1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *	auto-placement support, read-while load support, various fixes
12  *
13  *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *	Flex-OneNAND support
15  *	Amul Kumar Saha <amul.saha at samsung.com>
16  *	OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
35 
36 #include <asm/io.h>
37 
38 /*
39  * Multiblock erase if number of blocks to erase is 2 or more.
40  * Maximum number of blocks for simultaneous erase is 64.
41  */
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
44 
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
47 
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
50 				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51 				"DIE_BDRY: SLC boundary of the die"
52 				"LOCK: Locking information for SLC boundary"
53 				"    : 0->Set boundary in unlocked status"
54 				"    : 1->Set boundary in locked status");
55 
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
58 
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
61 			"Syntax : otp=LOCK_TYPE"
62 			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
63 			"	   : 0 -> Default (No Blocks Locked)"
64 			"	   : 1 -> OTP Block lock"
65 			"	   : 2 -> 1st Block lock"
66 			"	   : 3 -> BOTH OTP Block and 1st Block lock");
67 
68 /**
69  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
70  *  For now, we expose only 64 out of 80 ecc bytes
71  */
72 static struct nand_ecclayout onenand_oob_128 = {
73 	.eccbytes	= 64,
74 	.eccpos		= {
75 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81 		102, 103, 104, 105
82 		},
83 	.oobfree	= {
84 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
85 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
86 	}
87 };
88 
89 /**
90  * onenand_oob_64 - oob info for large (2KB) page
91  */
92 static struct nand_ecclayout onenand_oob_64 = {
93 	.eccbytes	= 20,
94 	.eccpos		= {
95 		8, 9, 10, 11, 12,
96 		24, 25, 26, 27, 28,
97 		40, 41, 42, 43, 44,
98 		56, 57, 58, 59, 60,
99 		},
100 	.oobfree	= {
101 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
102 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
103 	}
104 };
105 
106 /**
107  * onenand_oob_32 - oob info for middle (1KB) page
108  */
109 static struct nand_ecclayout onenand_oob_32 = {
110 	.eccbytes	= 10,
111 	.eccpos		= {
112 		8, 9, 10, 11, 12,
113 		24, 25, 26, 27, 28,
114 		},
115 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
116 };
117 
118 static const unsigned char ffchars[] = {
119 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
121 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
123 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
125 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
127 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
129 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
130 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
131 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
132 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
133 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
134 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
135 };
136 
137 /**
138  * onenand_readw - [OneNAND Interface] Read OneNAND register
139  * @param addr		address to read
140  *
141  * Read OneNAND register
142  */
onenand_readw(void __iomem * addr)143 static unsigned short onenand_readw(void __iomem *addr)
144 {
145 	return readw(addr);
146 }
147 
148 /**
149  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
150  * @param value		value to write
151  * @param addr		address to write
152  *
153  * Write OneNAND register with value
154  */
onenand_writew(unsigned short value,void __iomem * addr)155 static void onenand_writew(unsigned short value, void __iomem *addr)
156 {
157 	writew(value, addr);
158 }
159 
160 /**
161  * onenand_block_address - [DEFAULT] Get block address
162  * @param this		onenand chip data structure
163  * @param block		the block
164  * @return		translated block address if DDP, otherwise same
165  *
166  * Setup Start Address 1 Register (F100h)
167  */
onenand_block_address(struct onenand_chip * this,int block)168 static int onenand_block_address(struct onenand_chip *this, int block)
169 {
170 	/* Device Flash Core select, NAND Flash Block Address */
171 	if (block & this->density_mask)
172 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
173 
174 	return block;
175 }
176 
177 /**
178  * onenand_bufferram_address - [DEFAULT] Get bufferram address
179  * @param this		onenand chip data structure
180  * @param block		the block
181  * @return		set DBS value if DDP, otherwise 0
182  *
183  * Setup Start Address 2 Register (F101h) for DDP
184  */
onenand_bufferram_address(struct onenand_chip * this,int block)185 static int onenand_bufferram_address(struct onenand_chip *this, int block)
186 {
187 	/* Device BufferRAM Select */
188 	if (block & this->density_mask)
189 		return ONENAND_DDP_CHIP1;
190 
191 	return ONENAND_DDP_CHIP0;
192 }
193 
194 /**
195  * onenand_page_address - [DEFAULT] Get page address
196  * @param page		the page address
197  * @param sector	the sector address
198  * @return		combined page and sector address
199  *
200  * Setup Start Address 8 Register (F107h)
201  */
onenand_page_address(int page,int sector)202 static int onenand_page_address(int page, int sector)
203 {
204 	/* Flash Page Address, Flash Sector Address */
205 	int fpa, fsa;
206 
207 	fpa = page & ONENAND_FPA_MASK;
208 	fsa = sector & ONENAND_FSA_MASK;
209 
210 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
211 }
212 
213 /**
214  * onenand_buffer_address - [DEFAULT] Get buffer address
215  * @param dataram1	DataRAM index
216  * @param sectors	the sector address
217  * @param count		the number of sectors
218  * @return		the start buffer value
219  *
220  * Setup Start Buffer Register (F200h)
221  */
onenand_buffer_address(int dataram1,int sectors,int count)222 static int onenand_buffer_address(int dataram1, int sectors, int count)
223 {
224 	int bsa, bsc;
225 
226 	/* BufferRAM Sector Address */
227 	bsa = sectors & ONENAND_BSA_MASK;
228 
229 	if (dataram1)
230 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
231 	else
232 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
233 
234 	/* BufferRAM Sector Count */
235 	bsc = count & ONENAND_BSC_MASK;
236 
237 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
238 }
239 
240 /**
241  * flexonenand_block- For given address return block number
242  * @param this         - OneNAND device structure
243  * @param addr		- Address for which block number is needed
244  */
flexonenand_block(struct onenand_chip * this,loff_t addr)245 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
246 {
247 	unsigned boundary, blk, die = 0;
248 
249 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
250 		die = 1;
251 		addr -= this->diesize[0];
252 	}
253 
254 	boundary = this->boundary[die];
255 
256 	blk = addr >> (this->erase_shift - 1);
257 	if (blk > boundary)
258 		blk = (blk + boundary + 1) >> 1;
259 
260 	blk += die ? this->density_mask : 0;
261 	return blk;
262 }
263 
onenand_block(struct onenand_chip * this,loff_t addr)264 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
265 {
266 	if (!FLEXONENAND(this))
267 		return addr >> this->erase_shift;
268 	return flexonenand_block(this, addr);
269 }
270 
271 /**
272  * flexonenand_addr - Return address of the block
273  * @this:		OneNAND device structure
274  * @block:		Block number on Flex-OneNAND
275  *
276  * Return address of the block
277  */
flexonenand_addr(struct onenand_chip * this,int block)278 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
279 {
280 	loff_t ofs = 0;
281 	int die = 0, boundary;
282 
283 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
284 		block -= this->density_mask;
285 		die = 1;
286 		ofs = this->diesize[0];
287 	}
288 
289 	boundary = this->boundary[die];
290 	ofs += (loff_t)block << (this->erase_shift - 1);
291 	if (block > (boundary + 1))
292 		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
293 	return ofs;
294 }
295 
onenand_addr(struct onenand_chip * this,int block)296 loff_t onenand_addr(struct onenand_chip *this, int block)
297 {
298 	if (!FLEXONENAND(this))
299 		return (loff_t)block << this->erase_shift;
300 	return flexonenand_addr(this, block);
301 }
302 EXPORT_SYMBOL(onenand_addr);
303 
304 /**
305  * onenand_get_density - [DEFAULT] Get OneNAND density
306  * @param dev_id	OneNAND device ID
307  *
308  * Get OneNAND density from device ID
309  */
onenand_get_density(int dev_id)310 static inline int onenand_get_density(int dev_id)
311 {
312 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
313 	return (density & ONENAND_DEVICE_DENSITY_MASK);
314 }
315 
316 /**
317  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
318  * @param mtd		MTD device structure
319  * @param addr		address whose erase region needs to be identified
320  */
flexonenand_region(struct mtd_info * mtd,loff_t addr)321 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
322 {
323 	int i;
324 
325 	for (i = 0; i < mtd->numeraseregions; i++)
326 		if (addr < mtd->eraseregions[i].offset)
327 			break;
328 	return i - 1;
329 }
330 EXPORT_SYMBOL(flexonenand_region);
331 
332 /**
333  * onenand_command - [DEFAULT] Send command to OneNAND device
334  * @param mtd		MTD device structure
335  * @param cmd		the command to be sent
336  * @param addr		offset to read from or write to
337  * @param len		number of bytes to read or write
338  *
339  * Send command to OneNAND device. This function is used for middle/large page
340  * devices (1KB/2KB Bytes per page)
341  */
onenand_command(struct mtd_info * mtd,int cmd,loff_t addr,size_t len)342 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
343 {
344 	struct onenand_chip *this = mtd->priv;
345 	int value, block, page;
346 
347 	/* Address translation */
348 	switch (cmd) {
349 	case ONENAND_CMD_UNLOCK:
350 	case ONENAND_CMD_LOCK:
351 	case ONENAND_CMD_LOCK_TIGHT:
352 	case ONENAND_CMD_UNLOCK_ALL:
353 		block = -1;
354 		page = -1;
355 		break;
356 
357 	case FLEXONENAND_CMD_PI_ACCESS:
358 		/* addr contains die index */
359 		block = addr * this->density_mask;
360 		page = -1;
361 		break;
362 
363 	case ONENAND_CMD_ERASE:
364 	case ONENAND_CMD_MULTIBLOCK_ERASE:
365 	case ONENAND_CMD_ERASE_VERIFY:
366 	case ONENAND_CMD_BUFFERRAM:
367 	case ONENAND_CMD_OTP_ACCESS:
368 		block = onenand_block(this, addr);
369 		page = -1;
370 		break;
371 
372 	case FLEXONENAND_CMD_READ_PI:
373 		cmd = ONENAND_CMD_READ;
374 		block = addr * this->density_mask;
375 		page = 0;
376 		break;
377 
378 	default:
379 		block = onenand_block(this, addr);
380 		if (FLEXONENAND(this))
381 			page = (int) (addr - onenand_addr(this, block))>>\
382 				this->page_shift;
383 		else
384 			page = (int) (addr >> this->page_shift);
385 		if (ONENAND_IS_2PLANE(this)) {
386 			/* Make the even block number */
387 			block &= ~1;
388 			/* Is it the odd plane? */
389 			if (addr & this->writesize)
390 				block++;
391 			page >>= 1;
392 		}
393 		page &= this->page_mask;
394 		break;
395 	}
396 
397 	/* NOTE: The setting order of the registers is very important! */
398 	if (cmd == ONENAND_CMD_BUFFERRAM) {
399 		/* Select DataRAM for DDP */
400 		value = onenand_bufferram_address(this, block);
401 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
402 
403 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
404 			/* It is always BufferRAM0 */
405 			ONENAND_SET_BUFFERRAM0(this);
406 		else
407 			/* Switch to the next data buffer */
408 			ONENAND_SET_NEXT_BUFFERRAM(this);
409 
410 		return 0;
411 	}
412 
413 	if (block != -1) {
414 		/* Write 'DFS, FBA' of Flash */
415 		value = onenand_block_address(this, block);
416 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
417 
418 		/* Select DataRAM for DDP */
419 		value = onenand_bufferram_address(this, block);
420 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
421 	}
422 
423 	if (page != -1) {
424 		/* Now we use page size operation */
425 		int sectors = 0, count = 0;
426 		int dataram;
427 
428 		switch (cmd) {
429 		case FLEXONENAND_CMD_RECOVER_LSB:
430 		case ONENAND_CMD_READ:
431 		case ONENAND_CMD_READOOB:
432 			if (ONENAND_IS_4KB_PAGE(this))
433 				/* It is always BufferRAM0 */
434 				dataram = ONENAND_SET_BUFFERRAM0(this);
435 			else
436 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
437 			break;
438 
439 		default:
440 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
441 				cmd = ONENAND_CMD_2X_PROG;
442 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
443 			break;
444 		}
445 
446 		/* Write 'FPA, FSA' of Flash */
447 		value = onenand_page_address(page, sectors);
448 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
449 
450 		/* Write 'BSA, BSC' of DataRAM */
451 		value = onenand_buffer_address(dataram, sectors, count);
452 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
453 	}
454 
455 	/* Interrupt clear */
456 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
457 
458 	/* Write command */
459 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
460 
461 	return 0;
462 }
463 
464 /**
465  * onenand_read_ecc - return ecc status
466  * @param this		onenand chip structure
467  */
onenand_read_ecc(struct onenand_chip * this)468 static inline int onenand_read_ecc(struct onenand_chip *this)
469 {
470 	int ecc, i, result = 0;
471 
472 	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
473 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
474 
475 	for (i = 0; i < 4; i++) {
476 		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
477 		if (likely(!ecc))
478 			continue;
479 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
480 			return ONENAND_ECC_2BIT_ALL;
481 		else
482 			result = ONENAND_ECC_1BIT_ALL;
483 	}
484 
485 	return result;
486 }
487 
488 /**
489  * onenand_wait - [DEFAULT] wait until the command is done
490  * @param mtd		MTD device structure
491  * @param state		state to select the max. timeout value
492  *
493  * Wait for command done. This applies to all OneNAND command
494  * Read can take up to 30us, erase up to 2ms and program up to 350us
495  * according to general OneNAND specs
496  */
onenand_wait(struct mtd_info * mtd,int state)497 static int onenand_wait(struct mtd_info *mtd, int state)
498 {
499 	struct onenand_chip * this = mtd->priv;
500 	unsigned long timeout;
501 	unsigned int flags = ONENAND_INT_MASTER;
502 	unsigned int interrupt = 0;
503 	unsigned int ctrl;
504 
505 	/* The 20 msec is enough */
506 	timeout = jiffies + msecs_to_jiffies(20);
507 	while (time_before(jiffies, timeout)) {
508 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
509 
510 		if (interrupt & flags)
511 			break;
512 
513 		if (state != FL_READING && state != FL_PREPARING_ERASE)
514 			cond_resched();
515 	}
516 	/* To get correct interrupt status in timeout case */
517 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
518 
519 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
520 
521 	/*
522 	 * In the Spec. it checks the controller status first
523 	 * However if you get the correct information in case of
524 	 * power off recovery (POR) test, it should read ECC status first
525 	 */
526 	if (interrupt & ONENAND_INT_READ) {
527 		int ecc = onenand_read_ecc(this);
528 		if (ecc) {
529 			if (ecc & ONENAND_ECC_2BIT_ALL) {
530 				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
531 					__func__, ecc);
532 				mtd->ecc_stats.failed++;
533 				return -EBADMSG;
534 			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
535 				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
536 					__func__, ecc);
537 				mtd->ecc_stats.corrected++;
538 			}
539 		}
540 	} else if (state == FL_READING) {
541 		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
542 			__func__, ctrl, interrupt);
543 		return -EIO;
544 	}
545 
546 	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
547 		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
548 		       __func__, ctrl, interrupt);
549 		return -EIO;
550 	}
551 
552 	if (!(interrupt & ONENAND_INT_MASTER)) {
553 		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
554 		       __func__, ctrl, interrupt);
555 		return -EIO;
556 	}
557 
558 	/* If there's controller error, it's a real error */
559 	if (ctrl & ONENAND_CTRL_ERROR) {
560 		printk(KERN_ERR "%s: controller error = 0x%04x\n",
561 			__func__, ctrl);
562 		if (ctrl & ONENAND_CTRL_LOCK)
563 			printk(KERN_ERR "%s: it's locked error.\n", __func__);
564 		return -EIO;
565 	}
566 
567 	return 0;
568 }
569 
570 /*
571  * onenand_interrupt - [DEFAULT] onenand interrupt handler
572  * @param irq		onenand interrupt number
573  * @param dev_id	interrupt data
574  *
575  * complete the work
576  */
onenand_interrupt(int irq,void * data)577 static irqreturn_t onenand_interrupt(int irq, void *data)
578 {
579 	struct onenand_chip *this = data;
580 
581 	/* To handle shared interrupt */
582 	if (!this->complete.done)
583 		complete(&this->complete);
584 
585 	return IRQ_HANDLED;
586 }
587 
588 /*
589  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
590  * @param mtd		MTD device structure
591  * @param state		state to select the max. timeout value
592  *
593  * Wait for command done.
594  */
onenand_interrupt_wait(struct mtd_info * mtd,int state)595 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
596 {
597 	struct onenand_chip *this = mtd->priv;
598 
599 	wait_for_completion(&this->complete);
600 
601 	return onenand_wait(mtd, state);
602 }
603 
604 /*
605  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
606  * @param mtd		MTD device structure
607  * @param state		state to select the max. timeout value
608  *
609  * Try interrupt based wait (It is used one-time)
610  */
onenand_try_interrupt_wait(struct mtd_info * mtd,int state)611 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
612 {
613 	struct onenand_chip *this = mtd->priv;
614 	unsigned long remain, timeout;
615 
616 	/* We use interrupt wait first */
617 	this->wait = onenand_interrupt_wait;
618 
619 	timeout = msecs_to_jiffies(100);
620 	remain = wait_for_completion_timeout(&this->complete, timeout);
621 	if (!remain) {
622 		printk(KERN_INFO "OneNAND: There's no interrupt. "
623 				"We use the normal wait\n");
624 
625 		/* Release the irq */
626 		free_irq(this->irq, this);
627 
628 		this->wait = onenand_wait;
629 	}
630 
631 	return onenand_wait(mtd, state);
632 }
633 
634 /*
635  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
636  * @param mtd		MTD device structure
637  *
638  * There's two method to wait onenand work
639  * 1. polling - read interrupt status register
640  * 2. interrupt - use the kernel interrupt method
641  */
onenand_setup_wait(struct mtd_info * mtd)642 static void onenand_setup_wait(struct mtd_info *mtd)
643 {
644 	struct onenand_chip *this = mtd->priv;
645 	int syscfg;
646 
647 	init_completion(&this->complete);
648 
649 	if (this->irq <= 0) {
650 		this->wait = onenand_wait;
651 		return;
652 	}
653 
654 	if (request_irq(this->irq, &onenand_interrupt,
655 				IRQF_SHARED, "onenand", this)) {
656 		/* If we can't get irq, use the normal wait */
657 		this->wait = onenand_wait;
658 		return;
659 	}
660 
661 	/* Enable interrupt */
662 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
663 	syscfg |= ONENAND_SYS_CFG1_IOBE;
664 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
665 
666 	this->wait = onenand_try_interrupt_wait;
667 }
668 
669 /**
670  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
671  * @param mtd		MTD data structure
672  * @param area		BufferRAM area
673  * @return		offset given area
674  *
675  * Return BufferRAM offset given area
676  */
onenand_bufferram_offset(struct mtd_info * mtd,int area)677 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
678 {
679 	struct onenand_chip *this = mtd->priv;
680 
681 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
682 		/* Note: the 'this->writesize' is a real page size */
683 		if (area == ONENAND_DATARAM)
684 			return this->writesize;
685 		if (area == ONENAND_SPARERAM)
686 			return mtd->oobsize;
687 	}
688 
689 	return 0;
690 }
691 
692 /**
693  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
694  * @param mtd		MTD data structure
695  * @param area		BufferRAM area
696  * @param buffer	the databuffer to put/get data
697  * @param offset	offset to read from or write to
698  * @param count		number of bytes to read/write
699  *
700  * Read the BufferRAM area
701  */
onenand_read_bufferram(struct mtd_info * mtd,int area,unsigned char * buffer,int offset,size_t count)702 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
703 		unsigned char *buffer, int offset, size_t count)
704 {
705 	struct onenand_chip *this = mtd->priv;
706 	void __iomem *bufferram;
707 
708 	bufferram = this->base + area;
709 
710 	bufferram += onenand_bufferram_offset(mtd, area);
711 
712 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
713 		unsigned short word;
714 
715 		/* Align with word(16-bit) size */
716 		count--;
717 
718 		/* Read word and save byte */
719 		word = this->read_word(bufferram + offset + count);
720 		buffer[count] = (word & 0xff);
721 	}
722 
723 	memcpy(buffer, bufferram + offset, count);
724 
725 	return 0;
726 }
727 
728 /**
729  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
730  * @param mtd		MTD data structure
731  * @param area		BufferRAM area
732  * @param buffer	the databuffer to put/get data
733  * @param offset	offset to read from or write to
734  * @param count		number of bytes to read/write
735  *
736  * Read the BufferRAM area with Sync. Burst Mode
737  */
onenand_sync_read_bufferram(struct mtd_info * mtd,int area,unsigned char * buffer,int offset,size_t count)738 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
739 		unsigned char *buffer, int offset, size_t count)
740 {
741 	struct onenand_chip *this = mtd->priv;
742 	void __iomem *bufferram;
743 
744 	bufferram = this->base + area;
745 
746 	bufferram += onenand_bufferram_offset(mtd, area);
747 
748 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
749 
750 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
751 		unsigned short word;
752 
753 		/* Align with word(16-bit) size */
754 		count--;
755 
756 		/* Read word and save byte */
757 		word = this->read_word(bufferram + offset + count);
758 		buffer[count] = (word & 0xff);
759 	}
760 
761 	memcpy(buffer, bufferram + offset, count);
762 
763 	this->mmcontrol(mtd, 0);
764 
765 	return 0;
766 }
767 
768 /**
769  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
770  * @param mtd		MTD data structure
771  * @param area		BufferRAM area
772  * @param buffer	the databuffer to put/get data
773  * @param offset	offset to read from or write to
774  * @param count		number of bytes to read/write
775  *
776  * Write the BufferRAM area
777  */
onenand_write_bufferram(struct mtd_info * mtd,int area,const unsigned char * buffer,int offset,size_t count)778 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
779 		const unsigned char *buffer, int offset, size_t count)
780 {
781 	struct onenand_chip *this = mtd->priv;
782 	void __iomem *bufferram;
783 
784 	bufferram = this->base + area;
785 
786 	bufferram += onenand_bufferram_offset(mtd, area);
787 
788 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
789 		unsigned short word;
790 		int byte_offset;
791 
792 		/* Align with word(16-bit) size */
793 		count--;
794 
795 		/* Calculate byte access offset */
796 		byte_offset = offset + count;
797 
798 		/* Read word and save byte */
799 		word = this->read_word(bufferram + byte_offset);
800 		word = (word & ~0xff) | buffer[count];
801 		this->write_word(word, bufferram + byte_offset);
802 	}
803 
804 	memcpy(bufferram + offset, buffer, count);
805 
806 	return 0;
807 }
808 
809 /**
810  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
811  * @param mtd		MTD data structure
812  * @param addr		address to check
813  * @return		blockpage address
814  *
815  * Get blockpage address at 2x program mode
816  */
onenand_get_2x_blockpage(struct mtd_info * mtd,loff_t addr)817 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
818 {
819 	struct onenand_chip *this = mtd->priv;
820 	int blockpage, block, page;
821 
822 	/* Calculate the even block number */
823 	block = (int) (addr >> this->erase_shift) & ~1;
824 	/* Is it the odd plane? */
825 	if (addr & this->writesize)
826 		block++;
827 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
828 	blockpage = (block << 7) | page;
829 
830 	return blockpage;
831 }
832 
833 /**
834  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
835  * @param mtd		MTD data structure
836  * @param addr		address to check
837  * @return		1 if there are valid data, otherwise 0
838  *
839  * Check bufferram if there is data we required
840  */
onenand_check_bufferram(struct mtd_info * mtd,loff_t addr)841 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
842 {
843 	struct onenand_chip *this = mtd->priv;
844 	int blockpage, found = 0;
845 	unsigned int i;
846 
847 	if (ONENAND_IS_2PLANE(this))
848 		blockpage = onenand_get_2x_blockpage(mtd, addr);
849 	else
850 		blockpage = (int) (addr >> this->page_shift);
851 
852 	/* Is there valid data? */
853 	i = ONENAND_CURRENT_BUFFERRAM(this);
854 	if (this->bufferram[i].blockpage == blockpage)
855 		found = 1;
856 	else {
857 		/* Check another BufferRAM */
858 		i = ONENAND_NEXT_BUFFERRAM(this);
859 		if (this->bufferram[i].blockpage == blockpage) {
860 			ONENAND_SET_NEXT_BUFFERRAM(this);
861 			found = 1;
862 		}
863 	}
864 
865 	if (found && ONENAND_IS_DDP(this)) {
866 		/* Select DataRAM for DDP */
867 		int block = onenand_block(this, addr);
868 		int value = onenand_bufferram_address(this, block);
869 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
870 	}
871 
872 	return found;
873 }
874 
875 /**
876  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
877  * @param mtd		MTD data structure
878  * @param addr		address to update
879  * @param valid		valid flag
880  *
881  * Update BufferRAM information
882  */
onenand_update_bufferram(struct mtd_info * mtd,loff_t addr,int valid)883 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
884 		int valid)
885 {
886 	struct onenand_chip *this = mtd->priv;
887 	int blockpage;
888 	unsigned int i;
889 
890 	if (ONENAND_IS_2PLANE(this))
891 		blockpage = onenand_get_2x_blockpage(mtd, addr);
892 	else
893 		blockpage = (int) (addr >> this->page_shift);
894 
895 	/* Invalidate another BufferRAM */
896 	i = ONENAND_NEXT_BUFFERRAM(this);
897 	if (this->bufferram[i].blockpage == blockpage)
898 		this->bufferram[i].blockpage = -1;
899 
900 	/* Update BufferRAM */
901 	i = ONENAND_CURRENT_BUFFERRAM(this);
902 	if (valid)
903 		this->bufferram[i].blockpage = blockpage;
904 	else
905 		this->bufferram[i].blockpage = -1;
906 }
907 
908 /**
909  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
910  * @param mtd		MTD data structure
911  * @param addr		start address to invalidate
912  * @param len		length to invalidate
913  *
914  * Invalidate BufferRAM information
915  */
onenand_invalidate_bufferram(struct mtd_info * mtd,loff_t addr,unsigned int len)916 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
917 		unsigned int len)
918 {
919 	struct onenand_chip *this = mtd->priv;
920 	int i;
921 	loff_t end_addr = addr + len;
922 
923 	/* Invalidate BufferRAM */
924 	for (i = 0; i < MAX_BUFFERRAM; i++) {
925 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
926 		if (buf_addr >= addr && buf_addr < end_addr)
927 			this->bufferram[i].blockpage = -1;
928 	}
929 }
930 
931 /**
932  * onenand_get_device - [GENERIC] Get chip for selected access
933  * @param mtd		MTD device structure
934  * @param new_state	the state which is requested
935  *
936  * Get the device and lock it for exclusive access
937  */
onenand_get_device(struct mtd_info * mtd,int new_state)938 static int onenand_get_device(struct mtd_info *mtd, int new_state)
939 {
940 	struct onenand_chip *this = mtd->priv;
941 	DECLARE_WAITQUEUE(wait, current);
942 
943 	/*
944 	 * Grab the lock and see if the device is available
945 	 */
946 	while (1) {
947 		spin_lock(&this->chip_lock);
948 		if (this->state == FL_READY) {
949 			this->state = new_state;
950 			spin_unlock(&this->chip_lock);
951 			if (new_state != FL_PM_SUSPENDED && this->enable)
952 				this->enable(mtd);
953 			break;
954 		}
955 		if (new_state == FL_PM_SUSPENDED) {
956 			spin_unlock(&this->chip_lock);
957 			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
958 		}
959 		set_current_state(TASK_UNINTERRUPTIBLE);
960 		add_wait_queue(&this->wq, &wait);
961 		spin_unlock(&this->chip_lock);
962 		schedule();
963 		remove_wait_queue(&this->wq, &wait);
964 	}
965 
966 	return 0;
967 }
968 
969 /**
970  * onenand_release_device - [GENERIC] release chip
971  * @param mtd		MTD device structure
972  *
973  * Deselect, release chip lock and wake up anyone waiting on the device
974  */
onenand_release_device(struct mtd_info * mtd)975 static void onenand_release_device(struct mtd_info *mtd)
976 {
977 	struct onenand_chip *this = mtd->priv;
978 
979 	if (this->state != FL_PM_SUSPENDED && this->disable)
980 		this->disable(mtd);
981 	/* Release the chip */
982 	spin_lock(&this->chip_lock);
983 	this->state = FL_READY;
984 	wake_up(&this->wq);
985 	spin_unlock(&this->chip_lock);
986 }
987 
988 /**
989  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
990  * @param mtd		MTD device structure
991  * @param buf		destination address
992  * @param column	oob offset to read from
993  * @param thislen	oob length to read
994  */
onenand_transfer_auto_oob(struct mtd_info * mtd,uint8_t * buf,int column,int thislen)995 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
996 				int thislen)
997 {
998 	struct onenand_chip *this = mtd->priv;
999 	struct nand_oobfree *free;
1000 	int readcol = column;
1001 	int readend = column + thislen;
1002 	int lastgap = 0;
1003 	unsigned int i;
1004 	uint8_t *oob_buf = this->oob_buf;
1005 
1006 	free = this->ecclayout->oobfree;
1007 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1008 		if (readcol >= lastgap)
1009 			readcol += free->offset - lastgap;
1010 		if (readend >= lastgap)
1011 			readend += free->offset - lastgap;
1012 		lastgap = free->offset + free->length;
1013 	}
1014 	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1015 	free = this->ecclayout->oobfree;
1016 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1017 		int free_end = free->offset + free->length;
1018 		if (free->offset < readend && free_end > readcol) {
1019 			int st = max_t(int,free->offset,readcol);
1020 			int ed = min_t(int,free_end,readend);
1021 			int n = ed - st;
1022 			memcpy(buf, oob_buf + st, n);
1023 			buf += n;
1024 		} else if (column == 0)
1025 			break;
1026 	}
1027 	return 0;
1028 }
1029 
1030 /**
1031  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1032  * @param mtd		MTD device structure
1033  * @param addr		address to recover
1034  * @param status	return value from onenand_wait / onenand_bbt_wait
1035  *
1036  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1037  * lower page address and MSB page has higher page address in paired pages.
1038  * If power off occurs during MSB page program, the paired LSB page data can
1039  * become corrupt. LSB page recovery read is a way to read LSB page though page
1040  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1041  * read after power up, issue LSB page recovery read.
1042  */
onenand_recover_lsb(struct mtd_info * mtd,loff_t addr,int status)1043 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1044 {
1045 	struct onenand_chip *this = mtd->priv;
1046 	int i;
1047 
1048 	/* Recovery is only for Flex-OneNAND */
1049 	if (!FLEXONENAND(this))
1050 		return status;
1051 
1052 	/* check if we failed due to uncorrectable error */
1053 	if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1054 		return status;
1055 
1056 	/* check if address lies in MLC region */
1057 	i = flexonenand_region(mtd, addr);
1058 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1059 		return status;
1060 
1061 	/* We are attempting to reread, so decrement stats.failed
1062 	 * which was incremented by onenand_wait due to read failure
1063 	 */
1064 	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1065 		__func__);
1066 	mtd->ecc_stats.failed--;
1067 
1068 	/* Issue the LSB page recovery command */
1069 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1070 	return this->wait(mtd, FL_READING);
1071 }
1072 
1073 /**
1074  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1075  * @param mtd		MTD device structure
1076  * @param from		offset to read from
1077  * @param ops:		oob operation description structure
1078  *
1079  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1080  * So, read-while-load is not present.
1081  */
onenand_mlc_read_ops_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1082 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1083 				struct mtd_oob_ops *ops)
1084 {
1085 	struct onenand_chip *this = mtd->priv;
1086 	struct mtd_ecc_stats stats;
1087 	size_t len = ops->len;
1088 	size_t ooblen = ops->ooblen;
1089 	u_char *buf = ops->datbuf;
1090 	u_char *oobbuf = ops->oobbuf;
1091 	int read = 0, column, thislen;
1092 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1093 	int ret = 0;
1094 	int writesize = this->writesize;
1095 
1096 	DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1097 	      __func__, (unsigned int) from, (int) len);
1098 
1099 	if (ops->mode == MTD_OOB_AUTO)
1100 		oobsize = this->ecclayout->oobavail;
1101 	else
1102 		oobsize = mtd->oobsize;
1103 
1104 	oobcolumn = from & (mtd->oobsize - 1);
1105 
1106 	/* Do not allow reads past end of device */
1107 	if (from + len > mtd->size) {
1108 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1109 			__func__);
1110 		ops->retlen = 0;
1111 		ops->oobretlen = 0;
1112 		return -EINVAL;
1113 	}
1114 
1115 	stats = mtd->ecc_stats;
1116 
1117 	while (read < len) {
1118 		cond_resched();
1119 
1120 		thislen = min_t(int, writesize, len - read);
1121 
1122 		column = from & (writesize - 1);
1123 		if (column + thislen > writesize)
1124 			thislen = writesize - column;
1125 
1126 		if (!onenand_check_bufferram(mtd, from)) {
1127 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1128 
1129 			ret = this->wait(mtd, FL_READING);
1130 			if (unlikely(ret))
1131 				ret = onenand_recover_lsb(mtd, from, ret);
1132 			onenand_update_bufferram(mtd, from, !ret);
1133 			if (ret == -EBADMSG)
1134 				ret = 0;
1135 			if (ret)
1136 				break;
1137 		}
1138 
1139 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1140 		if (oobbuf) {
1141 			thisooblen = oobsize - oobcolumn;
1142 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1143 
1144 			if (ops->mode == MTD_OOB_AUTO)
1145 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1146 			else
1147 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1148 			oobread += thisooblen;
1149 			oobbuf += thisooblen;
1150 			oobcolumn = 0;
1151 		}
1152 
1153 		read += thislen;
1154 		if (read == len)
1155 			break;
1156 
1157 		from += thislen;
1158 		buf += thislen;
1159 	}
1160 
1161 	/*
1162 	 * Return success, if no ECC failures, else -EBADMSG
1163 	 * fs driver will take care of that, because
1164 	 * retlen == desired len and result == -EBADMSG
1165 	 */
1166 	ops->retlen = read;
1167 	ops->oobretlen = oobread;
1168 
1169 	if (ret)
1170 		return ret;
1171 
1172 	if (mtd->ecc_stats.failed - stats.failed)
1173 		return -EBADMSG;
1174 
1175 	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1176 }
1177 
1178 /**
1179  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1180  * @param mtd		MTD device structure
1181  * @param from		offset to read from
1182  * @param ops:		oob operation description structure
1183  *
1184  * OneNAND read main and/or out-of-band data
1185  */
onenand_read_ops_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1186 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1187 				struct mtd_oob_ops *ops)
1188 {
1189 	struct onenand_chip *this = mtd->priv;
1190 	struct mtd_ecc_stats stats;
1191 	size_t len = ops->len;
1192 	size_t ooblen = ops->ooblen;
1193 	u_char *buf = ops->datbuf;
1194 	u_char *oobbuf = ops->oobbuf;
1195 	int read = 0, column, thislen;
1196 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1197 	int ret = 0, boundary = 0;
1198 	int writesize = this->writesize;
1199 
1200 	DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1201 			__func__, (unsigned int) from, (int) len);
1202 
1203 	if (ops->mode == MTD_OOB_AUTO)
1204 		oobsize = this->ecclayout->oobavail;
1205 	else
1206 		oobsize = mtd->oobsize;
1207 
1208 	oobcolumn = from & (mtd->oobsize - 1);
1209 
1210 	/* Do not allow reads past end of device */
1211 	if ((from + len) > mtd->size) {
1212 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1213 			__func__);
1214 		ops->retlen = 0;
1215 		ops->oobretlen = 0;
1216 		return -EINVAL;
1217 	}
1218 
1219 	stats = mtd->ecc_stats;
1220 
1221  	/* Read-while-load method */
1222 
1223  	/* Do first load to bufferRAM */
1224  	if (read < len) {
1225  		if (!onenand_check_bufferram(mtd, from)) {
1226 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1227  			ret = this->wait(mtd, FL_READING);
1228  			onenand_update_bufferram(mtd, from, !ret);
1229 			if (ret == -EBADMSG)
1230 				ret = 0;
1231  		}
1232  	}
1233 
1234 	thislen = min_t(int, writesize, len - read);
1235 	column = from & (writesize - 1);
1236 	if (column + thislen > writesize)
1237 		thislen = writesize - column;
1238 
1239  	while (!ret) {
1240  		/* If there is more to load then start next load */
1241  		from += thislen;
1242  		if (read + thislen < len) {
1243 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1244  			/*
1245  			 * Chip boundary handling in DDP
1246  			 * Now we issued chip 1 read and pointed chip 1
1247 			 * bufferram so we have to point chip 0 bufferram.
1248  			 */
1249  			if (ONENAND_IS_DDP(this) &&
1250  			    unlikely(from == (this->chipsize >> 1))) {
1251  				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1252  				boundary = 1;
1253  			} else
1254  				boundary = 0;
1255  			ONENAND_SET_PREV_BUFFERRAM(this);
1256  		}
1257  		/* While load is going, read from last bufferRAM */
1258  		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1259 
1260 		/* Read oob area if needed */
1261 		if (oobbuf) {
1262 			thisooblen = oobsize - oobcolumn;
1263 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1264 
1265 			if (ops->mode == MTD_OOB_AUTO)
1266 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1267 			else
1268 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1269 			oobread += thisooblen;
1270 			oobbuf += thisooblen;
1271 			oobcolumn = 0;
1272 		}
1273 
1274  		/* See if we are done */
1275  		read += thislen;
1276  		if (read == len)
1277  			break;
1278  		/* Set up for next read from bufferRAM */
1279  		if (unlikely(boundary))
1280  			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1281  		ONENAND_SET_NEXT_BUFFERRAM(this);
1282  		buf += thislen;
1283 		thislen = min_t(int, writesize, len - read);
1284  		column = 0;
1285  		cond_resched();
1286  		/* Now wait for load */
1287  		ret = this->wait(mtd, FL_READING);
1288  		onenand_update_bufferram(mtd, from, !ret);
1289 		if (ret == -EBADMSG)
1290 			ret = 0;
1291  	}
1292 
1293 	/*
1294 	 * Return success, if no ECC failures, else -EBADMSG
1295 	 * fs driver will take care of that, because
1296 	 * retlen == desired len and result == -EBADMSG
1297 	 */
1298 	ops->retlen = read;
1299 	ops->oobretlen = oobread;
1300 
1301 	if (ret)
1302 		return ret;
1303 
1304 	if (mtd->ecc_stats.failed - stats.failed)
1305 		return -EBADMSG;
1306 
1307 	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1308 }
1309 
1310 /**
1311  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1312  * @param mtd		MTD device structure
1313  * @param from		offset to read from
1314  * @param ops:		oob operation description structure
1315  *
1316  * OneNAND read out-of-band data from the spare area
1317  */
onenand_read_oob_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1318 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1319 			struct mtd_oob_ops *ops)
1320 {
1321 	struct onenand_chip *this = mtd->priv;
1322 	struct mtd_ecc_stats stats;
1323 	int read = 0, thislen, column, oobsize;
1324 	size_t len = ops->ooblen;
1325 	mtd_oob_mode_t mode = ops->mode;
1326 	u_char *buf = ops->oobbuf;
1327 	int ret = 0, readcmd;
1328 
1329 	from += ops->ooboffs;
1330 
1331 	DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
1332 		__func__, (unsigned int) from, (int) len);
1333 
1334 	/* Initialize return length value */
1335 	ops->oobretlen = 0;
1336 
1337 	if (mode == MTD_OOB_AUTO)
1338 		oobsize = this->ecclayout->oobavail;
1339 	else
1340 		oobsize = mtd->oobsize;
1341 
1342 	column = from & (mtd->oobsize - 1);
1343 
1344 	if (unlikely(column >= oobsize)) {
1345 		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1346 			__func__);
1347 		return -EINVAL;
1348 	}
1349 
1350 	/* Do not allow reads past end of device */
1351 	if (unlikely(from >= mtd->size ||
1352 		     column + len > ((mtd->size >> this->page_shift) -
1353 				     (from >> this->page_shift)) * oobsize)) {
1354 		printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1355 			__func__);
1356 		return -EINVAL;
1357 	}
1358 
1359 	stats = mtd->ecc_stats;
1360 
1361 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1362 
1363 	while (read < len) {
1364 		cond_resched();
1365 
1366 		thislen = oobsize - column;
1367 		thislen = min_t(int, thislen, len);
1368 
1369 		this->command(mtd, readcmd, from, mtd->oobsize);
1370 
1371 		onenand_update_bufferram(mtd, from, 0);
1372 
1373 		ret = this->wait(mtd, FL_READING);
1374 		if (unlikely(ret))
1375 			ret = onenand_recover_lsb(mtd, from, ret);
1376 
1377 		if (ret && ret != -EBADMSG) {
1378 			printk(KERN_ERR "%s: read failed = 0x%x\n",
1379 				__func__, ret);
1380 			break;
1381 		}
1382 
1383 		if (mode == MTD_OOB_AUTO)
1384 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1385 		else
1386 			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1387 
1388 		read += thislen;
1389 
1390 		if (read == len)
1391 			break;
1392 
1393 		buf += thislen;
1394 
1395 		/* Read more? */
1396 		if (read < len) {
1397 			/* Page size */
1398 			from += mtd->writesize;
1399 			column = 0;
1400 		}
1401 	}
1402 
1403 	ops->oobretlen = read;
1404 
1405 	if (ret)
1406 		return ret;
1407 
1408 	if (mtd->ecc_stats.failed - stats.failed)
1409 		return -EBADMSG;
1410 
1411 	return 0;
1412 }
1413 
1414 /**
1415  * onenand_read - [MTD Interface] Read data from flash
1416  * @param mtd		MTD device structure
1417  * @param from		offset to read from
1418  * @param len		number of bytes to read
1419  * @param retlen	pointer to variable to store the number of read bytes
1420  * @param buf		the databuffer to put data
1421  *
1422  * Read with ecc
1423 */
onenand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1424 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1425 	size_t *retlen, u_char *buf)
1426 {
1427 	struct onenand_chip *this = mtd->priv;
1428 	struct mtd_oob_ops ops = {
1429 		.len	= len,
1430 		.ooblen	= 0,
1431 		.datbuf	= buf,
1432 		.oobbuf	= NULL,
1433 	};
1434 	int ret;
1435 
1436 	onenand_get_device(mtd, FL_READING);
1437 	ret = ONENAND_IS_4KB_PAGE(this) ?
1438 		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1439 		onenand_read_ops_nolock(mtd, from, &ops);
1440 	onenand_release_device(mtd);
1441 
1442 	*retlen = ops.retlen;
1443 	return ret;
1444 }
1445 
1446 /**
1447  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1448  * @param mtd:		MTD device structure
1449  * @param from:		offset to read from
1450  * @param ops:		oob operation description structure
1451 
1452  * Read main and/or out-of-band
1453  */
onenand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1454 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1455 			    struct mtd_oob_ops *ops)
1456 {
1457 	struct onenand_chip *this = mtd->priv;
1458 	int ret;
1459 
1460 	switch (ops->mode) {
1461 	case MTD_OOB_PLACE:
1462 	case MTD_OOB_AUTO:
1463 		break;
1464 	case MTD_OOB_RAW:
1465 		/* Not implemented yet */
1466 	default:
1467 		return -EINVAL;
1468 	}
1469 
1470 	onenand_get_device(mtd, FL_READING);
1471 	if (ops->datbuf)
1472 		ret = ONENAND_IS_4KB_PAGE(this) ?
1473 			onenand_mlc_read_ops_nolock(mtd, from, ops) :
1474 			onenand_read_ops_nolock(mtd, from, ops);
1475 	else
1476 		ret = onenand_read_oob_nolock(mtd, from, ops);
1477 	onenand_release_device(mtd);
1478 
1479 	return ret;
1480 }
1481 
1482 /**
1483  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1484  * @param mtd		MTD device structure
1485  * @param state		state to select the max. timeout value
1486  *
1487  * Wait for command done.
1488  */
onenand_bbt_wait(struct mtd_info * mtd,int state)1489 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1490 {
1491 	struct onenand_chip *this = mtd->priv;
1492 	unsigned long timeout;
1493 	unsigned int interrupt, ctrl, ecc, addr1, addr8;
1494 
1495 	/* The 20 msec is enough */
1496 	timeout = jiffies + msecs_to_jiffies(20);
1497 	while (time_before(jiffies, timeout)) {
1498 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1499 		if (interrupt & ONENAND_INT_MASTER)
1500 			break;
1501 	}
1502 	/* To get correct interrupt status in timeout case */
1503 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1504 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1505 	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1506 	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1507 
1508 	if (interrupt & ONENAND_INT_READ) {
1509 		ecc = onenand_read_ecc(this);
1510 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1511 			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1512 			       "intr 0x%04x addr1 %#x addr8 %#x\n",
1513 			       __func__, ecc, ctrl, interrupt, addr1, addr8);
1514 			return ONENAND_BBT_READ_ECC_ERROR;
1515 		}
1516 	} else {
1517 		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1518 		       "intr 0x%04x addr1 %#x addr8 %#x\n",
1519 		       __func__, ctrl, interrupt, addr1, addr8);
1520 		return ONENAND_BBT_READ_FATAL_ERROR;
1521 	}
1522 
1523 	/* Initial bad block case: 0x2400 or 0x0400 */
1524 	if (ctrl & ONENAND_CTRL_ERROR) {
1525 		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1526 		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1527 		return ONENAND_BBT_READ_ERROR;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 /**
1534  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1535  * @param mtd		MTD device structure
1536  * @param from		offset to read from
1537  * @param ops		oob operation description structure
1538  *
1539  * OneNAND read out-of-band data from the spare area for bbt scan
1540  */
onenand_bbt_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1541 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1542 			    struct mtd_oob_ops *ops)
1543 {
1544 	struct onenand_chip *this = mtd->priv;
1545 	int read = 0, thislen, column;
1546 	int ret = 0, readcmd;
1547 	size_t len = ops->ooblen;
1548 	u_char *buf = ops->oobbuf;
1549 
1550 	DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
1551 		__func__, (unsigned int) from, len);
1552 
1553 	/* Initialize return value */
1554 	ops->oobretlen = 0;
1555 
1556 	/* Do not allow reads past end of device */
1557 	if (unlikely((from + len) > mtd->size)) {
1558 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1559 			__func__);
1560 		return ONENAND_BBT_READ_FATAL_ERROR;
1561 	}
1562 
1563 	/* Grab the lock and see if the device is available */
1564 	onenand_get_device(mtd, FL_READING);
1565 
1566 	column = from & (mtd->oobsize - 1);
1567 
1568 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1569 
1570 	while (read < len) {
1571 		cond_resched();
1572 
1573 		thislen = mtd->oobsize - column;
1574 		thislen = min_t(int, thislen, len);
1575 
1576 		this->command(mtd, readcmd, from, mtd->oobsize);
1577 
1578 		onenand_update_bufferram(mtd, from, 0);
1579 
1580 		ret = this->bbt_wait(mtd, FL_READING);
1581 		if (unlikely(ret))
1582 			ret = onenand_recover_lsb(mtd, from, ret);
1583 
1584 		if (ret)
1585 			break;
1586 
1587 		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1588 		read += thislen;
1589 		if (read == len)
1590 			break;
1591 
1592 		buf += thislen;
1593 
1594 		/* Read more? */
1595 		if (read < len) {
1596 			/* Update Page size */
1597 			from += this->writesize;
1598 			column = 0;
1599 		}
1600 	}
1601 
1602 	/* Deselect and wake up anyone waiting on the device */
1603 	onenand_release_device(mtd);
1604 
1605 	ops->oobretlen = read;
1606 	return ret;
1607 }
1608 
1609 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1610 /**
1611  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1612  * @param mtd		MTD device structure
1613  * @param buf		the databuffer to verify
1614  * @param to		offset to read from
1615  */
onenand_verify_oob(struct mtd_info * mtd,const u_char * buf,loff_t to)1616 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1617 {
1618 	struct onenand_chip *this = mtd->priv;
1619 	u_char *oob_buf = this->oob_buf;
1620 	int status, i, readcmd;
1621 
1622 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1623 
1624 	this->command(mtd, readcmd, to, mtd->oobsize);
1625 	onenand_update_bufferram(mtd, to, 0);
1626 	status = this->wait(mtd, FL_READING);
1627 	if (status)
1628 		return status;
1629 
1630 	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1631 	for (i = 0; i < mtd->oobsize; i++)
1632 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1633 			return -EBADMSG;
1634 
1635 	return 0;
1636 }
1637 
1638 /**
1639  * onenand_verify - [GENERIC] verify the chip contents after a write
1640  * @param mtd          MTD device structure
1641  * @param buf          the databuffer to verify
1642  * @param addr         offset to read from
1643  * @param len          number of bytes to read and compare
1644  */
onenand_verify(struct mtd_info * mtd,const u_char * buf,loff_t addr,size_t len)1645 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1646 {
1647 	struct onenand_chip *this = mtd->priv;
1648 	int ret = 0;
1649 	int thislen, column;
1650 
1651 	column = addr & (this->writesize - 1);
1652 
1653 	while (len != 0) {
1654 		thislen = min_t(int, this->writesize - column, len);
1655 
1656 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1657 
1658 		onenand_update_bufferram(mtd, addr, 0);
1659 
1660 		ret = this->wait(mtd, FL_READING);
1661 		if (ret)
1662 			return ret;
1663 
1664 		onenand_update_bufferram(mtd, addr, 1);
1665 
1666 		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1667 
1668 		if (memcmp(buf, this->verify_buf + column, thislen))
1669 			return -EBADMSG;
1670 
1671 		len -= thislen;
1672 		buf += thislen;
1673 		addr += thislen;
1674 		column = 0;
1675 	}
1676 
1677 	return 0;
1678 }
1679 #else
1680 #define onenand_verify(...)		(0)
1681 #define onenand_verify_oob(...)		(0)
1682 #endif
1683 
1684 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1685 
onenand_panic_wait(struct mtd_info * mtd)1686 static void onenand_panic_wait(struct mtd_info *mtd)
1687 {
1688 	struct onenand_chip *this = mtd->priv;
1689 	unsigned int interrupt;
1690 	int i;
1691 
1692 	for (i = 0; i < 2000; i++) {
1693 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1694 		if (interrupt & ONENAND_INT_MASTER)
1695 			break;
1696 		udelay(10);
1697 	}
1698 }
1699 
1700 /**
1701  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1702  * @param mtd		MTD device structure
1703  * @param to		offset to write to
1704  * @param len		number of bytes to write
1705  * @param retlen	pointer to variable to store the number of written bytes
1706  * @param buf		the data to write
1707  *
1708  * Write with ECC
1709  */
onenand_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1710 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1711 			 size_t *retlen, const u_char *buf)
1712 {
1713 	struct onenand_chip *this = mtd->priv;
1714 	int column, subpage;
1715 	int written = 0;
1716 	int ret = 0;
1717 
1718 	if (this->state == FL_PM_SUSPENDED)
1719 		return -EBUSY;
1720 
1721 	/* Wait for any existing operation to clear */
1722 	onenand_panic_wait(mtd);
1723 
1724 	DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1725 		__func__, (unsigned int) to, (int) len);
1726 
1727 	/* Initialize retlen, in case of early exit */
1728 	*retlen = 0;
1729 
1730 	/* Do not allow writes past end of device */
1731 	if (unlikely((to + len) > mtd->size)) {
1732 		printk(KERN_ERR "%s: Attempt write to past end of device\n",
1733 			__func__);
1734 		return -EINVAL;
1735 	}
1736 
1737 	/* Reject writes, which are not page aligned */
1738         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1739 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1740 			__func__);
1741                 return -EINVAL;
1742         }
1743 
1744 	column = to & (mtd->writesize - 1);
1745 
1746 	/* Loop until all data write */
1747 	while (written < len) {
1748 		int thislen = min_t(int, mtd->writesize - column, len - written);
1749 		u_char *wbuf = (u_char *) buf;
1750 
1751 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1752 
1753 		/* Partial page write */
1754 		subpage = thislen < mtd->writesize;
1755 		if (subpage) {
1756 			memset(this->page_buf, 0xff, mtd->writesize);
1757 			memcpy(this->page_buf + column, buf, thislen);
1758 			wbuf = this->page_buf;
1759 		}
1760 
1761 		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1762 		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1763 
1764 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1765 
1766 		onenand_panic_wait(mtd);
1767 
1768 		/* In partial page write we don't update bufferram */
1769 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1770 		if (ONENAND_IS_2PLANE(this)) {
1771 			ONENAND_SET_BUFFERRAM1(this);
1772 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1773 		}
1774 
1775 		if (ret) {
1776 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1777 			break;
1778 		}
1779 
1780 		written += thislen;
1781 
1782 		if (written == len)
1783 			break;
1784 
1785 		column = 0;
1786 		to += thislen;
1787 		buf += thislen;
1788 	}
1789 
1790 	*retlen = written;
1791 	return ret;
1792 }
1793 
1794 /**
1795  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1796  * @param mtd		MTD device structure
1797  * @param oob_buf	oob buffer
1798  * @param buf		source address
1799  * @param column	oob offset to write to
1800  * @param thislen	oob length to write
1801  */
onenand_fill_auto_oob(struct mtd_info * mtd,u_char * oob_buf,const u_char * buf,int column,int thislen)1802 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1803 				  const u_char *buf, int column, int thislen)
1804 {
1805 	struct onenand_chip *this = mtd->priv;
1806 	struct nand_oobfree *free;
1807 	int writecol = column;
1808 	int writeend = column + thislen;
1809 	int lastgap = 0;
1810 	unsigned int i;
1811 
1812 	free = this->ecclayout->oobfree;
1813 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1814 		if (writecol >= lastgap)
1815 			writecol += free->offset - lastgap;
1816 		if (writeend >= lastgap)
1817 			writeend += free->offset - lastgap;
1818 		lastgap = free->offset + free->length;
1819 	}
1820 	free = this->ecclayout->oobfree;
1821 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1822 		int free_end = free->offset + free->length;
1823 		if (free->offset < writeend && free_end > writecol) {
1824 			int st = max_t(int,free->offset,writecol);
1825 			int ed = min_t(int,free_end,writeend);
1826 			int n = ed - st;
1827 			memcpy(oob_buf + st, buf, n);
1828 			buf += n;
1829 		} else if (column == 0)
1830 			break;
1831 	}
1832 	return 0;
1833 }
1834 
1835 /**
1836  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1837  * @param mtd		MTD device structure
1838  * @param to		offset to write to
1839  * @param ops		oob operation description structure
1840  *
1841  * Write main and/or oob with ECC
1842  */
onenand_write_ops_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1843 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1844 				struct mtd_oob_ops *ops)
1845 {
1846 	struct onenand_chip *this = mtd->priv;
1847 	int written = 0, column, thislen = 0, subpage = 0;
1848 	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1849 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1850 	size_t len = ops->len;
1851 	size_t ooblen = ops->ooblen;
1852 	const u_char *buf = ops->datbuf;
1853 	const u_char *oob = ops->oobbuf;
1854 	u_char *oobbuf;
1855 	int ret = 0, cmd;
1856 
1857 	DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
1858 		__func__, (unsigned int) to, (int) len);
1859 
1860 	/* Initialize retlen, in case of early exit */
1861 	ops->retlen = 0;
1862 	ops->oobretlen = 0;
1863 
1864 	/* Do not allow writes past end of device */
1865 	if (unlikely((to + len) > mtd->size)) {
1866 		printk(KERN_ERR "%s: Attempt write to past end of device\n",
1867 			__func__);
1868 		return -EINVAL;
1869 	}
1870 
1871 	/* Reject writes, which are not page aligned */
1872         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1873 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1874 			__func__);
1875                 return -EINVAL;
1876         }
1877 
1878 	/* Check zero length */
1879 	if (!len)
1880 		return 0;
1881 
1882 	if (ops->mode == MTD_OOB_AUTO)
1883 		oobsize = this->ecclayout->oobavail;
1884 	else
1885 		oobsize = mtd->oobsize;
1886 
1887 	oobcolumn = to & (mtd->oobsize - 1);
1888 
1889 	column = to & (mtd->writesize - 1);
1890 
1891 	/* Loop until all data write */
1892 	while (1) {
1893 		if (written < len) {
1894 			u_char *wbuf = (u_char *) buf;
1895 
1896 			thislen = min_t(int, mtd->writesize - column, len - written);
1897 			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1898 
1899 			cond_resched();
1900 
1901 			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1902 
1903 			/* Partial page write */
1904 			subpage = thislen < mtd->writesize;
1905 			if (subpage) {
1906 				memset(this->page_buf, 0xff, mtd->writesize);
1907 				memcpy(this->page_buf + column, buf, thislen);
1908 				wbuf = this->page_buf;
1909 			}
1910 
1911 			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1912 
1913 			if (oob) {
1914 				oobbuf = this->oob_buf;
1915 
1916 				/* We send data to spare ram with oobsize
1917 				 * to prevent byte access */
1918 				memset(oobbuf, 0xff, mtd->oobsize);
1919 				if (ops->mode == MTD_OOB_AUTO)
1920 					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1921 				else
1922 					memcpy(oobbuf + oobcolumn, oob, thisooblen);
1923 
1924 				oobwritten += thisooblen;
1925 				oob += thisooblen;
1926 				oobcolumn = 0;
1927 			} else
1928 				oobbuf = (u_char *) ffchars;
1929 
1930 			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1931 		} else
1932 			ONENAND_SET_NEXT_BUFFERRAM(this);
1933 
1934 		/*
1935 		 * 2 PLANE, MLC, and Flex-OneNAND do not support
1936 		 * write-while-program feature.
1937 		 */
1938 		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1939 			ONENAND_SET_PREV_BUFFERRAM(this);
1940 
1941 			ret = this->wait(mtd, FL_WRITING);
1942 
1943 			/* In partial page write we don't update bufferram */
1944 			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1945 			if (ret) {
1946 				written -= prevlen;
1947 				printk(KERN_ERR "%s: write failed %d\n",
1948 					__func__, ret);
1949 				break;
1950 			}
1951 
1952 			if (written == len) {
1953 				/* Only check verify write turn on */
1954 				ret = onenand_verify(mtd, buf - len, to - len, len);
1955 				if (ret)
1956 					printk(KERN_ERR "%s: verify failed %d\n",
1957 						__func__, ret);
1958 				break;
1959 			}
1960 
1961 			ONENAND_SET_NEXT_BUFFERRAM(this);
1962 		}
1963 
1964 		this->ongoing = 0;
1965 		cmd = ONENAND_CMD_PROG;
1966 
1967 		/* Exclude 1st OTP and OTP blocks for cache program feature */
1968 		if (ONENAND_IS_CACHE_PROGRAM(this) &&
1969 		    likely(onenand_block(this, to) != 0) &&
1970 		    ONENAND_IS_4KB_PAGE(this) &&
1971 		    ((written + thislen) < len)) {
1972 			cmd = ONENAND_CMD_2X_CACHE_PROG;
1973 			this->ongoing = 1;
1974 		}
1975 
1976 		this->command(mtd, cmd, to, mtd->writesize);
1977 
1978 		/*
1979 		 * 2 PLANE, MLC, and Flex-OneNAND wait here
1980 		 */
1981 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1982 			ret = this->wait(mtd, FL_WRITING);
1983 
1984 			/* In partial page write we don't update bufferram */
1985 			onenand_update_bufferram(mtd, to, !ret && !subpage);
1986 			if (ret) {
1987 				printk(KERN_ERR "%s: write failed %d\n",
1988 					__func__, ret);
1989 				break;
1990 			}
1991 
1992 			/* Only check verify write turn on */
1993 			ret = onenand_verify(mtd, buf, to, thislen);
1994 			if (ret) {
1995 				printk(KERN_ERR "%s: verify failed %d\n",
1996 					__func__, ret);
1997 				break;
1998 			}
1999 
2000 			written += thislen;
2001 
2002 			if (written == len)
2003 				break;
2004 
2005 		} else
2006 			written += thislen;
2007 
2008 		column = 0;
2009 		prev_subpage = subpage;
2010 		prev = to;
2011 		prevlen = thislen;
2012 		to += thislen;
2013 		buf += thislen;
2014 		first = 0;
2015 	}
2016 
2017 	/* In error case, clear all bufferrams */
2018 	if (written != len)
2019 		onenand_invalidate_bufferram(mtd, 0, -1);
2020 
2021 	ops->retlen = written;
2022 	ops->oobretlen = oobwritten;
2023 
2024 	return ret;
2025 }
2026 
2027 
2028 /**
2029  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2030  * @param mtd		MTD device structure
2031  * @param to		offset to write to
2032  * @param len		number of bytes to write
2033  * @param retlen	pointer to variable to store the number of written bytes
2034  * @param buf		the data to write
2035  * @param mode		operation mode
2036  *
2037  * OneNAND write out-of-band
2038  */
onenand_write_oob_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2039 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2040 				    struct mtd_oob_ops *ops)
2041 {
2042 	struct onenand_chip *this = mtd->priv;
2043 	int column, ret = 0, oobsize;
2044 	int written = 0, oobcmd;
2045 	u_char *oobbuf;
2046 	size_t len = ops->ooblen;
2047 	const u_char *buf = ops->oobbuf;
2048 	mtd_oob_mode_t mode = ops->mode;
2049 
2050 	to += ops->ooboffs;
2051 
2052 	DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2053 		__func__, (unsigned int) to, (int) len);
2054 
2055 	/* Initialize retlen, in case of early exit */
2056 	ops->oobretlen = 0;
2057 
2058 	if (mode == MTD_OOB_AUTO)
2059 		oobsize = this->ecclayout->oobavail;
2060 	else
2061 		oobsize = mtd->oobsize;
2062 
2063 	column = to & (mtd->oobsize - 1);
2064 
2065 	if (unlikely(column >= oobsize)) {
2066 		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2067 			__func__);
2068 		return -EINVAL;
2069 	}
2070 
2071 	/* For compatibility with NAND: Do not allow write past end of page */
2072 	if (unlikely(column + len > oobsize)) {
2073 		printk(KERN_ERR "%s: Attempt to write past end of page\n",
2074 			__func__);
2075 		return -EINVAL;
2076 	}
2077 
2078 	/* Do not allow reads past end of device */
2079 	if (unlikely(to >= mtd->size ||
2080 		     column + len > ((mtd->size >> this->page_shift) -
2081 				     (to >> this->page_shift)) * oobsize)) {
2082 		printk(KERN_ERR "%s: Attempted to write past end of device\n",
2083 		       __func__);
2084 		return -EINVAL;
2085 	}
2086 
2087 	oobbuf = this->oob_buf;
2088 
2089 	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2090 
2091 	/* Loop until all data write */
2092 	while (written < len) {
2093 		int thislen = min_t(int, oobsize, len - written);
2094 
2095 		cond_resched();
2096 
2097 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2098 
2099 		/* We send data to spare ram with oobsize
2100 		 * to prevent byte access */
2101 		memset(oobbuf, 0xff, mtd->oobsize);
2102 		if (mode == MTD_OOB_AUTO)
2103 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2104 		else
2105 			memcpy(oobbuf + column, buf, thislen);
2106 		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2107 
2108 		if (ONENAND_IS_4KB_PAGE(this)) {
2109 			/* Set main area of DataRAM to 0xff*/
2110 			memset(this->page_buf, 0xff, mtd->writesize);
2111 			this->write_bufferram(mtd, ONENAND_DATARAM,
2112 					 this->page_buf, 0, mtd->writesize);
2113 		}
2114 
2115 		this->command(mtd, oobcmd, to, mtd->oobsize);
2116 
2117 		onenand_update_bufferram(mtd, to, 0);
2118 		if (ONENAND_IS_2PLANE(this)) {
2119 			ONENAND_SET_BUFFERRAM1(this);
2120 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2121 		}
2122 
2123 		ret = this->wait(mtd, FL_WRITING);
2124 		if (ret) {
2125 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2126 			break;
2127 		}
2128 
2129 		ret = onenand_verify_oob(mtd, oobbuf, to);
2130 		if (ret) {
2131 			printk(KERN_ERR "%s: verify failed %d\n",
2132 				__func__, ret);
2133 			break;
2134 		}
2135 
2136 		written += thislen;
2137 		if (written == len)
2138 			break;
2139 
2140 		to += mtd->writesize;
2141 		buf += thislen;
2142 		column = 0;
2143 	}
2144 
2145 	ops->oobretlen = written;
2146 
2147 	return ret;
2148 }
2149 
2150 /**
2151  * onenand_write - [MTD Interface] write buffer to FLASH
2152  * @param mtd		MTD device structure
2153  * @param to		offset to write to
2154  * @param len		number of bytes to write
2155  * @param retlen	pointer to variable to store the number of written bytes
2156  * @param buf		the data to write
2157  *
2158  * Write with ECC
2159  */
onenand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2160 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2161 	size_t *retlen, const u_char *buf)
2162 {
2163 	struct mtd_oob_ops ops = {
2164 		.len	= len,
2165 		.ooblen	= 0,
2166 		.datbuf	= (u_char *) buf,
2167 		.oobbuf	= NULL,
2168 	};
2169 	int ret;
2170 
2171 	onenand_get_device(mtd, FL_WRITING);
2172 	ret = onenand_write_ops_nolock(mtd, to, &ops);
2173 	onenand_release_device(mtd);
2174 
2175 	*retlen = ops.retlen;
2176 	return ret;
2177 }
2178 
2179 /**
2180  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2181  * @param mtd:		MTD device structure
2182  * @param to:		offset to write
2183  * @param ops:		oob operation description structure
2184  */
onenand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2185 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2186 			     struct mtd_oob_ops *ops)
2187 {
2188 	int ret;
2189 
2190 	switch (ops->mode) {
2191 	case MTD_OOB_PLACE:
2192 	case MTD_OOB_AUTO:
2193 		break;
2194 	case MTD_OOB_RAW:
2195 		/* Not implemented yet */
2196 	default:
2197 		return -EINVAL;
2198 	}
2199 
2200 	onenand_get_device(mtd, FL_WRITING);
2201 	if (ops->datbuf)
2202 		ret = onenand_write_ops_nolock(mtd, to, ops);
2203 	else
2204 		ret = onenand_write_oob_nolock(mtd, to, ops);
2205 	onenand_release_device(mtd);
2206 
2207 	return ret;
2208 }
2209 
2210 /**
2211  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2212  * @param mtd		MTD device structure
2213  * @param ofs		offset from device start
2214  * @param allowbbt	1, if its allowed to access the bbt area
2215  *
2216  * Check, if the block is bad. Either by reading the bad block table or
2217  * calling of the scan function.
2218  */
onenand_block_isbad_nolock(struct mtd_info * mtd,loff_t ofs,int allowbbt)2219 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2220 {
2221 	struct onenand_chip *this = mtd->priv;
2222 	struct bbm_info *bbm = this->bbm;
2223 
2224 	/* Return info from the table */
2225 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
2226 }
2227 
2228 
onenand_multiblock_erase_verify(struct mtd_info * mtd,struct erase_info * instr)2229 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2230 					   struct erase_info *instr)
2231 {
2232 	struct onenand_chip *this = mtd->priv;
2233 	loff_t addr = instr->addr;
2234 	int len = instr->len;
2235 	unsigned int block_size = (1 << this->erase_shift);
2236 	int ret = 0;
2237 
2238 	while (len) {
2239 		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2240 		ret = this->wait(mtd, FL_VERIFYING_ERASE);
2241 		if (ret) {
2242 			printk(KERN_ERR "%s: Failed verify, block %d\n",
2243 			       __func__, onenand_block(this, addr));
2244 			instr->state = MTD_ERASE_FAILED;
2245 			instr->fail_addr = addr;
2246 			return -1;
2247 		}
2248 		len -= block_size;
2249 		addr += block_size;
2250 	}
2251 	return 0;
2252 }
2253 
2254 /**
2255  * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2256  * @param mtd		MTD device structure
2257  * @param instr		erase instruction
2258  * @param region	erase region
2259  *
2260  * Erase one or more blocks up to 64 block at a time
2261  */
onenand_multiblock_erase(struct mtd_info * mtd,struct erase_info * instr,unsigned int block_size)2262 static int onenand_multiblock_erase(struct mtd_info *mtd,
2263 				    struct erase_info *instr,
2264 				    unsigned int block_size)
2265 {
2266 	struct onenand_chip *this = mtd->priv;
2267 	loff_t addr = instr->addr;
2268 	int len = instr->len;
2269 	int eb_count = 0;
2270 	int ret = 0;
2271 	int bdry_block = 0;
2272 
2273 	instr->state = MTD_ERASING;
2274 
2275 	if (ONENAND_IS_DDP(this)) {
2276 		loff_t bdry_addr = this->chipsize >> 1;
2277 		if (addr < bdry_addr && (addr + len) > bdry_addr)
2278 			bdry_block = bdry_addr >> this->erase_shift;
2279 	}
2280 
2281 	/* Pre-check bbs */
2282 	while (len) {
2283 		/* Check if we have a bad block, we do not erase bad blocks */
2284 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2285 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2286 			       "at addr 0x%012llx\n",
2287 			       __func__, (unsigned long long) addr);
2288 			instr->state = MTD_ERASE_FAILED;
2289 			return -EIO;
2290 		}
2291 		len -= block_size;
2292 		addr += block_size;
2293 	}
2294 
2295 	len = instr->len;
2296 	addr = instr->addr;
2297 
2298 	/* loop over 64 eb batches */
2299 	while (len) {
2300 		struct erase_info verify_instr = *instr;
2301 		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2302 
2303 		verify_instr.addr = addr;
2304 		verify_instr.len = 0;
2305 
2306 		/* do not cross chip boundary */
2307 		if (bdry_block) {
2308 			int this_block = (addr >> this->erase_shift);
2309 
2310 			if (this_block < bdry_block) {
2311 				max_eb_count = min(max_eb_count,
2312 						   (bdry_block - this_block));
2313 			}
2314 		}
2315 
2316 		eb_count = 0;
2317 
2318 		while (len > block_size && eb_count < (max_eb_count - 1)) {
2319 			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2320 				      addr, block_size);
2321 			onenand_invalidate_bufferram(mtd, addr, block_size);
2322 
2323 			ret = this->wait(mtd, FL_PREPARING_ERASE);
2324 			if (ret) {
2325 				printk(KERN_ERR "%s: Failed multiblock erase, "
2326 				       "block %d\n", __func__,
2327 				       onenand_block(this, addr));
2328 				instr->state = MTD_ERASE_FAILED;
2329 				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2330 				return -EIO;
2331 			}
2332 
2333 			len -= block_size;
2334 			addr += block_size;
2335 			eb_count++;
2336 		}
2337 
2338 		/* last block of 64-eb series */
2339 		cond_resched();
2340 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2341 		onenand_invalidate_bufferram(mtd, addr, block_size);
2342 
2343 		ret = this->wait(mtd, FL_ERASING);
2344 		/* Check if it is write protected */
2345 		if (ret) {
2346 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2347 			       __func__, onenand_block(this, addr));
2348 			instr->state = MTD_ERASE_FAILED;
2349 			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2350 			return -EIO;
2351 		}
2352 
2353 		len -= block_size;
2354 		addr += block_size;
2355 		eb_count++;
2356 
2357 		/* verify */
2358 		verify_instr.len = eb_count * block_size;
2359 		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2360 			instr->state = verify_instr.state;
2361 			instr->fail_addr = verify_instr.fail_addr;
2362 			return -EIO;
2363 		}
2364 
2365 	}
2366 	return 0;
2367 }
2368 
2369 
2370 /**
2371  * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2372  * @param mtd		MTD device structure
2373  * @param instr		erase instruction
2374  * @param region	erase region
2375  * @param block_size	erase block size
2376  *
2377  * Erase one or more blocks one block at a time
2378  */
onenand_block_by_block_erase(struct mtd_info * mtd,struct erase_info * instr,struct mtd_erase_region_info * region,unsigned int block_size)2379 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2380 					struct erase_info *instr,
2381 					struct mtd_erase_region_info *region,
2382 					unsigned int block_size)
2383 {
2384 	struct onenand_chip *this = mtd->priv;
2385 	loff_t addr = instr->addr;
2386 	int len = instr->len;
2387 	loff_t region_end = 0;
2388 	int ret = 0;
2389 
2390 	if (region) {
2391 		/* region is set for Flex-OneNAND */
2392 		region_end = region->offset + region->erasesize * region->numblocks;
2393 	}
2394 
2395 	instr->state = MTD_ERASING;
2396 
2397 	/* Loop through the blocks */
2398 	while (len) {
2399 		cond_resched();
2400 
2401 		/* Check if we have a bad block, we do not erase bad blocks */
2402 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2403 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2404 					"at addr 0x%012llx\n",
2405 					__func__, (unsigned long long) addr);
2406 			instr->state = MTD_ERASE_FAILED;
2407 			return -EIO;
2408 		}
2409 
2410 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2411 
2412 		onenand_invalidate_bufferram(mtd, addr, block_size);
2413 
2414 		ret = this->wait(mtd, FL_ERASING);
2415 		/* Check, if it is write protected */
2416 		if (ret) {
2417 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2418 				__func__, onenand_block(this, addr));
2419 			instr->state = MTD_ERASE_FAILED;
2420 			instr->fail_addr = addr;
2421 			return -EIO;
2422 		}
2423 
2424 		len -= block_size;
2425 		addr += block_size;
2426 
2427 		if (addr == region_end) {
2428 			if (!len)
2429 				break;
2430 			region++;
2431 
2432 			block_size = region->erasesize;
2433 			region_end = region->offset + region->erasesize * region->numblocks;
2434 
2435 			if (len & (block_size - 1)) {
2436 				/* FIXME: This should be handled at MTD partitioning level. */
2437 				printk(KERN_ERR "%s: Unaligned address\n",
2438 					__func__);
2439 				return -EIO;
2440 			}
2441 		}
2442 	}
2443 	return 0;
2444 }
2445 
2446 /**
2447  * onenand_erase - [MTD Interface] erase block(s)
2448  * @param mtd		MTD device structure
2449  * @param instr		erase instruction
2450  *
2451  * Erase one or more blocks
2452  */
onenand_erase(struct mtd_info * mtd,struct erase_info * instr)2453 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2454 {
2455 	struct onenand_chip *this = mtd->priv;
2456 	unsigned int block_size;
2457 	loff_t addr = instr->addr;
2458 	loff_t len = instr->len;
2459 	int ret = 0;
2460 	struct mtd_erase_region_info *region = NULL;
2461 	loff_t region_offset = 0;
2462 
2463 	DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
2464 	      (unsigned long long) instr->addr, (unsigned long long) instr->len);
2465 
2466 	/* Do not allow erase past end of device */
2467 	if (unlikely((len + addr) > mtd->size)) {
2468 		printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2469 		return -EINVAL;
2470 	}
2471 
2472 	if (FLEXONENAND(this)) {
2473 		/* Find the eraseregion of this address */
2474 		int i = flexonenand_region(mtd, addr);
2475 
2476 		region = &mtd->eraseregions[i];
2477 		block_size = region->erasesize;
2478 
2479 		/* Start address within region must align on block boundary.
2480 		 * Erase region's start offset is always block start address.
2481 		 */
2482 		region_offset = region->offset;
2483 	} else
2484 		block_size = 1 << this->erase_shift;
2485 
2486 	/* Start address must align on block boundary */
2487 	if (unlikely((addr - region_offset) & (block_size - 1))) {
2488 		printk(KERN_ERR "%s: Unaligned address\n", __func__);
2489 		return -EINVAL;
2490 	}
2491 
2492 	/* Length must align on block boundary */
2493 	if (unlikely(len & (block_size - 1))) {
2494 		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2495 		return -EINVAL;
2496 	}
2497 
2498 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2499 
2500 	/* Grab the lock and see if the device is available */
2501 	onenand_get_device(mtd, FL_ERASING);
2502 
2503 	if (ONENAND_IS_4KB_PAGE(this) || region ||
2504 	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2505 		/* region is set for Flex-OneNAND (no mb erase) */
2506 		ret = onenand_block_by_block_erase(mtd, instr,
2507 						   region, block_size);
2508 	} else {
2509 		ret = onenand_multiblock_erase(mtd, instr, block_size);
2510 	}
2511 
2512 	/* Deselect and wake up anyone waiting on the device */
2513 	onenand_release_device(mtd);
2514 
2515 	/* Do call back function */
2516 	if (!ret) {
2517 		instr->state = MTD_ERASE_DONE;
2518 		mtd_erase_callback(instr);
2519 	}
2520 
2521 	return ret;
2522 }
2523 
2524 /**
2525  * onenand_sync - [MTD Interface] sync
2526  * @param mtd		MTD device structure
2527  *
2528  * Sync is actually a wait for chip ready function
2529  */
onenand_sync(struct mtd_info * mtd)2530 static void onenand_sync(struct mtd_info *mtd)
2531 {
2532 	DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2533 
2534 	/* Grab the lock and see if the device is available */
2535 	onenand_get_device(mtd, FL_SYNCING);
2536 
2537 	/* Release it and go back */
2538 	onenand_release_device(mtd);
2539 }
2540 
2541 /**
2542  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2543  * @param mtd		MTD device structure
2544  * @param ofs		offset relative to mtd start
2545  *
2546  * Check whether the block is bad
2547  */
onenand_block_isbad(struct mtd_info * mtd,loff_t ofs)2548 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2549 {
2550 	int ret;
2551 
2552 	/* Check for invalid offset */
2553 	if (ofs > mtd->size)
2554 		return -EINVAL;
2555 
2556 	onenand_get_device(mtd, FL_READING);
2557 	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2558 	onenand_release_device(mtd);
2559 	return ret;
2560 }
2561 
2562 /**
2563  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2564  * @param mtd		MTD device structure
2565  * @param ofs		offset from device start
2566  *
2567  * This is the default implementation, which can be overridden by
2568  * a hardware specific driver.
2569  */
onenand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)2570 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2571 {
2572 	struct onenand_chip *this = mtd->priv;
2573 	struct bbm_info *bbm = this->bbm;
2574 	u_char buf[2] = {0, 0};
2575 	struct mtd_oob_ops ops = {
2576 		.mode = MTD_OOB_PLACE,
2577 		.ooblen = 2,
2578 		.oobbuf = buf,
2579 		.ooboffs = 0,
2580 	};
2581 	int block;
2582 
2583 	/* Get block number */
2584 	block = onenand_block(this, ofs);
2585         if (bbm->bbt)
2586                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2587 
2588         /* We write two bytes, so we don't have to mess with 16-bit access */
2589         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2590 	/* FIXME : What to do when marking SLC block in partition
2591 	 * 	   with MLC erasesize? For now, it is not advisable to
2592 	 *	   create partitions containing both SLC and MLC regions.
2593 	 */
2594 	return onenand_write_oob_nolock(mtd, ofs, &ops);
2595 }
2596 
2597 /**
2598  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2599  * @param mtd		MTD device structure
2600  * @param ofs		offset relative to mtd start
2601  *
2602  * Mark the block as bad
2603  */
onenand_block_markbad(struct mtd_info * mtd,loff_t ofs)2604 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2605 {
2606 	struct onenand_chip *this = mtd->priv;
2607 	int ret;
2608 
2609 	ret = onenand_block_isbad(mtd, ofs);
2610 	if (ret) {
2611 		/* If it was bad already, return success and do nothing */
2612 		if (ret > 0)
2613 			return 0;
2614 		return ret;
2615 	}
2616 
2617 	onenand_get_device(mtd, FL_WRITING);
2618 	ret = this->block_markbad(mtd, ofs);
2619 	onenand_release_device(mtd);
2620 	return ret;
2621 }
2622 
2623 /**
2624  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2625  * @param mtd		MTD device structure
2626  * @param ofs		offset relative to mtd start
2627  * @param len		number of bytes to lock or unlock
2628  * @param cmd		lock or unlock command
2629  *
2630  * Lock or unlock one or more blocks
2631  */
onenand_do_lock_cmd(struct mtd_info * mtd,loff_t ofs,size_t len,int cmd)2632 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2633 {
2634 	struct onenand_chip *this = mtd->priv;
2635 	int start, end, block, value, status;
2636 	int wp_status_mask;
2637 
2638 	start = onenand_block(this, ofs);
2639 	end = onenand_block(this, ofs + len) - 1;
2640 
2641 	if (cmd == ONENAND_CMD_LOCK)
2642 		wp_status_mask = ONENAND_WP_LS;
2643 	else
2644 		wp_status_mask = ONENAND_WP_US;
2645 
2646 	/* Continuous lock scheme */
2647 	if (this->options & ONENAND_HAS_CONT_LOCK) {
2648 		/* Set start block address */
2649 		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2650 		/* Set end block address */
2651 		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2652 		/* Write lock command */
2653 		this->command(mtd, cmd, 0, 0);
2654 
2655 		/* There's no return value */
2656 		this->wait(mtd, FL_LOCKING);
2657 
2658 		/* Sanity check */
2659 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2660 		    & ONENAND_CTRL_ONGO)
2661 			continue;
2662 
2663 		/* Check lock status */
2664 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2665 		if (!(status & wp_status_mask))
2666 			printk(KERN_ERR "%s: wp status = 0x%x\n",
2667 				__func__, status);
2668 
2669 		return 0;
2670 	}
2671 
2672 	/* Block lock scheme */
2673 	for (block = start; block < end + 1; block++) {
2674 		/* Set block address */
2675 		value = onenand_block_address(this, block);
2676 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2677 		/* Select DataRAM for DDP */
2678 		value = onenand_bufferram_address(this, block);
2679 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2680 		/* Set start block address */
2681 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2682 		/* Write lock command */
2683 		this->command(mtd, cmd, 0, 0);
2684 
2685 		/* There's no return value */
2686 		this->wait(mtd, FL_LOCKING);
2687 
2688 		/* Sanity check */
2689 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2690 		    & ONENAND_CTRL_ONGO)
2691 			continue;
2692 
2693 		/* Check lock status */
2694 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2695 		if (!(status & wp_status_mask))
2696 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2697 				__func__, block, status);
2698 	}
2699 
2700 	return 0;
2701 }
2702 
2703 /**
2704  * onenand_lock - [MTD Interface] Lock block(s)
2705  * @param mtd		MTD device structure
2706  * @param ofs		offset relative to mtd start
2707  * @param len		number of bytes to unlock
2708  *
2709  * Lock one or more blocks
2710  */
onenand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2711 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2712 {
2713 	int ret;
2714 
2715 	onenand_get_device(mtd, FL_LOCKING);
2716 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2717 	onenand_release_device(mtd);
2718 	return ret;
2719 }
2720 
2721 /**
2722  * onenand_unlock - [MTD Interface] Unlock block(s)
2723  * @param mtd		MTD device structure
2724  * @param ofs		offset relative to mtd start
2725  * @param len		number of bytes to unlock
2726  *
2727  * Unlock one or more blocks
2728  */
onenand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2729 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2730 {
2731 	int ret;
2732 
2733 	onenand_get_device(mtd, FL_LOCKING);
2734 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2735 	onenand_release_device(mtd);
2736 	return ret;
2737 }
2738 
2739 /**
2740  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2741  * @param this		onenand chip data structure
2742  *
2743  * Check lock status
2744  */
onenand_check_lock_status(struct onenand_chip * this)2745 static int onenand_check_lock_status(struct onenand_chip *this)
2746 {
2747 	unsigned int value, block, status;
2748 	unsigned int end;
2749 
2750 	end = this->chipsize >> this->erase_shift;
2751 	for (block = 0; block < end; block++) {
2752 		/* Set block address */
2753 		value = onenand_block_address(this, block);
2754 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2755 		/* Select DataRAM for DDP */
2756 		value = onenand_bufferram_address(this, block);
2757 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2758 		/* Set start block address */
2759 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2760 
2761 		/* Check lock status */
2762 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2763 		if (!(status & ONENAND_WP_US)) {
2764 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2765 				__func__, block, status);
2766 			return 0;
2767 		}
2768 	}
2769 
2770 	return 1;
2771 }
2772 
2773 /**
2774  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2775  * @param mtd		MTD device structure
2776  *
2777  * Unlock all blocks
2778  */
onenand_unlock_all(struct mtd_info * mtd)2779 static void onenand_unlock_all(struct mtd_info *mtd)
2780 {
2781 	struct onenand_chip *this = mtd->priv;
2782 	loff_t ofs = 0;
2783 	loff_t len = mtd->size;
2784 
2785 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2786 		/* Set start block address */
2787 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2788 		/* Write unlock command */
2789 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2790 
2791 		/* There's no return value */
2792 		this->wait(mtd, FL_LOCKING);
2793 
2794 		/* Sanity check */
2795 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2796 		    & ONENAND_CTRL_ONGO)
2797 			continue;
2798 
2799 		/* Don't check lock status */
2800 		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2801 			return;
2802 
2803 		/* Check lock status */
2804 		if (onenand_check_lock_status(this))
2805 			return;
2806 
2807 		/* Workaround for all block unlock in DDP */
2808 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2809 			/* All blocks on another chip */
2810 			ofs = this->chipsize >> 1;
2811 			len = this->chipsize >> 1;
2812 		}
2813 	}
2814 
2815 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2816 }
2817 
2818 #ifdef CONFIG_MTD_ONENAND_OTP
2819 
2820 /**
2821  * onenand_otp_command - Send OTP specific command to OneNAND device
2822  * @param mtd	 MTD device structure
2823  * @param cmd	 the command to be sent
2824  * @param addr	 offset to read from or write to
2825  * @param len	 number of bytes to read or write
2826  */
onenand_otp_command(struct mtd_info * mtd,int cmd,loff_t addr,size_t len)2827 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2828 				size_t len)
2829 {
2830 	struct onenand_chip *this = mtd->priv;
2831 	int value, block, page;
2832 
2833 	/* Address translation */
2834 	switch (cmd) {
2835 	case ONENAND_CMD_OTP_ACCESS:
2836 		block = (int) (addr >> this->erase_shift);
2837 		page = -1;
2838 		break;
2839 
2840 	default:
2841 		block = (int) (addr >> this->erase_shift);
2842 		page = (int) (addr >> this->page_shift);
2843 
2844 		if (ONENAND_IS_2PLANE(this)) {
2845 			/* Make the even block number */
2846 			block &= ~1;
2847 			/* Is it the odd plane? */
2848 			if (addr & this->writesize)
2849 				block++;
2850 			page >>= 1;
2851 		}
2852 		page &= this->page_mask;
2853 		break;
2854 	}
2855 
2856 	if (block != -1) {
2857 		/* Write 'DFS, FBA' of Flash */
2858 		value = onenand_block_address(this, block);
2859 		this->write_word(value, this->base +
2860 				ONENAND_REG_START_ADDRESS1);
2861 	}
2862 
2863 	if (page != -1) {
2864 		/* Now we use page size operation */
2865 		int sectors = 4, count = 4;
2866 		int dataram;
2867 
2868 		switch (cmd) {
2869 		default:
2870 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2871 				cmd = ONENAND_CMD_2X_PROG;
2872 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
2873 			break;
2874 		}
2875 
2876 		/* Write 'FPA, FSA' of Flash */
2877 		value = onenand_page_address(page, sectors);
2878 		this->write_word(value, this->base +
2879 				ONENAND_REG_START_ADDRESS8);
2880 
2881 		/* Write 'BSA, BSC' of DataRAM */
2882 		value = onenand_buffer_address(dataram, sectors, count);
2883 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2884 	}
2885 
2886 	/* Interrupt clear */
2887 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2888 
2889 	/* Write command */
2890 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2891 
2892 	return 0;
2893 }
2894 
2895 /**
2896  * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2897  * @param mtd		MTD device structure
2898  * @param to		offset to write to
2899  * @param len		number of bytes to write
2900  * @param retlen	pointer to variable to store the number of written bytes
2901  * @param buf		the data to write
2902  *
2903  * OneNAND write out-of-band only for OTP
2904  */
onenand_otp_write_oob_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2905 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2906 				    struct mtd_oob_ops *ops)
2907 {
2908 	struct onenand_chip *this = mtd->priv;
2909 	int column, ret = 0, oobsize;
2910 	int written = 0;
2911 	u_char *oobbuf;
2912 	size_t len = ops->ooblen;
2913 	const u_char *buf = ops->oobbuf;
2914 	int block, value, status;
2915 
2916 	to += ops->ooboffs;
2917 
2918 	/* Initialize retlen, in case of early exit */
2919 	ops->oobretlen = 0;
2920 
2921 	oobsize = mtd->oobsize;
2922 
2923 	column = to & (mtd->oobsize - 1);
2924 
2925 	oobbuf = this->oob_buf;
2926 
2927 	/* Loop until all data write */
2928 	while (written < len) {
2929 		int thislen = min_t(int, oobsize, len - written);
2930 
2931 		cond_resched();
2932 
2933 		block = (int) (to >> this->erase_shift);
2934 		/*
2935 		 * Write 'DFS, FBA' of Flash
2936 		 * Add: F100h DQ=DFS, FBA
2937 		 */
2938 
2939 		value = onenand_block_address(this, block);
2940 		this->write_word(value, this->base +
2941 				ONENAND_REG_START_ADDRESS1);
2942 
2943 		/*
2944 		 * Select DataRAM for DDP
2945 		 * Add: F101h DQ=DBS
2946 		 */
2947 
2948 		value = onenand_bufferram_address(this, block);
2949 		this->write_word(value, this->base +
2950 				ONENAND_REG_START_ADDRESS2);
2951 		ONENAND_SET_NEXT_BUFFERRAM(this);
2952 
2953 		/*
2954 		 * Enter OTP access mode
2955 		 */
2956 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2957 		this->wait(mtd, FL_OTPING);
2958 
2959 		/* We send data to spare ram with oobsize
2960 		 * to prevent byte access */
2961 		memcpy(oobbuf + column, buf, thislen);
2962 
2963 		/*
2964 		 * Write Data into DataRAM
2965 		 * Add: 8th Word
2966 		 * in sector0/spare/page0
2967 		 * DQ=XXFCh
2968 		 */
2969 		this->write_bufferram(mtd, ONENAND_SPARERAM,
2970 					oobbuf, 0, mtd->oobsize);
2971 
2972 		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2973 		onenand_update_bufferram(mtd, to, 0);
2974 		if (ONENAND_IS_2PLANE(this)) {
2975 			ONENAND_SET_BUFFERRAM1(this);
2976 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2977 		}
2978 
2979 		ret = this->wait(mtd, FL_WRITING);
2980 		if (ret) {
2981 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2982 			break;
2983 		}
2984 
2985 		/* Exit OTP access mode */
2986 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2987 		this->wait(mtd, FL_RESETING);
2988 
2989 		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2990 		status &= 0x60;
2991 
2992 		if (status == 0x60) {
2993 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2994 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2995 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2996 		} else if (status == 0x20) {
2997 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2998 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2999 			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
3000 		} else if (status == 0x40) {
3001 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3002 			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
3003 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3004 		} else {
3005 			printk(KERN_DEBUG "Reboot to check\n");
3006 		}
3007 
3008 		written += thislen;
3009 		if (written == len)
3010 			break;
3011 
3012 		to += mtd->writesize;
3013 		buf += thislen;
3014 		column = 0;
3015 	}
3016 
3017 	ops->oobretlen = written;
3018 
3019 	return ret;
3020 }
3021 
3022 /* Internal OTP operation */
3023 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3024 		size_t *retlen, u_char *buf);
3025 
3026 /**
3027  * do_otp_read - [DEFAULT] Read OTP block area
3028  * @param mtd		MTD device structure
3029  * @param from		The offset to read
3030  * @param len		number of bytes to read
3031  * @param retlen	pointer to variable to store the number of readbytes
3032  * @param buf		the databuffer to put/get data
3033  *
3034  * Read OTP block area.
3035  */
do_otp_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3036 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3037 		size_t *retlen, u_char *buf)
3038 {
3039 	struct onenand_chip *this = mtd->priv;
3040 	struct mtd_oob_ops ops = {
3041 		.len	= len,
3042 		.ooblen	= 0,
3043 		.datbuf	= buf,
3044 		.oobbuf	= NULL,
3045 	};
3046 	int ret;
3047 
3048 	/* Enter OTP access mode */
3049 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3050 	this->wait(mtd, FL_OTPING);
3051 
3052 	ret = ONENAND_IS_4KB_PAGE(this) ?
3053 		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3054 		onenand_read_ops_nolock(mtd, from, &ops);
3055 
3056 	/* Exit OTP access mode */
3057 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3058 	this->wait(mtd, FL_RESETING);
3059 
3060 	return ret;
3061 }
3062 
3063 /**
3064  * do_otp_write - [DEFAULT] Write OTP block area
3065  * @param mtd		MTD device structure
3066  * @param to		The offset to write
3067  * @param len		number of bytes to write
3068  * @param retlen	pointer to variable to store the number of write bytes
3069  * @param buf		the databuffer to put/get data
3070  *
3071  * Write OTP block area.
3072  */
do_otp_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)3073 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3074 		size_t *retlen, u_char *buf)
3075 {
3076 	struct onenand_chip *this = mtd->priv;
3077 	unsigned char *pbuf = buf;
3078 	int ret;
3079 	struct mtd_oob_ops ops;
3080 
3081 	/* Force buffer page aligned */
3082 	if (len < mtd->writesize) {
3083 		memcpy(this->page_buf, buf, len);
3084 		memset(this->page_buf + len, 0xff, mtd->writesize - len);
3085 		pbuf = this->page_buf;
3086 		len = mtd->writesize;
3087 	}
3088 
3089 	/* Enter OTP access mode */
3090 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3091 	this->wait(mtd, FL_OTPING);
3092 
3093 	ops.len = len;
3094 	ops.ooblen = 0;
3095 	ops.datbuf = pbuf;
3096 	ops.oobbuf = NULL;
3097 	ret = onenand_write_ops_nolock(mtd, to, &ops);
3098 	*retlen = ops.retlen;
3099 
3100 	/* Exit OTP access mode */
3101 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3102 	this->wait(mtd, FL_RESETING);
3103 
3104 	return ret;
3105 }
3106 
3107 /**
3108  * do_otp_lock - [DEFAULT] Lock OTP block area
3109  * @param mtd		MTD device structure
3110  * @param from		The offset to lock
3111  * @param len		number of bytes to lock
3112  * @param retlen	pointer to variable to store the number of lock bytes
3113  * @param buf		the databuffer to put/get data
3114  *
3115  * Lock OTP block area.
3116  */
do_otp_lock(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3117 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3118 		size_t *retlen, u_char *buf)
3119 {
3120 	struct onenand_chip *this = mtd->priv;
3121 	struct mtd_oob_ops ops;
3122 	int ret;
3123 
3124 	if (FLEXONENAND(this)) {
3125 
3126 		/* Enter OTP access mode */
3127 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3128 		this->wait(mtd, FL_OTPING);
3129 		/*
3130 		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3131 		 * main area of page 49.
3132 		 */
3133 		ops.len = mtd->writesize;
3134 		ops.ooblen = 0;
3135 		ops.datbuf = buf;
3136 		ops.oobbuf = NULL;
3137 		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3138 		*retlen = ops.retlen;
3139 
3140 		/* Exit OTP access mode */
3141 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3142 		this->wait(mtd, FL_RESETING);
3143 	} else {
3144 		ops.mode = MTD_OOB_PLACE;
3145 		ops.ooblen = len;
3146 		ops.oobbuf = buf;
3147 		ops.ooboffs = 0;
3148 		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3149 		*retlen = ops.oobretlen;
3150 	}
3151 
3152 	return ret;
3153 }
3154 
3155 /**
3156  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3157  * @param mtd		MTD device structure
3158  * @param from		The offset to read/write
3159  * @param len		number of bytes to read/write
3160  * @param retlen	pointer to variable to store the number of read bytes
3161  * @param buf		the databuffer to put/get data
3162  * @param action	do given action
3163  * @param mode		specify user and factory
3164  *
3165  * Handle OTP operation.
3166  */
onenand_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int mode)3167 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3168 			size_t *retlen, u_char *buf,
3169 			otp_op_t action, int mode)
3170 {
3171 	struct onenand_chip *this = mtd->priv;
3172 	int otp_pages;
3173 	int density;
3174 	int ret = 0;
3175 
3176 	*retlen = 0;
3177 
3178 	density = onenand_get_density(this->device_id);
3179 	if (density < ONENAND_DEVICE_DENSITY_512Mb)
3180 		otp_pages = 20;
3181 	else
3182 		otp_pages = 50;
3183 
3184 	if (mode == MTD_OTP_FACTORY) {
3185 		from += mtd->writesize * otp_pages;
3186 		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3187 	}
3188 
3189 	/* Check User/Factory boundary */
3190 	if (mode == MTD_OTP_USER) {
3191 		if (mtd->writesize * otp_pages < from + len)
3192 			return 0;
3193 	} else {
3194 		if (mtd->writesize * otp_pages <  len)
3195 			return 0;
3196 	}
3197 
3198 	onenand_get_device(mtd, FL_OTPING);
3199 	while (len > 0 && otp_pages > 0) {
3200 		if (!action) {	/* OTP Info functions */
3201 			struct otp_info *otpinfo;
3202 
3203 			len -= sizeof(struct otp_info);
3204 			if (len <= 0) {
3205 				ret = -ENOSPC;
3206 				break;
3207 			}
3208 
3209 			otpinfo = (struct otp_info *) buf;
3210 			otpinfo->start = from;
3211 			otpinfo->length = mtd->writesize;
3212 			otpinfo->locked = 0;
3213 
3214 			from += mtd->writesize;
3215 			buf += sizeof(struct otp_info);
3216 			*retlen += sizeof(struct otp_info);
3217 		} else {
3218 			size_t tmp_retlen;
3219 
3220 			ret = action(mtd, from, len, &tmp_retlen, buf);
3221 
3222 			buf += tmp_retlen;
3223 			len -= tmp_retlen;
3224 			*retlen += tmp_retlen;
3225 
3226 			if (ret)
3227 				break;
3228 		}
3229 		otp_pages--;
3230 	}
3231 	onenand_release_device(mtd);
3232 
3233 	return ret;
3234 }
3235 
3236 /**
3237  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3238  * @param mtd		MTD device structure
3239  * @param buf		the databuffer to put/get data
3240  * @param len		number of bytes to read
3241  *
3242  * Read factory OTP info.
3243  */
onenand_get_fact_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)3244 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3245 			struct otp_info *buf, size_t len)
3246 {
3247 	size_t retlen;
3248 	int ret;
3249 
3250 	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3251 
3252 	return ret ? : retlen;
3253 }
3254 
3255 /**
3256  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3257  * @param mtd		MTD device structure
3258  * @param from		The offset to read
3259  * @param len		number of bytes to read
3260  * @param retlen	pointer to variable to store the number of read bytes
3261  * @param buf		the databuffer to put/get data
3262  *
3263  * Read factory OTP area.
3264  */
onenand_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3265 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3266 			size_t len, size_t *retlen, u_char *buf)
3267 {
3268 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3269 }
3270 
3271 /**
3272  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3273  * @param mtd		MTD device structure
3274  * @param buf		the databuffer to put/get data
3275  * @param len		number of bytes to read
3276  *
3277  * Read user OTP info.
3278  */
onenand_get_user_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)3279 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3280 			struct otp_info *buf, size_t len)
3281 {
3282 	size_t retlen;
3283 	int ret;
3284 
3285 	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3286 
3287 	return ret ? : retlen;
3288 }
3289 
3290 /**
3291  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3292  * @param mtd		MTD device structure
3293  * @param from		The offset to read
3294  * @param len		number of bytes to read
3295  * @param retlen	pointer to variable to store the number of read bytes
3296  * @param buf		the databuffer to put/get data
3297  *
3298  * Read user OTP area.
3299  */
onenand_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3300 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3301 			size_t len, size_t *retlen, u_char *buf)
3302 {
3303 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3304 }
3305 
3306 /**
3307  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3308  * @param mtd		MTD device structure
3309  * @param from		The offset to write
3310  * @param len		number of bytes to write
3311  * @param retlen	pointer to variable to store the number of write bytes
3312  * @param buf		the databuffer to put/get data
3313  *
3314  * Write user OTP area.
3315  */
onenand_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)3316 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3317 			size_t len, size_t *retlen, u_char *buf)
3318 {
3319 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3320 }
3321 
3322 /**
3323  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3324  * @param mtd		MTD device structure
3325  * @param from		The offset to lock
3326  * @param len		number of bytes to unlock
3327  *
3328  * Write lock mark on spare area in page 0 in OTP block
3329  */
onenand_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)3330 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3331 			size_t len)
3332 {
3333 	struct onenand_chip *this = mtd->priv;
3334 	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3335 	size_t retlen;
3336 	int ret;
3337 	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3338 
3339 	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3340 						 : mtd->oobsize);
3341 	/*
3342 	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3343 	 * We write 16 bytes spare area instead of 2 bytes.
3344 	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3345 	 * main area of page 49.
3346 	 */
3347 
3348 	from = 0;
3349 	len = FLEXONENAND(this) ? mtd->writesize : 16;
3350 
3351 	/*
3352 	 * Note: OTP lock operation
3353 	 *       OTP block : 0xXXFC			XX 1111 1100
3354 	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
3355 	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
3356 	 */
3357 	if (FLEXONENAND(this))
3358 		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3359 
3360 	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3361 	if (otp == 1)
3362 		buf[otp_lock_offset] = 0xFC;
3363 	else if (otp == 2)
3364 		buf[otp_lock_offset] = 0xF3;
3365 	else if (otp == 3)
3366 		buf[otp_lock_offset] = 0xF0;
3367 	else if (otp != 0)
3368 		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3369 
3370 	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3371 
3372 	return ret ? : retlen;
3373 }
3374 
3375 #endif	/* CONFIG_MTD_ONENAND_OTP */
3376 
3377 /**
3378  * onenand_check_features - Check and set OneNAND features
3379  * @param mtd		MTD data structure
3380  *
3381  * Check and set OneNAND features
3382  * - lock scheme
3383  * - two plane
3384  */
onenand_check_features(struct mtd_info * mtd)3385 static void onenand_check_features(struct mtd_info *mtd)
3386 {
3387 	struct onenand_chip *this = mtd->priv;
3388 	unsigned int density, process, numbufs;
3389 
3390 	/* Lock scheme depends on density and process */
3391 	density = onenand_get_density(this->device_id);
3392 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3393 	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3394 
3395 	/* Lock scheme */
3396 	switch (density) {
3397 	case ONENAND_DEVICE_DENSITY_4Gb:
3398 		if (ONENAND_IS_DDP(this))
3399 			this->options |= ONENAND_HAS_2PLANE;
3400 		else if (numbufs == 1) {
3401 			this->options |= ONENAND_HAS_4KB_PAGE;
3402 			this->options |= ONENAND_HAS_CACHE_PROGRAM;
3403 		}
3404 
3405 	case ONENAND_DEVICE_DENSITY_2Gb:
3406 		/* 2Gb DDP does not have 2 plane */
3407 		if (!ONENAND_IS_DDP(this))
3408 			this->options |= ONENAND_HAS_2PLANE;
3409 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3410 
3411 	case ONENAND_DEVICE_DENSITY_1Gb:
3412 		/* A-Die has all block unlock */
3413 		if (process)
3414 			this->options |= ONENAND_HAS_UNLOCK_ALL;
3415 		break;
3416 
3417 	default:
3418 		/* Some OneNAND has continuous lock scheme */
3419 		if (!process)
3420 			this->options |= ONENAND_HAS_CONT_LOCK;
3421 		break;
3422 	}
3423 
3424 	/* The MLC has 4KiB pagesize. */
3425 	if (ONENAND_IS_MLC(this))
3426 		this->options |= ONENAND_HAS_4KB_PAGE;
3427 
3428 	if (ONENAND_IS_4KB_PAGE(this))
3429 		this->options &= ~ONENAND_HAS_2PLANE;
3430 
3431 	if (FLEXONENAND(this)) {
3432 		this->options &= ~ONENAND_HAS_CONT_LOCK;
3433 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3434 	}
3435 
3436 	if (this->options & ONENAND_HAS_CONT_LOCK)
3437 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3438 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
3439 		printk(KERN_DEBUG "Chip support all block unlock\n");
3440 	if (this->options & ONENAND_HAS_2PLANE)
3441 		printk(KERN_DEBUG "Chip has 2 plane\n");
3442 	if (this->options & ONENAND_HAS_4KB_PAGE)
3443 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3444 	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3445 		printk(KERN_DEBUG "Chip has cache program feature\n");
3446 }
3447 
3448 /**
3449  * onenand_print_device_info - Print device & version ID
3450  * @param device        device ID
3451  * @param version	version ID
3452  *
3453  * Print device & version ID
3454  */
onenand_print_device_info(int device,int version)3455 static void onenand_print_device_info(int device, int version)
3456 {
3457 	int vcc, demuxed, ddp, density, flexonenand;
3458 
3459         vcc = device & ONENAND_DEVICE_VCC_MASK;
3460         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3461         ddp = device & ONENAND_DEVICE_IS_DDP;
3462         density = onenand_get_density(device);
3463 	flexonenand = device & DEVICE_IS_FLEXONENAND;
3464 	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3465 		demuxed ? "" : "Muxed ",
3466 		flexonenand ? "Flex-" : "",
3467                 ddp ? "(DDP)" : "",
3468                 (16 << density),
3469                 vcc ? "2.65/3.3" : "1.8",
3470                 device);
3471 	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3472 }
3473 
3474 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3475         {ONENAND_MFR_SAMSUNG, "Samsung"},
3476 	{ONENAND_MFR_NUMONYX, "Numonyx"},
3477 };
3478 
3479 /**
3480  * onenand_check_maf - Check manufacturer ID
3481  * @param manuf         manufacturer ID
3482  *
3483  * Check manufacturer ID
3484  */
onenand_check_maf(int manuf)3485 static int onenand_check_maf(int manuf)
3486 {
3487 	int size = ARRAY_SIZE(onenand_manuf_ids);
3488 	char *name;
3489         int i;
3490 
3491 	for (i = 0; i < size; i++)
3492                 if (manuf == onenand_manuf_ids[i].id)
3493                         break;
3494 
3495 	if (i < size)
3496 		name = onenand_manuf_ids[i].name;
3497 	else
3498 		name = "Unknown";
3499 
3500 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3501 
3502 	return (i == size);
3503 }
3504 
3505 /**
3506 * flexonenand_get_boundary	- Reads the SLC boundary
3507 * @param onenand_info		- onenand info structure
3508 **/
flexonenand_get_boundary(struct mtd_info * mtd)3509 static int flexonenand_get_boundary(struct mtd_info *mtd)
3510 {
3511 	struct onenand_chip *this = mtd->priv;
3512 	unsigned die, bdry;
3513 	int ret, syscfg, locked;
3514 
3515 	/* Disable ECC */
3516 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3517 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3518 
3519 	for (die = 0; die < this->dies; die++) {
3520 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3521 		this->wait(mtd, FL_SYNCING);
3522 
3523 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3524 		ret = this->wait(mtd, FL_READING);
3525 
3526 		bdry = this->read_word(this->base + ONENAND_DATARAM);
3527 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3528 			locked = 0;
3529 		else
3530 			locked = 1;
3531 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3532 
3533 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3534 		ret = this->wait(mtd, FL_RESETING);
3535 
3536 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3537 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3538 	}
3539 
3540 	/* Enable ECC */
3541 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3542 	return 0;
3543 }
3544 
3545 /**
3546  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3547  * 			  boundary[], diesize[], mtd->size, mtd->erasesize
3548  * @param mtd		- MTD device structure
3549  */
flexonenand_get_size(struct mtd_info * mtd)3550 static void flexonenand_get_size(struct mtd_info *mtd)
3551 {
3552 	struct onenand_chip *this = mtd->priv;
3553 	int die, i, eraseshift, density;
3554 	int blksperdie, maxbdry;
3555 	loff_t ofs;
3556 
3557 	density = onenand_get_density(this->device_id);
3558 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3559 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3560 	maxbdry = blksperdie - 1;
3561 	eraseshift = this->erase_shift - 1;
3562 
3563 	mtd->numeraseregions = this->dies << 1;
3564 
3565 	/* This fills up the device boundary */
3566 	flexonenand_get_boundary(mtd);
3567 	die = ofs = 0;
3568 	i = -1;
3569 	for (; die < this->dies; die++) {
3570 		if (!die || this->boundary[die-1] != maxbdry) {
3571 			i++;
3572 			mtd->eraseregions[i].offset = ofs;
3573 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3574 			mtd->eraseregions[i].numblocks =
3575 							this->boundary[die] + 1;
3576 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3577 			eraseshift++;
3578 		} else {
3579 			mtd->numeraseregions -= 1;
3580 			mtd->eraseregions[i].numblocks +=
3581 							this->boundary[die] + 1;
3582 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3583 		}
3584 		if (this->boundary[die] != maxbdry) {
3585 			i++;
3586 			mtd->eraseregions[i].offset = ofs;
3587 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3588 			mtd->eraseregions[i].numblocks = maxbdry ^
3589 							 this->boundary[die];
3590 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3591 			eraseshift--;
3592 		} else
3593 			mtd->numeraseregions -= 1;
3594 	}
3595 
3596 	/* Expose MLC erase size except when all blocks are SLC */
3597 	mtd->erasesize = 1 << this->erase_shift;
3598 	if (mtd->numeraseregions == 1)
3599 		mtd->erasesize >>= 1;
3600 
3601 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3602 	for (i = 0; i < mtd->numeraseregions; i++)
3603 		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3604 			" numblocks: %04u]\n",
3605 			(unsigned int) mtd->eraseregions[i].offset,
3606 			mtd->eraseregions[i].erasesize,
3607 			mtd->eraseregions[i].numblocks);
3608 
3609 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
3610 		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3611 		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3612 						 << (this->erase_shift - 1);
3613 		mtd->size += this->diesize[die];
3614 	}
3615 }
3616 
3617 /**
3618  * flexonenand_check_blocks_erased - Check if blocks are erased
3619  * @param mtd_info	- mtd info structure
3620  * @param start		- first erase block to check
3621  * @param end		- last erase block to check
3622  *
3623  * Converting an unerased block from MLC to SLC
3624  * causes byte values to change. Since both data and its ECC
3625  * have changed, reads on the block give uncorrectable error.
3626  * This might lead to the block being detected as bad.
3627  *
3628  * Avoid this by ensuring that the block to be converted is
3629  * erased.
3630  */
flexonenand_check_blocks_erased(struct mtd_info * mtd,int start,int end)3631 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3632 {
3633 	struct onenand_chip *this = mtd->priv;
3634 	int i, ret;
3635 	int block;
3636 	struct mtd_oob_ops ops = {
3637 		.mode = MTD_OOB_PLACE,
3638 		.ooboffs = 0,
3639 		.ooblen	= mtd->oobsize,
3640 		.datbuf	= NULL,
3641 		.oobbuf	= this->oob_buf,
3642 	};
3643 	loff_t addr;
3644 
3645 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3646 
3647 	for (block = start; block <= end; block++) {
3648 		addr = flexonenand_addr(this, block);
3649 		if (onenand_block_isbad_nolock(mtd, addr, 0))
3650 			continue;
3651 
3652 		/*
3653 		 * Since main area write results in ECC write to spare,
3654 		 * it is sufficient to check only ECC bytes for change.
3655 		 */
3656 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
3657 		if (ret)
3658 			return ret;
3659 
3660 		for (i = 0; i < mtd->oobsize; i++)
3661 			if (this->oob_buf[i] != 0xff)
3662 				break;
3663 
3664 		if (i != mtd->oobsize) {
3665 			printk(KERN_WARNING "%s: Block %d not erased.\n",
3666 				__func__, block);
3667 			return 1;
3668 		}
3669 	}
3670 
3671 	return 0;
3672 }
3673 
3674 /**
3675  * flexonenand_set_boundary	- Writes the SLC boundary
3676  * @param mtd			- mtd info structure
3677  */
flexonenand_set_boundary(struct mtd_info * mtd,int die,int boundary,int lock)3678 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3679 				    int boundary, int lock)
3680 {
3681 	struct onenand_chip *this = mtd->priv;
3682 	int ret, density, blksperdie, old, new, thisboundary;
3683 	loff_t addr;
3684 
3685 	/* Change only once for SDP Flex-OneNAND */
3686 	if (die && (!ONENAND_IS_DDP(this)))
3687 		return 0;
3688 
3689 	/* boundary value of -1 indicates no required change */
3690 	if (boundary < 0 || boundary == this->boundary[die])
3691 		return 0;
3692 
3693 	density = onenand_get_density(this->device_id);
3694 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
3695 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3696 
3697 	if (boundary >= blksperdie) {
3698 		printk(KERN_ERR "%s: Invalid boundary value. "
3699 				"Boundary not changed.\n", __func__);
3700 		return -EINVAL;
3701 	}
3702 
3703 	/* Check if converting blocks are erased */
3704 	old = this->boundary[die] + (die * this->density_mask);
3705 	new = boundary + (die * this->density_mask);
3706 	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3707 	if (ret) {
3708 		printk(KERN_ERR "%s: Please erase blocks "
3709 				"before boundary change\n", __func__);
3710 		return ret;
3711 	}
3712 
3713 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3714 	this->wait(mtd, FL_SYNCING);
3715 
3716 	/* Check is boundary is locked */
3717 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3718 	ret = this->wait(mtd, FL_READING);
3719 
3720 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3721 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3722 		printk(KERN_ERR "%s: boundary locked\n", __func__);
3723 		ret = 1;
3724 		goto out;
3725 	}
3726 
3727 	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3728 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
3729 
3730 	addr = die ? this->diesize[0] : 0;
3731 
3732 	boundary &= FLEXONENAND_PI_MASK;
3733 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3734 
3735 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3736 	ret = this->wait(mtd, FL_ERASING);
3737 	if (ret) {
3738 		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3739 		       __func__, die);
3740 		goto out;
3741 	}
3742 
3743 	this->write_word(boundary, this->base + ONENAND_DATARAM);
3744 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3745 	ret = this->wait(mtd, FL_WRITING);
3746 	if (ret) {
3747 		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3748 			__func__, die);
3749 		goto out;
3750 	}
3751 
3752 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3753 	ret = this->wait(mtd, FL_WRITING);
3754 out:
3755 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3756 	this->wait(mtd, FL_RESETING);
3757 	if (!ret)
3758 		/* Recalculate device size on boundary change*/
3759 		flexonenand_get_size(mtd);
3760 
3761 	return ret;
3762 }
3763 
3764 /**
3765  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3766  * @param mtd		MTD device structure
3767  *
3768  * OneNAND detection method:
3769  *   Compare the values from command with ones from register
3770  */
onenand_chip_probe(struct mtd_info * mtd)3771 static int onenand_chip_probe(struct mtd_info *mtd)
3772 {
3773 	struct onenand_chip *this = mtd->priv;
3774 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
3775 	int syscfg;
3776 
3777 	/* Save system configuration 1 */
3778 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3779 	/* Clear Sync. Burst Read mode to read BootRAM */
3780 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3781 
3782 	/* Send the command for reading device ID from BootRAM */
3783 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3784 
3785 	/* Read manufacturer and device IDs from BootRAM */
3786 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3787 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3788 
3789 	/* Reset OneNAND to read default register values */
3790 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3791 	/* Wait reset */
3792 	this->wait(mtd, FL_RESETING);
3793 
3794 	/* Restore system configuration 1 */
3795 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3796 
3797 	/* Check manufacturer ID */
3798 	if (onenand_check_maf(bram_maf_id))
3799 		return -ENXIO;
3800 
3801 	/* Read manufacturer and device IDs from Register */
3802 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3803 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3804 
3805 	/* Check OneNAND device */
3806 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3807 		return -ENXIO;
3808 
3809 	return 0;
3810 }
3811 
3812 /**
3813  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3814  * @param mtd		MTD device structure
3815  */
onenand_probe(struct mtd_info * mtd)3816 static int onenand_probe(struct mtd_info *mtd)
3817 {
3818 	struct onenand_chip *this = mtd->priv;
3819 	int maf_id, dev_id, ver_id;
3820 	int density;
3821 	int ret;
3822 
3823 	ret = this->chip_probe(mtd);
3824 	if (ret)
3825 		return ret;
3826 
3827 	/* Read manufacturer and device IDs from Register */
3828 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3829 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3830 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3831 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3832 
3833 	/* Flash device information */
3834 	onenand_print_device_info(dev_id, ver_id);
3835 	this->device_id = dev_id;
3836 	this->version_id = ver_id;
3837 
3838 	/* Check OneNAND features */
3839 	onenand_check_features(mtd);
3840 
3841 	density = onenand_get_density(dev_id);
3842 	if (FLEXONENAND(this)) {
3843 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3844 		/* Maximum possible erase regions */
3845 		mtd->numeraseregions = this->dies << 1;
3846 		mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3847 					* (this->dies << 1), GFP_KERNEL);
3848 		if (!mtd->eraseregions)
3849 			return -ENOMEM;
3850 	}
3851 
3852 	/*
3853 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
3854 	 * mtd->size represents the actual device size.
3855 	 */
3856 	this->chipsize = (16 << density) << 20;
3857 
3858 	/* OneNAND page size & block size */
3859 	/* The data buffer size is equal to page size */
3860 	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3861 	/* We use the full BufferRAM */
3862 	if (ONENAND_IS_4KB_PAGE(this))
3863 		mtd->writesize <<= 1;
3864 
3865 	mtd->oobsize = mtd->writesize >> 5;
3866 	/* Pages per a block are always 64 in OneNAND */
3867 	mtd->erasesize = mtd->writesize << 6;
3868 	/*
3869 	 * Flex-OneNAND SLC area has 64 pages per block.
3870 	 * Flex-OneNAND MLC area has 128 pages per block.
3871 	 * Expose MLC erase size to find erase_shift and page_mask.
3872 	 */
3873 	if (FLEXONENAND(this))
3874 		mtd->erasesize <<= 1;
3875 
3876 	this->erase_shift = ffs(mtd->erasesize) - 1;
3877 	this->page_shift = ffs(mtd->writesize) - 1;
3878 	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3879 	/* Set density mask. it is used for DDP */
3880 	if (ONENAND_IS_DDP(this))
3881 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
3882 	/* It's real page size */
3883 	this->writesize = mtd->writesize;
3884 
3885 	/* REVISIT: Multichip handling */
3886 
3887 	if (FLEXONENAND(this))
3888 		flexonenand_get_size(mtd);
3889 	else
3890 		mtd->size = this->chipsize;
3891 
3892 	/*
3893 	 * We emulate the 4KiB page and 256KiB erase block size
3894 	 * But oobsize is still 64 bytes.
3895 	 * It is only valid if you turn on 2X program support,
3896 	 * Otherwise it will be ignored by compiler.
3897 	 */
3898 	if (ONENAND_IS_2PLANE(this)) {
3899 		mtd->writesize <<= 1;
3900 		mtd->erasesize <<= 1;
3901 	}
3902 
3903 	return 0;
3904 }
3905 
3906 /**
3907  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3908  * @param mtd		MTD device structure
3909  */
onenand_suspend(struct mtd_info * mtd)3910 static int onenand_suspend(struct mtd_info *mtd)
3911 {
3912 	return onenand_get_device(mtd, FL_PM_SUSPENDED);
3913 }
3914 
3915 /**
3916  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3917  * @param mtd		MTD device structure
3918  */
onenand_resume(struct mtd_info * mtd)3919 static void onenand_resume(struct mtd_info *mtd)
3920 {
3921 	struct onenand_chip *this = mtd->priv;
3922 
3923 	if (this->state == FL_PM_SUSPENDED)
3924 		onenand_release_device(mtd);
3925 	else
3926 		printk(KERN_ERR "%s: resume() called for the chip which is not "
3927 				"in suspended state\n", __func__);
3928 }
3929 
3930 /**
3931  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3932  * @param mtd		MTD device structure
3933  * @param maxchips	Number of chips to scan for
3934  *
3935  * This fills out all the not initialized function pointers
3936  * with the defaults.
3937  * The flash ID is read and the mtd/chip structures are
3938  * filled with the appropriate values.
3939  */
onenand_scan(struct mtd_info * mtd,int maxchips)3940 int onenand_scan(struct mtd_info *mtd, int maxchips)
3941 {
3942 	int i, ret;
3943 	struct onenand_chip *this = mtd->priv;
3944 
3945 	if (!this->read_word)
3946 		this->read_word = onenand_readw;
3947 	if (!this->write_word)
3948 		this->write_word = onenand_writew;
3949 
3950 	if (!this->command)
3951 		this->command = onenand_command;
3952 	if (!this->wait)
3953 		onenand_setup_wait(mtd);
3954 	if (!this->bbt_wait)
3955 		this->bbt_wait = onenand_bbt_wait;
3956 	if (!this->unlock_all)
3957 		this->unlock_all = onenand_unlock_all;
3958 
3959 	if (!this->chip_probe)
3960 		this->chip_probe = onenand_chip_probe;
3961 
3962 	if (!this->read_bufferram)
3963 		this->read_bufferram = onenand_read_bufferram;
3964 	if (!this->write_bufferram)
3965 		this->write_bufferram = onenand_write_bufferram;
3966 
3967 	if (!this->block_markbad)
3968 		this->block_markbad = onenand_default_block_markbad;
3969 	if (!this->scan_bbt)
3970 		this->scan_bbt = onenand_default_bbt;
3971 
3972 	if (onenand_probe(mtd))
3973 		return -ENXIO;
3974 
3975 	/* Set Sync. Burst Read after probing */
3976 	if (this->mmcontrol) {
3977 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3978 		this->read_bufferram = onenand_sync_read_bufferram;
3979 	}
3980 
3981 	/* Allocate buffers, if necessary */
3982 	if (!this->page_buf) {
3983 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3984 		if (!this->page_buf) {
3985 			printk(KERN_ERR "%s: Can't allocate page_buf\n",
3986 				__func__);
3987 			return -ENOMEM;
3988 		}
3989 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3990 		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3991 		if (!this->verify_buf) {
3992 			kfree(this->page_buf);
3993 			return -ENOMEM;
3994 		}
3995 #endif
3996 		this->options |= ONENAND_PAGEBUF_ALLOC;
3997 	}
3998 	if (!this->oob_buf) {
3999 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
4000 		if (!this->oob_buf) {
4001 			printk(KERN_ERR "%s: Can't allocate oob_buf\n",
4002 				__func__);
4003 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
4004 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
4005 				kfree(this->page_buf);
4006 			}
4007 			return -ENOMEM;
4008 		}
4009 		this->options |= ONENAND_OOBBUF_ALLOC;
4010 	}
4011 
4012 	this->state = FL_READY;
4013 	init_waitqueue_head(&this->wq);
4014 	spin_lock_init(&this->chip_lock);
4015 
4016 	/*
4017 	 * Allow subpage writes up to oobsize.
4018 	 */
4019 	switch (mtd->oobsize) {
4020 	case 128:
4021 		this->ecclayout = &onenand_oob_128;
4022 		mtd->subpage_sft = 0;
4023 		break;
4024 	case 64:
4025 		this->ecclayout = &onenand_oob_64;
4026 		mtd->subpage_sft = 2;
4027 		break;
4028 
4029 	case 32:
4030 		this->ecclayout = &onenand_oob_32;
4031 		mtd->subpage_sft = 1;
4032 		break;
4033 
4034 	default:
4035 		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4036 			__func__, mtd->oobsize);
4037 		mtd->subpage_sft = 0;
4038 		/* To prevent kernel oops */
4039 		this->ecclayout = &onenand_oob_32;
4040 		break;
4041 	}
4042 
4043 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4044 
4045 	/*
4046 	 * The number of bytes available for a client to place data into
4047 	 * the out of band area
4048 	 */
4049 	this->ecclayout->oobavail = 0;
4050 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4051 	    this->ecclayout->oobfree[i].length; i++)
4052 		this->ecclayout->oobavail +=
4053 			this->ecclayout->oobfree[i].length;
4054 	mtd->oobavail = this->ecclayout->oobavail;
4055 
4056 	mtd->ecclayout = this->ecclayout;
4057 
4058 	/* Fill in remaining MTD driver data */
4059 	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4060 	mtd->flags = MTD_CAP_NANDFLASH;
4061 	mtd->erase = onenand_erase;
4062 	mtd->point = NULL;
4063 	mtd->unpoint = NULL;
4064 	mtd->read = onenand_read;
4065 	mtd->write = onenand_write;
4066 	mtd->read_oob = onenand_read_oob;
4067 	mtd->write_oob = onenand_write_oob;
4068 	mtd->panic_write = onenand_panic_write;
4069 #ifdef CONFIG_MTD_ONENAND_OTP
4070 	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
4071 	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
4072 	mtd->get_user_prot_info = onenand_get_user_prot_info;
4073 	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
4074 	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
4075 	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
4076 #endif
4077 	mtd->sync = onenand_sync;
4078 	mtd->lock = onenand_lock;
4079 	mtd->unlock = onenand_unlock;
4080 	mtd->suspend = onenand_suspend;
4081 	mtd->resume = onenand_resume;
4082 	mtd->block_isbad = onenand_block_isbad;
4083 	mtd->block_markbad = onenand_block_markbad;
4084 	mtd->owner = THIS_MODULE;
4085 	mtd->writebufsize = mtd->writesize;
4086 
4087 	/* Unlock whole block */
4088 	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4089 		this->unlock_all(mtd);
4090 
4091 	ret = this->scan_bbt(mtd);
4092 	if ((!FLEXONENAND(this)) || ret)
4093 		return ret;
4094 
4095 	/* Change Flex-OneNAND boundaries if required */
4096 	for (i = 0; i < MAX_DIES; i++)
4097 		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4098 						 flex_bdry[(2 * i) + 1]);
4099 
4100 	return 0;
4101 }
4102 
4103 /**
4104  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4105  * @param mtd		MTD device structure
4106  */
onenand_release(struct mtd_info * mtd)4107 void onenand_release(struct mtd_info *mtd)
4108 {
4109 	struct onenand_chip *this = mtd->priv;
4110 
4111 #ifdef CONFIG_MTD_PARTITIONS
4112 	/* Deregister partitions */
4113 	del_mtd_partitions (mtd);
4114 #endif
4115 	/* Deregister the device */
4116 	del_mtd_device (mtd);
4117 
4118 	/* Free bad block table memory, if allocated */
4119 	if (this->bbm) {
4120 		struct bbm_info *bbm = this->bbm;
4121 		kfree(bbm->bbt);
4122 		kfree(this->bbm);
4123 	}
4124 	/* Buffers allocated by onenand_scan */
4125 	if (this->options & ONENAND_PAGEBUF_ALLOC) {
4126 		kfree(this->page_buf);
4127 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4128 		kfree(this->verify_buf);
4129 #endif
4130 	}
4131 	if (this->options & ONENAND_OOBBUF_ALLOC)
4132 		kfree(this->oob_buf);
4133 	kfree(mtd->eraseregions);
4134 }
4135 
4136 EXPORT_SYMBOL_GPL(onenand_scan);
4137 EXPORT_SYMBOL_GPL(onenand_release);
4138 
4139 MODULE_LICENSE("GPL");
4140 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4141 MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4142