1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
29
30 /*
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
38 *
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
49 *
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
53 */
54
55 /*
56 * Number of guaranteed r10bios in case of extreme VM load:
57 */
58 #define NR_RAID10_BIOS 256
59
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
62
r10bio_pool_alloc(gfp_t gfp_flags,void * data)63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 {
65 conf_t *conf = data;
66 int size = offsetof(struct r10bio_s, devs[conf->copies]);
67
68 /* allocate a r10bio with room for raid_disks entries in the bios array */
69 return kzalloc(size, gfp_flags);
70 }
71
r10bio_pool_free(void * r10_bio,void * data)72 static void r10bio_pool_free(void *r10_bio, void *data)
73 {
74 kfree(r10_bio);
75 }
76
77 /* Maximum size of each resync request */
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 /* amount of memory to reserve for resync requests */
81 #define RESYNC_WINDOW (1024*1024)
82 /* maximum number of concurrent requests, memory permitting */
83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
84
85 /*
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
90 *
91 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
100
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 if (!r10_bio)
103 return NULL;
104
105 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
106 nalloc = conf->copies; /* resync */
107 else
108 nalloc = 2; /* recovery */
109
110 /*
111 * Allocate bios.
112 */
113 for (j = nalloc ; j-- ; ) {
114 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
115 if (!bio)
116 goto out_free_bio;
117 r10_bio->devs[j].bio = bio;
118 }
119 /*
120 * Allocate RESYNC_PAGES data pages and attach them
121 * where needed.
122 */
123 for (j = 0 ; j < nalloc; j++) {
124 bio = r10_bio->devs[j].bio;
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
131 }
132 }
133
134 return r10_bio;
135
136 out_free_pages:
137 for ( ; i > 0 ; i--)
138 safe_put_page(bio->bi_io_vec[i-1].bv_page);
139 while (j--)
140 for (i = 0; i < RESYNC_PAGES ; i++)
141 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
142 j = -1;
143 out_free_bio:
144 while ( ++j < nalloc )
145 bio_put(r10_bio->devs[j].bio);
146 r10bio_pool_free(r10_bio, conf);
147 return NULL;
148 }
149
r10buf_pool_free(void * __r10_bio,void * data)150 static void r10buf_pool_free(void *__r10_bio, void *data)
151 {
152 int i;
153 conf_t *conf = data;
154 r10bio_t *r10bio = __r10_bio;
155 int j;
156
157 for (j=0; j < conf->copies; j++) {
158 struct bio *bio = r10bio->devs[j].bio;
159 if (bio) {
160 for (i = 0; i < RESYNC_PAGES; i++) {
161 safe_put_page(bio->bi_io_vec[i].bv_page);
162 bio->bi_io_vec[i].bv_page = NULL;
163 }
164 bio_put(bio);
165 }
166 }
167 r10bio_pool_free(r10bio, conf);
168 }
169
put_all_bios(conf_t * conf,r10bio_t * r10_bio)170 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
171 {
172 int i;
173
174 for (i = 0; i < conf->copies; i++) {
175 struct bio **bio = & r10_bio->devs[i].bio;
176 if (*bio && *bio != IO_BLOCKED)
177 bio_put(*bio);
178 *bio = NULL;
179 }
180 }
181
free_r10bio(r10bio_t * r10_bio)182 static void free_r10bio(r10bio_t *r10_bio)
183 {
184 conf_t *conf = r10_bio->mddev->private;
185
186 /*
187 * Wake up any possible resync thread that waits for the device
188 * to go idle.
189 */
190 allow_barrier(conf);
191
192 put_all_bios(conf, r10_bio);
193 mempool_free(r10_bio, conf->r10bio_pool);
194 }
195
put_buf(r10bio_t * r10_bio)196 static void put_buf(r10bio_t *r10_bio)
197 {
198 conf_t *conf = r10_bio->mddev->private;
199
200 mempool_free(r10_bio, conf->r10buf_pool);
201
202 lower_barrier(conf);
203 }
204
reschedule_retry(r10bio_t * r10_bio)205 static void reschedule_retry(r10bio_t *r10_bio)
206 {
207 unsigned long flags;
208 mddev_t *mddev = r10_bio->mddev;
209 conf_t *conf = mddev->private;
210
211 spin_lock_irqsave(&conf->device_lock, flags);
212 list_add(&r10_bio->retry_list, &conf->retry_list);
213 conf->nr_queued ++;
214 spin_unlock_irqrestore(&conf->device_lock, flags);
215
216 /* wake up frozen array... */
217 wake_up(&conf->wait_barrier);
218
219 md_wakeup_thread(mddev->thread);
220 }
221
222 /*
223 * raid_end_bio_io() is called when we have finished servicing a mirrored
224 * operation and are ready to return a success/failure code to the buffer
225 * cache layer.
226 */
raid_end_bio_io(r10bio_t * r10_bio)227 static void raid_end_bio_io(r10bio_t *r10_bio)
228 {
229 struct bio *bio = r10_bio->master_bio;
230
231 bio_endio(bio,
232 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
233 free_r10bio(r10_bio);
234 }
235
236 /*
237 * Update disk head position estimator based on IRQ completion info.
238 */
update_head_pos(int slot,r10bio_t * r10_bio)239 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
240 {
241 conf_t *conf = r10_bio->mddev->private;
242
243 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
244 r10_bio->devs[slot].addr + (r10_bio->sectors);
245 }
246
raid10_end_read_request(struct bio * bio,int error)247 static void raid10_end_read_request(struct bio *bio, int error)
248 {
249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
250 r10bio_t *r10_bio = bio->bi_private;
251 int slot, dev;
252 conf_t *conf = r10_bio->mddev->private;
253
254
255 slot = r10_bio->read_slot;
256 dev = r10_bio->devs[slot].devnum;
257 /*
258 * this branch is our 'one mirror IO has finished' event handler:
259 */
260 update_head_pos(slot, r10_bio);
261
262 if (uptodate) {
263 /*
264 * Set R10BIO_Uptodate in our master bio, so that
265 * we will return a good error code to the higher
266 * levels even if IO on some other mirrored buffer fails.
267 *
268 * The 'master' represents the composite IO operation to
269 * user-side. So if something waits for IO, then it will
270 * wait for the 'master' bio.
271 */
272 set_bit(R10BIO_Uptodate, &r10_bio->state);
273 raid_end_bio_io(r10_bio);
274 } else {
275 /*
276 * oops, read error:
277 */
278 char b[BDEVNAME_SIZE];
279 if (printk_ratelimit())
280 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
281 mdname(conf->mddev),
282 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
283 reschedule_retry(r10_bio);
284 }
285
286 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 }
288
raid10_end_write_request(struct bio * bio,int error)289 static void raid10_end_write_request(struct bio *bio, int error)
290 {
291 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
292 r10bio_t *r10_bio = bio->bi_private;
293 int slot, dev;
294 conf_t *conf = r10_bio->mddev->private;
295
296 for (slot = 0; slot < conf->copies; slot++)
297 if (r10_bio->devs[slot].bio == bio)
298 break;
299 dev = r10_bio->devs[slot].devnum;
300
301 /*
302 * this branch is our 'one mirror IO has finished' event handler:
303 */
304 if (!uptodate) {
305 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
306 /* an I/O failed, we can't clear the bitmap */
307 set_bit(R10BIO_Degraded, &r10_bio->state);
308 } else
309 /*
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code for to the higher
312 * levels even if IO on some other mirrored buffer fails.
313 *
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
317 */
318 set_bit(R10BIO_Uptodate, &r10_bio->state);
319
320 update_head_pos(slot, r10_bio);
321
322 /*
323 *
324 * Let's see if all mirrored write operations have finished
325 * already.
326 */
327 if (atomic_dec_and_test(&r10_bio->remaining)) {
328 /* clear the bitmap if all writes complete successfully */
329 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
330 r10_bio->sectors,
331 !test_bit(R10BIO_Degraded, &r10_bio->state),
332 0);
333 md_write_end(r10_bio->mddev);
334 raid_end_bio_io(r10_bio);
335 }
336
337 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
338 }
339
340
341 /*
342 * RAID10 layout manager
343 * As well as the chunksize and raid_disks count, there are two
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
349 *
350 * Chunks are laid out in raid0 style with near_copies copies of the
351 * first chunk, followed by near_copies copies of the next chunk and
352 * so on.
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
358 *
359 * raid10_find_phys finds the sector offset of a given virtual sector
360 * on each device that it is on.
361 *
362 * raid10_find_virt does the reverse mapping, from a device and a
363 * sector offset to a virtual address
364 */
365
raid10_find_phys(conf_t * conf,r10bio_t * r10bio)366 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
367 {
368 int n,f;
369 sector_t sector;
370 sector_t chunk;
371 sector_t stripe;
372 int dev;
373
374 int slot = 0;
375
376 /* now calculate first sector/dev */
377 chunk = r10bio->sector >> conf->chunk_shift;
378 sector = r10bio->sector & conf->chunk_mask;
379
380 chunk *= conf->near_copies;
381 stripe = chunk;
382 dev = sector_div(stripe, conf->raid_disks);
383 if (conf->far_offset)
384 stripe *= conf->far_copies;
385
386 sector += stripe << conf->chunk_shift;
387
388 /* and calculate all the others */
389 for (n=0; n < conf->near_copies; n++) {
390 int d = dev;
391 sector_t s = sector;
392 r10bio->devs[slot].addr = sector;
393 r10bio->devs[slot].devnum = d;
394 slot++;
395
396 for (f = 1; f < conf->far_copies; f++) {
397 d += conf->near_copies;
398 if (d >= conf->raid_disks)
399 d -= conf->raid_disks;
400 s += conf->stride;
401 r10bio->devs[slot].devnum = d;
402 r10bio->devs[slot].addr = s;
403 slot++;
404 }
405 dev++;
406 if (dev >= conf->raid_disks) {
407 dev = 0;
408 sector += (conf->chunk_mask + 1);
409 }
410 }
411 BUG_ON(slot != conf->copies);
412 }
413
raid10_find_virt(conf_t * conf,sector_t sector,int dev)414 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
415 {
416 sector_t offset, chunk, vchunk;
417
418 offset = sector & conf->chunk_mask;
419 if (conf->far_offset) {
420 int fc;
421 chunk = sector >> conf->chunk_shift;
422 fc = sector_div(chunk, conf->far_copies);
423 dev -= fc * conf->near_copies;
424 if (dev < 0)
425 dev += conf->raid_disks;
426 } else {
427 while (sector >= conf->stride) {
428 sector -= conf->stride;
429 if (dev < conf->near_copies)
430 dev += conf->raid_disks - conf->near_copies;
431 else
432 dev -= conf->near_copies;
433 }
434 chunk = sector >> conf->chunk_shift;
435 }
436 vchunk = chunk * conf->raid_disks + dev;
437 sector_div(vchunk, conf->near_copies);
438 return (vchunk << conf->chunk_shift) + offset;
439 }
440
441 /**
442 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
443 * @q: request queue
444 * @bvm: properties of new bio
445 * @biovec: the request that could be merged to it.
446 *
447 * Return amount of bytes we can accept at this offset
448 * If near_copies == raid_disk, there are no striping issues,
449 * but in that case, the function isn't called at all.
450 */
raid10_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)451 static int raid10_mergeable_bvec(struct request_queue *q,
452 struct bvec_merge_data *bvm,
453 struct bio_vec *biovec)
454 {
455 mddev_t *mddev = q->queuedata;
456 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
457 int max;
458 unsigned int chunk_sectors = mddev->chunk_sectors;
459 unsigned int bio_sectors = bvm->bi_size >> 9;
460
461 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
462 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
463 if (max <= biovec->bv_len && bio_sectors == 0)
464 return biovec->bv_len;
465 else
466 return max;
467 }
468
469 /*
470 * This routine returns the disk from which the requested read should
471 * be done. There is a per-array 'next expected sequential IO' sector
472 * number - if this matches on the next IO then we use the last disk.
473 * There is also a per-disk 'last know head position' sector that is
474 * maintained from IRQ contexts, both the normal and the resync IO
475 * completion handlers update this position correctly. If there is no
476 * perfect sequential match then we pick the disk whose head is closest.
477 *
478 * If there are 2 mirrors in the same 2 devices, performance degrades
479 * because position is mirror, not device based.
480 *
481 * The rdev for the device selected will have nr_pending incremented.
482 */
483
484 /*
485 * FIXME: possibly should rethink readbalancing and do it differently
486 * depending on near_copies / far_copies geometry.
487 */
read_balance(conf_t * conf,r10bio_t * r10_bio)488 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
489 {
490 const sector_t this_sector = r10_bio->sector;
491 int disk, slot, nslot;
492 const int sectors = r10_bio->sectors;
493 sector_t new_distance, current_distance;
494 mdk_rdev_t *rdev;
495
496 raid10_find_phys(conf, r10_bio);
497 rcu_read_lock();
498 /*
499 * Check if we can balance. We can balance on the whole
500 * device if no resync is going on (recovery is ok), or below
501 * the resync window. We take the first readable disk when
502 * above the resync window.
503 */
504 if (conf->mddev->recovery_cp < MaxSector
505 && (this_sector + sectors >= conf->next_resync)) {
506 /* make sure that disk is operational */
507 slot = 0;
508 disk = r10_bio->devs[slot].devnum;
509
510 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
511 r10_bio->devs[slot].bio == IO_BLOCKED ||
512 !test_bit(In_sync, &rdev->flags)) {
513 slot++;
514 if (slot == conf->copies) {
515 slot = 0;
516 disk = -1;
517 break;
518 }
519 disk = r10_bio->devs[slot].devnum;
520 }
521 goto rb_out;
522 }
523
524
525 /* make sure the disk is operational */
526 slot = 0;
527 disk = r10_bio->devs[slot].devnum;
528 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
529 r10_bio->devs[slot].bio == IO_BLOCKED ||
530 !test_bit(In_sync, &rdev->flags)) {
531 slot ++;
532 if (slot == conf->copies) {
533 disk = -1;
534 goto rb_out;
535 }
536 disk = r10_bio->devs[slot].devnum;
537 }
538
539
540 current_distance = abs(r10_bio->devs[slot].addr -
541 conf->mirrors[disk].head_position);
542
543 /* Find the disk whose head is closest,
544 * or - for far > 1 - find the closest to partition beginning */
545
546 for (nslot = slot; nslot < conf->copies; nslot++) {
547 int ndisk = r10_bio->devs[nslot].devnum;
548
549
550 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
551 r10_bio->devs[nslot].bio == IO_BLOCKED ||
552 !test_bit(In_sync, &rdev->flags))
553 continue;
554
555 /* This optimisation is debatable, and completely destroys
556 * sequential read speed for 'far copies' arrays. So only
557 * keep it for 'near' arrays, and review those later.
558 */
559 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
560 disk = ndisk;
561 slot = nslot;
562 break;
563 }
564
565 /* for far > 1 always use the lowest address */
566 if (conf->far_copies > 1)
567 new_distance = r10_bio->devs[nslot].addr;
568 else
569 new_distance = abs(r10_bio->devs[nslot].addr -
570 conf->mirrors[ndisk].head_position);
571 if (new_distance < current_distance) {
572 current_distance = new_distance;
573 disk = ndisk;
574 slot = nslot;
575 }
576 }
577
578 rb_out:
579 r10_bio->read_slot = slot;
580 /* conf->next_seq_sect = this_sector + sectors;*/
581
582 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
583 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
584 else
585 disk = -1;
586 rcu_read_unlock();
587
588 return disk;
589 }
590
raid10_congested(void * data,int bits)591 static int raid10_congested(void *data, int bits)
592 {
593 mddev_t *mddev = data;
594 conf_t *conf = mddev->private;
595 int i, ret = 0;
596
597 if (mddev_congested(mddev, bits))
598 return 1;
599 rcu_read_lock();
600 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
602 if (rdev && !test_bit(Faulty, &rdev->flags)) {
603 struct request_queue *q = bdev_get_queue(rdev->bdev);
604
605 ret |= bdi_congested(&q->backing_dev_info, bits);
606 }
607 }
608 rcu_read_unlock();
609 return ret;
610 }
611
flush_pending_writes(conf_t * conf)612 static void flush_pending_writes(conf_t *conf)
613 {
614 /* Any writes that have been queued but are awaiting
615 * bitmap updates get flushed here.
616 */
617 spin_lock_irq(&conf->device_lock);
618
619 if (conf->pending_bio_list.head) {
620 struct bio *bio;
621 bio = bio_list_get(&conf->pending_bio_list);
622 spin_unlock_irq(&conf->device_lock);
623 /* flush any pending bitmap writes to disk
624 * before proceeding w/ I/O */
625 bitmap_unplug(conf->mddev->bitmap);
626
627 while (bio) { /* submit pending writes */
628 struct bio *next = bio->bi_next;
629 bio->bi_next = NULL;
630 generic_make_request(bio);
631 bio = next;
632 }
633 } else
634 spin_unlock_irq(&conf->device_lock);
635 }
636
637 /* Barriers....
638 * Sometimes we need to suspend IO while we do something else,
639 * either some resync/recovery, or reconfigure the array.
640 * To do this we raise a 'barrier'.
641 * The 'barrier' is a counter that can be raised multiple times
642 * to count how many activities are happening which preclude
643 * normal IO.
644 * We can only raise the barrier if there is no pending IO.
645 * i.e. if nr_pending == 0.
646 * We choose only to raise the barrier if no-one is waiting for the
647 * barrier to go down. This means that as soon as an IO request
648 * is ready, no other operations which require a barrier will start
649 * until the IO request has had a chance.
650 *
651 * So: regular IO calls 'wait_barrier'. When that returns there
652 * is no backgroup IO happening, It must arrange to call
653 * allow_barrier when it has finished its IO.
654 * backgroup IO calls must call raise_barrier. Once that returns
655 * there is no normal IO happeing. It must arrange to call
656 * lower_barrier when the particular background IO completes.
657 */
658
raise_barrier(conf_t * conf,int force)659 static void raise_barrier(conf_t *conf, int force)
660 {
661 BUG_ON(force && !conf->barrier);
662 spin_lock_irq(&conf->resync_lock);
663
664 /* Wait until no block IO is waiting (unless 'force') */
665 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
666 conf->resync_lock, );
667
668 /* block any new IO from starting */
669 conf->barrier++;
670
671 /* Now wait for all pending IO to complete */
672 wait_event_lock_irq(conf->wait_barrier,
673 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
674 conf->resync_lock, );
675
676 spin_unlock_irq(&conf->resync_lock);
677 }
678
lower_barrier(conf_t * conf)679 static void lower_barrier(conf_t *conf)
680 {
681 unsigned long flags;
682 spin_lock_irqsave(&conf->resync_lock, flags);
683 conf->barrier--;
684 spin_unlock_irqrestore(&conf->resync_lock, flags);
685 wake_up(&conf->wait_barrier);
686 }
687
wait_barrier(conf_t * conf)688 static void wait_barrier(conf_t *conf)
689 {
690 spin_lock_irq(&conf->resync_lock);
691 if (conf->barrier) {
692 conf->nr_waiting++;
693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
694 conf->resync_lock,
695 );
696 conf->nr_waiting--;
697 }
698 conf->nr_pending++;
699 spin_unlock_irq(&conf->resync_lock);
700 }
701
allow_barrier(conf_t * conf)702 static void allow_barrier(conf_t *conf)
703 {
704 unsigned long flags;
705 spin_lock_irqsave(&conf->resync_lock, flags);
706 conf->nr_pending--;
707 spin_unlock_irqrestore(&conf->resync_lock, flags);
708 wake_up(&conf->wait_barrier);
709 }
710
freeze_array(conf_t * conf)711 static void freeze_array(conf_t *conf)
712 {
713 /* stop syncio and normal IO and wait for everything to
714 * go quiet.
715 * We increment barrier and nr_waiting, and then
716 * wait until nr_pending match nr_queued+1
717 * This is called in the context of one normal IO request
718 * that has failed. Thus any sync request that might be pending
719 * will be blocked by nr_pending, and we need to wait for
720 * pending IO requests to complete or be queued for re-try.
721 * Thus the number queued (nr_queued) plus this request (1)
722 * must match the number of pending IOs (nr_pending) before
723 * we continue.
724 */
725 spin_lock_irq(&conf->resync_lock);
726 conf->barrier++;
727 conf->nr_waiting++;
728 wait_event_lock_irq(conf->wait_barrier,
729 conf->nr_pending == conf->nr_queued+1,
730 conf->resync_lock,
731 flush_pending_writes(conf));
732
733 spin_unlock_irq(&conf->resync_lock);
734 }
735
unfreeze_array(conf_t * conf)736 static void unfreeze_array(conf_t *conf)
737 {
738 /* reverse the effect of the freeze */
739 spin_lock_irq(&conf->resync_lock);
740 conf->barrier--;
741 conf->nr_waiting--;
742 wake_up(&conf->wait_barrier);
743 spin_unlock_irq(&conf->resync_lock);
744 }
745
make_request(mddev_t * mddev,struct bio * bio)746 static int make_request(mddev_t *mddev, struct bio * bio)
747 {
748 conf_t *conf = mddev->private;
749 mirror_info_t *mirror;
750 r10bio_t *r10_bio;
751 struct bio *read_bio;
752 int i;
753 int chunk_sects = conf->chunk_mask + 1;
754 const int rw = bio_data_dir(bio);
755 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
756 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
757 unsigned long flags;
758 mdk_rdev_t *blocked_rdev;
759 int plugged;
760
761 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
762 md_flush_request(mddev, bio);
763 return 0;
764 }
765
766 /* If this request crosses a chunk boundary, we need to
767 * split it. This will only happen for 1 PAGE (or less) requests.
768 */
769 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
770 > chunk_sects &&
771 conf->near_copies < conf->raid_disks)) {
772 struct bio_pair *bp;
773 /* Sanity check -- queue functions should prevent this happening */
774 if (bio->bi_vcnt != 1 ||
775 bio->bi_idx != 0)
776 goto bad_map;
777 /* This is a one page bio that upper layers
778 * refuse to split for us, so we need to split it.
779 */
780 bp = bio_split(bio,
781 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
782
783 /* Each of these 'make_request' calls will call 'wait_barrier'.
784 * If the first succeeds but the second blocks due to the resync
785 * thread raising the barrier, we will deadlock because the
786 * IO to the underlying device will be queued in generic_make_request
787 * and will never complete, so will never reduce nr_pending.
788 * So increment nr_waiting here so no new raise_barriers will
789 * succeed, and so the second wait_barrier cannot block.
790 */
791 spin_lock_irq(&conf->resync_lock);
792 conf->nr_waiting++;
793 spin_unlock_irq(&conf->resync_lock);
794
795 if (make_request(mddev, &bp->bio1))
796 generic_make_request(&bp->bio1);
797 if (make_request(mddev, &bp->bio2))
798 generic_make_request(&bp->bio2);
799
800 spin_lock_irq(&conf->resync_lock);
801 conf->nr_waiting--;
802 wake_up(&conf->wait_barrier);
803 spin_unlock_irq(&conf->resync_lock);
804
805 bio_pair_release(bp);
806 return 0;
807 bad_map:
808 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
809 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
810 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
811
812 bio_io_error(bio);
813 return 0;
814 }
815
816 md_write_start(mddev, bio);
817
818 /*
819 * Register the new request and wait if the reconstruction
820 * thread has put up a bar for new requests.
821 * Continue immediately if no resync is active currently.
822 */
823 wait_barrier(conf);
824
825 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
826
827 r10_bio->master_bio = bio;
828 r10_bio->sectors = bio->bi_size >> 9;
829
830 r10_bio->mddev = mddev;
831 r10_bio->sector = bio->bi_sector;
832 r10_bio->state = 0;
833
834 if (rw == READ) {
835 /*
836 * read balancing logic:
837 */
838 int disk = read_balance(conf, r10_bio);
839 int slot = r10_bio->read_slot;
840 if (disk < 0) {
841 raid_end_bio_io(r10_bio);
842 return 0;
843 }
844 mirror = conf->mirrors + disk;
845
846 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
847
848 r10_bio->devs[slot].bio = read_bio;
849
850 read_bio->bi_sector = r10_bio->devs[slot].addr +
851 mirror->rdev->data_offset;
852 read_bio->bi_bdev = mirror->rdev->bdev;
853 read_bio->bi_end_io = raid10_end_read_request;
854 read_bio->bi_rw = READ | do_sync;
855 read_bio->bi_private = r10_bio;
856
857 generic_make_request(read_bio);
858 return 0;
859 }
860
861 /*
862 * WRITE:
863 */
864 /* first select target devices under rcu_lock and
865 * inc refcount on their rdev. Record them by setting
866 * bios[x] to bio
867 */
868 plugged = mddev_check_plugged(mddev);
869
870 raid10_find_phys(conf, r10_bio);
871 retry_write:
872 blocked_rdev = NULL;
873 rcu_read_lock();
874 for (i = 0; i < conf->copies; i++) {
875 int d = r10_bio->devs[i].devnum;
876 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
877 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
878 atomic_inc(&rdev->nr_pending);
879 blocked_rdev = rdev;
880 break;
881 }
882 if (rdev && !test_bit(Faulty, &rdev->flags)) {
883 atomic_inc(&rdev->nr_pending);
884 r10_bio->devs[i].bio = bio;
885 } else {
886 r10_bio->devs[i].bio = NULL;
887 set_bit(R10BIO_Degraded, &r10_bio->state);
888 }
889 }
890 rcu_read_unlock();
891
892 if (unlikely(blocked_rdev)) {
893 /* Have to wait for this device to get unblocked, then retry */
894 int j;
895 int d;
896
897 for (j = 0; j < i; j++)
898 if (r10_bio->devs[j].bio) {
899 d = r10_bio->devs[j].devnum;
900 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
901 }
902 allow_barrier(conf);
903 md_wait_for_blocked_rdev(blocked_rdev, mddev);
904 wait_barrier(conf);
905 goto retry_write;
906 }
907
908 atomic_set(&r10_bio->remaining, 1);
909 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
910
911 for (i = 0; i < conf->copies; i++) {
912 struct bio *mbio;
913 int d = r10_bio->devs[i].devnum;
914 if (!r10_bio->devs[i].bio)
915 continue;
916
917 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
918 r10_bio->devs[i].bio = mbio;
919
920 mbio->bi_sector = r10_bio->devs[i].addr+
921 conf->mirrors[d].rdev->data_offset;
922 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
923 mbio->bi_end_io = raid10_end_write_request;
924 mbio->bi_rw = WRITE | do_sync | do_fua;
925 mbio->bi_private = r10_bio;
926
927 atomic_inc(&r10_bio->remaining);
928 spin_lock_irqsave(&conf->device_lock, flags);
929 bio_list_add(&conf->pending_bio_list, mbio);
930 spin_unlock_irqrestore(&conf->device_lock, flags);
931 }
932
933 if (atomic_dec_and_test(&r10_bio->remaining)) {
934 /* This matches the end of raid10_end_write_request() */
935 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
936 r10_bio->sectors,
937 !test_bit(R10BIO_Degraded, &r10_bio->state),
938 0);
939 md_write_end(mddev);
940 raid_end_bio_io(r10_bio);
941 }
942
943 /* In case raid10d snuck in to freeze_array */
944 wake_up(&conf->wait_barrier);
945
946 if (do_sync || !mddev->bitmap || !plugged)
947 md_wakeup_thread(mddev->thread);
948 return 0;
949 }
950
status(struct seq_file * seq,mddev_t * mddev)951 static void status(struct seq_file *seq, mddev_t *mddev)
952 {
953 conf_t *conf = mddev->private;
954 int i;
955
956 if (conf->near_copies < conf->raid_disks)
957 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
958 if (conf->near_copies > 1)
959 seq_printf(seq, " %d near-copies", conf->near_copies);
960 if (conf->far_copies > 1) {
961 if (conf->far_offset)
962 seq_printf(seq, " %d offset-copies", conf->far_copies);
963 else
964 seq_printf(seq, " %d far-copies", conf->far_copies);
965 }
966 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
967 conf->raid_disks - mddev->degraded);
968 for (i = 0; i < conf->raid_disks; i++)
969 seq_printf(seq, "%s",
970 conf->mirrors[i].rdev &&
971 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
972 seq_printf(seq, "]");
973 }
974
error(mddev_t * mddev,mdk_rdev_t * rdev)975 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
976 {
977 char b[BDEVNAME_SIZE];
978 conf_t *conf = mddev->private;
979
980 /*
981 * If it is not operational, then we have already marked it as dead
982 * else if it is the last working disks, ignore the error, let the
983 * next level up know.
984 * else mark the drive as failed
985 */
986 if (test_bit(In_sync, &rdev->flags)
987 && conf->raid_disks-mddev->degraded == 1)
988 /*
989 * Don't fail the drive, just return an IO error.
990 * The test should really be more sophisticated than
991 * "working_disks == 1", but it isn't critical, and
992 * can wait until we do more sophisticated "is the drive
993 * really dead" tests...
994 */
995 return;
996 if (test_and_clear_bit(In_sync, &rdev->flags)) {
997 unsigned long flags;
998 spin_lock_irqsave(&conf->device_lock, flags);
999 mddev->degraded++;
1000 spin_unlock_irqrestore(&conf->device_lock, flags);
1001 /*
1002 * if recovery is running, make sure it aborts.
1003 */
1004 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1005 }
1006 set_bit(Faulty, &rdev->flags);
1007 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1008 printk(KERN_ALERT
1009 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1010 "md/raid10:%s: Operation continuing on %d devices.\n",
1011 mdname(mddev), bdevname(rdev->bdev, b),
1012 mdname(mddev), conf->raid_disks - mddev->degraded);
1013 }
1014
print_conf(conf_t * conf)1015 static void print_conf(conf_t *conf)
1016 {
1017 int i;
1018 mirror_info_t *tmp;
1019
1020 printk(KERN_DEBUG "RAID10 conf printout:\n");
1021 if (!conf) {
1022 printk(KERN_DEBUG "(!conf)\n");
1023 return;
1024 }
1025 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1026 conf->raid_disks);
1027
1028 for (i = 0; i < conf->raid_disks; i++) {
1029 char b[BDEVNAME_SIZE];
1030 tmp = conf->mirrors + i;
1031 if (tmp->rdev)
1032 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1033 i, !test_bit(In_sync, &tmp->rdev->flags),
1034 !test_bit(Faulty, &tmp->rdev->flags),
1035 bdevname(tmp->rdev->bdev,b));
1036 }
1037 }
1038
close_sync(conf_t * conf)1039 static void close_sync(conf_t *conf)
1040 {
1041 wait_barrier(conf);
1042 allow_barrier(conf);
1043
1044 mempool_destroy(conf->r10buf_pool);
1045 conf->r10buf_pool = NULL;
1046 }
1047
1048 /* check if there are enough drives for
1049 * every block to appear on atleast one
1050 */
enough(conf_t * conf)1051 static int enough(conf_t *conf)
1052 {
1053 int first = 0;
1054
1055 do {
1056 int n = conf->copies;
1057 int cnt = 0;
1058 while (n--) {
1059 if (conf->mirrors[first].rdev)
1060 cnt++;
1061 first = (first+1) % conf->raid_disks;
1062 }
1063 if (cnt == 0)
1064 return 0;
1065 } while (first != 0);
1066 return 1;
1067 }
1068
raid10_spare_active(mddev_t * mddev)1069 static int raid10_spare_active(mddev_t *mddev)
1070 {
1071 int i;
1072 conf_t *conf = mddev->private;
1073 mirror_info_t *tmp;
1074 int count = 0;
1075 unsigned long flags;
1076
1077 /*
1078 * Find all non-in_sync disks within the RAID10 configuration
1079 * and mark them in_sync
1080 */
1081 for (i = 0; i < conf->raid_disks; i++) {
1082 tmp = conf->mirrors + i;
1083 if (tmp->rdev
1084 && !test_bit(Faulty, &tmp->rdev->flags)
1085 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1086 count++;
1087 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1088 }
1089 }
1090 spin_lock_irqsave(&conf->device_lock, flags);
1091 mddev->degraded -= count;
1092 spin_unlock_irqrestore(&conf->device_lock, flags);
1093
1094 print_conf(conf);
1095 return count;
1096 }
1097
1098
raid10_add_disk(mddev_t * mddev,mdk_rdev_t * rdev)1099 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1100 {
1101 conf_t *conf = mddev->private;
1102 int err = -EEXIST;
1103 int mirror;
1104 mirror_info_t *p;
1105 int first = 0;
1106 int last = conf->raid_disks - 1;
1107
1108 if (mddev->recovery_cp < MaxSector)
1109 /* only hot-add to in-sync arrays, as recovery is
1110 * very different from resync
1111 */
1112 return -EBUSY;
1113 if (!enough(conf))
1114 return -EINVAL;
1115
1116 if (rdev->raid_disk >= 0)
1117 first = last = rdev->raid_disk;
1118
1119 if (rdev->saved_raid_disk >= 0 &&
1120 rdev->saved_raid_disk >= first &&
1121 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1122 mirror = rdev->saved_raid_disk;
1123 else
1124 mirror = first;
1125 for ( ; mirror <= last ; mirror++)
1126 if ( !(p=conf->mirrors+mirror)->rdev) {
1127
1128 disk_stack_limits(mddev->gendisk, rdev->bdev,
1129 rdev->data_offset << 9);
1130 /* as we don't honour merge_bvec_fn, we must
1131 * never risk violating it, so limit
1132 * ->max_segments to one lying with a single
1133 * page, as a one page request is never in
1134 * violation.
1135 */
1136 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1137 blk_queue_max_segments(mddev->queue, 1);
1138 blk_queue_segment_boundary(mddev->queue,
1139 PAGE_CACHE_SIZE - 1);
1140 }
1141
1142 p->head_position = 0;
1143 rdev->raid_disk = mirror;
1144 err = 0;
1145 if (rdev->saved_raid_disk != mirror)
1146 conf->fullsync = 1;
1147 rcu_assign_pointer(p->rdev, rdev);
1148 break;
1149 }
1150
1151 md_integrity_add_rdev(rdev, mddev);
1152 print_conf(conf);
1153 return err;
1154 }
1155
raid10_remove_disk(mddev_t * mddev,int number)1156 static int raid10_remove_disk(mddev_t *mddev, int number)
1157 {
1158 conf_t *conf = mddev->private;
1159 int err = 0;
1160 mdk_rdev_t *rdev;
1161 mirror_info_t *p = conf->mirrors+ number;
1162
1163 print_conf(conf);
1164 rdev = p->rdev;
1165 if (rdev) {
1166 if (test_bit(In_sync, &rdev->flags) ||
1167 atomic_read(&rdev->nr_pending)) {
1168 err = -EBUSY;
1169 goto abort;
1170 }
1171 /* Only remove faulty devices in recovery
1172 * is not possible.
1173 */
1174 if (!test_bit(Faulty, &rdev->flags) &&
1175 enough(conf)) {
1176 err = -EBUSY;
1177 goto abort;
1178 }
1179 p->rdev = NULL;
1180 synchronize_rcu();
1181 if (atomic_read(&rdev->nr_pending)) {
1182 /* lost the race, try later */
1183 err = -EBUSY;
1184 p->rdev = rdev;
1185 goto abort;
1186 }
1187 err = md_integrity_register(mddev);
1188 }
1189 abort:
1190
1191 print_conf(conf);
1192 return err;
1193 }
1194
1195
end_sync_read(struct bio * bio,int error)1196 static void end_sync_read(struct bio *bio, int error)
1197 {
1198 r10bio_t *r10_bio = bio->bi_private;
1199 conf_t *conf = r10_bio->mddev->private;
1200 int i,d;
1201
1202 for (i=0; i<conf->copies; i++)
1203 if (r10_bio->devs[i].bio == bio)
1204 break;
1205 BUG_ON(i == conf->copies);
1206 update_head_pos(i, r10_bio);
1207 d = r10_bio->devs[i].devnum;
1208
1209 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1210 set_bit(R10BIO_Uptodate, &r10_bio->state);
1211 else {
1212 atomic_add(r10_bio->sectors,
1213 &conf->mirrors[d].rdev->corrected_errors);
1214 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1215 md_error(r10_bio->mddev,
1216 conf->mirrors[d].rdev);
1217 }
1218
1219 /* for reconstruct, we always reschedule after a read.
1220 * for resync, only after all reads
1221 */
1222 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1223 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1224 atomic_dec_and_test(&r10_bio->remaining)) {
1225 /* we have read all the blocks,
1226 * do the comparison in process context in raid10d
1227 */
1228 reschedule_retry(r10_bio);
1229 }
1230 }
1231
end_sync_write(struct bio * bio,int error)1232 static void end_sync_write(struct bio *bio, int error)
1233 {
1234 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1235 r10bio_t *r10_bio = bio->bi_private;
1236 mddev_t *mddev = r10_bio->mddev;
1237 conf_t *conf = mddev->private;
1238 int i,d;
1239
1240 for (i = 0; i < conf->copies; i++)
1241 if (r10_bio->devs[i].bio == bio)
1242 break;
1243 d = r10_bio->devs[i].devnum;
1244
1245 if (!uptodate)
1246 md_error(mddev, conf->mirrors[d].rdev);
1247
1248 update_head_pos(i, r10_bio);
1249
1250 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1251 while (atomic_dec_and_test(&r10_bio->remaining)) {
1252 if (r10_bio->master_bio == NULL) {
1253 /* the primary of several recovery bios */
1254 sector_t s = r10_bio->sectors;
1255 put_buf(r10_bio);
1256 md_done_sync(mddev, s, 1);
1257 break;
1258 } else {
1259 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1260 put_buf(r10_bio);
1261 r10_bio = r10_bio2;
1262 }
1263 }
1264 }
1265
1266 /*
1267 * Note: sync and recover and handled very differently for raid10
1268 * This code is for resync.
1269 * For resync, we read through virtual addresses and read all blocks.
1270 * If there is any error, we schedule a write. The lowest numbered
1271 * drive is authoritative.
1272 * However requests come for physical address, so we need to map.
1273 * For every physical address there are raid_disks/copies virtual addresses,
1274 * which is always are least one, but is not necessarly an integer.
1275 * This means that a physical address can span multiple chunks, so we may
1276 * have to submit multiple io requests for a single sync request.
1277 */
1278 /*
1279 * We check if all blocks are in-sync and only write to blocks that
1280 * aren't in sync
1281 */
sync_request_write(mddev_t * mddev,r10bio_t * r10_bio)1282 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1283 {
1284 conf_t *conf = mddev->private;
1285 int i, first;
1286 struct bio *tbio, *fbio;
1287
1288 atomic_set(&r10_bio->remaining, 1);
1289
1290 /* find the first device with a block */
1291 for (i=0; i<conf->copies; i++)
1292 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1293 break;
1294
1295 if (i == conf->copies)
1296 goto done;
1297
1298 first = i;
1299 fbio = r10_bio->devs[i].bio;
1300
1301 /* now find blocks with errors */
1302 for (i=0 ; i < conf->copies ; i++) {
1303 int j, d;
1304 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1305
1306 tbio = r10_bio->devs[i].bio;
1307
1308 if (tbio->bi_end_io != end_sync_read)
1309 continue;
1310 if (i == first)
1311 continue;
1312 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1313 /* We know that the bi_io_vec layout is the same for
1314 * both 'first' and 'i', so we just compare them.
1315 * All vec entries are PAGE_SIZE;
1316 */
1317 for (j = 0; j < vcnt; j++)
1318 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1319 page_address(tbio->bi_io_vec[j].bv_page),
1320 PAGE_SIZE))
1321 break;
1322 if (j == vcnt)
1323 continue;
1324 mddev->resync_mismatches += r10_bio->sectors;
1325 }
1326 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1327 /* Don't fix anything. */
1328 continue;
1329 /* Ok, we need to write this bio
1330 * First we need to fixup bv_offset, bv_len and
1331 * bi_vecs, as the read request might have corrupted these
1332 */
1333 tbio->bi_vcnt = vcnt;
1334 tbio->bi_size = r10_bio->sectors << 9;
1335 tbio->bi_idx = 0;
1336 tbio->bi_phys_segments = 0;
1337 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1338 tbio->bi_flags |= 1 << BIO_UPTODATE;
1339 tbio->bi_next = NULL;
1340 tbio->bi_rw = WRITE;
1341 tbio->bi_private = r10_bio;
1342 tbio->bi_sector = r10_bio->devs[i].addr;
1343
1344 for (j=0; j < vcnt ; j++) {
1345 tbio->bi_io_vec[j].bv_offset = 0;
1346 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1347
1348 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1349 page_address(fbio->bi_io_vec[j].bv_page),
1350 PAGE_SIZE);
1351 }
1352 tbio->bi_end_io = end_sync_write;
1353
1354 d = r10_bio->devs[i].devnum;
1355 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1356 atomic_inc(&r10_bio->remaining);
1357 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1358
1359 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1360 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1361 generic_make_request(tbio);
1362 }
1363
1364 done:
1365 if (atomic_dec_and_test(&r10_bio->remaining)) {
1366 md_done_sync(mddev, r10_bio->sectors, 1);
1367 put_buf(r10_bio);
1368 }
1369 }
1370
1371 /*
1372 * Now for the recovery code.
1373 * Recovery happens across physical sectors.
1374 * We recover all non-is_sync drives by finding the virtual address of
1375 * each, and then choose a working drive that also has that virt address.
1376 * There is a separate r10_bio for each non-in_sync drive.
1377 * Only the first two slots are in use. The first for reading,
1378 * The second for writing.
1379 *
1380 */
1381
recovery_request_write(mddev_t * mddev,r10bio_t * r10_bio)1382 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1383 {
1384 conf_t *conf = mddev->private;
1385 int i, d;
1386 struct bio *bio, *wbio;
1387
1388
1389 /* move the pages across to the second bio
1390 * and submit the write request
1391 */
1392 bio = r10_bio->devs[0].bio;
1393 wbio = r10_bio->devs[1].bio;
1394 for (i=0; i < wbio->bi_vcnt; i++) {
1395 struct page *p = bio->bi_io_vec[i].bv_page;
1396 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1397 wbio->bi_io_vec[i].bv_page = p;
1398 }
1399 d = r10_bio->devs[1].devnum;
1400
1401 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1402 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1403 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1404 generic_make_request(wbio);
1405 else
1406 bio_endio(wbio, -EIO);
1407 }
1408
1409
1410 /*
1411 * Used by fix_read_error() to decay the per rdev read_errors.
1412 * We halve the read error count for every hour that has elapsed
1413 * since the last recorded read error.
1414 *
1415 */
check_decay_read_errors(mddev_t * mddev,mdk_rdev_t * rdev)1416 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1417 {
1418 struct timespec cur_time_mon;
1419 unsigned long hours_since_last;
1420 unsigned int read_errors = atomic_read(&rdev->read_errors);
1421
1422 ktime_get_ts(&cur_time_mon);
1423
1424 if (rdev->last_read_error.tv_sec == 0 &&
1425 rdev->last_read_error.tv_nsec == 0) {
1426 /* first time we've seen a read error */
1427 rdev->last_read_error = cur_time_mon;
1428 return;
1429 }
1430
1431 hours_since_last = (cur_time_mon.tv_sec -
1432 rdev->last_read_error.tv_sec) / 3600;
1433
1434 rdev->last_read_error = cur_time_mon;
1435
1436 /*
1437 * if hours_since_last is > the number of bits in read_errors
1438 * just set read errors to 0. We do this to avoid
1439 * overflowing the shift of read_errors by hours_since_last.
1440 */
1441 if (hours_since_last >= 8 * sizeof(read_errors))
1442 atomic_set(&rdev->read_errors, 0);
1443 else
1444 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1445 }
1446
1447 /*
1448 * This is a kernel thread which:
1449 *
1450 * 1. Retries failed read operations on working mirrors.
1451 * 2. Updates the raid superblock when problems encounter.
1452 * 3. Performs writes following reads for array synchronising.
1453 */
1454
fix_read_error(conf_t * conf,mddev_t * mddev,r10bio_t * r10_bio)1455 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1456 {
1457 int sect = 0; /* Offset from r10_bio->sector */
1458 int sectors = r10_bio->sectors;
1459 mdk_rdev_t*rdev;
1460 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1461 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1462
1463 rcu_read_lock();
1464 rdev = rcu_dereference(conf->mirrors[d].rdev);
1465 if (rdev) { /* If rdev is not NULL */
1466 char b[BDEVNAME_SIZE];
1467 int cur_read_error_count = 0;
1468
1469 bdevname(rdev->bdev, b);
1470
1471 if (test_bit(Faulty, &rdev->flags)) {
1472 rcu_read_unlock();
1473 /* drive has already been failed, just ignore any
1474 more fix_read_error() attempts */
1475 return;
1476 }
1477
1478 check_decay_read_errors(mddev, rdev);
1479 atomic_inc(&rdev->read_errors);
1480 cur_read_error_count = atomic_read(&rdev->read_errors);
1481 if (cur_read_error_count > max_read_errors) {
1482 rcu_read_unlock();
1483 printk(KERN_NOTICE
1484 "md/raid10:%s: %s: Raid device exceeded "
1485 "read_error threshold "
1486 "[cur %d:max %d]\n",
1487 mdname(mddev),
1488 b, cur_read_error_count, max_read_errors);
1489 printk(KERN_NOTICE
1490 "md/raid10:%s: %s: Failing raid "
1491 "device\n", mdname(mddev), b);
1492 md_error(mddev, conf->mirrors[d].rdev);
1493 return;
1494 }
1495 }
1496 rcu_read_unlock();
1497
1498 while(sectors) {
1499 int s = sectors;
1500 int sl = r10_bio->read_slot;
1501 int success = 0;
1502 int start;
1503
1504 if (s > (PAGE_SIZE>>9))
1505 s = PAGE_SIZE >> 9;
1506
1507 rcu_read_lock();
1508 do {
1509 d = r10_bio->devs[sl].devnum;
1510 rdev = rcu_dereference(conf->mirrors[d].rdev);
1511 if (rdev &&
1512 test_bit(In_sync, &rdev->flags)) {
1513 atomic_inc(&rdev->nr_pending);
1514 rcu_read_unlock();
1515 success = sync_page_io(rdev,
1516 r10_bio->devs[sl].addr +
1517 sect,
1518 s<<9,
1519 conf->tmppage, READ, false);
1520 rdev_dec_pending(rdev, mddev);
1521 rcu_read_lock();
1522 if (success)
1523 break;
1524 }
1525 sl++;
1526 if (sl == conf->copies)
1527 sl = 0;
1528 } while (!success && sl != r10_bio->read_slot);
1529 rcu_read_unlock();
1530
1531 if (!success) {
1532 /* Cannot read from anywhere -- bye bye array */
1533 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1534 md_error(mddev, conf->mirrors[dn].rdev);
1535 break;
1536 }
1537
1538 start = sl;
1539 /* write it back and re-read */
1540 rcu_read_lock();
1541 while (sl != r10_bio->read_slot) {
1542 char b[BDEVNAME_SIZE];
1543
1544 if (sl==0)
1545 sl = conf->copies;
1546 sl--;
1547 d = r10_bio->devs[sl].devnum;
1548 rdev = rcu_dereference(conf->mirrors[d].rdev);
1549 if (rdev &&
1550 test_bit(In_sync, &rdev->flags)) {
1551 atomic_inc(&rdev->nr_pending);
1552 rcu_read_unlock();
1553 atomic_add(s, &rdev->corrected_errors);
1554 if (sync_page_io(rdev,
1555 r10_bio->devs[sl].addr +
1556 sect,
1557 s<<9, conf->tmppage, WRITE, false)
1558 == 0) {
1559 /* Well, this device is dead */
1560 printk(KERN_NOTICE
1561 "md/raid10:%s: read correction "
1562 "write failed"
1563 " (%d sectors at %llu on %s)\n",
1564 mdname(mddev), s,
1565 (unsigned long long)(sect+
1566 rdev->data_offset),
1567 bdevname(rdev->bdev, b));
1568 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1569 "drive\n",
1570 mdname(mddev),
1571 bdevname(rdev->bdev, b));
1572 md_error(mddev, rdev);
1573 }
1574 rdev_dec_pending(rdev, mddev);
1575 rcu_read_lock();
1576 }
1577 }
1578 sl = start;
1579 while (sl != r10_bio->read_slot) {
1580
1581 if (sl==0)
1582 sl = conf->copies;
1583 sl--;
1584 d = r10_bio->devs[sl].devnum;
1585 rdev = rcu_dereference(conf->mirrors[d].rdev);
1586 if (rdev &&
1587 test_bit(In_sync, &rdev->flags)) {
1588 char b[BDEVNAME_SIZE];
1589 atomic_inc(&rdev->nr_pending);
1590 rcu_read_unlock();
1591 if (sync_page_io(rdev,
1592 r10_bio->devs[sl].addr +
1593 sect,
1594 s<<9, conf->tmppage,
1595 READ, false) == 0) {
1596 /* Well, this device is dead */
1597 printk(KERN_NOTICE
1598 "md/raid10:%s: unable to read back "
1599 "corrected sectors"
1600 " (%d sectors at %llu on %s)\n",
1601 mdname(mddev), s,
1602 (unsigned long long)(sect+
1603 rdev->data_offset),
1604 bdevname(rdev->bdev, b));
1605 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1606 mdname(mddev),
1607 bdevname(rdev->bdev, b));
1608
1609 md_error(mddev, rdev);
1610 } else {
1611 printk(KERN_INFO
1612 "md/raid10:%s: read error corrected"
1613 " (%d sectors at %llu on %s)\n",
1614 mdname(mddev), s,
1615 (unsigned long long)(sect+
1616 rdev->data_offset),
1617 bdevname(rdev->bdev, b));
1618 }
1619
1620 rdev_dec_pending(rdev, mddev);
1621 rcu_read_lock();
1622 }
1623 }
1624 rcu_read_unlock();
1625
1626 sectors -= s;
1627 sect += s;
1628 }
1629 }
1630
raid10d(mddev_t * mddev)1631 static void raid10d(mddev_t *mddev)
1632 {
1633 r10bio_t *r10_bio;
1634 struct bio *bio;
1635 unsigned long flags;
1636 conf_t *conf = mddev->private;
1637 struct list_head *head = &conf->retry_list;
1638 mdk_rdev_t *rdev;
1639 struct blk_plug plug;
1640
1641 md_check_recovery(mddev);
1642
1643 blk_start_plug(&plug);
1644 for (;;) {
1645 char b[BDEVNAME_SIZE];
1646
1647 flush_pending_writes(conf);
1648
1649 spin_lock_irqsave(&conf->device_lock, flags);
1650 if (list_empty(head)) {
1651 spin_unlock_irqrestore(&conf->device_lock, flags);
1652 break;
1653 }
1654 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1655 list_del(head->prev);
1656 conf->nr_queued--;
1657 spin_unlock_irqrestore(&conf->device_lock, flags);
1658
1659 mddev = r10_bio->mddev;
1660 conf = mddev->private;
1661 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1662 sync_request_write(mddev, r10_bio);
1663 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1664 recovery_request_write(mddev, r10_bio);
1665 else {
1666 int mirror;
1667 /* we got a read error. Maybe the drive is bad. Maybe just
1668 * the block and we can fix it.
1669 * We freeze all other IO, and try reading the block from
1670 * other devices. When we find one, we re-write
1671 * and check it that fixes the read error.
1672 * This is all done synchronously while the array is
1673 * frozen.
1674 */
1675 if (mddev->ro == 0) {
1676 freeze_array(conf);
1677 fix_read_error(conf, mddev, r10_bio);
1678 unfreeze_array(conf);
1679 }
1680
1681 bio = r10_bio->devs[r10_bio->read_slot].bio;
1682 r10_bio->devs[r10_bio->read_slot].bio =
1683 mddev->ro ? IO_BLOCKED : NULL;
1684 mirror = read_balance(conf, r10_bio);
1685 if (mirror == -1) {
1686 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1687 " read error for block %llu\n",
1688 mdname(mddev),
1689 bdevname(bio->bi_bdev,b),
1690 (unsigned long long)r10_bio->sector);
1691 raid_end_bio_io(r10_bio);
1692 bio_put(bio);
1693 } else {
1694 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1695 bio_put(bio);
1696 rdev = conf->mirrors[mirror].rdev;
1697 if (printk_ratelimit())
1698 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1699 " another mirror\n",
1700 mdname(mddev),
1701 bdevname(rdev->bdev,b),
1702 (unsigned long long)r10_bio->sector);
1703 bio = bio_clone_mddev(r10_bio->master_bio,
1704 GFP_NOIO, mddev);
1705 r10_bio->devs[r10_bio->read_slot].bio = bio;
1706 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1707 + rdev->data_offset;
1708 bio->bi_bdev = rdev->bdev;
1709 bio->bi_rw = READ | do_sync;
1710 bio->bi_private = r10_bio;
1711 bio->bi_end_io = raid10_end_read_request;
1712 generic_make_request(bio);
1713 }
1714 }
1715 cond_resched();
1716 }
1717 blk_finish_plug(&plug);
1718 }
1719
1720
init_resync(conf_t * conf)1721 static int init_resync(conf_t *conf)
1722 {
1723 int buffs;
1724
1725 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1726 BUG_ON(conf->r10buf_pool);
1727 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1728 if (!conf->r10buf_pool)
1729 return -ENOMEM;
1730 conf->next_resync = 0;
1731 return 0;
1732 }
1733
1734 /*
1735 * perform a "sync" on one "block"
1736 *
1737 * We need to make sure that no normal I/O request - particularly write
1738 * requests - conflict with active sync requests.
1739 *
1740 * This is achieved by tracking pending requests and a 'barrier' concept
1741 * that can be installed to exclude normal IO requests.
1742 *
1743 * Resync and recovery are handled very differently.
1744 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1745 *
1746 * For resync, we iterate over virtual addresses, read all copies,
1747 * and update if there are differences. If only one copy is live,
1748 * skip it.
1749 * For recovery, we iterate over physical addresses, read a good
1750 * value for each non-in_sync drive, and over-write.
1751 *
1752 * So, for recovery we may have several outstanding complex requests for a
1753 * given address, one for each out-of-sync device. We model this by allocating
1754 * a number of r10_bio structures, one for each out-of-sync device.
1755 * As we setup these structures, we collect all bio's together into a list
1756 * which we then process collectively to add pages, and then process again
1757 * to pass to generic_make_request.
1758 *
1759 * The r10_bio structures are linked using a borrowed master_bio pointer.
1760 * This link is counted in ->remaining. When the r10_bio that points to NULL
1761 * has its remaining count decremented to 0, the whole complex operation
1762 * is complete.
1763 *
1764 */
1765
sync_request(mddev_t * mddev,sector_t sector_nr,int * skipped,int go_faster)1766 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1767 {
1768 conf_t *conf = mddev->private;
1769 r10bio_t *r10_bio;
1770 struct bio *biolist = NULL, *bio;
1771 sector_t max_sector, nr_sectors;
1772 int disk;
1773 int i;
1774 int max_sync;
1775 sector_t sync_blocks;
1776
1777 sector_t sectors_skipped = 0;
1778 int chunks_skipped = 0;
1779
1780 if (!conf->r10buf_pool)
1781 if (init_resync(conf))
1782 return 0;
1783
1784 skipped:
1785 max_sector = mddev->dev_sectors;
1786 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1787 max_sector = mddev->resync_max_sectors;
1788 if (sector_nr >= max_sector) {
1789 /* If we aborted, we need to abort the
1790 * sync on the 'current' bitmap chucks (there can
1791 * be several when recovering multiple devices).
1792 * as we may have started syncing it but not finished.
1793 * We can find the current address in
1794 * mddev->curr_resync, but for recovery,
1795 * we need to convert that to several
1796 * virtual addresses.
1797 */
1798 if (mddev->curr_resync < max_sector) { /* aborted */
1799 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1800 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1801 &sync_blocks, 1);
1802 else for (i=0; i<conf->raid_disks; i++) {
1803 sector_t sect =
1804 raid10_find_virt(conf, mddev->curr_resync, i);
1805 bitmap_end_sync(mddev->bitmap, sect,
1806 &sync_blocks, 1);
1807 }
1808 } else /* completed sync */
1809 conf->fullsync = 0;
1810
1811 bitmap_close_sync(mddev->bitmap);
1812 close_sync(conf);
1813 *skipped = 1;
1814 return sectors_skipped;
1815 }
1816 if (chunks_skipped >= conf->raid_disks) {
1817 /* if there has been nothing to do on any drive,
1818 * then there is nothing to do at all..
1819 */
1820 *skipped = 1;
1821 return (max_sector - sector_nr) + sectors_skipped;
1822 }
1823
1824 if (max_sector > mddev->resync_max)
1825 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1826
1827 /* make sure whole request will fit in a chunk - if chunks
1828 * are meaningful
1829 */
1830 if (conf->near_copies < conf->raid_disks &&
1831 max_sector > (sector_nr | conf->chunk_mask))
1832 max_sector = (sector_nr | conf->chunk_mask) + 1;
1833 /*
1834 * If there is non-resync activity waiting for us then
1835 * put in a delay to throttle resync.
1836 */
1837 if (!go_faster && conf->nr_waiting)
1838 msleep_interruptible(1000);
1839
1840 /* Again, very different code for resync and recovery.
1841 * Both must result in an r10bio with a list of bios that
1842 * have bi_end_io, bi_sector, bi_bdev set,
1843 * and bi_private set to the r10bio.
1844 * For recovery, we may actually create several r10bios
1845 * with 2 bios in each, that correspond to the bios in the main one.
1846 * In this case, the subordinate r10bios link back through a
1847 * borrowed master_bio pointer, and the counter in the master
1848 * includes a ref from each subordinate.
1849 */
1850 /* First, we decide what to do and set ->bi_end_io
1851 * To end_sync_read if we want to read, and
1852 * end_sync_write if we will want to write.
1853 */
1854
1855 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1856 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1857 /* recovery... the complicated one */
1858 int j, k;
1859 r10_bio = NULL;
1860
1861 for (i=0 ; i<conf->raid_disks; i++)
1862 if (conf->mirrors[i].rdev &&
1863 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1864 int still_degraded = 0;
1865 /* want to reconstruct this device */
1866 r10bio_t *rb2 = r10_bio;
1867 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1868 int must_sync;
1869 /* Unless we are doing a full sync, we only need
1870 * to recover the block if it is set in the bitmap
1871 */
1872 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1873 &sync_blocks, 1);
1874 if (sync_blocks < max_sync)
1875 max_sync = sync_blocks;
1876 if (!must_sync &&
1877 !conf->fullsync) {
1878 /* yep, skip the sync_blocks here, but don't assume
1879 * that there will never be anything to do here
1880 */
1881 chunks_skipped = -1;
1882 continue;
1883 }
1884
1885 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1886 raise_barrier(conf, rb2 != NULL);
1887 atomic_set(&r10_bio->remaining, 0);
1888
1889 r10_bio->master_bio = (struct bio*)rb2;
1890 if (rb2)
1891 atomic_inc(&rb2->remaining);
1892 r10_bio->mddev = mddev;
1893 set_bit(R10BIO_IsRecover, &r10_bio->state);
1894 r10_bio->sector = sect;
1895
1896 raid10_find_phys(conf, r10_bio);
1897
1898 /* Need to check if the array will still be
1899 * degraded
1900 */
1901 for (j=0; j<conf->raid_disks; j++)
1902 if (conf->mirrors[j].rdev == NULL ||
1903 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1904 still_degraded = 1;
1905 break;
1906 }
1907
1908 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1909 &sync_blocks, still_degraded);
1910
1911 for (j=0; j<conf->copies;j++) {
1912 int d = r10_bio->devs[j].devnum;
1913 if (conf->mirrors[d].rdev &&
1914 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1915 /* This is where we read from */
1916 bio = r10_bio->devs[0].bio;
1917 bio->bi_next = biolist;
1918 biolist = bio;
1919 bio->bi_private = r10_bio;
1920 bio->bi_end_io = end_sync_read;
1921 bio->bi_rw = READ;
1922 bio->bi_sector = r10_bio->devs[j].addr +
1923 conf->mirrors[d].rdev->data_offset;
1924 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1925 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1926 atomic_inc(&r10_bio->remaining);
1927 /* and we write to 'i' */
1928
1929 for (k=0; k<conf->copies; k++)
1930 if (r10_bio->devs[k].devnum == i)
1931 break;
1932 BUG_ON(k == conf->copies);
1933 bio = r10_bio->devs[1].bio;
1934 bio->bi_next = biolist;
1935 biolist = bio;
1936 bio->bi_private = r10_bio;
1937 bio->bi_end_io = end_sync_write;
1938 bio->bi_rw = WRITE;
1939 bio->bi_sector = r10_bio->devs[k].addr +
1940 conf->mirrors[i].rdev->data_offset;
1941 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1942
1943 r10_bio->devs[0].devnum = d;
1944 r10_bio->devs[1].devnum = i;
1945
1946 break;
1947 }
1948 }
1949 if (j == conf->copies) {
1950 /* Cannot recover, so abort the recovery */
1951 put_buf(r10_bio);
1952 if (rb2)
1953 atomic_dec(&rb2->remaining);
1954 r10_bio = rb2;
1955 if (!test_and_set_bit(MD_RECOVERY_INTR,
1956 &mddev->recovery))
1957 printk(KERN_INFO "md/raid10:%s: insufficient "
1958 "working devices for recovery.\n",
1959 mdname(mddev));
1960 break;
1961 }
1962 }
1963 if (biolist == NULL) {
1964 while (r10_bio) {
1965 r10bio_t *rb2 = r10_bio;
1966 r10_bio = (r10bio_t*) rb2->master_bio;
1967 rb2->master_bio = NULL;
1968 put_buf(rb2);
1969 }
1970 goto giveup;
1971 }
1972 } else {
1973 /* resync. Schedule a read for every block at this virt offset */
1974 int count = 0;
1975
1976 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1977
1978 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1979 &sync_blocks, mddev->degraded) &&
1980 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1981 /* We can skip this block */
1982 *skipped = 1;
1983 return sync_blocks + sectors_skipped;
1984 }
1985 if (sync_blocks < max_sync)
1986 max_sync = sync_blocks;
1987 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1988
1989 r10_bio->mddev = mddev;
1990 atomic_set(&r10_bio->remaining, 0);
1991 raise_barrier(conf, 0);
1992 conf->next_resync = sector_nr;
1993
1994 r10_bio->master_bio = NULL;
1995 r10_bio->sector = sector_nr;
1996 set_bit(R10BIO_IsSync, &r10_bio->state);
1997 raid10_find_phys(conf, r10_bio);
1998 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1999
2000 for (i=0; i<conf->copies; i++) {
2001 int d = r10_bio->devs[i].devnum;
2002 bio = r10_bio->devs[i].bio;
2003 bio->bi_end_io = NULL;
2004 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2005 if (conf->mirrors[d].rdev == NULL ||
2006 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2007 continue;
2008 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2009 atomic_inc(&r10_bio->remaining);
2010 bio->bi_next = biolist;
2011 biolist = bio;
2012 bio->bi_private = r10_bio;
2013 bio->bi_end_io = end_sync_read;
2014 bio->bi_rw = READ;
2015 bio->bi_sector = r10_bio->devs[i].addr +
2016 conf->mirrors[d].rdev->data_offset;
2017 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2018 count++;
2019 }
2020
2021 if (count < 2) {
2022 for (i=0; i<conf->copies; i++) {
2023 int d = r10_bio->devs[i].devnum;
2024 if (r10_bio->devs[i].bio->bi_end_io)
2025 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2026 }
2027 put_buf(r10_bio);
2028 biolist = NULL;
2029 goto giveup;
2030 }
2031 }
2032
2033 for (bio = biolist; bio ; bio=bio->bi_next) {
2034
2035 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2036 if (bio->bi_end_io)
2037 bio->bi_flags |= 1 << BIO_UPTODATE;
2038 bio->bi_vcnt = 0;
2039 bio->bi_idx = 0;
2040 bio->bi_phys_segments = 0;
2041 bio->bi_size = 0;
2042 }
2043
2044 nr_sectors = 0;
2045 if (sector_nr + max_sync < max_sector)
2046 max_sector = sector_nr + max_sync;
2047 do {
2048 struct page *page;
2049 int len = PAGE_SIZE;
2050 disk = 0;
2051 if (sector_nr + (len>>9) > max_sector)
2052 len = (max_sector - sector_nr) << 9;
2053 if (len == 0)
2054 break;
2055 for (bio= biolist ; bio ; bio=bio->bi_next) {
2056 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2057 if (bio_add_page(bio, page, len, 0) == 0) {
2058 /* stop here */
2059 struct bio *bio2;
2060 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2061 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2062 /* remove last page from this bio */
2063 bio2->bi_vcnt--;
2064 bio2->bi_size -= len;
2065 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2066 }
2067 goto bio_full;
2068 }
2069 disk = i;
2070 }
2071 nr_sectors += len>>9;
2072 sector_nr += len>>9;
2073 } while (biolist->bi_vcnt < RESYNC_PAGES);
2074 bio_full:
2075 r10_bio->sectors = nr_sectors;
2076
2077 while (biolist) {
2078 bio = biolist;
2079 biolist = biolist->bi_next;
2080
2081 bio->bi_next = NULL;
2082 r10_bio = bio->bi_private;
2083 r10_bio->sectors = nr_sectors;
2084
2085 if (bio->bi_end_io == end_sync_read) {
2086 md_sync_acct(bio->bi_bdev, nr_sectors);
2087 generic_make_request(bio);
2088 }
2089 }
2090
2091 if (sectors_skipped)
2092 /* pretend they weren't skipped, it makes
2093 * no important difference in this case
2094 */
2095 md_done_sync(mddev, sectors_skipped, 1);
2096
2097 return sectors_skipped + nr_sectors;
2098 giveup:
2099 /* There is nowhere to write, so all non-sync
2100 * drives must be failed, so try the next chunk...
2101 */
2102 if (sector_nr + max_sync < max_sector)
2103 max_sector = sector_nr + max_sync;
2104
2105 sectors_skipped += (max_sector - sector_nr);
2106 chunks_skipped ++;
2107 sector_nr = max_sector;
2108 goto skipped;
2109 }
2110
2111 static sector_t
raid10_size(mddev_t * mddev,sector_t sectors,int raid_disks)2112 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2113 {
2114 sector_t size;
2115 conf_t *conf = mddev->private;
2116
2117 if (!raid_disks)
2118 raid_disks = conf->raid_disks;
2119 if (!sectors)
2120 sectors = conf->dev_sectors;
2121
2122 size = sectors >> conf->chunk_shift;
2123 sector_div(size, conf->far_copies);
2124 size = size * raid_disks;
2125 sector_div(size, conf->near_copies);
2126
2127 return size << conf->chunk_shift;
2128 }
2129
2130
setup_conf(mddev_t * mddev)2131 static conf_t *setup_conf(mddev_t *mddev)
2132 {
2133 conf_t *conf = NULL;
2134 int nc, fc, fo;
2135 sector_t stride, size;
2136 int err = -EINVAL;
2137
2138 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2139 !is_power_of_2(mddev->new_chunk_sectors)) {
2140 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2141 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2142 mdname(mddev), PAGE_SIZE);
2143 goto out;
2144 }
2145
2146 nc = mddev->new_layout & 255;
2147 fc = (mddev->new_layout >> 8) & 255;
2148 fo = mddev->new_layout & (1<<16);
2149
2150 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2151 (mddev->new_layout >> 17)) {
2152 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2153 mdname(mddev), mddev->new_layout);
2154 goto out;
2155 }
2156
2157 err = -ENOMEM;
2158 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2159 if (!conf)
2160 goto out;
2161
2162 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2163 GFP_KERNEL);
2164 if (!conf->mirrors)
2165 goto out;
2166
2167 conf->tmppage = alloc_page(GFP_KERNEL);
2168 if (!conf->tmppage)
2169 goto out;
2170
2171
2172 conf->raid_disks = mddev->raid_disks;
2173 conf->near_copies = nc;
2174 conf->far_copies = fc;
2175 conf->copies = nc*fc;
2176 conf->far_offset = fo;
2177 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2178 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2179
2180 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2181 r10bio_pool_free, conf);
2182 if (!conf->r10bio_pool)
2183 goto out;
2184
2185 size = mddev->dev_sectors >> conf->chunk_shift;
2186 sector_div(size, fc);
2187 size = size * conf->raid_disks;
2188 sector_div(size, nc);
2189 /* 'size' is now the number of chunks in the array */
2190 /* calculate "used chunks per device" in 'stride' */
2191 stride = size * conf->copies;
2192
2193 /* We need to round up when dividing by raid_disks to
2194 * get the stride size.
2195 */
2196 stride += conf->raid_disks - 1;
2197 sector_div(stride, conf->raid_disks);
2198
2199 conf->dev_sectors = stride << conf->chunk_shift;
2200
2201 if (fo)
2202 stride = 1;
2203 else
2204 sector_div(stride, fc);
2205 conf->stride = stride << conf->chunk_shift;
2206
2207
2208 spin_lock_init(&conf->device_lock);
2209 INIT_LIST_HEAD(&conf->retry_list);
2210
2211 spin_lock_init(&conf->resync_lock);
2212 init_waitqueue_head(&conf->wait_barrier);
2213
2214 conf->thread = md_register_thread(raid10d, mddev, NULL);
2215 if (!conf->thread)
2216 goto out;
2217
2218 conf->mddev = mddev;
2219 return conf;
2220
2221 out:
2222 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2223 mdname(mddev));
2224 if (conf) {
2225 if (conf->r10bio_pool)
2226 mempool_destroy(conf->r10bio_pool);
2227 kfree(conf->mirrors);
2228 safe_put_page(conf->tmppage);
2229 kfree(conf);
2230 }
2231 return ERR_PTR(err);
2232 }
2233
run(mddev_t * mddev)2234 static int run(mddev_t *mddev)
2235 {
2236 conf_t *conf;
2237 int i, disk_idx, chunk_size;
2238 mirror_info_t *disk;
2239 mdk_rdev_t *rdev;
2240 sector_t size;
2241
2242 /*
2243 * copy the already verified devices into our private RAID10
2244 * bookkeeping area. [whatever we allocate in run(),
2245 * should be freed in stop()]
2246 */
2247
2248 if (mddev->private == NULL) {
2249 conf = setup_conf(mddev);
2250 if (IS_ERR(conf))
2251 return PTR_ERR(conf);
2252 mddev->private = conf;
2253 }
2254 conf = mddev->private;
2255 if (!conf)
2256 goto out;
2257
2258 mddev->thread = conf->thread;
2259 conf->thread = NULL;
2260
2261 chunk_size = mddev->chunk_sectors << 9;
2262 blk_queue_io_min(mddev->queue, chunk_size);
2263 if (conf->raid_disks % conf->near_copies)
2264 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2265 else
2266 blk_queue_io_opt(mddev->queue, chunk_size *
2267 (conf->raid_disks / conf->near_copies));
2268
2269 list_for_each_entry(rdev, &mddev->disks, same_set) {
2270 disk_idx = rdev->raid_disk;
2271 if (disk_idx >= conf->raid_disks
2272 || disk_idx < 0)
2273 continue;
2274 disk = conf->mirrors + disk_idx;
2275
2276 disk->rdev = rdev;
2277 disk_stack_limits(mddev->gendisk, rdev->bdev,
2278 rdev->data_offset << 9);
2279 /* as we don't honour merge_bvec_fn, we must never risk
2280 * violating it, so limit max_segments to 1 lying
2281 * within a single page.
2282 */
2283 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2284 blk_queue_max_segments(mddev->queue, 1);
2285 blk_queue_segment_boundary(mddev->queue,
2286 PAGE_CACHE_SIZE - 1);
2287 }
2288
2289 disk->head_position = 0;
2290 }
2291 /* need to check that every block has at least one working mirror */
2292 if (!enough(conf)) {
2293 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2294 mdname(mddev));
2295 goto out_free_conf;
2296 }
2297
2298 mddev->degraded = 0;
2299 for (i = 0; i < conf->raid_disks; i++) {
2300
2301 disk = conf->mirrors + i;
2302
2303 if (!disk->rdev ||
2304 !test_bit(In_sync, &disk->rdev->flags)) {
2305 disk->head_position = 0;
2306 mddev->degraded++;
2307 if (disk->rdev)
2308 conf->fullsync = 1;
2309 }
2310 }
2311
2312 if (mddev->recovery_cp != MaxSector)
2313 printk(KERN_NOTICE "md/raid10:%s: not clean"
2314 " -- starting background reconstruction\n",
2315 mdname(mddev));
2316 printk(KERN_INFO
2317 "md/raid10:%s: active with %d out of %d devices\n",
2318 mdname(mddev), conf->raid_disks - mddev->degraded,
2319 conf->raid_disks);
2320 /*
2321 * Ok, everything is just fine now
2322 */
2323 mddev->dev_sectors = conf->dev_sectors;
2324 size = raid10_size(mddev, 0, 0);
2325 md_set_array_sectors(mddev, size);
2326 mddev->resync_max_sectors = size;
2327
2328 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2329 mddev->queue->backing_dev_info.congested_data = mddev;
2330
2331 /* Calculate max read-ahead size.
2332 * We need to readahead at least twice a whole stripe....
2333 * maybe...
2334 */
2335 {
2336 int stripe = conf->raid_disks *
2337 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2338 stripe /= conf->near_copies;
2339 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2340 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2341 }
2342
2343 if (conf->near_copies < conf->raid_disks)
2344 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2345
2346 if (md_integrity_register(mddev))
2347 goto out_free_conf;
2348
2349 return 0;
2350
2351 out_free_conf:
2352 md_unregister_thread(mddev->thread);
2353 if (conf->r10bio_pool)
2354 mempool_destroy(conf->r10bio_pool);
2355 safe_put_page(conf->tmppage);
2356 kfree(conf->mirrors);
2357 kfree(conf);
2358 mddev->private = NULL;
2359 out:
2360 return -EIO;
2361 }
2362
stop(mddev_t * mddev)2363 static int stop(mddev_t *mddev)
2364 {
2365 conf_t *conf = mddev->private;
2366
2367 raise_barrier(conf, 0);
2368 lower_barrier(conf);
2369
2370 md_unregister_thread(mddev->thread);
2371 mddev->thread = NULL;
2372 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2373 if (conf->r10bio_pool)
2374 mempool_destroy(conf->r10bio_pool);
2375 kfree(conf->mirrors);
2376 kfree(conf);
2377 mddev->private = NULL;
2378 return 0;
2379 }
2380
raid10_quiesce(mddev_t * mddev,int state)2381 static void raid10_quiesce(mddev_t *mddev, int state)
2382 {
2383 conf_t *conf = mddev->private;
2384
2385 switch(state) {
2386 case 1:
2387 raise_barrier(conf, 0);
2388 break;
2389 case 0:
2390 lower_barrier(conf);
2391 break;
2392 }
2393 }
2394
raid10_takeover_raid0(mddev_t * mddev)2395 static void *raid10_takeover_raid0(mddev_t *mddev)
2396 {
2397 mdk_rdev_t *rdev;
2398 conf_t *conf;
2399
2400 if (mddev->degraded > 0) {
2401 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2402 mdname(mddev));
2403 return ERR_PTR(-EINVAL);
2404 }
2405
2406 /* Set new parameters */
2407 mddev->new_level = 10;
2408 /* new layout: far_copies = 1, near_copies = 2 */
2409 mddev->new_layout = (1<<8) + 2;
2410 mddev->new_chunk_sectors = mddev->chunk_sectors;
2411 mddev->delta_disks = mddev->raid_disks;
2412 mddev->raid_disks *= 2;
2413 /* make sure it will be not marked as dirty */
2414 mddev->recovery_cp = MaxSector;
2415
2416 conf = setup_conf(mddev);
2417 if (!IS_ERR(conf)) {
2418 list_for_each_entry(rdev, &mddev->disks, same_set)
2419 if (rdev->raid_disk >= 0)
2420 rdev->new_raid_disk = rdev->raid_disk * 2;
2421 conf->barrier = 1;
2422 }
2423
2424 return conf;
2425 }
2426
raid10_takeover(mddev_t * mddev)2427 static void *raid10_takeover(mddev_t *mddev)
2428 {
2429 struct raid0_private_data *raid0_priv;
2430
2431 /* raid10 can take over:
2432 * raid0 - providing it has only two drives
2433 */
2434 if (mddev->level == 0) {
2435 /* for raid0 takeover only one zone is supported */
2436 raid0_priv = mddev->private;
2437 if (raid0_priv->nr_strip_zones > 1) {
2438 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2439 " with more than one zone.\n",
2440 mdname(mddev));
2441 return ERR_PTR(-EINVAL);
2442 }
2443 return raid10_takeover_raid0(mddev);
2444 }
2445 return ERR_PTR(-EINVAL);
2446 }
2447
2448 static struct mdk_personality raid10_personality =
2449 {
2450 .name = "raid10",
2451 .level = 10,
2452 .owner = THIS_MODULE,
2453 .make_request = make_request,
2454 .run = run,
2455 .stop = stop,
2456 .status = status,
2457 .error_handler = error,
2458 .hot_add_disk = raid10_add_disk,
2459 .hot_remove_disk= raid10_remove_disk,
2460 .spare_active = raid10_spare_active,
2461 .sync_request = sync_request,
2462 .quiesce = raid10_quiesce,
2463 .size = raid10_size,
2464 .takeover = raid10_takeover,
2465 };
2466
raid_init(void)2467 static int __init raid_init(void)
2468 {
2469 return register_md_personality(&raid10_personality);
2470 }
2471
raid_exit(void)2472 static void raid_exit(void)
2473 {
2474 unregister_md_personality(&raid10_personality);
2475 }
2476
2477 module_init(raid_init);
2478 module_exit(raid_exit);
2479 MODULE_LICENSE("GPL");
2480 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2481 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2482 MODULE_ALIAS("md-raid10");
2483 MODULE_ALIAS("md-level-10");
2484