391 				SAM_STAT_CHECK_CONDITION;
2392 			set_sense(&dev->fsa_dev[cid].sense_data,
2393 				  NOT_READY, SENCODE_BECOMING_READY,
2394 				  ASENCODE_BECOMING_READY, 0, 0);
2395 			memcpy(scsicmd->sense_buffer,
2396 			       &dev->fsa_dev[cid].sense_data,
2397 			       min_t(size_t,
2398 				     sizeof(dev->fsa_dev[cid].sense_data),
2399 				     SCSI_SENSE_BUFFERSIZE));
2400 			scsicmd->scsi_done(scsicmd);
2401 			return 0;
2402 		}
2403 		/* FALLTHRU */
2404 	case RESERVE:
2405 	case RELEASE:
2406 	case REZERO_UNIT:
2407 	case REASSIGN_BLOCKS:
2408 	case SEEK_10:
2409 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2410 		scsicmd->scsi_done(scsicmd);
2411 		return 0;
2412 
2413 	case START_STOP:
2414 		return aac_start_stop(scsicmd);
2415 	}
2416 
2417 	switch (scsicmd->cmnd[0])
2418 	{
2419 		case READ_6:
2420 		case READ_10:
2421 		case READ_12:
2422 		case READ_16:
2423 			if (dev->in_reset)
2424 				return -1;
2425 			/*
2426 			 *	Hack to keep track of ordinal number of the device that
2427 			 *	corresponds to a container. Needed to convert
2428 			 *	containers to /dev/sd device names
2429 			 */
2430 
2431 			if (scsicmd->request->rq_disk)
2432 				strlcpy(fsa_dev_ptr[cid].devname,
2433 				scsicmd->request->rq_disk->disk_name,
2434 				min(sizeof(fsa_dev_ptr[cid].devname),
2435 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2436 
2437 			return aac_read(scsicmd);
2438 
2439 		case WRITE_6:
2440 		case WRITE_10:
2441 		case WRITE_12:
2442 		case WRITE_16:
2443 			if (dev->in_reset)
2444 				return -1;
2445 			return aac_write(scsicmd);
2446 
2447 		case SYNCHRONIZE_CACHE:
2448 			if (((aac_cache & 6) == 6) && dev->cache_protected) {
2449 				scsicmd->result = DID_OK << 16 |
2450 					COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2451 				scsicmd->scsi_done(scsicmd);
2452 				return 0;
2453 			}
2454 			/* Issue FIB to tell Firmware to flush it's cache */
2455 			if ((aac_cache & 6) != 2)
2456 				return aac_synchronize(scsicmd);
2457 			/* FALLTHRU */
2458 		default:
2459 			/*
2460 			 *	Unhandled commands
2461 			 */
2462 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2463 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2464 			set_sense(&dev->fsa_dev[cid].sense_data,
2465 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2466 			  ASENCODE_INVALID_COMMAND, 0, 0);
2467 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2468 				min_t(size_t,
2469 				      sizeof(dev->fsa_dev[cid].sense_data),
2470 				      SCSI_SENSE_BUFFERSIZE));
2471 			scsicmd->scsi_done(scsicmd);
2472 			return 0;
2473 	}
2474 }
2475 
query_disk(struct aac_dev * dev,void __user * arg)2476 static int query_disk(struct aac_dev *dev, void __user *arg)
2477 {
2478 	struct aac_query_disk qd;
2479 	struct fsa_dev_info *fsa_dev_ptr;
2480 
2481 	fsa_dev_ptr = dev->fsa_dev;
2482 	if (!fsa_dev_ptr)
2483 		return -EBUSY;
2484 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2485 		return -EFAULT;
2486 	if (qd.cnum == -1)
2487 		qd.cnum = qd.id;
2488 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2489 	{
2490 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2491 			return -EINVAL;
2492 		qd.instance = dev->scsi_host_ptr->host_no;
2493 		qd.bus = 0;
2494 		qd.id = CONTAINER_TO_ID(qd.cnum);
2495 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2496 	}
2497 	else return -EINVAL;
2498 
2499 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2500 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2501 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2502 
2503 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2504 		qd.unmapped = 1;
2505 	else
2506 		qd.unmapped = 0;
2507 
2508 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2509 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2510 
2511 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2512 		return -EFAULT;
2513 	return 0;
2514 }
2515 
force_delete_disk(struct aac_dev * dev,void __user * arg)2516 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2517 {
2518 	struct aac_delete_disk dd;
2519 	struct fsa_dev_info *fsa_dev_ptr;
2520 
2521 	fsa_dev_ptr = dev->fsa_dev;
2522 	if (!fsa_dev_ptr)
2523 		return -EBUSY;
2524 
2525 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2526 		return -EFAULT;
2527 
2528 	if (dd.cnum >= dev->maximum_num_containers)
2529 		return -EINVAL;
2530 	/*
2531 	 *	Mark this container as being deleted.
2532 	 */
2533 	fsa_dev_ptr[dd.cnum].deleted = 1;
2534 	/*
2535 	 *	Mark the container as no longer valid
2536 	 */
2537 	fsa_dev_ptr[dd.cnum].valid = 0;
2538 	return 0;
2539 }
2540 
delete_disk(struct aac_dev * dev,void __user * arg)2541 static int delete_disk(struct aac_dev *dev, void __user *arg)
2542 {
2543 	struct aac_delete_disk dd;
2544 	struct fsa_dev_info *fsa_dev_ptr;
2545 
2546 	fsa_dev_ptr = dev->fsa_dev;
2547 	if (!fsa_dev_ptr)
2548 		return -EBUSY;
2549 
2550 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2551 		return -EFAULT;
2552 
2553 	if (dd.cnum >= dev->maximum_num_containers)
2554 		return -EINVAL;
2555 	/*
2556 	 *	If the container is locked, it can not be deleted by the API.
2557 	 */
2558 	if (fsa_dev_ptr[dd.cnum].locked)
2559 		return -EBUSY;
2560 	else {
2561 		/*
2562 		 *	Mark the container as no longer being valid.
2563 		 */
2564 		fsa_dev_ptr[dd.cnum].valid = 0;
2565 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2566 		return 0;
2567 	}
2568 }
2569 
aac_dev_ioctl(struct aac_dev * dev,int cmd,void __user * arg)2570 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2571 {
2572 	switch (cmd) {
2573 	case FSACTL_QUERY_DISK:
2574 		return query_disk(dev, arg);
2575 	case FSACTL_DELETE_DISK:
2576 		return delete_disk(dev, arg);
2577 	case FSACTL_FORCE_DELETE_DISK:
2578 		return force_delete_disk(dev, arg);
2579 	case FSACTL_GET_CONTAINERS:
2580 		return aac_get_containers(dev);
2581 	default:
2582 		return -ENOTTY;
2583 	}
2584 }
2585 
2586 /**
2587  *
2588  * aac_srb_callback
2589  * @context: the context set in the fib - here it is scsi cmd
2590  * @fibptr: pointer to the fib
2591  *
2592  * Handles the completion of a scsi command to a non dasd device
2593  *
2594  */
2595 
aac_srb_callback(void * context,struct fib * fibptr)2596 static void aac_srb_callback(void *context, struct fib * fibptr)
2597 {
2598 	struct aac_dev *dev;
2599 	struct aac_srb_reply *srbreply;
2600 	struct scsi_cmnd *scsicmd;
2601 
2602 	scsicmd = (struct scsi_cmnd *) context;
2603 
2604 	if (!aac_valid_context(scsicmd, fibptr))
2605 		return;
2606 
2607 	BUG_ON(fibptr == NULL);
2608 
2609 	dev = fibptr->dev;
2610 
2611 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2612 
2613 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2614 	/*
2615 	 *	Calculate resid for sg
2616 	 */
2617 
2618 	scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2619 		       - le32_to_cpu(srbreply->data_xfer_length));
2620 
2621 	scsi_dma_unmap(scsicmd);
2622 
2623 	/* expose physical device if expose_physicald flag is on */
2624 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2625 	  && expose_physicals > 0)
2626 		aac_expose_phy_device(scsicmd);
2627 
2628 	/*
2629 	 * First check the fib status
2630 	 */
2631 
2632 	if (le32_to_cpu(srbreply->status) != ST_OK){
2633 		int len;
2634 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2635 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2636 			    SCSI_SENSE_BUFFERSIZE);
2637 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2638 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2639 	}
2640 
2641 	/*
2642 	 * Next check the srb status
2643 	 */
2644 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2645 	case SRB_STATUS_ERROR_RECOVERY:
2646 	case SRB_STATUS_PENDING:
2647 	case SRB_STATUS_SUCCESS:
2648 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2649 		break;
2650 	case SRB_STATUS_DATA_OVERRUN:
2651 		switch(scsicmd->cmnd[0]){
2652 		case  READ_6:
2653 		case  WRITE_6:
2654 		case  READ_10:
2655 		case  WRITE_10:
2656 		case  READ_12:
2657 		case  WRITE_12:
2658 		case  READ_16:
2659 		case  WRITE_16:
2660 			if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2661 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2662 			} else {
2663 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2664 			}
2665 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2666 			break;
2667 		case INQUIRY: {
2668 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2669 			break;
2670 		}
2671 		default:
2672 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2673 			break;
2674 		}
2675 		break;
2676 	case SRB_STATUS_ABORTED:
2677 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2678 		break;
2679 	case SRB_STATUS_ABORT_FAILED:
2680 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2681 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2682 		break;
2683 	case SRB_STATUS_PARITY_ERROR:
2684 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2685 		break;
2686 	case SRB_STATUS_NO_DEVICE:
2687 	case SRB_STATUS_INVALID_PATH_ID:
2688 	case SRB_STATUS_INVALID_TARGET_ID:
2689 	case SRB_STATUS_INVALID_LUN:
2690 	case SRB_STATUS_SELECTION_TIMEOUT:
2691 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2692 		break;
2693 
2694 	case SRB_STATUS_COMMAND_TIMEOUT:
2695 	case SRB_STATUS_TIMEOUT:
2696 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2697 		break;
2698 
2699 	case SRB_STATUS_BUSY:
2700 		scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2701 		break;
2702 
2703 	case SRB_STATUS_BUS_RESET:
2704 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2705 		break;
2706 
2707 	case SRB_STATUS_MESSAGE_REJECTED:
2708 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2709 		break;
2710 	case SRB_STATUS_REQUEST_FLUSHED:
2711 	case SRB_STATUS_ERROR:
2712 	case SRB_STATUS_INVALID_REQUEST:
2713 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2714 	case SRB_STATUS_NO_HBA:
2715 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2716 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2717 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2718 	case SRB_STATUS_DELAYED_RETRY:
2719 	case SRB_STATUS_BAD_FUNCTION:
2720 	case SRB_STATUS_NOT_STARTED:
2721 	case SRB_STATUS_NOT_IN_USE:
2722 	case SRB_STATUS_FORCE_ABORT:
2723 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2724 	default:
2725 #ifdef AAC_DETAILED_STATUS_INFO
2726 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2727 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2728 			aac_get_status_string(
2729 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2730 			scsicmd->cmnd[0],
2731 			le32_to_cpu(srbreply->scsi_status));
2732 #endif
2733 		if ((scsicmd->cmnd[0] == ATA_12)
2734 		  || (scsicmd->cmnd[0] == ATA_16)) {
2735 			if (scsicmd->cmnd[2] & (0x01 << 5)) {
2736 				scsicmd->result = DID_OK << 16
2737 						| COMMAND_COMPLETE << 8;
2738 				break;
2739 			} else {
2740 				scsicmd->result = DID_ERROR << 16
2741 						| COMMAND_COMPLETE << 8;
2742 				break;
2743 			}
2744 		} else {
2745 			scsicmd->result = DID_ERROR << 16
2746 					| COMMAND_COMPLETE << 8;
2747 			break;
2748 		}
2749 	}
2750 	if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2751 		int len;
2752 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2753 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2754 			    SCSI_SENSE_BUFFERSIZE);
2755 #ifdef AAC_DETAILED_STATUS_INFO
2756 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2757 					le32_to_cpu(srbreply->status), len);
2758 #endif
2759 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2760 	}
2761 	/*
2762 	 * OR in the scsi status (already shifted up a bit)
2763 	 */
2764 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2765 
2766 	aac_fib_complete(fibptr);
2767 	aac_fib_free(fibptr);
2768 	scsicmd->scsi_done(scsicmd);
2769 }
2770 
2771 /**
2772  *
2773  * aac_send_scb_fib
2774  * @scsicmd: the scsi command block
2775  *
2776  * This routine will form a FIB and fill in the aac_srb from the
2777  * scsicmd passed in.
2778  */
2779 
aac_send_srb_fib(struct scsi_cmnd * scsicmd)2780 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2781 {
2782 	struct fib* cmd_fibcontext;
2783 	struct aac_dev* dev;
2784 	int status;
2785 
2786 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2787 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2788 			scsicmd->device->lun > 7) {
2789 		scsicmd->result = DID_NO_CONNECT << 16;
2790 		scsicmd->scsi_done(scsicmd);
2791 		return 0;
2792 	}
2793 
2794 	/*
2795 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2796 	 */
2797 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2798 		return -1;
2799 	}
2800 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2801 
2802 	/*
2803 	 *	Check that the command queued to the controller
2804 	 */
2805 	if (status == -EINPROGRESS) {
2806 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2807 		return 0;
2808 	}
2809 
2810 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2811 	aac_fib_complete(cmd_fibcontext);
2812 	aac_fib_free(cmd_fibcontext);
2813 
2814 	return -1;
2815 }
2816 
aac_build_sg(struct scsi_cmnd * scsicmd,struct sgmap * psg)2817 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2818 {
2819 	struct aac_dev *dev;
2820 	unsigned long byte_count = 0;
2821 	int nseg;
2822 
2823 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2824 	// Get rid of old data
2825 	psg->count = 0;
2826 	psg->sg[0].addr = 0;
2827 	psg->sg[0].count = 0;
2828 
2829 	nseg = scsi_dma_map(scsicmd);
2830 	BUG_ON(nseg < 0);
2831 	if (nseg) {
2832 		struct scatterlist *sg;
2833 		int i;
2834 
2835 		psg->count = cpu_to_le32(nseg);
2836 
2837 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2838 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2839 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2840 			byte_count += sg_dma_len(sg);
2841 		}
2842 		/* hba wants the size to be exact */
2843 		if (byte_count > scsi_bufflen(scsicmd)) {
2844 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2845 				(byte_count - scsi_bufflen(scsicmd));
2846 			psg->sg[i-1].count = cpu_to_le32(temp);
2847 			byte_count = scsi_bufflen(scsicmd);
2848 		}
2849 		/* Check for command underflow */
2850 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2851 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2852 					byte_count, scsicmd->underflow);
2853 		}
2854 	}
2855 	return byte_count;
2856 }
2857 
2858 
aac_build_sg64(struct scsi_cmnd * scsicmd,struct sgmap64 * psg)2859 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2860 {
2861 	struct aac_dev *dev;
2862 	unsigned long byte_count = 0;
2863 	u64 addr;
2864 	int nseg;
2865 
2866 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2867 	// Get rid of old data
2868 	psg->count = 0;
2869 	psg->sg[0].addr[0] = 0;
2870 	psg->sg[0].addr[1] = 0;
2871 	psg->sg[0].count = 0;
2872 
2873 	nseg = scsi_dma_map(scsicmd);
2874 	BUG_ON(nseg < 0);
2875 	if (nseg) {
2876 		struct scatterlist *sg;
2877 		int i;
2878 
2879 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2880 			int count = sg_dma_len(sg);
2881 			addr = sg_dma_address(sg);
2882 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2883 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2884 			psg->sg[i].count = cpu_to_le32(count);
2885 			byte_count += count;
2886 		}
2887 		psg->count = cpu_to_le32(nseg);
2888 		/* hba wants the size to be exact */
2889 		if (byte_count > scsi_bufflen(scsicmd)) {
2890 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2891 				(byte_count - scsi_bufflen(scsicmd));
2892 			psg->sg[i-1].count = cpu_to_le32(temp);
2893 			byte_count = scsi_bufflen(scsicmd);
2894 		}
2895 		/* Check for command underflow */
2896 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2897 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2898 					byte_count, scsicmd->underflow);
2899 		}
2900 	}
2901 	return byte_count;
2902 }
2903 
aac_build_sgraw(struct scsi_cmnd * scsicmd,struct sgmapraw * psg)2904 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2905 {
2906 	unsigned long byte_count = 0;
2907 	int nseg;
2908 
2909 	// Get rid of old data
2910 	psg->count = 0;
2911 	psg->sg[0].next = 0;
2912 	psg->sg[0].prev = 0;
2913 	psg->sg[0].addr[0] = 0;
2914 	psg->sg[0].addr[1] = 0;
2915 	psg->sg[0].count = 0;
2916 	psg->sg[0].flags = 0;
2917 
2918 	nseg = scsi_dma_map(scsicmd);
2919 	BUG_ON(nseg < 0);
2920 	if (nseg) {
2921 		struct scatterlist *sg;
2922 		int i;
2923 
2924 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2925 			int count = sg_dma_len(sg);
2926 			u64 addr = sg_dma_address(sg);
2927 			psg->sg[i].next = 0;
2928 			psg->sg[i].prev = 0;
2929 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2930 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2931 			psg->sg[i].count = cpu_to_le32(count);
2932 			psg->sg[i].flags = 0;
2933 			byte_count += count;
2934 		}
2935 		psg->count = cpu_to_le32(nseg);
2936 		/* hba wants the size to be exact */
2937 		if (byte_count > scsi_bufflen(scsicmd)) {
2938 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2939 				(byte_count - scsi_bufflen(scsicmd));
2940 			psg->sg[i-1].count = cpu_to_le32(temp);
2941 			byte_count = scsi_bufflen(scsicmd);
2942 		}
2943 		/* Check for command underflow */
2944 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2945 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2946 					byte_count, scsicmd->underflow);
2947 		}
2948 	}
2949 	return byte_count;
2950 }
2951 
2952 #ifdef AAC_DETAILED_STATUS_INFO
2953 
2954 struct aac_srb_status_info {
2955 	u32	status;
2956 	char	*str;
2957 };
2958 
2959 
2960 static struct aac_srb_status_info srb_status_info[] = {
2961 	{ SRB_STATUS_PENDING,		"Pending Status"},
2962 	{ SRB_STATUS_SUCCESS,		"Success"},
2963 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2964 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2965 	{ SRB_STATUS_ERROR,		"Error Event"},
2966 	{ SRB_STATUS_BUSY,		"Device Busy"},
2967 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2968 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2969 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2970 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2971 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2972 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2973 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2974 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2975 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2976 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2977 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2978 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2979 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2980 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2981 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2982 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2983 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2984 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2985 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2986 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2987 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2988 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2989 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2990 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2991 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2992 	{ 0xff,				"Unknown Error"}
2993 };
2994 
aac_get_status_string(u32 status)2995 char *aac_get_status_string(u32 status)
2996 {
2997 	int i;
2998 
2999 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3000 		if (srb_status_info[i].status == status)
3001 			return srb_status_info[i].str;
3002 
3003 	return "Bad Status Code";
3004 }
3005 
3006 #endif
3007