1 /*
2  * PCMCIA high-level CIS access functions
3  *
4  * The initial developer of the original code is David A. Hinds
5  * <dahinds@users.sourceforge.net>.  Portions created by David A. Hinds
6  * are Copyright (C) 1999 David A. Hinds.  All Rights Reserved.
7  *
8  * Copyright (C) 1999	     David A. Hinds
9  * Copyright (C) 2004-2010   Dominik Brodowski
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/netdevice.h>
21 
22 #include <pcmcia/cisreg.h>
23 #include <pcmcia/cistpl.h>
24 #include <pcmcia/ss.h>
25 #include <pcmcia/ds.h>
26 #include "cs_internal.h"
27 
28 
29 /**
30  * pccard_read_tuple() - internal CIS tuple access
31  * @s:		the struct pcmcia_socket where the card is inserted
32  * @function:	the device function we loop for
33  * @code:	which CIS code shall we look for?
34  * @parse:	buffer where the tuple shall be parsed (or NULL, if no parse)
35  *
36  * pccard_read_tuple() reads out one tuple and attempts to parse it
37  */
pccard_read_tuple(struct pcmcia_socket * s,unsigned int function,cisdata_t code,void * parse)38 int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
39 		cisdata_t code, void *parse)
40 {
41 	tuple_t tuple;
42 	cisdata_t *buf;
43 	int ret;
44 
45 	buf = kmalloc(256, GFP_KERNEL);
46 	if (buf == NULL) {
47 		dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
48 		return -ENOMEM;
49 	}
50 	tuple.DesiredTuple = code;
51 	tuple.Attributes = 0;
52 	if (function == BIND_FN_ALL)
53 		tuple.Attributes = TUPLE_RETURN_COMMON;
54 	ret = pccard_get_first_tuple(s, function, &tuple);
55 	if (ret != 0)
56 		goto done;
57 	tuple.TupleData = buf;
58 	tuple.TupleOffset = 0;
59 	tuple.TupleDataMax = 255;
60 	ret = pccard_get_tuple_data(s, &tuple);
61 	if (ret != 0)
62 		goto done;
63 	ret = pcmcia_parse_tuple(&tuple, parse);
64 done:
65 	kfree(buf);
66 	return ret;
67 }
68 
69 
70 /**
71  * pccard_loop_tuple() - loop over tuples in the CIS
72  * @s:		the struct pcmcia_socket where the card is inserted
73  * @function:	the device function we loop for
74  * @code:	which CIS code shall we look for?
75  * @parse:	buffer where the tuple shall be parsed (or NULL, if no parse)
76  * @priv_data:	private data to be passed to the loop_tuple function.
77  * @loop_tuple:	function to call for each CIS entry of type @function. IT
78  *		gets passed the raw tuple, the paresed tuple (if @parse is
79  *		set) and @priv_data.
80  *
81  * pccard_loop_tuple() loops over all CIS entries of type @function, and
82  * calls the @loop_tuple function for each entry. If the call to @loop_tuple
83  * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
84  */
pccard_loop_tuple(struct pcmcia_socket * s,unsigned int function,cisdata_t code,cisparse_t * parse,void * priv_data,int (* loop_tuple)(tuple_t * tuple,cisparse_t * parse,void * priv_data))85 int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
86 		      cisdata_t code, cisparse_t *parse, void *priv_data,
87 		      int (*loop_tuple) (tuple_t *tuple,
88 					 cisparse_t *parse,
89 					 void *priv_data))
90 {
91 	tuple_t tuple;
92 	cisdata_t *buf;
93 	int ret;
94 
95 	buf = kzalloc(256, GFP_KERNEL);
96 	if (buf == NULL) {
97 		dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
98 		return -ENOMEM;
99 	}
100 
101 	tuple.TupleData = buf;
102 	tuple.TupleDataMax = 255;
103 	tuple.TupleOffset = 0;
104 	tuple.DesiredTuple = code;
105 	tuple.Attributes = 0;
106 
107 	ret = pccard_get_first_tuple(s, function, &tuple);
108 	while (!ret) {
109 		if (pccard_get_tuple_data(s, &tuple))
110 			goto next_entry;
111 
112 		if (parse)
113 			if (pcmcia_parse_tuple(&tuple, parse))
114 				goto next_entry;
115 
116 		ret = loop_tuple(&tuple, parse, priv_data);
117 		if (!ret)
118 			break;
119 
120 next_entry:
121 		ret = pccard_get_next_tuple(s, function, &tuple);
122 	}
123 
124 	kfree(buf);
125 	return ret;
126 }
127 
128 
129 /**
130  * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
131  */
pcmcia_io_cfg_data_width(unsigned int flags)132 static int pcmcia_io_cfg_data_width(unsigned int flags)
133 {
134 	if (!(flags & CISTPL_IO_8BIT))
135 		return IO_DATA_PATH_WIDTH_16;
136 	if (!(flags & CISTPL_IO_16BIT))
137 		return IO_DATA_PATH_WIDTH_8;
138 	return IO_DATA_PATH_WIDTH_AUTO;
139 }
140 
141 
142 struct pcmcia_cfg_mem {
143 	struct pcmcia_device *p_dev;
144 	int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
145 	void *priv_data;
146 	cisparse_t parse;
147 	cistpl_cftable_entry_t dflt;
148 };
149 
150 /**
151  * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
152  *
153  * pcmcia_do_loop_config() is the internal callback for the call from
154  * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
155  * by a struct pcmcia_cfg_mem.
156  */
pcmcia_do_loop_config(tuple_t * tuple,cisparse_t * parse,void * priv)157 static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
158 {
159 	struct pcmcia_cfg_mem *cfg_mem = priv;
160 	struct pcmcia_device *p_dev = cfg_mem->p_dev;
161 	cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
162 	cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
163 	unsigned int flags = p_dev->config_flags;
164 	unsigned int vcc = p_dev->socket->socket.Vcc;
165 
166 	dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
167 		cfg->index, flags);
168 
169 	/* default values */
170 	cfg_mem->p_dev->config_index = cfg->index;
171 	if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
172 		cfg_mem->dflt = *cfg;
173 
174 	/* check for matching Vcc? */
175 	if (flags & CONF_AUTO_CHECK_VCC) {
176 		if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
177 			if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
178 				return -ENODEV;
179 		} else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
180 			if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
181 				return -ENODEV;
182 		}
183 	}
184 
185 	/* set Vpp? */
186 	if (flags & CONF_AUTO_SET_VPP) {
187 		if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
188 			p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
189 		else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
190 			p_dev->vpp =
191 				dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
192 	}
193 
194 	/* enable audio? */
195 	if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
196 		p_dev->config_flags |= CONF_ENABLE_SPKR;
197 
198 
199 	/* IO window settings? */
200 	if (flags & CONF_AUTO_SET_IO) {
201 		cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
202 		int i = 0;
203 
204 		p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
205 		p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
206 		if (io->nwin == 0)
207 			return -ENODEV;
208 
209 		p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
210 		p_dev->resource[0]->flags |=
211 					pcmcia_io_cfg_data_width(io->flags);
212 		if (io->nwin > 1) {
213 			/* For multifunction cards, by convention, we
214 			 * configure the network function with window 0,
215 			 * and serial with window 1 */
216 			i = (io->win[1].len > io->win[0].len);
217 			p_dev->resource[1]->flags = p_dev->resource[0]->flags;
218 			p_dev->resource[1]->start = io->win[1-i].base;
219 			p_dev->resource[1]->end = io->win[1-i].len;
220 		}
221 		p_dev->resource[0]->start = io->win[i].base;
222 		p_dev->resource[0]->end = io->win[i].len;
223 		p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
224 	}
225 
226 	/* MEM window settings? */
227 	if (flags & CONF_AUTO_SET_IOMEM) {
228 		/* so far, we only set one memory window */
229 		cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
230 
231 		p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
232 		if (mem->nwin == 0)
233 			return -ENODEV;
234 
235 		p_dev->resource[2]->start = mem->win[0].host_addr;
236 		p_dev->resource[2]->end = mem->win[0].len;
237 		if (p_dev->resource[2]->end < 0x1000)
238 			p_dev->resource[2]->end = 0x1000;
239 		p_dev->card_addr = mem->win[0].card_addr;
240 	}
241 
242 	dev_dbg(&p_dev->dev,
243 		"checking configuration %x: %pr %pr %pr (%d lines)\n",
244 		p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
245 		p_dev->resource[2], p_dev->io_lines);
246 
247 	return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
248 }
249 
250 /**
251  * pcmcia_loop_config() - loop over configuration options
252  * @p_dev:	the struct pcmcia_device which we need to loop for.
253  * @conf_check:	function to call for each configuration option.
254  *		It gets passed the struct pcmcia_device and private data
255  *		being passed to pcmcia_loop_config()
256  * @priv_data:	private data to be passed to the conf_check function.
257  *
258  * pcmcia_loop_config() loops over all configuration options, and calls
259  * the driver-specific conf_check() for each one, checking whether
260  * it is a valid one. Returns 0 on success or errorcode otherwise.
261  */
pcmcia_loop_config(struct pcmcia_device * p_dev,int (* conf_check)(struct pcmcia_device * p_dev,void * priv_data),void * priv_data)262 int pcmcia_loop_config(struct pcmcia_device *p_dev,
263 		       int	(*conf_check)	(struct pcmcia_device *p_dev,
264 						 void *priv_data),
265 		       void *priv_data)
266 {
267 	struct pcmcia_cfg_mem *cfg_mem;
268 	int ret;
269 
270 	cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
271 	if (cfg_mem == NULL)
272 		return -ENOMEM;
273 
274 	cfg_mem->p_dev = p_dev;
275 	cfg_mem->conf_check = conf_check;
276 	cfg_mem->priv_data = priv_data;
277 
278 	ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
279 				CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
280 				cfg_mem, pcmcia_do_loop_config);
281 
282 	kfree(cfg_mem);
283 	return ret;
284 }
285 EXPORT_SYMBOL(pcmcia_loop_config);
286 
287 
288 struct pcmcia_loop_mem {
289 	struct pcmcia_device *p_dev;
290 	void *priv_data;
291 	int (*loop_tuple) (struct pcmcia_device *p_dev,
292 			   tuple_t *tuple,
293 			   void *priv_data);
294 };
295 
296 /**
297  * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
298  *
299  * pcmcia_do_loop_tuple() is the internal callback for the call from
300  * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
301  * by a struct pcmcia_cfg_mem.
302  */
pcmcia_do_loop_tuple(tuple_t * tuple,cisparse_t * parse,void * priv)303 static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
304 {
305 	struct pcmcia_loop_mem *loop = priv;
306 
307 	return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
308 };
309 
310 /**
311  * pcmcia_loop_tuple() - loop over tuples in the CIS
312  * @p_dev:	the struct pcmcia_device which we need to loop for.
313  * @code:	which CIS code shall we look for?
314  * @priv_data:	private data to be passed to the loop_tuple function.
315  * @loop_tuple:	function to call for each CIS entry of type @function. IT
316  *		gets passed the raw tuple and @priv_data.
317  *
318  * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
319  * calls the @loop_tuple function for each entry. If the call to @loop_tuple
320  * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
321  */
pcmcia_loop_tuple(struct pcmcia_device * p_dev,cisdata_t code,int (* loop_tuple)(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv_data),void * priv_data)322 int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
323 		      int (*loop_tuple) (struct pcmcia_device *p_dev,
324 					 tuple_t *tuple,
325 					 void *priv_data),
326 		      void *priv_data)
327 {
328 	struct pcmcia_loop_mem loop = {
329 		.p_dev = p_dev,
330 		.loop_tuple = loop_tuple,
331 		.priv_data = priv_data};
332 
333 	return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
334 				 &loop, pcmcia_do_loop_tuple);
335 }
336 EXPORT_SYMBOL(pcmcia_loop_tuple);
337 
338 
339 struct pcmcia_loop_get {
340 	size_t len;
341 	cisdata_t **buf;
342 };
343 
344 /**
345  * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
346  *
347  * pcmcia_do_get_tuple() is the internal callback for the call from
348  * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
349  * the first tuple, return 0 unconditionally. Create a memory buffer large
350  * enough to hold the content of the tuple, and fill it with the tuple data.
351  * The caller is responsible to free the buffer.
352  */
pcmcia_do_get_tuple(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv)353 static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
354 			       void *priv)
355 {
356 	struct pcmcia_loop_get *get = priv;
357 
358 	*get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
359 	if (*get->buf) {
360 		get->len = tuple->TupleDataLen;
361 		memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
362 	} else
363 		dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
364 	return 0;
365 }
366 
367 /**
368  * pcmcia_get_tuple() - get first tuple from CIS
369  * @p_dev:	the struct pcmcia_device which we need to loop for.
370  * @code:	which CIS code shall we look for?
371  * @buf:        pointer to store the buffer to.
372  *
373  * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
374  * It returns the buffer length (or zero). The caller is responsible to free
375  * the buffer passed in @buf.
376  */
pcmcia_get_tuple(struct pcmcia_device * p_dev,cisdata_t code,unsigned char ** buf)377 size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
378 			unsigned char **buf)
379 {
380 	struct pcmcia_loop_get get = {
381 		.len = 0,
382 		.buf = buf,
383 	};
384 
385 	*get.buf = NULL;
386 	pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
387 
388 	return get.len;
389 }
390 EXPORT_SYMBOL(pcmcia_get_tuple);
391 
392 
393 /**
394  * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
395  *
396  * pcmcia_do_get_mac() is the internal callback for the call from
397  * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
398  * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
399  * to struct net_device->dev_addr[i].
400  */
pcmcia_do_get_mac(struct pcmcia_device * p_dev,tuple_t * tuple,void * priv)401 static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
402 			     void *priv)
403 {
404 	struct net_device *dev = priv;
405 	int i;
406 
407 	if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
408 		return -EINVAL;
409 	if (tuple->TupleDataLen < ETH_ALEN + 2) {
410 		dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
411 			"LAN_NODE_ID\n");
412 		return -EINVAL;
413 	}
414 
415 	if (tuple->TupleData[1] != ETH_ALEN) {
416 		dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
417 		return -EINVAL;
418 	}
419 	for (i = 0; i < 6; i++)
420 		dev->dev_addr[i] = tuple->TupleData[i+2];
421 	return 0;
422 }
423 
424 /**
425  * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
426  * @p_dev:	the struct pcmcia_device for which we want the address.
427  * @dev:	a properly prepared struct net_device to store the info to.
428  *
429  * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
430  * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
431  * must be set up properly by the driver (see examples!).
432  */
pcmcia_get_mac_from_cis(struct pcmcia_device * p_dev,struct net_device * dev)433 int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
434 {
435 	return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
436 }
437 EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
438 
439