1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
32 
33 #include "e1000_mac.h"
34 
35 #include "igb.h"
36 
37 static s32 igb_set_default_fc(struct e1000_hw *hw);
38 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39 
40 /**
41  *  igb_get_bus_info_pcie - Get PCIe bus information
42  *  @hw: pointer to the HW structure
43  *
44  *  Determines and stores the system bus information for a particular
45  *  network interface.  The following bus information is determined and stored:
46  *  bus speed, bus width, type (PCIe), and PCIe function.
47  **/
igb_get_bus_info_pcie(struct e1000_hw * hw)48 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49 {
50 	struct e1000_bus_info *bus = &hw->bus;
51 	s32 ret_val;
52 	u32 reg;
53 	u16 pcie_link_status;
54 
55 	bus->type = e1000_bus_type_pci_express;
56 
57 	ret_val = igb_read_pcie_cap_reg(hw,
58 					PCI_EXP_LNKSTA,
59 					&pcie_link_status);
60 	if (ret_val) {
61 		bus->width = e1000_bus_width_unknown;
62 		bus->speed = e1000_bus_speed_unknown;
63 	} else {
64 		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
65 		case PCI_EXP_LNKSTA_CLS_2_5GB:
66 			bus->speed = e1000_bus_speed_2500;
67 			break;
68 		case PCI_EXP_LNKSTA_CLS_5_0GB:
69 			bus->speed = e1000_bus_speed_5000;
70 			break;
71 		default:
72 			bus->speed = e1000_bus_speed_unknown;
73 			break;
74 		}
75 
76 		bus->width = (enum e1000_bus_width)((pcie_link_status &
77 						     PCI_EXP_LNKSTA_NLW) >>
78 						     PCI_EXP_LNKSTA_NLW_SHIFT);
79 	}
80 
81 	reg = rd32(E1000_STATUS);
82 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
83 
84 	return 0;
85 }
86 
87 /**
88  *  igb_clear_vfta - Clear VLAN filter table
89  *  @hw: pointer to the HW structure
90  *
91  *  Clears the register array which contains the VLAN filter table by
92  *  setting all the values to 0.
93  **/
igb_clear_vfta(struct e1000_hw * hw)94 void igb_clear_vfta(struct e1000_hw *hw)
95 {
96 	u32 offset;
97 
98 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
99 		array_wr32(E1000_VFTA, offset, 0);
100 		wrfl();
101 	}
102 }
103 
104 /**
105  *  igb_write_vfta - Write value to VLAN filter table
106  *  @hw: pointer to the HW structure
107  *  @offset: register offset in VLAN filter table
108  *  @value: register value written to VLAN filter table
109  *
110  *  Writes value at the given offset in the register array which stores
111  *  the VLAN filter table.
112  **/
igb_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)113 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
114 {
115 	array_wr32(E1000_VFTA, offset, value);
116 	wrfl();
117 }
118 
119 /**
120  *  igb_init_rx_addrs - Initialize receive address's
121  *  @hw: pointer to the HW structure
122  *  @rar_count: receive address registers
123  *
124  *  Setups the receive address registers by setting the base receive address
125  *  register to the devices MAC address and clearing all the other receive
126  *  address registers to 0.
127  **/
igb_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)128 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
129 {
130 	u32 i;
131 	u8 mac_addr[ETH_ALEN] = {0};
132 
133 	/* Setup the receive address */
134 	hw_dbg("Programming MAC Address into RAR[0]\n");
135 
136 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
137 
138 	/* Zero out the other (rar_entry_count - 1) receive addresses */
139 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
140 	for (i = 1; i < rar_count; i++)
141 		hw->mac.ops.rar_set(hw, mac_addr, i);
142 }
143 
144 /**
145  *  igb_vfta_set - enable or disable vlan in VLAN filter table
146  *  @hw: pointer to the HW structure
147  *  @vid: VLAN id to add or remove
148  *  @add: if true add filter, if false remove
149  *
150  *  Sets or clears a bit in the VLAN filter table array based on VLAN id
151  *  and if we are adding or removing the filter
152  **/
igb_vfta_set(struct e1000_hw * hw,u32 vid,bool add)153 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
154 {
155 	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
156 	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
157 	u32 vfta = array_rd32(E1000_VFTA, index);
158 	s32 ret_val = 0;
159 
160 	/* bit was set/cleared before we started */
161 	if ((!!(vfta & mask)) == add) {
162 		ret_val = -E1000_ERR_CONFIG;
163 	} else {
164 		if (add)
165 			vfta |= mask;
166 		else
167 			vfta &= ~mask;
168 	}
169 
170 	igb_write_vfta(hw, index, vfta);
171 
172 	return ret_val;
173 }
174 
175 /**
176  *  igb_check_alt_mac_addr - Check for alternate MAC addr
177  *  @hw: pointer to the HW structure
178  *
179  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
180  *  can be setup by pre-boot software and must be treated like a permanent
181  *  address and must override the actual permanent MAC address.  If an
182  *  alternate MAC address is fopund it is saved in the hw struct and
183  *  prgrammed into RAR0 and the cuntion returns success, otherwise the
184  *  function returns an error.
185  **/
igb_check_alt_mac_addr(struct e1000_hw * hw)186 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
187 {
188 	u32 i;
189 	s32 ret_val = 0;
190 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
191 	u8 alt_mac_addr[ETH_ALEN];
192 
193 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
194 				 &nvm_alt_mac_addr_offset);
195 	if (ret_val) {
196 		hw_dbg("NVM Read Error\n");
197 		goto out;
198 	}
199 
200 	if (nvm_alt_mac_addr_offset == 0xFFFF) {
201 		/* There is no Alternate MAC Address */
202 		goto out;
203 	}
204 
205 	if (hw->bus.func == E1000_FUNC_1)
206 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
207 	for (i = 0; i < ETH_ALEN; i += 2) {
208 		offset = nvm_alt_mac_addr_offset + (i >> 1);
209 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
210 		if (ret_val) {
211 			hw_dbg("NVM Read Error\n");
212 			goto out;
213 		}
214 
215 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
216 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
217 	}
218 
219 	/* if multicast bit is set, the alternate address will not be used */
220 	if (alt_mac_addr[0] & 0x01) {
221 		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
222 		goto out;
223 	}
224 
225 	/*
226 	 * We have a valid alternate MAC address, and we want to treat it the
227 	 * same as the normal permanent MAC address stored by the HW into the
228 	 * RAR. Do this by mapping this address into RAR0.
229 	 */
230 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
231 
232 out:
233 	return ret_val;
234 }
235 
236 /**
237  *  igb_rar_set - Set receive address register
238  *  @hw: pointer to the HW structure
239  *  @addr: pointer to the receive address
240  *  @index: receive address array register
241  *
242  *  Sets the receive address array register at index to the address passed
243  *  in by addr.
244  **/
igb_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)245 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
246 {
247 	u32 rar_low, rar_high;
248 
249 	/*
250 	 * HW expects these in little endian so we reverse the byte order
251 	 * from network order (big endian) to little endian
252 	 */
253 	rar_low = ((u32) addr[0] |
254 		   ((u32) addr[1] << 8) |
255 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
256 
257 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
258 
259 	/* If MAC address zero, no need to set the AV bit */
260 	if (rar_low || rar_high)
261 		rar_high |= E1000_RAH_AV;
262 
263 	/*
264 	 * Some bridges will combine consecutive 32-bit writes into
265 	 * a single burst write, which will malfunction on some parts.
266 	 * The flushes avoid this.
267 	 */
268 	wr32(E1000_RAL(index), rar_low);
269 	wrfl();
270 	wr32(E1000_RAH(index), rar_high);
271 	wrfl();
272 }
273 
274 /**
275  *  igb_mta_set - Set multicast filter table address
276  *  @hw: pointer to the HW structure
277  *  @hash_value: determines the MTA register and bit to set
278  *
279  *  The multicast table address is a register array of 32-bit registers.
280  *  The hash_value is used to determine what register the bit is in, the
281  *  current value is read, the new bit is OR'd in and the new value is
282  *  written back into the register.
283  **/
igb_mta_set(struct e1000_hw * hw,u32 hash_value)284 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
285 {
286 	u32 hash_bit, hash_reg, mta;
287 
288 	/*
289 	 * The MTA is a register array of 32-bit registers. It is
290 	 * treated like an array of (32*mta_reg_count) bits.  We want to
291 	 * set bit BitArray[hash_value]. So we figure out what register
292 	 * the bit is in, read it, OR in the new bit, then write
293 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
294 	 * mask to bits 31:5 of the hash value which gives us the
295 	 * register we're modifying.  The hash bit within that register
296 	 * is determined by the lower 5 bits of the hash value.
297 	 */
298 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
299 	hash_bit = hash_value & 0x1F;
300 
301 	mta = array_rd32(E1000_MTA, hash_reg);
302 
303 	mta |= (1 << hash_bit);
304 
305 	array_wr32(E1000_MTA, hash_reg, mta);
306 	wrfl();
307 }
308 
309 /**
310  *  igb_hash_mc_addr - Generate a multicast hash value
311  *  @hw: pointer to the HW structure
312  *  @mc_addr: pointer to a multicast address
313  *
314  *  Generates a multicast address hash value which is used to determine
315  *  the multicast filter table array address and new table value.  See
316  *  igb_mta_set()
317  **/
igb_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)318 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
319 {
320 	u32 hash_value, hash_mask;
321 	u8 bit_shift = 0;
322 
323 	/* Register count multiplied by bits per register */
324 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
325 
326 	/*
327 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
328 	 * where 0xFF would still fall within the hash mask.
329 	 */
330 	while (hash_mask >> bit_shift != 0xFF)
331 		bit_shift++;
332 
333 	/*
334 	 * The portion of the address that is used for the hash table
335 	 * is determined by the mc_filter_type setting.
336 	 * The algorithm is such that there is a total of 8 bits of shifting.
337 	 * The bit_shift for a mc_filter_type of 0 represents the number of
338 	 * left-shifts where the MSB of mc_addr[5] would still fall within
339 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
340 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
341 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
342 	 * cases are a variation of this algorithm...essentially raising the
343 	 * number of bits to shift mc_addr[5] left, while still keeping the
344 	 * 8-bit shifting total.
345 	 *
346 	 * For example, given the following Destination MAC Address and an
347 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
348 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
349 	 * values resulting from each mc_filter_type...
350 	 * [0] [1] [2] [3] [4] [5]
351 	 * 01  AA  00  12  34  56
352 	 * LSB                 MSB
353 	 *
354 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
355 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
356 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
357 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
358 	 */
359 	switch (hw->mac.mc_filter_type) {
360 	default:
361 	case 0:
362 		break;
363 	case 1:
364 		bit_shift += 1;
365 		break;
366 	case 2:
367 		bit_shift += 2;
368 		break;
369 	case 3:
370 		bit_shift += 4;
371 		break;
372 	}
373 
374 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
375 				  (((u16) mc_addr[5]) << bit_shift)));
376 
377 	return hash_value;
378 }
379 
380 /**
381  *  igb_update_mc_addr_list - Update Multicast addresses
382  *  @hw: pointer to the HW structure
383  *  @mc_addr_list: array of multicast addresses to program
384  *  @mc_addr_count: number of multicast addresses to program
385  *
386  *  Updates entire Multicast Table Array.
387  *  The caller must have a packed mc_addr_list of multicast addresses.
388  **/
igb_update_mc_addr_list(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)389 void igb_update_mc_addr_list(struct e1000_hw *hw,
390                              u8 *mc_addr_list, u32 mc_addr_count)
391 {
392 	u32 hash_value, hash_bit, hash_reg;
393 	int i;
394 
395 	/* clear mta_shadow */
396 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
397 
398 	/* update mta_shadow from mc_addr_list */
399 	for (i = 0; (u32) i < mc_addr_count; i++) {
400 		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
401 
402 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
403 		hash_bit = hash_value & 0x1F;
404 
405 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
406 		mc_addr_list += (ETH_ALEN);
407 	}
408 
409 	/* replace the entire MTA table */
410 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
411 		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
412 	wrfl();
413 }
414 
415 /**
416  *  igb_clear_hw_cntrs_base - Clear base hardware counters
417  *  @hw: pointer to the HW structure
418  *
419  *  Clears the base hardware counters by reading the counter registers.
420  **/
igb_clear_hw_cntrs_base(struct e1000_hw * hw)421 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
422 {
423 	rd32(E1000_CRCERRS);
424 	rd32(E1000_SYMERRS);
425 	rd32(E1000_MPC);
426 	rd32(E1000_SCC);
427 	rd32(E1000_ECOL);
428 	rd32(E1000_MCC);
429 	rd32(E1000_LATECOL);
430 	rd32(E1000_COLC);
431 	rd32(E1000_DC);
432 	rd32(E1000_SEC);
433 	rd32(E1000_RLEC);
434 	rd32(E1000_XONRXC);
435 	rd32(E1000_XONTXC);
436 	rd32(E1000_XOFFRXC);
437 	rd32(E1000_XOFFTXC);
438 	rd32(E1000_FCRUC);
439 	rd32(E1000_GPRC);
440 	rd32(E1000_BPRC);
441 	rd32(E1000_MPRC);
442 	rd32(E1000_GPTC);
443 	rd32(E1000_GORCL);
444 	rd32(E1000_GORCH);
445 	rd32(E1000_GOTCL);
446 	rd32(E1000_GOTCH);
447 	rd32(E1000_RNBC);
448 	rd32(E1000_RUC);
449 	rd32(E1000_RFC);
450 	rd32(E1000_ROC);
451 	rd32(E1000_RJC);
452 	rd32(E1000_TORL);
453 	rd32(E1000_TORH);
454 	rd32(E1000_TOTL);
455 	rd32(E1000_TOTH);
456 	rd32(E1000_TPR);
457 	rd32(E1000_TPT);
458 	rd32(E1000_MPTC);
459 	rd32(E1000_BPTC);
460 }
461 
462 /**
463  *  igb_check_for_copper_link - Check for link (Copper)
464  *  @hw: pointer to the HW structure
465  *
466  *  Checks to see of the link status of the hardware has changed.  If a
467  *  change in link status has been detected, then we read the PHY registers
468  *  to get the current speed/duplex if link exists.
469  **/
igb_check_for_copper_link(struct e1000_hw * hw)470 s32 igb_check_for_copper_link(struct e1000_hw *hw)
471 {
472 	struct e1000_mac_info *mac = &hw->mac;
473 	s32 ret_val;
474 	bool link;
475 
476 	/*
477 	 * We only want to go out to the PHY registers to see if Auto-Neg
478 	 * has completed and/or if our link status has changed.  The
479 	 * get_link_status flag is set upon receiving a Link Status
480 	 * Change or Rx Sequence Error interrupt.
481 	 */
482 	if (!mac->get_link_status) {
483 		ret_val = 0;
484 		goto out;
485 	}
486 
487 	/*
488 	 * First we want to see if the MII Status Register reports
489 	 * link.  If so, then we want to get the current speed/duplex
490 	 * of the PHY.
491 	 */
492 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
493 	if (ret_val)
494 		goto out;
495 
496 	if (!link)
497 		goto out; /* No link detected */
498 
499 	mac->get_link_status = false;
500 
501 	/*
502 	 * Check if there was DownShift, must be checked
503 	 * immediately after link-up
504 	 */
505 	igb_check_downshift(hw);
506 
507 	/*
508 	 * If we are forcing speed/duplex, then we simply return since
509 	 * we have already determined whether we have link or not.
510 	 */
511 	if (!mac->autoneg) {
512 		ret_val = -E1000_ERR_CONFIG;
513 		goto out;
514 	}
515 
516 	/*
517 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
518 	 * of MAC speed/duplex configuration.  So we only need to
519 	 * configure Collision Distance in the MAC.
520 	 */
521 	igb_config_collision_dist(hw);
522 
523 	/*
524 	 * Configure Flow Control now that Auto-Neg has completed.
525 	 * First, we need to restore the desired flow control
526 	 * settings because we may have had to re-autoneg with a
527 	 * different link partner.
528 	 */
529 	ret_val = igb_config_fc_after_link_up(hw);
530 	if (ret_val)
531 		hw_dbg("Error configuring flow control\n");
532 
533 out:
534 	return ret_val;
535 }
536 
537 /**
538  *  igb_setup_link - Setup flow control and link settings
539  *  @hw: pointer to the HW structure
540  *
541  *  Determines which flow control settings to use, then configures flow
542  *  control.  Calls the appropriate media-specific link configuration
543  *  function.  Assuming the adapter has a valid link partner, a valid link
544  *  should be established.  Assumes the hardware has previously been reset
545  *  and the transmitter and receiver are not enabled.
546  **/
igb_setup_link(struct e1000_hw * hw)547 s32 igb_setup_link(struct e1000_hw *hw)
548 {
549 	s32 ret_val = 0;
550 
551 	/*
552 	 * In the case of the phy reset being blocked, we already have a link.
553 	 * We do not need to set it up again.
554 	 */
555 	if (igb_check_reset_block(hw))
556 		goto out;
557 
558 	/*
559 	 * If requested flow control is set to default, set flow control
560 	 * based on the EEPROM flow control settings.
561 	 */
562 	if (hw->fc.requested_mode == e1000_fc_default) {
563 		ret_val = igb_set_default_fc(hw);
564 		if (ret_val)
565 			goto out;
566 	}
567 
568 	/*
569 	 * We want to save off the original Flow Control configuration just
570 	 * in case we get disconnected and then reconnected into a different
571 	 * hub or switch with different Flow Control capabilities.
572 	 */
573 	hw->fc.current_mode = hw->fc.requested_mode;
574 
575 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
576 
577 	/* Call the necessary media_type subroutine to configure the link. */
578 	ret_val = hw->mac.ops.setup_physical_interface(hw);
579 	if (ret_val)
580 		goto out;
581 
582 	/*
583 	 * Initialize the flow control address, type, and PAUSE timer
584 	 * registers to their default values.  This is done even if flow
585 	 * control is disabled, because it does not hurt anything to
586 	 * initialize these registers.
587 	 */
588 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
589 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
590 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
591 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
592 
593 	wr32(E1000_FCTTV, hw->fc.pause_time);
594 
595 	ret_val = igb_set_fc_watermarks(hw);
596 
597 out:
598 	return ret_val;
599 }
600 
601 /**
602  *  igb_config_collision_dist - Configure collision distance
603  *  @hw: pointer to the HW structure
604  *
605  *  Configures the collision distance to the default value and is used
606  *  during link setup. Currently no func pointer exists and all
607  *  implementations are handled in the generic version of this function.
608  **/
igb_config_collision_dist(struct e1000_hw * hw)609 void igb_config_collision_dist(struct e1000_hw *hw)
610 {
611 	u32 tctl;
612 
613 	tctl = rd32(E1000_TCTL);
614 
615 	tctl &= ~E1000_TCTL_COLD;
616 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
617 
618 	wr32(E1000_TCTL, tctl);
619 	wrfl();
620 }
621 
622 /**
623  *  igb_set_fc_watermarks - Set flow control high/low watermarks
624  *  @hw: pointer to the HW structure
625  *
626  *  Sets the flow control high/low threshold (watermark) registers.  If
627  *  flow control XON frame transmission is enabled, then set XON frame
628  *  tansmission as well.
629  **/
igb_set_fc_watermarks(struct e1000_hw * hw)630 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
631 {
632 	s32 ret_val = 0;
633 	u32 fcrtl = 0, fcrth = 0;
634 
635 	/*
636 	 * Set the flow control receive threshold registers.  Normally,
637 	 * these registers will be set to a default threshold that may be
638 	 * adjusted later by the driver's runtime code.  However, if the
639 	 * ability to transmit pause frames is not enabled, then these
640 	 * registers will be set to 0.
641 	 */
642 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
643 		/*
644 		 * We need to set up the Receive Threshold high and low water
645 		 * marks as well as (optionally) enabling the transmission of
646 		 * XON frames.
647 		 */
648 		fcrtl = hw->fc.low_water;
649 		if (hw->fc.send_xon)
650 			fcrtl |= E1000_FCRTL_XONE;
651 
652 		fcrth = hw->fc.high_water;
653 	}
654 	wr32(E1000_FCRTL, fcrtl);
655 	wr32(E1000_FCRTH, fcrth);
656 
657 	return ret_val;
658 }
659 
660 /**
661  *  igb_set_default_fc - Set flow control default values
662  *  @hw: pointer to the HW structure
663  *
664  *  Read the EEPROM for the default values for flow control and store the
665  *  values.
666  **/
igb_set_default_fc(struct e1000_hw * hw)667 static s32 igb_set_default_fc(struct e1000_hw *hw)
668 {
669 	s32 ret_val = 0;
670 	u16 nvm_data;
671 
672 	/*
673 	 * Read and store word 0x0F of the EEPROM. This word contains bits
674 	 * that determine the hardware's default PAUSE (flow control) mode,
675 	 * a bit that determines whether the HW defaults to enabling or
676 	 * disabling auto-negotiation, and the direction of the
677 	 * SW defined pins. If there is no SW over-ride of the flow
678 	 * control setting, then the variable hw->fc will
679 	 * be initialized based on a value in the EEPROM.
680 	 */
681 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
682 
683 	if (ret_val) {
684 		hw_dbg("NVM Read Error\n");
685 		goto out;
686 	}
687 
688 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
689 		hw->fc.requested_mode = e1000_fc_none;
690 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
691 		 NVM_WORD0F_ASM_DIR)
692 		hw->fc.requested_mode = e1000_fc_tx_pause;
693 	else
694 		hw->fc.requested_mode = e1000_fc_full;
695 
696 out:
697 	return ret_val;
698 }
699 
700 /**
701  *  igb_force_mac_fc - Force the MAC's flow control settings
702  *  @hw: pointer to the HW structure
703  *
704  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
705  *  device control register to reflect the adapter settings.  TFCE and RFCE
706  *  need to be explicitly set by software when a copper PHY is used because
707  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
708  *  also configure these bits when link is forced on a fiber connection.
709  **/
igb_force_mac_fc(struct e1000_hw * hw)710 s32 igb_force_mac_fc(struct e1000_hw *hw)
711 {
712 	u32 ctrl;
713 	s32 ret_val = 0;
714 
715 	ctrl = rd32(E1000_CTRL);
716 
717 	/*
718 	 * Because we didn't get link via the internal auto-negotiation
719 	 * mechanism (we either forced link or we got link via PHY
720 	 * auto-neg), we have to manually enable/disable transmit an
721 	 * receive flow control.
722 	 *
723 	 * The "Case" statement below enables/disable flow control
724 	 * according to the "hw->fc.current_mode" parameter.
725 	 *
726 	 * The possible values of the "fc" parameter are:
727 	 *      0:  Flow control is completely disabled
728 	 *      1:  Rx flow control is enabled (we can receive pause
729 	 *          frames but not send pause frames).
730 	 *      2:  Tx flow control is enabled (we can send pause frames
731 	 *          frames but we do not receive pause frames).
732 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
733 	 *  other:  No other values should be possible at this point.
734 	 */
735 	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
736 
737 	switch (hw->fc.current_mode) {
738 	case e1000_fc_none:
739 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
740 		break;
741 	case e1000_fc_rx_pause:
742 		ctrl &= (~E1000_CTRL_TFCE);
743 		ctrl |= E1000_CTRL_RFCE;
744 		break;
745 	case e1000_fc_tx_pause:
746 		ctrl &= (~E1000_CTRL_RFCE);
747 		ctrl |= E1000_CTRL_TFCE;
748 		break;
749 	case e1000_fc_full:
750 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
751 		break;
752 	default:
753 		hw_dbg("Flow control param set incorrectly\n");
754 		ret_val = -E1000_ERR_CONFIG;
755 		goto out;
756 	}
757 
758 	wr32(E1000_CTRL, ctrl);
759 
760 out:
761 	return ret_val;
762 }
763 
764 /**
765  *  igb_config_fc_after_link_up - Configures flow control after link
766  *  @hw: pointer to the HW structure
767  *
768  *  Checks the status of auto-negotiation after link up to ensure that the
769  *  speed and duplex were not forced.  If the link needed to be forced, then
770  *  flow control needs to be forced also.  If auto-negotiation is enabled
771  *  and did not fail, then we configure flow control based on our link
772  *  partner.
773  **/
igb_config_fc_after_link_up(struct e1000_hw * hw)774 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
775 {
776 	struct e1000_mac_info *mac = &hw->mac;
777 	s32 ret_val = 0;
778 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
779 	u16 speed, duplex;
780 
781 	/*
782 	 * Check for the case where we have fiber media and auto-neg failed
783 	 * so we had to force link.  In this case, we need to force the
784 	 * configuration of the MAC to match the "fc" parameter.
785 	 */
786 	if (mac->autoneg_failed) {
787 		if (hw->phy.media_type == e1000_media_type_internal_serdes)
788 			ret_val = igb_force_mac_fc(hw);
789 	} else {
790 		if (hw->phy.media_type == e1000_media_type_copper)
791 			ret_val = igb_force_mac_fc(hw);
792 	}
793 
794 	if (ret_val) {
795 		hw_dbg("Error forcing flow control settings\n");
796 		goto out;
797 	}
798 
799 	/*
800 	 * Check for the case where we have copper media and auto-neg is
801 	 * enabled.  In this case, we need to check and see if Auto-Neg
802 	 * has completed, and if so, how the PHY and link partner has
803 	 * flow control configured.
804 	 */
805 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
806 		/*
807 		 * Read the MII Status Register and check to see if AutoNeg
808 		 * has completed.  We read this twice because this reg has
809 		 * some "sticky" (latched) bits.
810 		 */
811 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
812 						   &mii_status_reg);
813 		if (ret_val)
814 			goto out;
815 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
816 						   &mii_status_reg);
817 		if (ret_val)
818 			goto out;
819 
820 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
821 			hw_dbg("Copper PHY and Auto Neg "
822 				 "has not completed.\n");
823 			goto out;
824 		}
825 
826 		/*
827 		 * The AutoNeg process has completed, so we now need to
828 		 * read both the Auto Negotiation Advertisement
829 		 * Register (Address 4) and the Auto_Negotiation Base
830 		 * Page Ability Register (Address 5) to determine how
831 		 * flow control was negotiated.
832 		 */
833 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
834 					    &mii_nway_adv_reg);
835 		if (ret_val)
836 			goto out;
837 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
838 					    &mii_nway_lp_ability_reg);
839 		if (ret_val)
840 			goto out;
841 
842 		/*
843 		 * Two bits in the Auto Negotiation Advertisement Register
844 		 * (Address 4) and two bits in the Auto Negotiation Base
845 		 * Page Ability Register (Address 5) determine flow control
846 		 * for both the PHY and the link partner.  The following
847 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
848 		 * 1999, describes these PAUSE resolution bits and how flow
849 		 * control is determined based upon these settings.
850 		 * NOTE:  DC = Don't Care
851 		 *
852 		 *   LOCAL DEVICE  |   LINK PARTNER
853 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
854 		 *-------|---------|-------|---------|--------------------
855 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
856 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
857 		 *   0   |    1    |   1   |    0    | e1000_fc_none
858 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
859 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
860 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
861 		 *   1   |    1    |   0   |    0    | e1000_fc_none
862 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
863 		 *
864 		 * Are both PAUSE bits set to 1?  If so, this implies
865 		 * Symmetric Flow Control is enabled at both ends.  The
866 		 * ASM_DIR bits are irrelevant per the spec.
867 		 *
868 		 * For Symmetric Flow Control:
869 		 *
870 		 *   LOCAL DEVICE  |   LINK PARTNER
871 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
872 		 *-------|---------|-------|---------|--------------------
873 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
874 		 *
875 		 */
876 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
877 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
878 			/*
879 			 * Now we need to check if the user selected RX ONLY
880 			 * of pause frames.  In this case, we had to advertise
881 			 * FULL flow control because we could not advertise RX
882 			 * ONLY. Hence, we must now check to see if we need to
883 			 * turn OFF  the TRANSMISSION of PAUSE frames.
884 			 */
885 			if (hw->fc.requested_mode == e1000_fc_full) {
886 				hw->fc.current_mode = e1000_fc_full;
887 				hw_dbg("Flow Control = FULL.\r\n");
888 			} else {
889 				hw->fc.current_mode = e1000_fc_rx_pause;
890 				hw_dbg("Flow Control = "
891 				       "RX PAUSE frames only.\r\n");
892 			}
893 		}
894 		/*
895 		 * For receiving PAUSE frames ONLY.
896 		 *
897 		 *   LOCAL DEVICE  |   LINK PARTNER
898 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
899 		 *-------|---------|-------|---------|--------------------
900 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
901 		 */
902 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
903 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
904 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
905 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
906 			hw->fc.current_mode = e1000_fc_tx_pause;
907 			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
908 		}
909 		/*
910 		 * For transmitting PAUSE frames ONLY.
911 		 *
912 		 *   LOCAL DEVICE  |   LINK PARTNER
913 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
914 		 *-------|---------|-------|---------|--------------------
915 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
916 		 */
917 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
918 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
919 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
920 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
921 			hw->fc.current_mode = e1000_fc_rx_pause;
922 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
923 		}
924 		/*
925 		 * Per the IEEE spec, at this point flow control should be
926 		 * disabled.  However, we want to consider that we could
927 		 * be connected to a legacy switch that doesn't advertise
928 		 * desired flow control, but can be forced on the link
929 		 * partner.  So if we advertised no flow control, that is
930 		 * what we will resolve to.  If we advertised some kind of
931 		 * receive capability (Rx Pause Only or Full Flow Control)
932 		 * and the link partner advertised none, we will configure
933 		 * ourselves to enable Rx Flow Control only.  We can do
934 		 * this safely for two reasons:  If the link partner really
935 		 * didn't want flow control enabled, and we enable Rx, no
936 		 * harm done since we won't be receiving any PAUSE frames
937 		 * anyway.  If the intent on the link partner was to have
938 		 * flow control enabled, then by us enabling RX only, we
939 		 * can at least receive pause frames and process them.
940 		 * This is a good idea because in most cases, since we are
941 		 * predominantly a server NIC, more times than not we will
942 		 * be asked to delay transmission of packets than asking
943 		 * our link partner to pause transmission of frames.
944 		 */
945 		else if ((hw->fc.requested_mode == e1000_fc_none ||
946 			  hw->fc.requested_mode == e1000_fc_tx_pause) ||
947 			 hw->fc.strict_ieee) {
948 			hw->fc.current_mode = e1000_fc_none;
949 			hw_dbg("Flow Control = NONE.\r\n");
950 		} else {
951 			hw->fc.current_mode = e1000_fc_rx_pause;
952 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
953 		}
954 
955 		/*
956 		 * Now we need to do one last check...  If we auto-
957 		 * negotiated to HALF DUPLEX, flow control should not be
958 		 * enabled per IEEE 802.3 spec.
959 		 */
960 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
961 		if (ret_val) {
962 			hw_dbg("Error getting link speed and duplex\n");
963 			goto out;
964 		}
965 
966 		if (duplex == HALF_DUPLEX)
967 			hw->fc.current_mode = e1000_fc_none;
968 
969 		/*
970 		 * Now we call a subroutine to actually force the MAC
971 		 * controller to use the correct flow control settings.
972 		 */
973 		ret_val = igb_force_mac_fc(hw);
974 		if (ret_val) {
975 			hw_dbg("Error forcing flow control settings\n");
976 			goto out;
977 		}
978 	}
979 
980 out:
981 	return ret_val;
982 }
983 
984 /**
985  *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
986  *  @hw: pointer to the HW structure
987  *  @speed: stores the current speed
988  *  @duplex: stores the current duplex
989  *
990  *  Read the status register for the current speed/duplex and store the current
991  *  speed and duplex for copper connections.
992  **/
igb_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)993 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
994 				      u16 *duplex)
995 {
996 	u32 status;
997 
998 	status = rd32(E1000_STATUS);
999 	if (status & E1000_STATUS_SPEED_1000) {
1000 		*speed = SPEED_1000;
1001 		hw_dbg("1000 Mbs, ");
1002 	} else if (status & E1000_STATUS_SPEED_100) {
1003 		*speed = SPEED_100;
1004 		hw_dbg("100 Mbs, ");
1005 	} else {
1006 		*speed = SPEED_10;
1007 		hw_dbg("10 Mbs, ");
1008 	}
1009 
1010 	if (status & E1000_STATUS_FD) {
1011 		*duplex = FULL_DUPLEX;
1012 		hw_dbg("Full Duplex\n");
1013 	} else {
1014 		*duplex = HALF_DUPLEX;
1015 		hw_dbg("Half Duplex\n");
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 /**
1022  *  igb_get_hw_semaphore - Acquire hardware semaphore
1023  *  @hw: pointer to the HW structure
1024  *
1025  *  Acquire the HW semaphore to access the PHY or NVM
1026  **/
igb_get_hw_semaphore(struct e1000_hw * hw)1027 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1028 {
1029 	u32 swsm;
1030 	s32 ret_val = 0;
1031 	s32 timeout = hw->nvm.word_size + 1;
1032 	s32 i = 0;
1033 
1034 	/* Get the SW semaphore */
1035 	while (i < timeout) {
1036 		swsm = rd32(E1000_SWSM);
1037 		if (!(swsm & E1000_SWSM_SMBI))
1038 			break;
1039 
1040 		udelay(50);
1041 		i++;
1042 	}
1043 
1044 	if (i == timeout) {
1045 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1046 		ret_val = -E1000_ERR_NVM;
1047 		goto out;
1048 	}
1049 
1050 	/* Get the FW semaphore. */
1051 	for (i = 0; i < timeout; i++) {
1052 		swsm = rd32(E1000_SWSM);
1053 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1054 
1055 		/* Semaphore acquired if bit latched */
1056 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1057 			break;
1058 
1059 		udelay(50);
1060 	}
1061 
1062 	if (i == timeout) {
1063 		/* Release semaphores */
1064 		igb_put_hw_semaphore(hw);
1065 		hw_dbg("Driver can't access the NVM\n");
1066 		ret_val = -E1000_ERR_NVM;
1067 		goto out;
1068 	}
1069 
1070 out:
1071 	return ret_val;
1072 }
1073 
1074 /**
1075  *  igb_put_hw_semaphore - Release hardware semaphore
1076  *  @hw: pointer to the HW structure
1077  *
1078  *  Release hardware semaphore used to access the PHY or NVM
1079  **/
igb_put_hw_semaphore(struct e1000_hw * hw)1080 void igb_put_hw_semaphore(struct e1000_hw *hw)
1081 {
1082 	u32 swsm;
1083 
1084 	swsm = rd32(E1000_SWSM);
1085 
1086 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1087 
1088 	wr32(E1000_SWSM, swsm);
1089 }
1090 
1091 /**
1092  *  igb_get_auto_rd_done - Check for auto read completion
1093  *  @hw: pointer to the HW structure
1094  *
1095  *  Check EEPROM for Auto Read done bit.
1096  **/
igb_get_auto_rd_done(struct e1000_hw * hw)1097 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1098 {
1099 	s32 i = 0;
1100 	s32 ret_val = 0;
1101 
1102 
1103 	while (i < AUTO_READ_DONE_TIMEOUT) {
1104 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1105 			break;
1106 		msleep(1);
1107 		i++;
1108 	}
1109 
1110 	if (i == AUTO_READ_DONE_TIMEOUT) {
1111 		hw_dbg("Auto read by HW from NVM has not completed.\n");
1112 		ret_val = -E1000_ERR_RESET;
1113 		goto out;
1114 	}
1115 
1116 out:
1117 	return ret_val;
1118 }
1119 
1120 /**
1121  *  igb_valid_led_default - Verify a valid default LED config
1122  *  @hw: pointer to the HW structure
1123  *  @data: pointer to the NVM (EEPROM)
1124  *
1125  *  Read the EEPROM for the current default LED configuration.  If the
1126  *  LED configuration is not valid, set to a valid LED configuration.
1127  **/
igb_valid_led_default(struct e1000_hw * hw,u16 * data)1128 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1129 {
1130 	s32 ret_val;
1131 
1132 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1133 	if (ret_val) {
1134 		hw_dbg("NVM Read Error\n");
1135 		goto out;
1136 	}
1137 
1138 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1139 		switch(hw->phy.media_type) {
1140 		case e1000_media_type_internal_serdes:
1141 			*data = ID_LED_DEFAULT_82575_SERDES;
1142 			break;
1143 		case e1000_media_type_copper:
1144 		default:
1145 			*data = ID_LED_DEFAULT;
1146 			break;
1147 		}
1148 	}
1149 out:
1150 	return ret_val;
1151 }
1152 
1153 /**
1154  *  igb_id_led_init -
1155  *  @hw: pointer to the HW structure
1156  *
1157  **/
igb_id_led_init(struct e1000_hw * hw)1158 s32 igb_id_led_init(struct e1000_hw *hw)
1159 {
1160 	struct e1000_mac_info *mac = &hw->mac;
1161 	s32 ret_val;
1162 	const u32 ledctl_mask = 0x000000FF;
1163 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1164 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1165 	u16 data, i, temp;
1166 	const u16 led_mask = 0x0F;
1167 
1168 	ret_val = igb_valid_led_default(hw, &data);
1169 	if (ret_val)
1170 		goto out;
1171 
1172 	mac->ledctl_default = rd32(E1000_LEDCTL);
1173 	mac->ledctl_mode1 = mac->ledctl_default;
1174 	mac->ledctl_mode2 = mac->ledctl_default;
1175 
1176 	for (i = 0; i < 4; i++) {
1177 		temp = (data >> (i << 2)) & led_mask;
1178 		switch (temp) {
1179 		case ID_LED_ON1_DEF2:
1180 		case ID_LED_ON1_ON2:
1181 		case ID_LED_ON1_OFF2:
1182 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1183 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1184 			break;
1185 		case ID_LED_OFF1_DEF2:
1186 		case ID_LED_OFF1_ON2:
1187 		case ID_LED_OFF1_OFF2:
1188 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1189 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1190 			break;
1191 		default:
1192 			/* Do nothing */
1193 			break;
1194 		}
1195 		switch (temp) {
1196 		case ID_LED_DEF1_ON2:
1197 		case ID_LED_ON1_ON2:
1198 		case ID_LED_OFF1_ON2:
1199 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1200 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1201 			break;
1202 		case ID_LED_DEF1_OFF2:
1203 		case ID_LED_ON1_OFF2:
1204 		case ID_LED_OFF1_OFF2:
1205 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1206 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1207 			break;
1208 		default:
1209 			/* Do nothing */
1210 			break;
1211 		}
1212 	}
1213 
1214 out:
1215 	return ret_val;
1216 }
1217 
1218 /**
1219  *  igb_cleanup_led - Set LED config to default operation
1220  *  @hw: pointer to the HW structure
1221  *
1222  *  Remove the current LED configuration and set the LED configuration
1223  *  to the default value, saved from the EEPROM.
1224  **/
igb_cleanup_led(struct e1000_hw * hw)1225 s32 igb_cleanup_led(struct e1000_hw *hw)
1226 {
1227 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1228 	return 0;
1229 }
1230 
1231 /**
1232  *  igb_blink_led - Blink LED
1233  *  @hw: pointer to the HW structure
1234  *
1235  *  Blink the led's which are set to be on.
1236  **/
igb_blink_led(struct e1000_hw * hw)1237 s32 igb_blink_led(struct e1000_hw *hw)
1238 {
1239 	u32 ledctl_blink = 0;
1240 	u32 i;
1241 
1242 	/*
1243 	 * set the blink bit for each LED that's "on" (0x0E)
1244 	 * in ledctl_mode2
1245 	 */
1246 	ledctl_blink = hw->mac.ledctl_mode2;
1247 	for (i = 0; i < 4; i++)
1248 		if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1249 		    E1000_LEDCTL_MODE_LED_ON)
1250 			ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1251 					 (i * 8));
1252 
1253 	wr32(E1000_LEDCTL, ledctl_blink);
1254 
1255 	return 0;
1256 }
1257 
1258 /**
1259  *  igb_led_off - Turn LED off
1260  *  @hw: pointer to the HW structure
1261  *
1262  *  Turn LED off.
1263  **/
igb_led_off(struct e1000_hw * hw)1264 s32 igb_led_off(struct e1000_hw *hw)
1265 {
1266 	switch (hw->phy.media_type) {
1267 	case e1000_media_type_copper:
1268 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1269 		break;
1270 	default:
1271 		break;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 /**
1278  *  igb_disable_pcie_master - Disables PCI-express master access
1279  *  @hw: pointer to the HW structure
1280  *
1281  *  Returns 0 (0) if successful, else returns -10
1282  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1283  *  the master requests to be disabled.
1284  *
1285  *  Disables PCI-Express master access and verifies there are no pending
1286  *  requests.
1287  **/
igb_disable_pcie_master(struct e1000_hw * hw)1288 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1289 {
1290 	u32 ctrl;
1291 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1292 	s32 ret_val = 0;
1293 
1294 	if (hw->bus.type != e1000_bus_type_pci_express)
1295 		goto out;
1296 
1297 	ctrl = rd32(E1000_CTRL);
1298 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1299 	wr32(E1000_CTRL, ctrl);
1300 
1301 	while (timeout) {
1302 		if (!(rd32(E1000_STATUS) &
1303 		      E1000_STATUS_GIO_MASTER_ENABLE))
1304 			break;
1305 		udelay(100);
1306 		timeout--;
1307 	}
1308 
1309 	if (!timeout) {
1310 		hw_dbg("Master requests are pending.\n");
1311 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1312 		goto out;
1313 	}
1314 
1315 out:
1316 	return ret_val;
1317 }
1318 
1319 /**
1320  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1321  *  @hw: pointer to the HW structure
1322  *
1323  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1324  *  set, which is forced to MDI mode only.
1325  **/
igb_validate_mdi_setting(struct e1000_hw * hw)1326 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1327 {
1328 	s32 ret_val = 0;
1329 
1330 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1331 		hw_dbg("Invalid MDI setting detected\n");
1332 		hw->phy.mdix = 1;
1333 		ret_val = -E1000_ERR_CONFIG;
1334 		goto out;
1335 	}
1336 
1337 out:
1338 	return ret_val;
1339 }
1340 
1341 /**
1342  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1343  *  @hw: pointer to the HW structure
1344  *  @reg: 32bit register offset such as E1000_SCTL
1345  *  @offset: register offset to write to
1346  *  @data: data to write at register offset
1347  *
1348  *  Writes an address/data control type register.  There are several of these
1349  *  and they all have the format address << 8 | data and bit 31 is polled for
1350  *  completion.
1351  **/
igb_write_8bit_ctrl_reg(struct e1000_hw * hw,u32 reg,u32 offset,u8 data)1352 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1353 			      u32 offset, u8 data)
1354 {
1355 	u32 i, regvalue = 0;
1356 	s32 ret_val = 0;
1357 
1358 	/* Set up the address and data */
1359 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1360 	wr32(reg, regvalue);
1361 
1362 	/* Poll the ready bit to see if the MDI read completed */
1363 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1364 		udelay(5);
1365 		regvalue = rd32(reg);
1366 		if (regvalue & E1000_GEN_CTL_READY)
1367 			break;
1368 	}
1369 	if (!(regvalue & E1000_GEN_CTL_READY)) {
1370 		hw_dbg("Reg %08x did not indicate ready\n", reg);
1371 		ret_val = -E1000_ERR_PHY;
1372 		goto out;
1373 	}
1374 
1375 out:
1376 	return ret_val;
1377 }
1378 
1379 /**
1380  *  igb_enable_mng_pass_thru - Enable processing of ARP's
1381  *  @hw: pointer to the HW structure
1382  *
1383  *  Verifies the hardware needs to leave interface enabled so that frames can
1384  *  be directed to and from the management interface.
1385  **/
igb_enable_mng_pass_thru(struct e1000_hw * hw)1386 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1387 {
1388 	u32 manc;
1389 	u32 fwsm, factps;
1390 	bool ret_val = false;
1391 
1392 	if (!hw->mac.asf_firmware_present)
1393 		goto out;
1394 
1395 	manc = rd32(E1000_MANC);
1396 
1397 	if (!(manc & E1000_MANC_RCV_TCO_EN))
1398 		goto out;
1399 
1400 	if (hw->mac.arc_subsystem_valid) {
1401 		fwsm = rd32(E1000_FWSM);
1402 		factps = rd32(E1000_FACTPS);
1403 
1404 		if (!(factps & E1000_FACTPS_MNGCG) &&
1405 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1406 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1407 			ret_val = true;
1408 			goto out;
1409 		}
1410 	} else {
1411 		if ((manc & E1000_MANC_SMBUS_EN) &&
1412 		    !(manc & E1000_MANC_ASF_EN)) {
1413 			ret_val = true;
1414 			goto out;
1415 		}
1416 	}
1417 
1418 out:
1419 	return ret_val;
1420 }
1421