1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					       u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table[] =
41 	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43                 (sizeof(e1000_m88_cable_length_table) / \
44                  sizeof(e1000_m88_cable_length_table[0]))
45 
46 static const u16 e1000_igp_2_cable_length_table[] =
47     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54       104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 		(sizeof(e1000_igp_2_cable_length_table) / \
57 		 sizeof(e1000_igp_2_cable_length_table[0]))
58 
59 /**
60  *  igb_check_reset_block - Check if PHY reset is blocked
61  *  @hw: pointer to the HW structure
62  *
63  *  Read the PHY management control register and check whether a PHY reset
64  *  is blocked.  If a reset is not blocked return 0, otherwise
65  *  return E1000_BLK_PHY_RESET (12).
66  **/
igb_check_reset_block(struct e1000_hw * hw)67 s32 igb_check_reset_block(struct e1000_hw *hw)
68 {
69 	u32 manc;
70 
71 	manc = rd32(E1000_MANC);
72 
73 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
74 	       E1000_BLK_PHY_RESET : 0;
75 }
76 
77 /**
78  *  igb_get_phy_id - Retrieve the PHY ID and revision
79  *  @hw: pointer to the HW structure
80  *
81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82  *  revision in the hardware structure.
83  **/
igb_get_phy_id(struct e1000_hw * hw)84 s32 igb_get_phy_id(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = 0;
88 	u16 phy_id;
89 
90 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id = (u32)(phy_id << 16);
95 	udelay(20);
96 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 	if (ret_val)
98 		goto out;
99 
100 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102 
103 out:
104 	return ret_val;
105 }
106 
107 /**
108  *  igb_phy_reset_dsp - Reset PHY DSP
109  *  @hw: pointer to the HW structure
110  *
111  *  Reset the digital signal processor.
112  **/
igb_phy_reset_dsp(struct e1000_hw * hw)113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 	s32 ret_val = 0;
116 
117 	if (!(hw->phy.ops.write_reg))
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		goto out;
123 
124 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 
126 out:
127 	return ret_val;
128 }
129 
130 /**
131  *  igb_read_phy_reg_mdic - Read MDI control register
132  *  @hw: pointer to the HW structure
133  *  @offset: register offset to be read
134  *  @data: pointer to the read data
135  *
136  *  Reads the MDI control regsiter in the PHY at offset and stores the
137  *  information read to data.
138  **/
igb_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	u32 i, mdic = 0;
143 	s32 ret_val = 0;
144 
145 	if (offset > MAX_PHY_REG_ADDRESS) {
146 		hw_dbg("PHY Address %d is out of range\n", offset);
147 		ret_val = -E1000_ERR_PARAM;
148 		goto out;
149 	}
150 
151 	/*
152 	 * Set up Op-code, Phy Address, and register offset in the MDI
153 	 * Control register.  The MAC will take care of interfacing with the
154 	 * PHY to retrieve the desired data.
155 	 */
156 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
157 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
158 		(E1000_MDIC_OP_READ));
159 
160 	wr32(E1000_MDIC, mdic);
161 
162 	/*
163 	 * Poll the ready bit to see if the MDI read completed
164 	 * Increasing the time out as testing showed failures with
165 	 * the lower time out
166 	 */
167 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168 		udelay(50);
169 		mdic = rd32(E1000_MDIC);
170 		if (mdic & E1000_MDIC_READY)
171 			break;
172 	}
173 	if (!(mdic & E1000_MDIC_READY)) {
174 		hw_dbg("MDI Read did not complete\n");
175 		ret_val = -E1000_ERR_PHY;
176 		goto out;
177 	}
178 	if (mdic & E1000_MDIC_ERROR) {
179 		hw_dbg("MDI Error\n");
180 		ret_val = -E1000_ERR_PHY;
181 		goto out;
182 	}
183 	*data = (u16) mdic;
184 
185 out:
186 	return ret_val;
187 }
188 
189 /**
190  *  igb_write_phy_reg_mdic - Write MDI control register
191  *  @hw: pointer to the HW structure
192  *  @offset: register offset to write to
193  *  @data: data to write to register at offset
194  *
195  *  Writes data to MDI control register in the PHY at offset.
196  **/
igb_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)197 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
198 {
199 	struct e1000_phy_info *phy = &hw->phy;
200 	u32 i, mdic = 0;
201 	s32 ret_val = 0;
202 
203 	if (offset > MAX_PHY_REG_ADDRESS) {
204 		hw_dbg("PHY Address %d is out of range\n", offset);
205 		ret_val = -E1000_ERR_PARAM;
206 		goto out;
207 	}
208 
209 	/*
210 	 * Set up Op-code, Phy Address, and register offset in the MDI
211 	 * Control register.  The MAC will take care of interfacing with the
212 	 * PHY to retrieve the desired data.
213 	 */
214 	mdic = (((u32)data) |
215 		(offset << E1000_MDIC_REG_SHIFT) |
216 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
217 		(E1000_MDIC_OP_WRITE));
218 
219 	wr32(E1000_MDIC, mdic);
220 
221 	/*
222 	 * Poll the ready bit to see if the MDI read completed
223 	 * Increasing the time out as testing showed failures with
224 	 * the lower time out
225 	 */
226 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
227 		udelay(50);
228 		mdic = rd32(E1000_MDIC);
229 		if (mdic & E1000_MDIC_READY)
230 			break;
231 	}
232 	if (!(mdic & E1000_MDIC_READY)) {
233 		hw_dbg("MDI Write did not complete\n");
234 		ret_val = -E1000_ERR_PHY;
235 		goto out;
236 	}
237 	if (mdic & E1000_MDIC_ERROR) {
238 		hw_dbg("MDI Error\n");
239 		ret_val = -E1000_ERR_PHY;
240 		goto out;
241 	}
242 
243 out:
244 	return ret_val;
245 }
246 
247 /**
248  *  igb_read_phy_reg_i2c - Read PHY register using i2c
249  *  @hw: pointer to the HW structure
250  *  @offset: register offset to be read
251  *  @data: pointer to the read data
252  *
253  *  Reads the PHY register at offset using the i2c interface and stores the
254  *  retrieved information in data.
255  **/
igb_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)256 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
257 {
258 	struct e1000_phy_info *phy = &hw->phy;
259 	u32 i, i2ccmd = 0;
260 
261 
262 	/*
263 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
264 	 * register.  The MAC will take care of interfacing with the
265 	 * PHY to retrieve the desired data.
266 	 */
267 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
268 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
269 	          (E1000_I2CCMD_OPCODE_READ));
270 
271 	wr32(E1000_I2CCMD, i2ccmd);
272 
273 	/* Poll the ready bit to see if the I2C read completed */
274 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
275 		udelay(50);
276 		i2ccmd = rd32(E1000_I2CCMD);
277 		if (i2ccmd & E1000_I2CCMD_READY)
278 			break;
279 	}
280 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
281 		hw_dbg("I2CCMD Read did not complete\n");
282 		return -E1000_ERR_PHY;
283 	}
284 	if (i2ccmd & E1000_I2CCMD_ERROR) {
285 		hw_dbg("I2CCMD Error bit set\n");
286 		return -E1000_ERR_PHY;
287 	}
288 
289 	/* Need to byte-swap the 16-bit value. */
290 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
291 
292 	return 0;
293 }
294 
295 /**
296  *  igb_write_phy_reg_i2c - Write PHY register using i2c
297  *  @hw: pointer to the HW structure
298  *  @offset: register offset to write to
299  *  @data: data to write at register offset
300  *
301  *  Writes the data to PHY register at the offset using the i2c interface.
302  **/
igb_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)303 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
304 {
305 	struct e1000_phy_info *phy = &hw->phy;
306 	u32 i, i2ccmd = 0;
307 	u16 phy_data_swapped;
308 
309 
310 	/* Swap the data bytes for the I2C interface */
311 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312 
313 	/*
314 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
315 	 * register.  The MAC will take care of interfacing with the
316 	 * PHY to retrieve the desired data.
317 	 */
318 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
319 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
320 	          E1000_I2CCMD_OPCODE_WRITE |
321 	          phy_data_swapped);
322 
323 	wr32(E1000_I2CCMD, i2ccmd);
324 
325 	/* Poll the ready bit to see if the I2C read completed */
326 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
327 		udelay(50);
328 		i2ccmd = rd32(E1000_I2CCMD);
329 		if (i2ccmd & E1000_I2CCMD_READY)
330 			break;
331 	}
332 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
333 		hw_dbg("I2CCMD Write did not complete\n");
334 		return -E1000_ERR_PHY;
335 	}
336 	if (i2ccmd & E1000_I2CCMD_ERROR) {
337 		hw_dbg("I2CCMD Error bit set\n");
338 		return -E1000_ERR_PHY;
339 	}
340 
341 	return 0;
342 }
343 
344 /**
345  *  igb_read_phy_reg_igp - Read igp PHY register
346  *  @hw: pointer to the HW structure
347  *  @offset: register offset to be read
348  *  @data: pointer to the read data
349  *
350  *  Acquires semaphore, if necessary, then reads the PHY register at offset
351  *  and storing the retrieved information in data.  Release any acquired
352  *  semaphores before exiting.
353  **/
igb_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)354 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
355 {
356 	s32 ret_val = 0;
357 
358 	if (!(hw->phy.ops.acquire))
359 		goto out;
360 
361 	ret_val = hw->phy.ops.acquire(hw);
362 	if (ret_val)
363 		goto out;
364 
365 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
366 		ret_val = igb_write_phy_reg_mdic(hw,
367 						   IGP01E1000_PHY_PAGE_SELECT,
368 						   (u16)offset);
369 		if (ret_val) {
370 			hw->phy.ops.release(hw);
371 			goto out;
372 		}
373 	}
374 
375 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
376 					data);
377 
378 	hw->phy.ops.release(hw);
379 
380 out:
381 	return ret_val;
382 }
383 
384 /**
385  *  igb_write_phy_reg_igp - Write igp PHY register
386  *  @hw: pointer to the HW structure
387  *  @offset: register offset to write to
388  *  @data: data to write at register offset
389  *
390  *  Acquires semaphore, if necessary, then writes the data to PHY register
391  *  at the offset.  Release any acquired semaphores before exiting.
392  **/
igb_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)393 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
394 {
395 	s32 ret_val = 0;
396 
397 	if (!(hw->phy.ops.acquire))
398 		goto out;
399 
400 	ret_val = hw->phy.ops.acquire(hw);
401 	if (ret_val)
402 		goto out;
403 
404 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
405 		ret_val = igb_write_phy_reg_mdic(hw,
406 						   IGP01E1000_PHY_PAGE_SELECT,
407 						   (u16)offset);
408 		if (ret_val) {
409 			hw->phy.ops.release(hw);
410 			goto out;
411 		}
412 	}
413 
414 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
415 					   data);
416 
417 	hw->phy.ops.release(hw);
418 
419 out:
420 	return ret_val;
421 }
422 
423 /**
424  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
425  *  @hw: pointer to the HW structure
426  *
427  *  Sets up Carrier-sense on Transmit and downshift values.
428  **/
igb_copper_link_setup_82580(struct e1000_hw * hw)429 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
430 {
431 	struct e1000_phy_info *phy = &hw->phy;
432 	s32 ret_val;
433 	u16 phy_data;
434 
435 
436 	if (phy->reset_disable) {
437 		ret_val = 0;
438 		goto out;
439 	}
440 
441 	if (phy->type == e1000_phy_82580) {
442 		ret_val = hw->phy.ops.reset(hw);
443 		if (ret_val) {
444 			hw_dbg("Error resetting the PHY.\n");
445 			goto out;
446 		}
447 	}
448 
449 	/* Enable CRS on TX. This must be set for half-duplex operation. */
450 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
451 	if (ret_val)
452 		goto out;
453 
454 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
455 
456 	/* Enable downshift */
457 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
458 
459 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
460 
461 out:
462 	return ret_val;
463 }
464 
465 /**
466  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
467  *  @hw: pointer to the HW structure
468  *
469  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
470  *  and downshift values are set also.
471  **/
igb_copper_link_setup_m88(struct e1000_hw * hw)472 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
473 {
474 	struct e1000_phy_info *phy = &hw->phy;
475 	s32 ret_val;
476 	u16 phy_data;
477 
478 	if (phy->reset_disable) {
479 		ret_val = 0;
480 		goto out;
481 	}
482 
483 	/* Enable CRS on TX. This must be set for half-duplex operation. */
484 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
485 	if (ret_val)
486 		goto out;
487 
488 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
489 
490 	/*
491 	 * Options:
492 	 *   MDI/MDI-X = 0 (default)
493 	 *   0 - Auto for all speeds
494 	 *   1 - MDI mode
495 	 *   2 - MDI-X mode
496 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
497 	 */
498 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
499 
500 	switch (phy->mdix) {
501 	case 1:
502 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
503 		break;
504 	case 2:
505 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
506 		break;
507 	case 3:
508 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
509 		break;
510 	case 0:
511 	default:
512 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
513 		break;
514 	}
515 
516 	/*
517 	 * Options:
518 	 *   disable_polarity_correction = 0 (default)
519 	 *       Automatic Correction for Reversed Cable Polarity
520 	 *   0 - Disabled
521 	 *   1 - Enabled
522 	 */
523 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
524 	if (phy->disable_polarity_correction == 1)
525 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
526 
527 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
528 	if (ret_val)
529 		goto out;
530 
531 	if (phy->revision < E1000_REVISION_4) {
532 		/*
533 		 * Force TX_CLK in the Extended PHY Specific Control Register
534 		 * to 25MHz clock.
535 		 */
536 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
537 					     &phy_data);
538 		if (ret_val)
539 			goto out;
540 
541 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
542 
543 		if ((phy->revision == E1000_REVISION_2) &&
544 		    (phy->id == M88E1111_I_PHY_ID)) {
545 			/* 82573L PHY - set the downshift counter to 5x. */
546 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
547 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
548 		} else {
549 			/* Configure Master and Slave downshift values */
550 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
551 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
552 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
553 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
554 		}
555 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
556 					     phy_data);
557 		if (ret_val)
558 			goto out;
559 	}
560 
561 	/* Commit the changes. */
562 	ret_val = igb_phy_sw_reset(hw);
563 	if (ret_val) {
564 		hw_dbg("Error committing the PHY changes\n");
565 		goto out;
566 	}
567 
568 out:
569 	return ret_val;
570 }
571 
572 /**
573  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
574  *  @hw: pointer to the HW structure
575  *
576  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
577  *  Also enables and sets the downshift parameters.
578  **/
igb_copper_link_setup_m88_gen2(struct e1000_hw * hw)579 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
580 {
581 	struct e1000_phy_info *phy = &hw->phy;
582 	s32 ret_val;
583 	u16 phy_data;
584 
585 	if (phy->reset_disable) {
586 		ret_val = 0;
587 		goto out;
588 	}
589 
590 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
591 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
592 	if (ret_val)
593 		goto out;
594 
595 	/*
596 	 * Options:
597 	 *   MDI/MDI-X = 0 (default)
598 	 *   0 - Auto for all speeds
599 	 *   1 - MDI mode
600 	 *   2 - MDI-X mode
601 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
602 	 */
603 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
604 
605 	switch (phy->mdix) {
606 	case 1:
607 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
608 		break;
609 	case 2:
610 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
611 		break;
612 	case 3:
613 		/* M88E1112 does not support this mode) */
614 		if (phy->id != M88E1112_E_PHY_ID) {
615 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
616 			break;
617 		}
618 	case 0:
619 	default:
620 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
621 		break;
622 	}
623 
624 	/*
625 	 * Options:
626 	 *   disable_polarity_correction = 0 (default)
627 	 *       Automatic Correction for Reversed Cable Polarity
628 	 *   0 - Disabled
629 	 *   1 - Enabled
630 	 */
631 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
632 	if (phy->disable_polarity_correction == 1)
633 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
634 
635 	/* Enable downshift and setting it to X6 */
636 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
637 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
638 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
639 
640 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
641 	if (ret_val)
642 		goto out;
643 
644 	/* Commit the changes. */
645 	ret_val = igb_phy_sw_reset(hw);
646 	if (ret_val) {
647 		hw_dbg("Error committing the PHY changes\n");
648 		goto out;
649 	}
650 
651 out:
652 	return ret_val;
653 }
654 
655 /**
656  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
657  *  @hw: pointer to the HW structure
658  *
659  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
660  *  igp PHY's.
661  **/
igb_copper_link_setup_igp(struct e1000_hw * hw)662 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
663 {
664 	struct e1000_phy_info *phy = &hw->phy;
665 	s32 ret_val;
666 	u16 data;
667 
668 	if (phy->reset_disable) {
669 		ret_val = 0;
670 		goto out;
671 	}
672 
673 	ret_val = phy->ops.reset(hw);
674 	if (ret_val) {
675 		hw_dbg("Error resetting the PHY.\n");
676 		goto out;
677 	}
678 
679 	/*
680 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
681 	 * timeout issues when LFS is enabled.
682 	 */
683 	msleep(100);
684 
685 	/*
686 	 * The NVM settings will configure LPLU in D3 for
687 	 * non-IGP1 PHYs.
688 	 */
689 	if (phy->type == e1000_phy_igp) {
690 		/* disable lplu d3 during driver init */
691 		if (phy->ops.set_d3_lplu_state)
692 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
693 		if (ret_val) {
694 			hw_dbg("Error Disabling LPLU D3\n");
695 			goto out;
696 		}
697 	}
698 
699 	/* disable lplu d0 during driver init */
700 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
701 	if (ret_val) {
702 		hw_dbg("Error Disabling LPLU D0\n");
703 		goto out;
704 	}
705 	/* Configure mdi-mdix settings */
706 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
707 	if (ret_val)
708 		goto out;
709 
710 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
711 
712 	switch (phy->mdix) {
713 	case 1:
714 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
715 		break;
716 	case 2:
717 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
718 		break;
719 	case 0:
720 	default:
721 		data |= IGP01E1000_PSCR_AUTO_MDIX;
722 		break;
723 	}
724 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
725 	if (ret_val)
726 		goto out;
727 
728 	/* set auto-master slave resolution settings */
729 	if (hw->mac.autoneg) {
730 		/*
731 		 * when autonegotiation advertisement is only 1000Mbps then we
732 		 * should disable SmartSpeed and enable Auto MasterSlave
733 		 * resolution as hardware default.
734 		 */
735 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
736 			/* Disable SmartSpeed */
737 			ret_val = phy->ops.read_reg(hw,
738 						    IGP01E1000_PHY_PORT_CONFIG,
739 						    &data);
740 			if (ret_val)
741 				goto out;
742 
743 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
744 			ret_val = phy->ops.write_reg(hw,
745 						     IGP01E1000_PHY_PORT_CONFIG,
746 						     data);
747 			if (ret_val)
748 				goto out;
749 
750 			/* Set auto Master/Slave resolution process */
751 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
752 			if (ret_val)
753 				goto out;
754 
755 			data &= ~CR_1000T_MS_ENABLE;
756 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
757 			if (ret_val)
758 				goto out;
759 		}
760 
761 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
762 		if (ret_val)
763 			goto out;
764 
765 		/* load defaults for future use */
766 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
767 			((data & CR_1000T_MS_VALUE) ?
768 			e1000_ms_force_master :
769 			e1000_ms_force_slave) :
770 			e1000_ms_auto;
771 
772 		switch (phy->ms_type) {
773 		case e1000_ms_force_master:
774 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
775 			break;
776 		case e1000_ms_force_slave:
777 			data |= CR_1000T_MS_ENABLE;
778 			data &= ~(CR_1000T_MS_VALUE);
779 			break;
780 		case e1000_ms_auto:
781 			data &= ~CR_1000T_MS_ENABLE;
782 		default:
783 			break;
784 		}
785 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
786 		if (ret_val)
787 			goto out;
788 	}
789 
790 out:
791 	return ret_val;
792 }
793 
794 /**
795  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
796  *  @hw: pointer to the HW structure
797  *
798  *  Performs initial bounds checking on autoneg advertisement parameter, then
799  *  configure to advertise the full capability.  Setup the PHY to autoneg
800  *  and restart the negotiation process between the link partner.  If
801  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
802  **/
igb_copper_link_autoneg(struct e1000_hw * hw)803 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
804 {
805 	struct e1000_phy_info *phy = &hw->phy;
806 	s32 ret_val;
807 	u16 phy_ctrl;
808 
809 	/*
810 	 * Perform some bounds checking on the autoneg advertisement
811 	 * parameter.
812 	 */
813 	phy->autoneg_advertised &= phy->autoneg_mask;
814 
815 	/*
816 	 * If autoneg_advertised is zero, we assume it was not defaulted
817 	 * by the calling code so we set to advertise full capability.
818 	 */
819 	if (phy->autoneg_advertised == 0)
820 		phy->autoneg_advertised = phy->autoneg_mask;
821 
822 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
823 	ret_val = igb_phy_setup_autoneg(hw);
824 	if (ret_val) {
825 		hw_dbg("Error Setting up Auto-Negotiation\n");
826 		goto out;
827 	}
828 	hw_dbg("Restarting Auto-Neg\n");
829 
830 	/*
831 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
832 	 * the Auto Neg Restart bit in the PHY control register.
833 	 */
834 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
835 	if (ret_val)
836 		goto out;
837 
838 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
839 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
840 	if (ret_val)
841 		goto out;
842 
843 	/*
844 	 * Does the user want to wait for Auto-Neg to complete here, or
845 	 * check at a later time (for example, callback routine).
846 	 */
847 	if (phy->autoneg_wait_to_complete) {
848 		ret_val = igb_wait_autoneg(hw);
849 		if (ret_val) {
850 			hw_dbg("Error while waiting for "
851 			       "autoneg to complete\n");
852 			goto out;
853 		}
854 	}
855 
856 	hw->mac.get_link_status = true;
857 
858 out:
859 	return ret_val;
860 }
861 
862 /**
863  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
864  *  @hw: pointer to the HW structure
865  *
866  *  Reads the MII auto-neg advertisement register and/or the 1000T control
867  *  register and if the PHY is already setup for auto-negotiation, then
868  *  return successful.  Otherwise, setup advertisement and flow control to
869  *  the appropriate values for the wanted auto-negotiation.
870  **/
igb_phy_setup_autoneg(struct e1000_hw * hw)871 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
872 {
873 	struct e1000_phy_info *phy = &hw->phy;
874 	s32 ret_val;
875 	u16 mii_autoneg_adv_reg;
876 	u16 mii_1000t_ctrl_reg = 0;
877 
878 	phy->autoneg_advertised &= phy->autoneg_mask;
879 
880 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
881 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
882 	if (ret_val)
883 		goto out;
884 
885 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
886 		/* Read the MII 1000Base-T Control Register (Address 9). */
887 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
888 					    &mii_1000t_ctrl_reg);
889 		if (ret_val)
890 			goto out;
891 	}
892 
893 	/*
894 	 * Need to parse both autoneg_advertised and fc and set up
895 	 * the appropriate PHY registers.  First we will parse for
896 	 * autoneg_advertised software override.  Since we can advertise
897 	 * a plethora of combinations, we need to check each bit
898 	 * individually.
899 	 */
900 
901 	/*
902 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
903 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
904 	 * the  1000Base-T Control Register (Address 9).
905 	 */
906 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
907 				 NWAY_AR_100TX_HD_CAPS |
908 				 NWAY_AR_10T_FD_CAPS   |
909 				 NWAY_AR_10T_HD_CAPS);
910 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
911 
912 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
913 
914 	/* Do we want to advertise 10 Mb Half Duplex? */
915 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
916 		hw_dbg("Advertise 10mb Half duplex\n");
917 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
918 	}
919 
920 	/* Do we want to advertise 10 Mb Full Duplex? */
921 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
922 		hw_dbg("Advertise 10mb Full duplex\n");
923 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
924 	}
925 
926 	/* Do we want to advertise 100 Mb Half Duplex? */
927 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
928 		hw_dbg("Advertise 100mb Half duplex\n");
929 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
930 	}
931 
932 	/* Do we want to advertise 100 Mb Full Duplex? */
933 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
934 		hw_dbg("Advertise 100mb Full duplex\n");
935 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
936 	}
937 
938 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
939 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
940 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
941 
942 	/* Do we want to advertise 1000 Mb Full Duplex? */
943 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
944 		hw_dbg("Advertise 1000mb Full duplex\n");
945 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
946 	}
947 
948 	/*
949 	 * Check for a software override of the flow control settings, and
950 	 * setup the PHY advertisement registers accordingly.  If
951 	 * auto-negotiation is enabled, then software will have to set the
952 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
953 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
954 	 * negotiation.
955 	 *
956 	 * The possible values of the "fc" parameter are:
957 	 *      0:  Flow control is completely disabled
958 	 *      1:  Rx flow control is enabled (we can receive pause frames
959 	 *          but not send pause frames).
960 	 *      2:  Tx flow control is enabled (we can send pause frames
961 	 *          but we do not support receiving pause frames).
962 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
963 	 *  other:  No software override.  The flow control configuration
964 	 *          in the EEPROM is used.
965 	 */
966 	switch (hw->fc.current_mode) {
967 	case e1000_fc_none:
968 		/*
969 		 * Flow control (RX & TX) is completely disabled by a
970 		 * software over-ride.
971 		 */
972 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
973 		break;
974 	case e1000_fc_rx_pause:
975 		/*
976 		 * RX Flow control is enabled, and TX Flow control is
977 		 * disabled, by a software over-ride.
978 		 *
979 		 * Since there really isn't a way to advertise that we are
980 		 * capable of RX Pause ONLY, we will advertise that we
981 		 * support both symmetric and asymmetric RX PAUSE.  Later
982 		 * (in e1000_config_fc_after_link_up) we will disable the
983 		 * hw's ability to send PAUSE frames.
984 		 */
985 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
986 		break;
987 	case e1000_fc_tx_pause:
988 		/*
989 		 * TX Flow control is enabled, and RX Flow control is
990 		 * disabled, by a software over-ride.
991 		 */
992 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
993 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
994 		break;
995 	case e1000_fc_full:
996 		/*
997 		 * Flow control (both RX and TX) is enabled by a software
998 		 * over-ride.
999 		 */
1000 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1001 		break;
1002 	default:
1003 		hw_dbg("Flow control param set incorrectly\n");
1004 		ret_val = -E1000_ERR_CONFIG;
1005 		goto out;
1006 	}
1007 
1008 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1009 	if (ret_val)
1010 		goto out;
1011 
1012 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1013 
1014 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1015 		ret_val = phy->ops.write_reg(hw,
1016 					     PHY_1000T_CTRL,
1017 					     mii_1000t_ctrl_reg);
1018 		if (ret_val)
1019 			goto out;
1020 	}
1021 
1022 out:
1023 	return ret_val;
1024 }
1025 
1026 /**
1027  *  igb_setup_copper_link - Configure copper link settings
1028  *  @hw: pointer to the HW structure
1029  *
1030  *  Calls the appropriate function to configure the link for auto-neg or forced
1031  *  speed and duplex.  Then we check for link, once link is established calls
1032  *  to configure collision distance and flow control are called.  If link is
1033  *  not established, we return -E1000_ERR_PHY (-2).
1034  **/
igb_setup_copper_link(struct e1000_hw * hw)1035 s32 igb_setup_copper_link(struct e1000_hw *hw)
1036 {
1037 	s32 ret_val;
1038 	bool link;
1039 
1040 
1041 	if (hw->mac.autoneg) {
1042 		/*
1043 		 * Setup autoneg and flow control advertisement and perform
1044 		 * autonegotiation.
1045 		 */
1046 		ret_val = igb_copper_link_autoneg(hw);
1047 		if (ret_val)
1048 			goto out;
1049 	} else {
1050 		/*
1051 		 * PHY will be set to 10H, 10F, 100H or 100F
1052 		 * depending on user settings.
1053 		 */
1054 		hw_dbg("Forcing Speed and Duplex\n");
1055 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1056 		if (ret_val) {
1057 			hw_dbg("Error Forcing Speed and Duplex\n");
1058 			goto out;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * Check link status. Wait up to 100 microseconds for link to become
1064 	 * valid.
1065 	 */
1066 	ret_val = igb_phy_has_link(hw,
1067 	                           COPPER_LINK_UP_LIMIT,
1068 	                           10,
1069 	                           &link);
1070 	if (ret_val)
1071 		goto out;
1072 
1073 	if (link) {
1074 		hw_dbg("Valid link established!!!\n");
1075 		igb_config_collision_dist(hw);
1076 		ret_val = igb_config_fc_after_link_up(hw);
1077 	} else {
1078 		hw_dbg("Unable to establish link!!!\n");
1079 	}
1080 
1081 out:
1082 	return ret_val;
1083 }
1084 
1085 /**
1086  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1087  *  @hw: pointer to the HW structure
1088  *
1089  *  Calls the PHY setup function to force speed and duplex.  Clears the
1090  *  auto-crossover to force MDI manually.  Waits for link and returns
1091  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1092  **/
igb_phy_force_speed_duplex_igp(struct e1000_hw * hw)1093 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1094 {
1095 	struct e1000_phy_info *phy = &hw->phy;
1096 	s32 ret_val;
1097 	u16 phy_data;
1098 	bool link;
1099 
1100 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1101 	if (ret_val)
1102 		goto out;
1103 
1104 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1105 
1106 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1107 	if (ret_val)
1108 		goto out;
1109 
1110 	/*
1111 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1112 	 * forced whenever speed and duplex are forced.
1113 	 */
1114 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1115 	if (ret_val)
1116 		goto out;
1117 
1118 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1119 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1120 
1121 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1122 	if (ret_val)
1123 		goto out;
1124 
1125 	hw_dbg("IGP PSCR: %X\n", phy_data);
1126 
1127 	udelay(1);
1128 
1129 	if (phy->autoneg_wait_to_complete) {
1130 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1131 
1132 		ret_val = igb_phy_has_link(hw,
1133 						     PHY_FORCE_LIMIT,
1134 						     100000,
1135 						     &link);
1136 		if (ret_val)
1137 			goto out;
1138 
1139 		if (!link)
1140 			hw_dbg("Link taking longer than expected.\n");
1141 
1142 		/* Try once more */
1143 		ret_val = igb_phy_has_link(hw,
1144 						     PHY_FORCE_LIMIT,
1145 						     100000,
1146 						     &link);
1147 		if (ret_val)
1148 			goto out;
1149 	}
1150 
1151 out:
1152 	return ret_val;
1153 }
1154 
1155 /**
1156  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1157  *  @hw: pointer to the HW structure
1158  *
1159  *  Calls the PHY setup function to force speed and duplex.  Clears the
1160  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1161  *  changes.  If time expires while waiting for link up, we reset the DSP.
1162  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1163  *  successful completion, else return corresponding error code.
1164  **/
igb_phy_force_speed_duplex_m88(struct e1000_hw * hw)1165 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1166 {
1167 	struct e1000_phy_info *phy = &hw->phy;
1168 	s32 ret_val;
1169 	u16 phy_data;
1170 	bool link;
1171 
1172 	/*
1173 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1174 	 * forced whenever speed and duplex are forced.
1175 	 */
1176 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1177 	if (ret_val)
1178 		goto out;
1179 
1180 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1181 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1182 	if (ret_val)
1183 		goto out;
1184 
1185 	hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1186 
1187 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1188 	if (ret_val)
1189 		goto out;
1190 
1191 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1192 
1193 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1194 	if (ret_val)
1195 		goto out;
1196 
1197 	/* Reset the phy to commit changes. */
1198 	ret_val = igb_phy_sw_reset(hw);
1199 	if (ret_val)
1200 		goto out;
1201 
1202 	if (phy->autoneg_wait_to_complete) {
1203 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1204 
1205 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1206 		if (ret_val)
1207 			goto out;
1208 
1209 		if (!link) {
1210 			if (hw->phy.type != e1000_phy_m88 ||
1211 			    hw->phy.id == I347AT4_E_PHY_ID ||
1212 			    hw->phy.id == M88E1112_E_PHY_ID) {
1213 				hw_dbg("Link taking longer than expected.\n");
1214 			} else {
1215 
1216 				/*
1217 				 * We didn't get link.
1218 				 * Reset the DSP and cross our fingers.
1219 				 */
1220 				ret_val = phy->ops.write_reg(hw,
1221 							     M88E1000_PHY_PAGE_SELECT,
1222 							     0x001d);
1223 				if (ret_val)
1224 					goto out;
1225 				ret_val = igb_phy_reset_dsp(hw);
1226 				if (ret_val)
1227 					goto out;
1228 			}
1229 		}
1230 
1231 		/* Try once more */
1232 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1233 					   100000, &link);
1234 		if (ret_val)
1235 			goto out;
1236 	}
1237 
1238 	if (hw->phy.type != e1000_phy_m88 ||
1239 	    hw->phy.id == I347AT4_E_PHY_ID ||
1240 	    hw->phy.id == M88E1112_E_PHY_ID)
1241 		goto out;
1242 
1243 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1244 	if (ret_val)
1245 		goto out;
1246 
1247 	/*
1248 	 * Resetting the phy means we need to re-force TX_CLK in the
1249 	 * Extended PHY Specific Control Register to 25MHz clock from
1250 	 * the reset value of 2.5MHz.
1251 	 */
1252 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1253 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1254 	if (ret_val)
1255 		goto out;
1256 
1257 	/*
1258 	 * In addition, we must re-enable CRS on Tx for both half and full
1259 	 * duplex.
1260 	 */
1261 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1262 	if (ret_val)
1263 		goto out;
1264 
1265 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1266 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1267 
1268 out:
1269 	return ret_val;
1270 }
1271 
1272 /**
1273  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1274  *  @hw: pointer to the HW structure
1275  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1276  *
1277  *  Forces speed and duplex on the PHY by doing the following: disable flow
1278  *  control, force speed/duplex on the MAC, disable auto speed detection,
1279  *  disable auto-negotiation, configure duplex, configure speed, configure
1280  *  the collision distance, write configuration to CTRL register.  The
1281  *  caller must write to the PHY_CONTROL register for these settings to
1282  *  take affect.
1283  **/
igb_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1284 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1285 					       u16 *phy_ctrl)
1286 {
1287 	struct e1000_mac_info *mac = &hw->mac;
1288 	u32 ctrl;
1289 
1290 	/* Turn off flow control when forcing speed/duplex */
1291 	hw->fc.current_mode = e1000_fc_none;
1292 
1293 	/* Force speed/duplex on the mac */
1294 	ctrl = rd32(E1000_CTRL);
1295 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1296 	ctrl &= ~E1000_CTRL_SPD_SEL;
1297 
1298 	/* Disable Auto Speed Detection */
1299 	ctrl &= ~E1000_CTRL_ASDE;
1300 
1301 	/* Disable autoneg on the phy */
1302 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1303 
1304 	/* Forcing Full or Half Duplex? */
1305 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1306 		ctrl &= ~E1000_CTRL_FD;
1307 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1308 		hw_dbg("Half Duplex\n");
1309 	} else {
1310 		ctrl |= E1000_CTRL_FD;
1311 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1312 		hw_dbg("Full Duplex\n");
1313 	}
1314 
1315 	/* Forcing 10mb or 100mb? */
1316 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1317 		ctrl |= E1000_CTRL_SPD_100;
1318 		*phy_ctrl |= MII_CR_SPEED_100;
1319 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1320 		hw_dbg("Forcing 100mb\n");
1321 	} else {
1322 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1323 		*phy_ctrl |= MII_CR_SPEED_10;
1324 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1325 		hw_dbg("Forcing 10mb\n");
1326 	}
1327 
1328 	igb_config_collision_dist(hw);
1329 
1330 	wr32(E1000_CTRL, ctrl);
1331 }
1332 
1333 /**
1334  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1335  *  @hw: pointer to the HW structure
1336  *  @active: boolean used to enable/disable lplu
1337  *
1338  *  Success returns 0, Failure returns 1
1339  *
1340  *  The low power link up (lplu) state is set to the power management level D3
1341  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1342  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1343  *  is used during Dx states where the power conservation is most important.
1344  *  During driver activity, SmartSpeed should be enabled so performance is
1345  *  maintained.
1346  **/
igb_set_d3_lplu_state(struct e1000_hw * hw,bool active)1347 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1348 {
1349 	struct e1000_phy_info *phy = &hw->phy;
1350 	s32 ret_val = 0;
1351 	u16 data;
1352 
1353 	if (!(hw->phy.ops.read_reg))
1354 		goto out;
1355 
1356 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1357 	if (ret_val)
1358 		goto out;
1359 
1360 	if (!active) {
1361 		data &= ~IGP02E1000_PM_D3_LPLU;
1362 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1363 					     data);
1364 		if (ret_val)
1365 			goto out;
1366 		/*
1367 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1368 		 * during Dx states where the power conservation is most
1369 		 * important.  During driver activity we should enable
1370 		 * SmartSpeed, so performance is maintained.
1371 		 */
1372 		if (phy->smart_speed == e1000_smart_speed_on) {
1373 			ret_val = phy->ops.read_reg(hw,
1374 						    IGP01E1000_PHY_PORT_CONFIG,
1375 						    &data);
1376 			if (ret_val)
1377 				goto out;
1378 
1379 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1380 			ret_val = phy->ops.write_reg(hw,
1381 						     IGP01E1000_PHY_PORT_CONFIG,
1382 						     data);
1383 			if (ret_val)
1384 				goto out;
1385 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1386 			ret_val = phy->ops.read_reg(hw,
1387 						     IGP01E1000_PHY_PORT_CONFIG,
1388 						     &data);
1389 			if (ret_val)
1390 				goto out;
1391 
1392 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1393 			ret_val = phy->ops.write_reg(hw,
1394 						     IGP01E1000_PHY_PORT_CONFIG,
1395 						     data);
1396 			if (ret_val)
1397 				goto out;
1398 		}
1399 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1400 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1401 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1402 		data |= IGP02E1000_PM_D3_LPLU;
1403 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1404 					      data);
1405 		if (ret_val)
1406 			goto out;
1407 
1408 		/* When LPLU is enabled, we should disable SmartSpeed */
1409 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1410 					     &data);
1411 		if (ret_val)
1412 			goto out;
1413 
1414 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1415 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1416 					      data);
1417 	}
1418 
1419 out:
1420 	return ret_val;
1421 }
1422 
1423 /**
1424  *  igb_check_downshift - Checks whether a downshift in speed occurred
1425  *  @hw: pointer to the HW structure
1426  *
1427  *  Success returns 0, Failure returns 1
1428  *
1429  *  A downshift is detected by querying the PHY link health.
1430  **/
igb_check_downshift(struct e1000_hw * hw)1431 s32 igb_check_downshift(struct e1000_hw *hw)
1432 {
1433 	struct e1000_phy_info *phy = &hw->phy;
1434 	s32 ret_val;
1435 	u16 phy_data, offset, mask;
1436 
1437 	switch (phy->type) {
1438 	case e1000_phy_m88:
1439 	case e1000_phy_gg82563:
1440 		offset	= M88E1000_PHY_SPEC_STATUS;
1441 		mask	= M88E1000_PSSR_DOWNSHIFT;
1442 		break;
1443 	case e1000_phy_igp_2:
1444 	case e1000_phy_igp:
1445 	case e1000_phy_igp_3:
1446 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1447 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1448 		break;
1449 	default:
1450 		/* speed downshift not supported */
1451 		phy->speed_downgraded = false;
1452 		ret_val = 0;
1453 		goto out;
1454 	}
1455 
1456 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1457 
1458 	if (!ret_val)
1459 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1460 
1461 out:
1462 	return ret_val;
1463 }
1464 
1465 /**
1466  *  igb_check_polarity_m88 - Checks the polarity.
1467  *  @hw: pointer to the HW structure
1468  *
1469  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1470  *
1471  *  Polarity is determined based on the PHY specific status register.
1472  **/
igb_check_polarity_m88(struct e1000_hw * hw)1473 static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1474 {
1475 	struct e1000_phy_info *phy = &hw->phy;
1476 	s32 ret_val;
1477 	u16 data;
1478 
1479 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1480 
1481 	if (!ret_val)
1482 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1483 				      ? e1000_rev_polarity_reversed
1484 				      : e1000_rev_polarity_normal;
1485 
1486 	return ret_val;
1487 }
1488 
1489 /**
1490  *  igb_check_polarity_igp - Checks the polarity.
1491  *  @hw: pointer to the HW structure
1492  *
1493  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1494  *
1495  *  Polarity is determined based on the PHY port status register, and the
1496  *  current speed (since there is no polarity at 100Mbps).
1497  **/
igb_check_polarity_igp(struct e1000_hw * hw)1498 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1499 {
1500 	struct e1000_phy_info *phy = &hw->phy;
1501 	s32 ret_val;
1502 	u16 data, offset, mask;
1503 
1504 	/*
1505 	 * Polarity is determined based on the speed of
1506 	 * our connection.
1507 	 */
1508 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1509 	if (ret_val)
1510 		goto out;
1511 
1512 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1513 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1514 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1515 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1516 	} else {
1517 		/*
1518 		 * This really only applies to 10Mbps since
1519 		 * there is no polarity for 100Mbps (always 0).
1520 		 */
1521 		offset	= IGP01E1000_PHY_PORT_STATUS;
1522 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1523 	}
1524 
1525 	ret_val = phy->ops.read_reg(hw, offset, &data);
1526 
1527 	if (!ret_val)
1528 		phy->cable_polarity = (data & mask)
1529 				      ? e1000_rev_polarity_reversed
1530 				      : e1000_rev_polarity_normal;
1531 
1532 out:
1533 	return ret_val;
1534 }
1535 
1536 /**
1537  *  igb_wait_autoneg - Wait for auto-neg compeletion
1538  *  @hw: pointer to the HW structure
1539  *
1540  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1541  *  limit to expire, which ever happens first.
1542  **/
igb_wait_autoneg(struct e1000_hw * hw)1543 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1544 {
1545 	s32 ret_val = 0;
1546 	u16 i, phy_status;
1547 
1548 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1549 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1550 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1551 		if (ret_val)
1552 			break;
1553 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1554 		if (ret_val)
1555 			break;
1556 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1557 			break;
1558 		msleep(100);
1559 	}
1560 
1561 	/*
1562 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1563 	 * has completed.
1564 	 */
1565 	return ret_val;
1566 }
1567 
1568 /**
1569  *  igb_phy_has_link - Polls PHY for link
1570  *  @hw: pointer to the HW structure
1571  *  @iterations: number of times to poll for link
1572  *  @usec_interval: delay between polling attempts
1573  *  @success: pointer to whether polling was successful or not
1574  *
1575  *  Polls the PHY status register for link, 'iterations' number of times.
1576  **/
igb_phy_has_link(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1577 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1578 			       u32 usec_interval, bool *success)
1579 {
1580 	s32 ret_val = 0;
1581 	u16 i, phy_status;
1582 
1583 	for (i = 0; i < iterations; i++) {
1584 		/*
1585 		 * Some PHYs require the PHY_STATUS register to be read
1586 		 * twice due to the link bit being sticky.  No harm doing
1587 		 * it across the board.
1588 		 */
1589 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1590 		if (ret_val) {
1591 			/*
1592 			 * If the first read fails, another entity may have
1593 			 * ownership of the resources, wait and try again to
1594 			 * see if they have relinquished the resources yet.
1595 			 */
1596 			udelay(usec_interval);
1597 		}
1598 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1599 		if (ret_val)
1600 			break;
1601 		if (phy_status & MII_SR_LINK_STATUS)
1602 			break;
1603 		if (usec_interval >= 1000)
1604 			mdelay(usec_interval/1000);
1605 		else
1606 			udelay(usec_interval);
1607 	}
1608 
1609 	*success = (i < iterations) ? true : false;
1610 
1611 	return ret_val;
1612 }
1613 
1614 /**
1615  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1616  *  @hw: pointer to the HW structure
1617  *
1618  *  Reads the PHY specific status register to retrieve the cable length
1619  *  information.  The cable length is determined by averaging the minimum and
1620  *  maximum values to get the "average" cable length.  The m88 PHY has four
1621  *  possible cable length values, which are:
1622  *	Register Value		Cable Length
1623  *	0			< 50 meters
1624  *	1			50 - 80 meters
1625  *	2			80 - 110 meters
1626  *	3			110 - 140 meters
1627  *	4			> 140 meters
1628  **/
igb_get_cable_length_m88(struct e1000_hw * hw)1629 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1630 {
1631 	struct e1000_phy_info *phy = &hw->phy;
1632 	s32 ret_val;
1633 	u16 phy_data, index;
1634 
1635 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1636 	if (ret_val)
1637 		goto out;
1638 
1639 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1640 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1641 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1642 		ret_val = -E1000_ERR_PHY;
1643 		goto out;
1644 	}
1645 
1646 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1647 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1648 
1649 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1650 
1651 out:
1652 	return ret_val;
1653 }
1654 
igb_get_cable_length_m88_gen2(struct e1000_hw * hw)1655 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1656 {
1657 	struct e1000_phy_info *phy = &hw->phy;
1658 	s32 ret_val;
1659 	u16 phy_data, phy_data2, index, default_page, is_cm;
1660 
1661 	switch (hw->phy.id) {
1662 	case I347AT4_E_PHY_ID:
1663 		/* Remember the original page select and set it to 7 */
1664 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1665 					    &default_page);
1666 		if (ret_val)
1667 			goto out;
1668 
1669 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1670 		if (ret_val)
1671 			goto out;
1672 
1673 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1674 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1675 					    &phy_data);
1676 		if (ret_val)
1677 			goto out;
1678 
1679 		/* Check if the unit of cable length is meters or cm */
1680 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1681 		if (ret_val)
1682 			goto out;
1683 
1684 		is_cm = !(phy_data & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1685 
1686 		/* Populate the phy structure with cable length in meters */
1687 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1688 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1689 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1690 
1691 		/* Reset the page selec to its original value */
1692 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1693 					     default_page);
1694 		if (ret_val)
1695 			goto out;
1696 		break;
1697 	case M88E1112_E_PHY_ID:
1698 		/* Remember the original page select and set it to 5 */
1699 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1700 					    &default_page);
1701 		if (ret_val)
1702 			goto out;
1703 
1704 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1705 		if (ret_val)
1706 			goto out;
1707 
1708 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1709 					    &phy_data);
1710 		if (ret_val)
1711 			goto out;
1712 
1713 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1714 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1715 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1716 			ret_val = -E1000_ERR_PHY;
1717 			goto out;
1718 		}
1719 
1720 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1721 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1722 
1723 		phy->cable_length = (phy->min_cable_length +
1724 				     phy->max_cable_length) / 2;
1725 
1726 		/* Reset the page select to its original value */
1727 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1728 					     default_page);
1729 		if (ret_val)
1730 			goto out;
1731 
1732 		break;
1733 	default:
1734 		ret_val = -E1000_ERR_PHY;
1735 		goto out;
1736 	}
1737 
1738 out:
1739 	return ret_val;
1740 }
1741 
1742 /**
1743  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1744  *  @hw: pointer to the HW structure
1745  *
1746  *  The automatic gain control (agc) normalizes the amplitude of the
1747  *  received signal, adjusting for the attenuation produced by the
1748  *  cable.  By reading the AGC registers, which represent the
1749  *  combination of coarse and fine gain value, the value can be put
1750  *  into a lookup table to obtain the approximate cable length
1751  *  for each channel.
1752  **/
igb_get_cable_length_igp_2(struct e1000_hw * hw)1753 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1754 {
1755 	struct e1000_phy_info *phy = &hw->phy;
1756 	s32 ret_val = 0;
1757 	u16 phy_data, i, agc_value = 0;
1758 	u16 cur_agc_index, max_agc_index = 0;
1759 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1760 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1761 	       IGP02E1000_PHY_AGC_A,
1762 	       IGP02E1000_PHY_AGC_B,
1763 	       IGP02E1000_PHY_AGC_C,
1764 	       IGP02E1000_PHY_AGC_D
1765 	};
1766 
1767 	/* Read the AGC registers for all channels */
1768 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1769 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1770 		if (ret_val)
1771 			goto out;
1772 
1773 		/*
1774 		 * Getting bits 15:9, which represent the combination of
1775 		 * coarse and fine gain values.  The result is a number
1776 		 * that can be put into the lookup table to obtain the
1777 		 * approximate cable length.
1778 		 */
1779 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1780 				IGP02E1000_AGC_LENGTH_MASK;
1781 
1782 		/* Array index bound check. */
1783 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1784 		    (cur_agc_index == 0)) {
1785 			ret_val = -E1000_ERR_PHY;
1786 			goto out;
1787 		}
1788 
1789 		/* Remove min & max AGC values from calculation. */
1790 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1791 		    e1000_igp_2_cable_length_table[cur_agc_index])
1792 			min_agc_index = cur_agc_index;
1793 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1794 		    e1000_igp_2_cable_length_table[cur_agc_index])
1795 			max_agc_index = cur_agc_index;
1796 
1797 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1798 	}
1799 
1800 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1801 		      e1000_igp_2_cable_length_table[max_agc_index]);
1802 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1803 
1804 	/* Calculate cable length with the error range of +/- 10 meters. */
1805 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1806 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1807 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1808 
1809 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1810 
1811 out:
1812 	return ret_val;
1813 }
1814 
1815 /**
1816  *  igb_get_phy_info_m88 - Retrieve PHY information
1817  *  @hw: pointer to the HW structure
1818  *
1819  *  Valid for only copper links.  Read the PHY status register (sticky read)
1820  *  to verify that link is up.  Read the PHY special control register to
1821  *  determine the polarity and 10base-T extended distance.  Read the PHY
1822  *  special status register to determine MDI/MDIx and current speed.  If
1823  *  speed is 1000, then determine cable length, local and remote receiver.
1824  **/
igb_get_phy_info_m88(struct e1000_hw * hw)1825 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1826 {
1827 	struct e1000_phy_info *phy = &hw->phy;
1828 	s32  ret_val;
1829 	u16 phy_data;
1830 	bool link;
1831 
1832 	if (phy->media_type != e1000_media_type_copper) {
1833 		hw_dbg("Phy info is only valid for copper media\n");
1834 		ret_val = -E1000_ERR_CONFIG;
1835 		goto out;
1836 	}
1837 
1838 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1839 	if (ret_val)
1840 		goto out;
1841 
1842 	if (!link) {
1843 		hw_dbg("Phy info is only valid if link is up\n");
1844 		ret_val = -E1000_ERR_CONFIG;
1845 		goto out;
1846 	}
1847 
1848 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849 	if (ret_val)
1850 		goto out;
1851 
1852 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1853 				   ? true : false;
1854 
1855 	ret_val = igb_check_polarity_m88(hw);
1856 	if (ret_val)
1857 		goto out;
1858 
1859 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1860 	if (ret_val)
1861 		goto out;
1862 
1863 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1864 
1865 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1866 		ret_val = phy->ops.get_cable_length(hw);
1867 		if (ret_val)
1868 			goto out;
1869 
1870 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1871 		if (ret_val)
1872 			goto out;
1873 
1874 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1875 				? e1000_1000t_rx_status_ok
1876 				: e1000_1000t_rx_status_not_ok;
1877 
1878 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1879 				 ? e1000_1000t_rx_status_ok
1880 				 : e1000_1000t_rx_status_not_ok;
1881 	} else {
1882 		/* Set values to "undefined" */
1883 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1884 		phy->local_rx = e1000_1000t_rx_status_undefined;
1885 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1886 	}
1887 
1888 out:
1889 	return ret_val;
1890 }
1891 
1892 /**
1893  *  igb_get_phy_info_igp - Retrieve igp PHY information
1894  *  @hw: pointer to the HW structure
1895  *
1896  *  Read PHY status to determine if link is up.  If link is up, then
1897  *  set/determine 10base-T extended distance and polarity correction.  Read
1898  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1899  *  determine on the cable length, local and remote receiver.
1900  **/
igb_get_phy_info_igp(struct e1000_hw * hw)1901 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1902 {
1903 	struct e1000_phy_info *phy = &hw->phy;
1904 	s32 ret_val;
1905 	u16 data;
1906 	bool link;
1907 
1908 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1909 	if (ret_val)
1910 		goto out;
1911 
1912 	if (!link) {
1913 		hw_dbg("Phy info is only valid if link is up\n");
1914 		ret_val = -E1000_ERR_CONFIG;
1915 		goto out;
1916 	}
1917 
1918 	phy->polarity_correction = true;
1919 
1920 	ret_val = igb_check_polarity_igp(hw);
1921 	if (ret_val)
1922 		goto out;
1923 
1924 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1925 	if (ret_val)
1926 		goto out;
1927 
1928 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1929 
1930 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1931 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1932 		ret_val = phy->ops.get_cable_length(hw);
1933 		if (ret_val)
1934 			goto out;
1935 
1936 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1937 		if (ret_val)
1938 			goto out;
1939 
1940 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1941 				? e1000_1000t_rx_status_ok
1942 				: e1000_1000t_rx_status_not_ok;
1943 
1944 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1945 				 ? e1000_1000t_rx_status_ok
1946 				 : e1000_1000t_rx_status_not_ok;
1947 	} else {
1948 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1949 		phy->local_rx = e1000_1000t_rx_status_undefined;
1950 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1951 	}
1952 
1953 out:
1954 	return ret_val;
1955 }
1956 
1957 /**
1958  *  igb_phy_sw_reset - PHY software reset
1959  *  @hw: pointer to the HW structure
1960  *
1961  *  Does a software reset of the PHY by reading the PHY control register and
1962  *  setting/write the control register reset bit to the PHY.
1963  **/
igb_phy_sw_reset(struct e1000_hw * hw)1964 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1965 {
1966 	s32 ret_val = 0;
1967 	u16 phy_ctrl;
1968 
1969 	if (!(hw->phy.ops.read_reg))
1970 		goto out;
1971 
1972 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1973 	if (ret_val)
1974 		goto out;
1975 
1976 	phy_ctrl |= MII_CR_RESET;
1977 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1978 	if (ret_val)
1979 		goto out;
1980 
1981 	udelay(1);
1982 
1983 out:
1984 	return ret_val;
1985 }
1986 
1987 /**
1988  *  igb_phy_hw_reset - PHY hardware reset
1989  *  @hw: pointer to the HW structure
1990  *
1991  *  Verify the reset block is not blocking us from resetting.  Acquire
1992  *  semaphore (if necessary) and read/set/write the device control reset
1993  *  bit in the PHY.  Wait the appropriate delay time for the device to
1994  *  reset and relase the semaphore (if necessary).
1995  **/
igb_phy_hw_reset(struct e1000_hw * hw)1996 s32 igb_phy_hw_reset(struct e1000_hw *hw)
1997 {
1998 	struct e1000_phy_info *phy = &hw->phy;
1999 	s32  ret_val;
2000 	u32 ctrl;
2001 
2002 	ret_val = igb_check_reset_block(hw);
2003 	if (ret_val) {
2004 		ret_val = 0;
2005 		goto out;
2006 	}
2007 
2008 	ret_val = phy->ops.acquire(hw);
2009 	if (ret_val)
2010 		goto out;
2011 
2012 	ctrl = rd32(E1000_CTRL);
2013 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2014 	wrfl();
2015 
2016 	udelay(phy->reset_delay_us);
2017 
2018 	wr32(E1000_CTRL, ctrl);
2019 	wrfl();
2020 
2021 	udelay(150);
2022 
2023 	phy->ops.release(hw);
2024 
2025 	ret_val = phy->ops.get_cfg_done(hw);
2026 
2027 out:
2028 	return ret_val;
2029 }
2030 
2031 /**
2032  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2033  *  @hw: pointer to the HW structure
2034  *
2035  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2036  **/
igb_phy_init_script_igp3(struct e1000_hw * hw)2037 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2038 {
2039 	hw_dbg("Running IGP 3 PHY init script\n");
2040 
2041 	/* PHY init IGP 3 */
2042 	/* Enable rise/fall, 10-mode work in class-A */
2043 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2044 	/* Remove all caps from Replica path filter */
2045 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2046 	/* Bias trimming for ADC, AFE and Driver (Default) */
2047 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2048 	/* Increase Hybrid poly bias */
2049 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2050 	/* Add 4% to TX amplitude in Giga mode */
2051 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2052 	/* Disable trimming (TTT) */
2053 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2054 	/* Poly DC correction to 94.6% + 2% for all channels */
2055 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2056 	/* ABS DC correction to 95.9% */
2057 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2058 	/* BG temp curve trim */
2059 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2060 	/* Increasing ADC OPAMP stage 1 currents to max */
2061 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2062 	/* Force 1000 ( required for enabling PHY regs configuration) */
2063 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2064 	/* Set upd_freq to 6 */
2065 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2066 	/* Disable NPDFE */
2067 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2068 	/* Disable adaptive fixed FFE (Default) */
2069 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2070 	/* Enable FFE hysteresis */
2071 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2072 	/* Fixed FFE for short cable lengths */
2073 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2074 	/* Fixed FFE for medium cable lengths */
2075 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2076 	/* Fixed FFE for long cable lengths */
2077 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2078 	/* Enable Adaptive Clip Threshold */
2079 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2080 	/* AHT reset limit to 1 */
2081 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2082 	/* Set AHT master delay to 127 msec */
2083 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2084 	/* Set scan bits for AHT */
2085 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2086 	/* Set AHT Preset bits */
2087 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2088 	/* Change integ_factor of channel A to 3 */
2089 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2090 	/* Change prop_factor of channels BCD to 8 */
2091 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2092 	/* Change cg_icount + enable integbp for channels BCD */
2093 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2094 	/*
2095 	 * Change cg_icount + enable integbp + change prop_factor_master
2096 	 * to 8 for channel A
2097 	 */
2098 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2099 	/* Disable AHT in Slave mode on channel A */
2100 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2101 	/*
2102 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2103 	 * Enable SPD+B2B
2104 	 */
2105 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2106 	/* Enable restart AN on an1000_dis change */
2107 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2108 	/* Enable wh_fifo read clock in 10/100 modes */
2109 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2110 	/* Restart AN, Speed selection is 1000 */
2111 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2112 
2113 	return 0;
2114 }
2115 
2116 /**
2117  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2118  * @hw: pointer to the HW structure
2119  *
2120  * In the case of a PHY power down to save power, or to turn off link during a
2121  * driver unload, restore the link to previous settings.
2122  **/
igb_power_up_phy_copper(struct e1000_hw * hw)2123 void igb_power_up_phy_copper(struct e1000_hw *hw)
2124 {
2125 	u16 mii_reg = 0;
2126 
2127 	/* The PHY will retain its settings across a power down/up cycle */
2128 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2129 	mii_reg &= ~MII_CR_POWER_DOWN;
2130 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2131 }
2132 
2133 /**
2134  * igb_power_down_phy_copper - Power down copper PHY
2135  * @hw: pointer to the HW structure
2136  *
2137  * Power down PHY to save power when interface is down and wake on lan
2138  * is not enabled.
2139  **/
igb_power_down_phy_copper(struct e1000_hw * hw)2140 void igb_power_down_phy_copper(struct e1000_hw *hw)
2141 {
2142 	u16 mii_reg = 0;
2143 
2144 	/* The PHY will retain its settings across a power down/up cycle */
2145 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2146 	mii_reg |= MII_CR_POWER_DOWN;
2147 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2148 	msleep(1);
2149 }
2150 
2151 /**
2152  *  igb_check_polarity_82580 - Checks the polarity.
2153  *  @hw: pointer to the HW structure
2154  *
2155  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2156  *
2157  *  Polarity is determined based on the PHY specific status register.
2158  **/
igb_check_polarity_82580(struct e1000_hw * hw)2159 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2160 {
2161 	struct e1000_phy_info *phy = &hw->phy;
2162 	s32 ret_val;
2163 	u16 data;
2164 
2165 
2166 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2167 
2168 	if (!ret_val)
2169 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2170 		                      ? e1000_rev_polarity_reversed
2171 		                      : e1000_rev_polarity_normal;
2172 
2173 	return ret_val;
2174 }
2175 
2176 /**
2177  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2178  *  @hw: pointer to the HW structure
2179  *
2180  *  Calls the PHY setup function to force speed and duplex.  Clears the
2181  *  auto-crossover to force MDI manually.  Waits for link and returns
2182  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2183  **/
igb_phy_force_speed_duplex_82580(struct e1000_hw * hw)2184 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2185 {
2186 	struct e1000_phy_info *phy = &hw->phy;
2187 	s32 ret_val;
2188 	u16 phy_data;
2189 	bool link;
2190 
2191 
2192 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2193 	if (ret_val)
2194 		goto out;
2195 
2196 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2197 
2198 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2199 	if (ret_val)
2200 		goto out;
2201 
2202 	/*
2203 	 * Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2204 	 * forced whenever speed and duplex are forced.
2205 	 */
2206 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2207 	if (ret_val)
2208 		goto out;
2209 
2210 	phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2211 	phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2212 
2213 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2214 	if (ret_val)
2215 		goto out;
2216 
2217 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2218 
2219 	udelay(1);
2220 
2221 	if (phy->autoneg_wait_to_complete) {
2222 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2223 
2224 		ret_val = igb_phy_has_link(hw,
2225 		                           PHY_FORCE_LIMIT,
2226 		                           100000,
2227 		                           &link);
2228 		if (ret_val)
2229 			goto out;
2230 
2231 		if (!link)
2232 			hw_dbg("Link taking longer than expected.\n");
2233 
2234 		/* Try once more */
2235 		ret_val = igb_phy_has_link(hw,
2236 		                           PHY_FORCE_LIMIT,
2237 		                           100000,
2238 		                           &link);
2239 		if (ret_val)
2240 			goto out;
2241 	}
2242 
2243 out:
2244 	return ret_val;
2245 }
2246 
2247 /**
2248  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2249  *  @hw: pointer to the HW structure
2250  *
2251  *  Read PHY status to determine if link is up.  If link is up, then
2252  *  set/determine 10base-T extended distance and polarity correction.  Read
2253  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2254  *  determine on the cable length, local and remote receiver.
2255  **/
igb_get_phy_info_82580(struct e1000_hw * hw)2256 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2257 {
2258 	struct e1000_phy_info *phy = &hw->phy;
2259 	s32 ret_val;
2260 	u16 data;
2261 	bool link;
2262 
2263 
2264 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2265 	if (ret_val)
2266 		goto out;
2267 
2268 	if (!link) {
2269 		hw_dbg("Phy info is only valid if link is up\n");
2270 		ret_val = -E1000_ERR_CONFIG;
2271 		goto out;
2272 	}
2273 
2274 	phy->polarity_correction = true;
2275 
2276 	ret_val = igb_check_polarity_82580(hw);
2277 	if (ret_val)
2278 		goto out;
2279 
2280 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2281 	if (ret_val)
2282 		goto out;
2283 
2284 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2285 
2286 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2287 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2288 		ret_val = hw->phy.ops.get_cable_length(hw);
2289 		if (ret_val)
2290 			goto out;
2291 
2292 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2293 		if (ret_val)
2294 			goto out;
2295 
2296 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2297 		                ? e1000_1000t_rx_status_ok
2298 		                : e1000_1000t_rx_status_not_ok;
2299 
2300 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2301 		                 ? e1000_1000t_rx_status_ok
2302 		                 : e1000_1000t_rx_status_not_ok;
2303 	} else {
2304 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2305 		phy->local_rx = e1000_1000t_rx_status_undefined;
2306 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2307 	}
2308 
2309 out:
2310 	return ret_val;
2311 }
2312 
2313 /**
2314  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2315  *  @hw: pointer to the HW structure
2316  *
2317  * Reads the diagnostic status register and verifies result is valid before
2318  * placing it in the phy_cable_length field.
2319  **/
igb_get_cable_length_82580(struct e1000_hw * hw)2320 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2321 {
2322 	struct e1000_phy_info *phy = &hw->phy;
2323 	s32 ret_val;
2324 	u16 phy_data, length;
2325 
2326 
2327 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2328 	if (ret_val)
2329 		goto out;
2330 
2331 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2332 	         I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2333 
2334 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2335 		ret_val = -E1000_ERR_PHY;
2336 
2337 	phy->cable_length = length;
2338 
2339 out:
2340 	return ret_val;
2341 }
2342