1 /*
2  * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
40 
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
44 
45 #include "tcb.h"
46 #include "cxgb3_offload.h"
47 #include "iwch.h"
48 #include "iwch_provider.h"
49 #include "iwch_cm.h"
50 
51 static char *states[] = {
52 	"idle",
53 	"listen",
54 	"connecting",
55 	"mpa_wait_req",
56 	"mpa_req_sent",
57 	"mpa_req_rcvd",
58 	"mpa_rep_sent",
59 	"fpdu_mode",
60 	"aborting",
61 	"closing",
62 	"moribund",
63 	"dead",
64 	NULL,
65 };
66 
67 int peer2peer = 0;
68 module_param(peer2peer, int, 0644);
69 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
70 
71 static int ep_timeout_secs = 60;
72 module_param(ep_timeout_secs, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
74 				   "in seconds (default=60)");
75 
76 static int mpa_rev = 1;
77 module_param(mpa_rev, int, 0644);
78 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
79 		 "1 is spec compliant. (default=1)");
80 
81 static int markers_enabled = 0;
82 module_param(markers_enabled, int, 0644);
83 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
84 
85 static int crc_enabled = 1;
86 module_param(crc_enabled, int, 0644);
87 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
88 
89 static int rcv_win = 256 * 1024;
90 module_param(rcv_win, int, 0644);
91 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
92 
93 static int snd_win = 32 * 1024;
94 module_param(snd_win, int, 0644);
95 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
96 
97 static unsigned int nocong = 0;
98 module_param(nocong, uint, 0644);
99 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
100 
101 static unsigned int cong_flavor = 1;
102 module_param(cong_flavor, uint, 0644);
103 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
104 
105 static struct workqueue_struct *workq;
106 
107 static struct sk_buff_head rxq;
108 
109 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
110 static void ep_timeout(unsigned long arg);
111 static void connect_reply_upcall(struct iwch_ep *ep, int status);
112 
start_ep_timer(struct iwch_ep * ep)113 static void start_ep_timer(struct iwch_ep *ep)
114 {
115 	PDBG("%s ep %p\n", __func__, ep);
116 	if (timer_pending(&ep->timer)) {
117 		PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
118 		del_timer_sync(&ep->timer);
119 	} else
120 		get_ep(&ep->com);
121 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
122 	ep->timer.data = (unsigned long)ep;
123 	ep->timer.function = ep_timeout;
124 	add_timer(&ep->timer);
125 }
126 
stop_ep_timer(struct iwch_ep * ep)127 static void stop_ep_timer(struct iwch_ep *ep)
128 {
129 	PDBG("%s ep %p\n", __func__, ep);
130 	if (!timer_pending(&ep->timer)) {
131 		printk(KERN_ERR "%s timer stopped when its not running!  ep %p state %u\n",
132 			__func__, ep, ep->com.state);
133 		WARN_ON(1);
134 		return;
135 	}
136 	del_timer_sync(&ep->timer);
137 	put_ep(&ep->com);
138 }
139 
iwch_l2t_send(struct t3cdev * tdev,struct sk_buff * skb,struct l2t_entry * l2e)140 static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
141 {
142 	int	error = 0;
143 	struct cxio_rdev *rdev;
144 
145 	rdev = (struct cxio_rdev *)tdev->ulp;
146 	if (cxio_fatal_error(rdev)) {
147 		kfree_skb(skb);
148 		return -EIO;
149 	}
150 	error = l2t_send(tdev, skb, l2e);
151 	if (error < 0)
152 		kfree_skb(skb);
153 	return error;
154 }
155 
iwch_cxgb3_ofld_send(struct t3cdev * tdev,struct sk_buff * skb)156 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
157 {
158 	int	error = 0;
159 	struct cxio_rdev *rdev;
160 
161 	rdev = (struct cxio_rdev *)tdev->ulp;
162 	if (cxio_fatal_error(rdev)) {
163 		kfree_skb(skb);
164 		return -EIO;
165 	}
166 	error = cxgb3_ofld_send(tdev, skb);
167 	if (error < 0)
168 		kfree_skb(skb);
169 	return error;
170 }
171 
release_tid(struct t3cdev * tdev,u32 hwtid,struct sk_buff * skb)172 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
173 {
174 	struct cpl_tid_release *req;
175 
176 	skb = get_skb(skb, sizeof *req, GFP_KERNEL);
177 	if (!skb)
178 		return;
179 	req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
180 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
181 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
182 	skb->priority = CPL_PRIORITY_SETUP;
183 	iwch_cxgb3_ofld_send(tdev, skb);
184 	return;
185 }
186 
iwch_quiesce_tid(struct iwch_ep * ep)187 int iwch_quiesce_tid(struct iwch_ep *ep)
188 {
189 	struct cpl_set_tcb_field *req;
190 	struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
191 
192 	if (!skb)
193 		return -ENOMEM;
194 	req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
195 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
196 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
197 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
198 	req->reply = 0;
199 	req->cpu_idx = 0;
200 	req->word = htons(W_TCB_RX_QUIESCE);
201 	req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
202 	req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
203 
204 	skb->priority = CPL_PRIORITY_DATA;
205 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
206 }
207 
iwch_resume_tid(struct iwch_ep * ep)208 int iwch_resume_tid(struct iwch_ep *ep)
209 {
210 	struct cpl_set_tcb_field *req;
211 	struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
212 
213 	if (!skb)
214 		return -ENOMEM;
215 	req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
216 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
217 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
218 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
219 	req->reply = 0;
220 	req->cpu_idx = 0;
221 	req->word = htons(W_TCB_RX_QUIESCE);
222 	req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
223 	req->val = 0;
224 
225 	skb->priority = CPL_PRIORITY_DATA;
226 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
227 }
228 
set_emss(struct iwch_ep * ep,u16 opt)229 static void set_emss(struct iwch_ep *ep, u16 opt)
230 {
231 	PDBG("%s ep %p opt %u\n", __func__, ep, opt);
232 	ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
233 	if (G_TCPOPT_TSTAMP(opt))
234 		ep->emss -= 12;
235 	if (ep->emss < 128)
236 		ep->emss = 128;
237 	PDBG("emss=%d\n", ep->emss);
238 }
239 
state_read(struct iwch_ep_common * epc)240 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
241 {
242 	unsigned long flags;
243 	enum iwch_ep_state state;
244 
245 	spin_lock_irqsave(&epc->lock, flags);
246 	state = epc->state;
247 	spin_unlock_irqrestore(&epc->lock, flags);
248 	return state;
249 }
250 
__state_set(struct iwch_ep_common * epc,enum iwch_ep_state new)251 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
252 {
253 	epc->state = new;
254 }
255 
state_set(struct iwch_ep_common * epc,enum iwch_ep_state new)256 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
257 {
258 	unsigned long flags;
259 
260 	spin_lock_irqsave(&epc->lock, flags);
261 	PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
262 	__state_set(epc, new);
263 	spin_unlock_irqrestore(&epc->lock, flags);
264 	return;
265 }
266 
alloc_ep(int size,gfp_t gfp)267 static void *alloc_ep(int size, gfp_t gfp)
268 {
269 	struct iwch_ep_common *epc;
270 
271 	epc = kzalloc(size, gfp);
272 	if (epc) {
273 		kref_init(&epc->kref);
274 		spin_lock_init(&epc->lock);
275 		init_waitqueue_head(&epc->waitq);
276 	}
277 	PDBG("%s alloc ep %p\n", __func__, epc);
278 	return epc;
279 }
280 
__free_ep(struct kref * kref)281 void __free_ep(struct kref *kref)
282 {
283 	struct iwch_ep *ep;
284 	ep = container_of(container_of(kref, struct iwch_ep_common, kref),
285 			  struct iwch_ep, com);
286 	PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
287 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
288 		cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
289 		dst_release(ep->dst);
290 		l2t_release(L2DATA(ep->com.tdev), ep->l2t);
291 	}
292 	kfree(ep);
293 }
294 
release_ep_resources(struct iwch_ep * ep)295 static void release_ep_resources(struct iwch_ep *ep)
296 {
297 	PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
298 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
299 	put_ep(&ep->com);
300 }
301 
status2errno(int status)302 static int status2errno(int status)
303 {
304 	switch (status) {
305 	case CPL_ERR_NONE:
306 		return 0;
307 	case CPL_ERR_CONN_RESET:
308 		return -ECONNRESET;
309 	case CPL_ERR_ARP_MISS:
310 		return -EHOSTUNREACH;
311 	case CPL_ERR_CONN_TIMEDOUT:
312 		return -ETIMEDOUT;
313 	case CPL_ERR_TCAM_FULL:
314 		return -ENOMEM;
315 	case CPL_ERR_CONN_EXIST:
316 		return -EADDRINUSE;
317 	default:
318 		return -EIO;
319 	}
320 }
321 
322 /*
323  * Try and reuse skbs already allocated...
324  */
get_skb(struct sk_buff * skb,int len,gfp_t gfp)325 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
326 {
327 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
328 		skb_trim(skb, 0);
329 		skb_get(skb);
330 	} else {
331 		skb = alloc_skb(len, gfp);
332 	}
333 	return skb;
334 }
335 
find_route(struct t3cdev * dev,__be32 local_ip,__be32 peer_ip,__be16 local_port,__be16 peer_port,u8 tos)336 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
337 				 __be32 peer_ip, __be16 local_port,
338 				 __be16 peer_port, u8 tos)
339 {
340 	struct rtable *rt;
341 
342 	rt = ip_route_output_ports(&init_net, NULL, peer_ip, local_ip,
343 				   peer_port, local_port, IPPROTO_TCP,
344 				   tos, 0);
345 	if (IS_ERR(rt))
346 		return NULL;
347 	return rt;
348 }
349 
find_best_mtu(const struct t3c_data * d,unsigned short mtu)350 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
351 {
352 	int i = 0;
353 
354 	while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
355 		++i;
356 	return i;
357 }
358 
arp_failure_discard(struct t3cdev * dev,struct sk_buff * skb)359 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
360 {
361 	PDBG("%s t3cdev %p\n", __func__, dev);
362 	kfree_skb(skb);
363 }
364 
365 /*
366  * Handle an ARP failure for an active open.
367  */
act_open_req_arp_failure(struct t3cdev * dev,struct sk_buff * skb)368 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
369 {
370 	printk(KERN_ERR MOD "ARP failure duing connect\n");
371 	kfree_skb(skb);
372 }
373 
374 /*
375  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
376  * and send it along.
377  */
abort_arp_failure(struct t3cdev * dev,struct sk_buff * skb)378 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
379 {
380 	struct cpl_abort_req *req = cplhdr(skb);
381 
382 	PDBG("%s t3cdev %p\n", __func__, dev);
383 	req->cmd = CPL_ABORT_NO_RST;
384 	iwch_cxgb3_ofld_send(dev, skb);
385 }
386 
send_halfclose(struct iwch_ep * ep,gfp_t gfp)387 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
388 {
389 	struct cpl_close_con_req *req;
390 	struct sk_buff *skb;
391 
392 	PDBG("%s ep %p\n", __func__, ep);
393 	skb = get_skb(NULL, sizeof(*req), gfp);
394 	if (!skb) {
395 		printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
396 		return -ENOMEM;
397 	}
398 	skb->priority = CPL_PRIORITY_DATA;
399 	set_arp_failure_handler(skb, arp_failure_discard);
400 	req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
401 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
402 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
403 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
404 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
405 }
406 
send_abort(struct iwch_ep * ep,struct sk_buff * skb,gfp_t gfp)407 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
408 {
409 	struct cpl_abort_req *req;
410 
411 	PDBG("%s ep %p\n", __func__, ep);
412 	skb = get_skb(skb, sizeof(*req), gfp);
413 	if (!skb) {
414 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
415 		       __func__);
416 		return -ENOMEM;
417 	}
418 	skb->priority = CPL_PRIORITY_DATA;
419 	set_arp_failure_handler(skb, abort_arp_failure);
420 	req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
421 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
422 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
423 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
424 	req->cmd = CPL_ABORT_SEND_RST;
425 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
426 }
427 
send_connect(struct iwch_ep * ep)428 static int send_connect(struct iwch_ep *ep)
429 {
430 	struct cpl_act_open_req *req;
431 	struct sk_buff *skb;
432 	u32 opt0h, opt0l, opt2;
433 	unsigned int mtu_idx;
434 	int wscale;
435 
436 	PDBG("%s ep %p\n", __func__, ep);
437 
438 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
439 	if (!skb) {
440 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
441 		       __func__);
442 		return -ENOMEM;
443 	}
444 	mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
445 	wscale = compute_wscale(rcv_win);
446 	opt0h = V_NAGLE(0) |
447 	    V_NO_CONG(nocong) |
448 	    V_KEEP_ALIVE(1) |
449 	    F_TCAM_BYPASS |
450 	    V_WND_SCALE(wscale) |
451 	    V_MSS_IDX(mtu_idx) |
452 	    V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
453 	opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
454 	opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
455 	       V_CONG_CONTROL_FLAVOR(cong_flavor);
456 	skb->priority = CPL_PRIORITY_SETUP;
457 	set_arp_failure_handler(skb, act_open_req_arp_failure);
458 
459 	req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
460 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
461 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
462 	req->local_port = ep->com.local_addr.sin_port;
463 	req->peer_port = ep->com.remote_addr.sin_port;
464 	req->local_ip = ep->com.local_addr.sin_addr.s_addr;
465 	req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
466 	req->opt0h = htonl(opt0h);
467 	req->opt0l = htonl(opt0l);
468 	req->params = 0;
469 	req->opt2 = htonl(opt2);
470 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
471 }
472 
send_mpa_req(struct iwch_ep * ep,struct sk_buff * skb)473 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
474 {
475 	int mpalen;
476 	struct tx_data_wr *req;
477 	struct mpa_message *mpa;
478 	int len;
479 
480 	PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
481 
482 	BUG_ON(skb_cloned(skb));
483 
484 	mpalen = sizeof(*mpa) + ep->plen;
485 	if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
486 		kfree_skb(skb);
487 		skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
488 		if (!skb) {
489 			connect_reply_upcall(ep, -ENOMEM);
490 			return;
491 		}
492 	}
493 	skb_trim(skb, 0);
494 	skb_reserve(skb, sizeof(*req));
495 	skb_put(skb, mpalen);
496 	skb->priority = CPL_PRIORITY_DATA;
497 	mpa = (struct mpa_message *) skb->data;
498 	memset(mpa, 0, sizeof(*mpa));
499 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
500 	mpa->flags = (crc_enabled ? MPA_CRC : 0) |
501 		     (markers_enabled ? MPA_MARKERS : 0);
502 	mpa->private_data_size = htons(ep->plen);
503 	mpa->revision = mpa_rev;
504 
505 	if (ep->plen)
506 		memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
507 
508 	/*
509 	 * Reference the mpa skb.  This ensures the data area
510 	 * will remain in memory until the hw acks the tx.
511 	 * Function tx_ack() will deref it.
512 	 */
513 	skb_get(skb);
514 	set_arp_failure_handler(skb, arp_failure_discard);
515 	skb_reset_transport_header(skb);
516 	len = skb->len;
517 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
518 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
519 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
520 	req->len = htonl(len);
521 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
522 			   V_TX_SNDBUF(snd_win>>15));
523 	req->flags = htonl(F_TX_INIT);
524 	req->sndseq = htonl(ep->snd_seq);
525 	BUG_ON(ep->mpa_skb);
526 	ep->mpa_skb = skb;
527 	iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
528 	start_ep_timer(ep);
529 	state_set(&ep->com, MPA_REQ_SENT);
530 	return;
531 }
532 
send_mpa_reject(struct iwch_ep * ep,const void * pdata,u8 plen)533 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
534 {
535 	int mpalen;
536 	struct tx_data_wr *req;
537 	struct mpa_message *mpa;
538 	struct sk_buff *skb;
539 
540 	PDBG("%s ep %p plen %d\n", __func__, ep, plen);
541 
542 	mpalen = sizeof(*mpa) + plen;
543 
544 	skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
545 	if (!skb) {
546 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
547 		return -ENOMEM;
548 	}
549 	skb_reserve(skb, sizeof(*req));
550 	mpa = (struct mpa_message *) skb_put(skb, mpalen);
551 	memset(mpa, 0, sizeof(*mpa));
552 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
553 	mpa->flags = MPA_REJECT;
554 	mpa->revision = mpa_rev;
555 	mpa->private_data_size = htons(plen);
556 	if (plen)
557 		memcpy(mpa->private_data, pdata, plen);
558 
559 	/*
560 	 * Reference the mpa skb again.  This ensures the data area
561 	 * will remain in memory until the hw acks the tx.
562 	 * Function tx_ack() will deref it.
563 	 */
564 	skb_get(skb);
565 	skb->priority = CPL_PRIORITY_DATA;
566 	set_arp_failure_handler(skb, arp_failure_discard);
567 	skb_reset_transport_header(skb);
568 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
569 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
570 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
571 	req->len = htonl(mpalen);
572 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
573 			   V_TX_SNDBUF(snd_win>>15));
574 	req->flags = htonl(F_TX_INIT);
575 	req->sndseq = htonl(ep->snd_seq);
576 	BUG_ON(ep->mpa_skb);
577 	ep->mpa_skb = skb;
578 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
579 }
580 
send_mpa_reply(struct iwch_ep * ep,const void * pdata,u8 plen)581 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
582 {
583 	int mpalen;
584 	struct tx_data_wr *req;
585 	struct mpa_message *mpa;
586 	int len;
587 	struct sk_buff *skb;
588 
589 	PDBG("%s ep %p plen %d\n", __func__, ep, plen);
590 
591 	mpalen = sizeof(*mpa) + plen;
592 
593 	skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
594 	if (!skb) {
595 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
596 		return -ENOMEM;
597 	}
598 	skb->priority = CPL_PRIORITY_DATA;
599 	skb_reserve(skb, sizeof(*req));
600 	mpa = (struct mpa_message *) skb_put(skb, mpalen);
601 	memset(mpa, 0, sizeof(*mpa));
602 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
603 	mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
604 		     (markers_enabled ? MPA_MARKERS : 0);
605 	mpa->revision = mpa_rev;
606 	mpa->private_data_size = htons(plen);
607 	if (plen)
608 		memcpy(mpa->private_data, pdata, plen);
609 
610 	/*
611 	 * Reference the mpa skb.  This ensures the data area
612 	 * will remain in memory until the hw acks the tx.
613 	 * Function tx_ack() will deref it.
614 	 */
615 	skb_get(skb);
616 	set_arp_failure_handler(skb, arp_failure_discard);
617 	skb_reset_transport_header(skb);
618 	len = skb->len;
619 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
620 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
621 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
622 	req->len = htonl(len);
623 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
624 			   V_TX_SNDBUF(snd_win>>15));
625 	req->flags = htonl(F_TX_INIT);
626 	req->sndseq = htonl(ep->snd_seq);
627 	ep->mpa_skb = skb;
628 	state_set(&ep->com, MPA_REP_SENT);
629 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
630 }
631 
act_establish(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)632 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
633 {
634 	struct iwch_ep *ep = ctx;
635 	struct cpl_act_establish *req = cplhdr(skb);
636 	unsigned int tid = GET_TID(req);
637 
638 	PDBG("%s ep %p tid %d\n", __func__, ep, tid);
639 
640 	dst_confirm(ep->dst);
641 
642 	/* setup the hwtid for this connection */
643 	ep->hwtid = tid;
644 	cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
645 
646 	ep->snd_seq = ntohl(req->snd_isn);
647 	ep->rcv_seq = ntohl(req->rcv_isn);
648 
649 	set_emss(ep, ntohs(req->tcp_opt));
650 
651 	/* dealloc the atid */
652 	cxgb3_free_atid(ep->com.tdev, ep->atid);
653 
654 	/* start MPA negotiation */
655 	send_mpa_req(ep, skb);
656 
657 	return 0;
658 }
659 
abort_connection(struct iwch_ep * ep,struct sk_buff * skb,gfp_t gfp)660 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
661 {
662 	PDBG("%s ep %p\n", __FILE__, ep);
663 	state_set(&ep->com, ABORTING);
664 	send_abort(ep, skb, gfp);
665 }
666 
close_complete_upcall(struct iwch_ep * ep)667 static void close_complete_upcall(struct iwch_ep *ep)
668 {
669 	struct iw_cm_event event;
670 
671 	PDBG("%s ep %p\n", __func__, ep);
672 	memset(&event, 0, sizeof(event));
673 	event.event = IW_CM_EVENT_CLOSE;
674 	if (ep->com.cm_id) {
675 		PDBG("close complete delivered ep %p cm_id %p tid %d\n",
676 		     ep, ep->com.cm_id, ep->hwtid);
677 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
678 		ep->com.cm_id->rem_ref(ep->com.cm_id);
679 		ep->com.cm_id = NULL;
680 		ep->com.qp = NULL;
681 	}
682 }
683 
peer_close_upcall(struct iwch_ep * ep)684 static void peer_close_upcall(struct iwch_ep *ep)
685 {
686 	struct iw_cm_event event;
687 
688 	PDBG("%s ep %p\n", __func__, ep);
689 	memset(&event, 0, sizeof(event));
690 	event.event = IW_CM_EVENT_DISCONNECT;
691 	if (ep->com.cm_id) {
692 		PDBG("peer close delivered ep %p cm_id %p tid %d\n",
693 		     ep, ep->com.cm_id, ep->hwtid);
694 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
695 	}
696 }
697 
peer_abort_upcall(struct iwch_ep * ep)698 static void peer_abort_upcall(struct iwch_ep *ep)
699 {
700 	struct iw_cm_event event;
701 
702 	PDBG("%s ep %p\n", __func__, ep);
703 	memset(&event, 0, sizeof(event));
704 	event.event = IW_CM_EVENT_CLOSE;
705 	event.status = -ECONNRESET;
706 	if (ep->com.cm_id) {
707 		PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
708 		     ep->com.cm_id, ep->hwtid);
709 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
710 		ep->com.cm_id->rem_ref(ep->com.cm_id);
711 		ep->com.cm_id = NULL;
712 		ep->com.qp = NULL;
713 	}
714 }
715 
connect_reply_upcall(struct iwch_ep * ep,int status)716 static void connect_reply_upcall(struct iwch_ep *ep, int status)
717 {
718 	struct iw_cm_event event;
719 
720 	PDBG("%s ep %p status %d\n", __func__, ep, status);
721 	memset(&event, 0, sizeof(event));
722 	event.event = IW_CM_EVENT_CONNECT_REPLY;
723 	event.status = status;
724 	event.local_addr = ep->com.local_addr;
725 	event.remote_addr = ep->com.remote_addr;
726 
727 	if ((status == 0) || (status == -ECONNREFUSED)) {
728 		event.private_data_len = ep->plen;
729 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
730 	}
731 	if (ep->com.cm_id) {
732 		PDBG("%s ep %p tid %d status %d\n", __func__, ep,
733 		     ep->hwtid, status);
734 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
735 	}
736 	if (status < 0) {
737 		ep->com.cm_id->rem_ref(ep->com.cm_id);
738 		ep->com.cm_id = NULL;
739 		ep->com.qp = NULL;
740 	}
741 }
742 
connect_request_upcall(struct iwch_ep * ep)743 static void connect_request_upcall(struct iwch_ep *ep)
744 {
745 	struct iw_cm_event event;
746 
747 	PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
748 	memset(&event, 0, sizeof(event));
749 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
750 	event.local_addr = ep->com.local_addr;
751 	event.remote_addr = ep->com.remote_addr;
752 	event.private_data_len = ep->plen;
753 	event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
754 	event.provider_data = ep;
755 	if (state_read(&ep->parent_ep->com) != DEAD) {
756 		get_ep(&ep->com);
757 		ep->parent_ep->com.cm_id->event_handler(
758 						ep->parent_ep->com.cm_id,
759 						&event);
760 	}
761 	put_ep(&ep->parent_ep->com);
762 	ep->parent_ep = NULL;
763 }
764 
established_upcall(struct iwch_ep * ep)765 static void established_upcall(struct iwch_ep *ep)
766 {
767 	struct iw_cm_event event;
768 
769 	PDBG("%s ep %p\n", __func__, ep);
770 	memset(&event, 0, sizeof(event));
771 	event.event = IW_CM_EVENT_ESTABLISHED;
772 	if (ep->com.cm_id) {
773 		PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
774 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
775 	}
776 }
777 
update_rx_credits(struct iwch_ep * ep,u32 credits)778 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
779 {
780 	struct cpl_rx_data_ack *req;
781 	struct sk_buff *skb;
782 
783 	PDBG("%s ep %p credits %u\n", __func__, ep, credits);
784 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
785 	if (!skb) {
786 		printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
787 		return 0;
788 	}
789 
790 	req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
791 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
792 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
793 	req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
794 	skb->priority = CPL_PRIORITY_ACK;
795 	iwch_cxgb3_ofld_send(ep->com.tdev, skb);
796 	return credits;
797 }
798 
process_mpa_reply(struct iwch_ep * ep,struct sk_buff * skb)799 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
800 {
801 	struct mpa_message *mpa;
802 	u16 plen;
803 	struct iwch_qp_attributes attrs;
804 	enum iwch_qp_attr_mask mask;
805 	int err;
806 
807 	PDBG("%s ep %p\n", __func__, ep);
808 
809 	/*
810 	 * Stop mpa timer.  If it expired, then the state has
811 	 * changed and we bail since ep_timeout already aborted
812 	 * the connection.
813 	 */
814 	stop_ep_timer(ep);
815 	if (state_read(&ep->com) != MPA_REQ_SENT)
816 		return;
817 
818 	/*
819 	 * If we get more than the supported amount of private data
820 	 * then we must fail this connection.
821 	 */
822 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
823 		err = -EINVAL;
824 		goto err;
825 	}
826 
827 	/*
828 	 * copy the new data into our accumulation buffer.
829 	 */
830 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
831 				  skb->len);
832 	ep->mpa_pkt_len += skb->len;
833 
834 	/*
835 	 * if we don't even have the mpa message, then bail.
836 	 */
837 	if (ep->mpa_pkt_len < sizeof(*mpa))
838 		return;
839 	mpa = (struct mpa_message *) ep->mpa_pkt;
840 
841 	/* Validate MPA header. */
842 	if (mpa->revision != mpa_rev) {
843 		err = -EPROTO;
844 		goto err;
845 	}
846 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
847 		err = -EPROTO;
848 		goto err;
849 	}
850 
851 	plen = ntohs(mpa->private_data_size);
852 
853 	/*
854 	 * Fail if there's too much private data.
855 	 */
856 	if (plen > MPA_MAX_PRIVATE_DATA) {
857 		err = -EPROTO;
858 		goto err;
859 	}
860 
861 	/*
862 	 * If plen does not account for pkt size
863 	 */
864 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
865 		err = -EPROTO;
866 		goto err;
867 	}
868 
869 	ep->plen = (u8) plen;
870 
871 	/*
872 	 * If we don't have all the pdata yet, then bail.
873 	 * We'll continue process when more data arrives.
874 	 */
875 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
876 		return;
877 
878 	if (mpa->flags & MPA_REJECT) {
879 		err = -ECONNREFUSED;
880 		goto err;
881 	}
882 
883 	/*
884 	 * If we get here we have accumulated the entire mpa
885 	 * start reply message including private data. And
886 	 * the MPA header is valid.
887 	 */
888 	state_set(&ep->com, FPDU_MODE);
889 	ep->mpa_attr.initiator = 1;
890 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
891 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
892 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
893 	ep->mpa_attr.version = mpa_rev;
894 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
895 	     "xmit_marker_enabled=%d, version=%d\n", __func__,
896 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
897 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
898 
899 	attrs.mpa_attr = ep->mpa_attr;
900 	attrs.max_ird = ep->ird;
901 	attrs.max_ord = ep->ord;
902 	attrs.llp_stream_handle = ep;
903 	attrs.next_state = IWCH_QP_STATE_RTS;
904 
905 	mask = IWCH_QP_ATTR_NEXT_STATE |
906 	    IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
907 	    IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
908 
909 	/* bind QP and TID with INIT_WR */
910 	err = iwch_modify_qp(ep->com.qp->rhp,
911 			     ep->com.qp, mask, &attrs, 1);
912 	if (err)
913 		goto err;
914 
915 	if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
916 		iwch_post_zb_read(ep->com.qp);
917 	}
918 
919 	goto out;
920 err:
921 	abort_connection(ep, skb, GFP_KERNEL);
922 out:
923 	connect_reply_upcall(ep, err);
924 	return;
925 }
926 
process_mpa_request(struct iwch_ep * ep,struct sk_buff * skb)927 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
928 {
929 	struct mpa_message *mpa;
930 	u16 plen;
931 
932 	PDBG("%s ep %p\n", __func__, ep);
933 
934 	/*
935 	 * Stop mpa timer.  If it expired, then the state has
936 	 * changed and we bail since ep_timeout already aborted
937 	 * the connection.
938 	 */
939 	stop_ep_timer(ep);
940 	if (state_read(&ep->com) != MPA_REQ_WAIT)
941 		return;
942 
943 	/*
944 	 * If we get more than the supported amount of private data
945 	 * then we must fail this connection.
946 	 */
947 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
948 		abort_connection(ep, skb, GFP_KERNEL);
949 		return;
950 	}
951 
952 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
953 
954 	/*
955 	 * Copy the new data into our accumulation buffer.
956 	 */
957 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
958 				  skb->len);
959 	ep->mpa_pkt_len += skb->len;
960 
961 	/*
962 	 * If we don't even have the mpa message, then bail.
963 	 * We'll continue process when more data arrives.
964 	 */
965 	if (ep->mpa_pkt_len < sizeof(*mpa))
966 		return;
967 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
968 	mpa = (struct mpa_message *) ep->mpa_pkt;
969 
970 	/*
971 	 * Validate MPA Header.
972 	 */
973 	if (mpa->revision != mpa_rev) {
974 		abort_connection(ep, skb, GFP_KERNEL);
975 		return;
976 	}
977 
978 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
979 		abort_connection(ep, skb, GFP_KERNEL);
980 		return;
981 	}
982 
983 	plen = ntohs(mpa->private_data_size);
984 
985 	/*
986 	 * Fail if there's too much private data.
987 	 */
988 	if (plen > MPA_MAX_PRIVATE_DATA) {
989 		abort_connection(ep, skb, GFP_KERNEL);
990 		return;
991 	}
992 
993 	/*
994 	 * If plen does not account for pkt size
995 	 */
996 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
997 		abort_connection(ep, skb, GFP_KERNEL);
998 		return;
999 	}
1000 	ep->plen = (u8) plen;
1001 
1002 	/*
1003 	 * If we don't have all the pdata yet, then bail.
1004 	 */
1005 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1006 		return;
1007 
1008 	/*
1009 	 * If we get here we have accumulated the entire mpa
1010 	 * start reply message including private data.
1011 	 */
1012 	ep->mpa_attr.initiator = 0;
1013 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1014 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1015 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1016 	ep->mpa_attr.version = mpa_rev;
1017 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1018 	     "xmit_marker_enabled=%d, version=%d\n", __func__,
1019 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1020 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1021 
1022 	state_set(&ep->com, MPA_REQ_RCVD);
1023 
1024 	/* drive upcall */
1025 	connect_request_upcall(ep);
1026 	return;
1027 }
1028 
rx_data(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1029 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1030 {
1031 	struct iwch_ep *ep = ctx;
1032 	struct cpl_rx_data *hdr = cplhdr(skb);
1033 	unsigned int dlen = ntohs(hdr->len);
1034 
1035 	PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1036 
1037 	skb_pull(skb, sizeof(*hdr));
1038 	skb_trim(skb, dlen);
1039 
1040 	ep->rcv_seq += dlen;
1041 	BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1042 
1043 	switch (state_read(&ep->com)) {
1044 	case MPA_REQ_SENT:
1045 		process_mpa_reply(ep, skb);
1046 		break;
1047 	case MPA_REQ_WAIT:
1048 		process_mpa_request(ep, skb);
1049 		break;
1050 	case MPA_REP_SENT:
1051 		break;
1052 	default:
1053 		printk(KERN_ERR MOD "%s Unexpected streaming data."
1054 		       " ep %p state %d tid %d\n",
1055 		       __func__, ep, state_read(&ep->com), ep->hwtid);
1056 
1057 		/*
1058 		 * The ep will timeout and inform the ULP of the failure.
1059 		 * See ep_timeout().
1060 		 */
1061 		break;
1062 	}
1063 
1064 	/* update RX credits */
1065 	update_rx_credits(ep, dlen);
1066 
1067 	return CPL_RET_BUF_DONE;
1068 }
1069 
1070 /*
1071  * Upcall from the adapter indicating data has been transmitted.
1072  * For us its just the single MPA request or reply.  We can now free
1073  * the skb holding the mpa message.
1074  */
tx_ack(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1075 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1076 {
1077 	struct iwch_ep *ep = ctx;
1078 	struct cpl_wr_ack *hdr = cplhdr(skb);
1079 	unsigned int credits = ntohs(hdr->credits);
1080 
1081 	PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1082 
1083 	if (credits == 0) {
1084 		PDBG("%s 0 credit ack  ep %p state %u\n",
1085 		     __func__, ep, state_read(&ep->com));
1086 		return CPL_RET_BUF_DONE;
1087 	}
1088 
1089 	BUG_ON(credits != 1);
1090 	dst_confirm(ep->dst);
1091 	if (!ep->mpa_skb) {
1092 		PDBG("%s rdma_init wr_ack ep %p state %u\n",
1093 			__func__, ep, state_read(&ep->com));
1094 		if (ep->mpa_attr.initiator) {
1095 			PDBG("%s initiator ep %p state %u\n",
1096 				__func__, ep, state_read(&ep->com));
1097 			if (peer2peer)
1098 				iwch_post_zb_read(ep->com.qp);
1099 		} else {
1100 			PDBG("%s responder ep %p state %u\n",
1101 				__func__, ep, state_read(&ep->com));
1102 			ep->com.rpl_done = 1;
1103 			wake_up(&ep->com.waitq);
1104 		}
1105 	} else {
1106 		PDBG("%s lsm ack ep %p state %u freeing skb\n",
1107 			__func__, ep, state_read(&ep->com));
1108 		kfree_skb(ep->mpa_skb);
1109 		ep->mpa_skb = NULL;
1110 	}
1111 	return CPL_RET_BUF_DONE;
1112 }
1113 
abort_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1114 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1115 {
1116 	struct iwch_ep *ep = ctx;
1117 	unsigned long flags;
1118 	int release = 0;
1119 
1120 	PDBG("%s ep %p\n", __func__, ep);
1121 	BUG_ON(!ep);
1122 
1123 	/*
1124 	 * We get 2 abort replies from the HW.  The first one must
1125 	 * be ignored except for scribbling that we need one more.
1126 	 */
1127 	if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
1128 		return CPL_RET_BUF_DONE;
1129 	}
1130 
1131 	spin_lock_irqsave(&ep->com.lock, flags);
1132 	switch (ep->com.state) {
1133 	case ABORTING:
1134 		close_complete_upcall(ep);
1135 		__state_set(&ep->com, DEAD);
1136 		release = 1;
1137 		break;
1138 	default:
1139 		printk(KERN_ERR "%s ep %p state %d\n",
1140 		     __func__, ep, ep->com.state);
1141 		break;
1142 	}
1143 	spin_unlock_irqrestore(&ep->com.lock, flags);
1144 
1145 	if (release)
1146 		release_ep_resources(ep);
1147 	return CPL_RET_BUF_DONE;
1148 }
1149 
1150 /*
1151  * Return whether a failed active open has allocated a TID
1152  */
act_open_has_tid(int status)1153 static inline int act_open_has_tid(int status)
1154 {
1155 	return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1156 	       status != CPL_ERR_ARP_MISS;
1157 }
1158 
act_open_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1159 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1160 {
1161 	struct iwch_ep *ep = ctx;
1162 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
1163 
1164 	PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1165 	     status2errno(rpl->status));
1166 	connect_reply_upcall(ep, status2errno(rpl->status));
1167 	state_set(&ep->com, DEAD);
1168 	if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1169 		release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1170 	cxgb3_free_atid(ep->com.tdev, ep->atid);
1171 	dst_release(ep->dst);
1172 	l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1173 	put_ep(&ep->com);
1174 	return CPL_RET_BUF_DONE;
1175 }
1176 
listen_start(struct iwch_listen_ep * ep)1177 static int listen_start(struct iwch_listen_ep *ep)
1178 {
1179 	struct sk_buff *skb;
1180 	struct cpl_pass_open_req *req;
1181 
1182 	PDBG("%s ep %p\n", __func__, ep);
1183 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1184 	if (!skb) {
1185 		printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1186 		return -ENOMEM;
1187 	}
1188 
1189 	req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1190 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1191 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1192 	req->local_port = ep->com.local_addr.sin_port;
1193 	req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1194 	req->peer_port = 0;
1195 	req->peer_ip = 0;
1196 	req->peer_netmask = 0;
1197 	req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1198 	req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1199 	req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1200 
1201 	skb->priority = 1;
1202 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1203 }
1204 
pass_open_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1205 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1206 {
1207 	struct iwch_listen_ep *ep = ctx;
1208 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1209 
1210 	PDBG("%s ep %p status %d error %d\n", __func__, ep,
1211 	     rpl->status, status2errno(rpl->status));
1212 	ep->com.rpl_err = status2errno(rpl->status);
1213 	ep->com.rpl_done = 1;
1214 	wake_up(&ep->com.waitq);
1215 
1216 	return CPL_RET_BUF_DONE;
1217 }
1218 
listen_stop(struct iwch_listen_ep * ep)1219 static int listen_stop(struct iwch_listen_ep *ep)
1220 {
1221 	struct sk_buff *skb;
1222 	struct cpl_close_listserv_req *req;
1223 
1224 	PDBG("%s ep %p\n", __func__, ep);
1225 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1226 	if (!skb) {
1227 		printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1228 		return -ENOMEM;
1229 	}
1230 	req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1231 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1232 	req->cpu_idx = 0;
1233 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1234 	skb->priority = 1;
1235 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1236 }
1237 
close_listsrv_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1238 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1239 			     void *ctx)
1240 {
1241 	struct iwch_listen_ep *ep = ctx;
1242 	struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1243 
1244 	PDBG("%s ep %p\n", __func__, ep);
1245 	ep->com.rpl_err = status2errno(rpl->status);
1246 	ep->com.rpl_done = 1;
1247 	wake_up(&ep->com.waitq);
1248 	return CPL_RET_BUF_DONE;
1249 }
1250 
accept_cr(struct iwch_ep * ep,__be32 peer_ip,struct sk_buff * skb)1251 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1252 {
1253 	struct cpl_pass_accept_rpl *rpl;
1254 	unsigned int mtu_idx;
1255 	u32 opt0h, opt0l, opt2;
1256 	int wscale;
1257 
1258 	PDBG("%s ep %p\n", __func__, ep);
1259 	BUG_ON(skb_cloned(skb));
1260 	skb_trim(skb, sizeof(*rpl));
1261 	skb_get(skb);
1262 	mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1263 	wscale = compute_wscale(rcv_win);
1264 	opt0h = V_NAGLE(0) |
1265 	    V_NO_CONG(nocong) |
1266 	    V_KEEP_ALIVE(1) |
1267 	    F_TCAM_BYPASS |
1268 	    V_WND_SCALE(wscale) |
1269 	    V_MSS_IDX(mtu_idx) |
1270 	    V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1271 	opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1272 	opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1273 	       V_CONG_CONTROL_FLAVOR(cong_flavor);
1274 
1275 	rpl = cplhdr(skb);
1276 	rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1277 	OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1278 	rpl->peer_ip = peer_ip;
1279 	rpl->opt0h = htonl(opt0h);
1280 	rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1281 	rpl->opt2 = htonl(opt2);
1282 	rpl->rsvd = rpl->opt2;	/* workaround for HW bug */
1283 	skb->priority = CPL_PRIORITY_SETUP;
1284 	iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1285 
1286 	return;
1287 }
1288 
reject_cr(struct t3cdev * tdev,u32 hwtid,__be32 peer_ip,struct sk_buff * skb)1289 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1290 		      struct sk_buff *skb)
1291 {
1292 	PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1293 	     peer_ip);
1294 	BUG_ON(skb_cloned(skb));
1295 	skb_trim(skb, sizeof(struct cpl_tid_release));
1296 	skb_get(skb);
1297 
1298 	if (tdev->type != T3A)
1299 		release_tid(tdev, hwtid, skb);
1300 	else {
1301 		struct cpl_pass_accept_rpl *rpl;
1302 
1303 		rpl = cplhdr(skb);
1304 		skb->priority = CPL_PRIORITY_SETUP;
1305 		rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1306 		OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1307 						      hwtid));
1308 		rpl->peer_ip = peer_ip;
1309 		rpl->opt0h = htonl(F_TCAM_BYPASS);
1310 		rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1311 		rpl->opt2 = 0;
1312 		rpl->rsvd = rpl->opt2;
1313 		iwch_cxgb3_ofld_send(tdev, skb);
1314 	}
1315 }
1316 
pass_accept_req(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1317 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1318 {
1319 	struct iwch_ep *child_ep, *parent_ep = ctx;
1320 	struct cpl_pass_accept_req *req = cplhdr(skb);
1321 	unsigned int hwtid = GET_TID(req);
1322 	struct dst_entry *dst;
1323 	struct l2t_entry *l2t;
1324 	struct rtable *rt;
1325 	struct iff_mac tim;
1326 
1327 	PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1328 
1329 	if (state_read(&parent_ep->com) != LISTEN) {
1330 		printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1331 		       __func__);
1332 		goto reject;
1333 	}
1334 
1335 	/*
1336 	 * Find the netdev for this connection request.
1337 	 */
1338 	tim.mac_addr = req->dst_mac;
1339 	tim.vlan_tag = ntohs(req->vlan_tag);
1340 	if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1341 		printk(KERN_ERR "%s bad dst mac %pM\n",
1342 			__func__, req->dst_mac);
1343 		goto reject;
1344 	}
1345 
1346 	/* Find output route */
1347 	rt = find_route(tdev,
1348 			req->local_ip,
1349 			req->peer_ip,
1350 			req->local_port,
1351 			req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1352 	if (!rt) {
1353 		printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1354 		       __func__);
1355 		goto reject;
1356 	}
1357 	dst = &rt->dst;
1358 	l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
1359 	if (!l2t) {
1360 		printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1361 		       __func__);
1362 		dst_release(dst);
1363 		goto reject;
1364 	}
1365 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1366 	if (!child_ep) {
1367 		printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1368 		       __func__);
1369 		l2t_release(L2DATA(tdev), l2t);
1370 		dst_release(dst);
1371 		goto reject;
1372 	}
1373 	state_set(&child_ep->com, CONNECTING);
1374 	child_ep->com.tdev = tdev;
1375 	child_ep->com.cm_id = NULL;
1376 	child_ep->com.local_addr.sin_family = PF_INET;
1377 	child_ep->com.local_addr.sin_port = req->local_port;
1378 	child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1379 	child_ep->com.remote_addr.sin_family = PF_INET;
1380 	child_ep->com.remote_addr.sin_port = req->peer_port;
1381 	child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1382 	get_ep(&parent_ep->com);
1383 	child_ep->parent_ep = parent_ep;
1384 	child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1385 	child_ep->l2t = l2t;
1386 	child_ep->dst = dst;
1387 	child_ep->hwtid = hwtid;
1388 	init_timer(&child_ep->timer);
1389 	cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1390 	accept_cr(child_ep, req->peer_ip, skb);
1391 	goto out;
1392 reject:
1393 	reject_cr(tdev, hwtid, req->peer_ip, skb);
1394 out:
1395 	return CPL_RET_BUF_DONE;
1396 }
1397 
pass_establish(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1398 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1399 {
1400 	struct iwch_ep *ep = ctx;
1401 	struct cpl_pass_establish *req = cplhdr(skb);
1402 
1403 	PDBG("%s ep %p\n", __func__, ep);
1404 	ep->snd_seq = ntohl(req->snd_isn);
1405 	ep->rcv_seq = ntohl(req->rcv_isn);
1406 
1407 	set_emss(ep, ntohs(req->tcp_opt));
1408 
1409 	dst_confirm(ep->dst);
1410 	state_set(&ep->com, MPA_REQ_WAIT);
1411 	start_ep_timer(ep);
1412 
1413 	return CPL_RET_BUF_DONE;
1414 }
1415 
peer_close(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1416 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1417 {
1418 	struct iwch_ep *ep = ctx;
1419 	struct iwch_qp_attributes attrs;
1420 	unsigned long flags;
1421 	int disconnect = 1;
1422 	int release = 0;
1423 
1424 	PDBG("%s ep %p\n", __func__, ep);
1425 	dst_confirm(ep->dst);
1426 
1427 	spin_lock_irqsave(&ep->com.lock, flags);
1428 	switch (ep->com.state) {
1429 	case MPA_REQ_WAIT:
1430 		__state_set(&ep->com, CLOSING);
1431 		break;
1432 	case MPA_REQ_SENT:
1433 		__state_set(&ep->com, CLOSING);
1434 		connect_reply_upcall(ep, -ECONNRESET);
1435 		break;
1436 	case MPA_REQ_RCVD:
1437 
1438 		/*
1439 		 * We're gonna mark this puppy DEAD, but keep
1440 		 * the reference on it until the ULP accepts or
1441 		 * rejects the CR. Also wake up anyone waiting
1442 		 * in rdma connection migration (see iwch_accept_cr()).
1443 		 */
1444 		__state_set(&ep->com, CLOSING);
1445 		ep->com.rpl_done = 1;
1446 		ep->com.rpl_err = -ECONNRESET;
1447 		PDBG("waking up ep %p\n", ep);
1448 		wake_up(&ep->com.waitq);
1449 		break;
1450 	case MPA_REP_SENT:
1451 		__state_set(&ep->com, CLOSING);
1452 		ep->com.rpl_done = 1;
1453 		ep->com.rpl_err = -ECONNRESET;
1454 		PDBG("waking up ep %p\n", ep);
1455 		wake_up(&ep->com.waitq);
1456 		break;
1457 	case FPDU_MODE:
1458 		start_ep_timer(ep);
1459 		__state_set(&ep->com, CLOSING);
1460 		attrs.next_state = IWCH_QP_STATE_CLOSING;
1461 		iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1462 			       IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1463 		peer_close_upcall(ep);
1464 		break;
1465 	case ABORTING:
1466 		disconnect = 0;
1467 		break;
1468 	case CLOSING:
1469 		__state_set(&ep->com, MORIBUND);
1470 		disconnect = 0;
1471 		break;
1472 	case MORIBUND:
1473 		stop_ep_timer(ep);
1474 		if (ep->com.cm_id && ep->com.qp) {
1475 			attrs.next_state = IWCH_QP_STATE_IDLE;
1476 			iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1477 				       IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1478 		}
1479 		close_complete_upcall(ep);
1480 		__state_set(&ep->com, DEAD);
1481 		release = 1;
1482 		disconnect = 0;
1483 		break;
1484 	case DEAD:
1485 		disconnect = 0;
1486 		break;
1487 	default:
1488 		BUG_ON(1);
1489 	}
1490 	spin_unlock_irqrestore(&ep->com.lock, flags);
1491 	if (disconnect)
1492 		iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1493 	if (release)
1494 		release_ep_resources(ep);
1495 	return CPL_RET_BUF_DONE;
1496 }
1497 
1498 /*
1499  * Returns whether an ABORT_REQ_RSS message is a negative advice.
1500  */
is_neg_adv_abort(unsigned int status)1501 static int is_neg_adv_abort(unsigned int status)
1502 {
1503 	return status == CPL_ERR_RTX_NEG_ADVICE ||
1504 	       status == CPL_ERR_PERSIST_NEG_ADVICE;
1505 }
1506 
peer_abort(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1507 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1508 {
1509 	struct cpl_abort_req_rss *req = cplhdr(skb);
1510 	struct iwch_ep *ep = ctx;
1511 	struct cpl_abort_rpl *rpl;
1512 	struct sk_buff *rpl_skb;
1513 	struct iwch_qp_attributes attrs;
1514 	int ret;
1515 	int release = 0;
1516 	unsigned long flags;
1517 
1518 	if (is_neg_adv_abort(req->status)) {
1519 		PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1520 		     ep->hwtid);
1521 		t3_l2t_send_event(ep->com.tdev, ep->l2t);
1522 		return CPL_RET_BUF_DONE;
1523 	}
1524 
1525 	/*
1526 	 * We get 2 peer aborts from the HW.  The first one must
1527 	 * be ignored except for scribbling that we need one more.
1528 	 */
1529 	if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
1530 		return CPL_RET_BUF_DONE;
1531 	}
1532 
1533 	spin_lock_irqsave(&ep->com.lock, flags);
1534 	PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1535 	switch (ep->com.state) {
1536 	case CONNECTING:
1537 		break;
1538 	case MPA_REQ_WAIT:
1539 		stop_ep_timer(ep);
1540 		break;
1541 	case MPA_REQ_SENT:
1542 		stop_ep_timer(ep);
1543 		connect_reply_upcall(ep, -ECONNRESET);
1544 		break;
1545 	case MPA_REP_SENT:
1546 		ep->com.rpl_done = 1;
1547 		ep->com.rpl_err = -ECONNRESET;
1548 		PDBG("waking up ep %p\n", ep);
1549 		wake_up(&ep->com.waitq);
1550 		break;
1551 	case MPA_REQ_RCVD:
1552 
1553 		/*
1554 		 * We're gonna mark this puppy DEAD, but keep
1555 		 * the reference on it until the ULP accepts or
1556 		 * rejects the CR. Also wake up anyone waiting
1557 		 * in rdma connection migration (see iwch_accept_cr()).
1558 		 */
1559 		ep->com.rpl_done = 1;
1560 		ep->com.rpl_err = -ECONNRESET;
1561 		PDBG("waking up ep %p\n", ep);
1562 		wake_up(&ep->com.waitq);
1563 		break;
1564 	case MORIBUND:
1565 	case CLOSING:
1566 		stop_ep_timer(ep);
1567 		/*FALLTHROUGH*/
1568 	case FPDU_MODE:
1569 		if (ep->com.cm_id && ep->com.qp) {
1570 			attrs.next_state = IWCH_QP_STATE_ERROR;
1571 			ret = iwch_modify_qp(ep->com.qp->rhp,
1572 				     ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1573 				     &attrs, 1);
1574 			if (ret)
1575 				printk(KERN_ERR MOD
1576 				       "%s - qp <- error failed!\n",
1577 				       __func__);
1578 		}
1579 		peer_abort_upcall(ep);
1580 		break;
1581 	case ABORTING:
1582 		break;
1583 	case DEAD:
1584 		PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1585 		spin_unlock_irqrestore(&ep->com.lock, flags);
1586 		return CPL_RET_BUF_DONE;
1587 	default:
1588 		BUG_ON(1);
1589 		break;
1590 	}
1591 	dst_confirm(ep->dst);
1592 	if (ep->com.state != ABORTING) {
1593 		__state_set(&ep->com, DEAD);
1594 		release = 1;
1595 	}
1596 	spin_unlock_irqrestore(&ep->com.lock, flags);
1597 
1598 	rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1599 	if (!rpl_skb) {
1600 		printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1601 		       __func__);
1602 		release = 1;
1603 		goto out;
1604 	}
1605 	rpl_skb->priority = CPL_PRIORITY_DATA;
1606 	rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1607 	rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1608 	rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1609 	OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1610 	rpl->cmd = CPL_ABORT_NO_RST;
1611 	iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1612 out:
1613 	if (release)
1614 		release_ep_resources(ep);
1615 	return CPL_RET_BUF_DONE;
1616 }
1617 
close_con_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1618 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1619 {
1620 	struct iwch_ep *ep = ctx;
1621 	struct iwch_qp_attributes attrs;
1622 	unsigned long flags;
1623 	int release = 0;
1624 
1625 	PDBG("%s ep %p\n", __func__, ep);
1626 	BUG_ON(!ep);
1627 
1628 	/* The cm_id may be null if we failed to connect */
1629 	spin_lock_irqsave(&ep->com.lock, flags);
1630 	switch (ep->com.state) {
1631 	case CLOSING:
1632 		__state_set(&ep->com, MORIBUND);
1633 		break;
1634 	case MORIBUND:
1635 		stop_ep_timer(ep);
1636 		if ((ep->com.cm_id) && (ep->com.qp)) {
1637 			attrs.next_state = IWCH_QP_STATE_IDLE;
1638 			iwch_modify_qp(ep->com.qp->rhp,
1639 					     ep->com.qp,
1640 					     IWCH_QP_ATTR_NEXT_STATE,
1641 					     &attrs, 1);
1642 		}
1643 		close_complete_upcall(ep);
1644 		__state_set(&ep->com, DEAD);
1645 		release = 1;
1646 		break;
1647 	case ABORTING:
1648 	case DEAD:
1649 		break;
1650 	default:
1651 		BUG_ON(1);
1652 		break;
1653 	}
1654 	spin_unlock_irqrestore(&ep->com.lock, flags);
1655 	if (release)
1656 		release_ep_resources(ep);
1657 	return CPL_RET_BUF_DONE;
1658 }
1659 
1660 /*
1661  * T3A does 3 things when a TERM is received:
1662  * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1663  * 2) generate an async event on the QP with the TERMINATE opcode
1664  * 3) post a TERMINATE opcde cqe into the associated CQ.
1665  *
1666  * For (1), we save the message in the qp for later consumer consumption.
1667  * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1668  * For (3), we toss the CQE in cxio_poll_cq().
1669  *
1670  * terminate() handles case (1)...
1671  */
terminate(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1672 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1673 {
1674 	struct iwch_ep *ep = ctx;
1675 
1676 	if (state_read(&ep->com) != FPDU_MODE)
1677 		return CPL_RET_BUF_DONE;
1678 
1679 	PDBG("%s ep %p\n", __func__, ep);
1680 	skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1681 	PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1682 	skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1683 				  skb->len);
1684 	ep->com.qp->attr.terminate_msg_len = skb->len;
1685 	ep->com.qp->attr.is_terminate_local = 0;
1686 	return CPL_RET_BUF_DONE;
1687 }
1688 
ec_status(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1689 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1690 {
1691 	struct cpl_rdma_ec_status *rep = cplhdr(skb);
1692 	struct iwch_ep *ep = ctx;
1693 
1694 	PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1695 	     rep->status);
1696 	if (rep->status) {
1697 		struct iwch_qp_attributes attrs;
1698 
1699 		printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1700 		       __func__, ep->hwtid);
1701 		stop_ep_timer(ep);
1702 		attrs.next_state = IWCH_QP_STATE_ERROR;
1703 		iwch_modify_qp(ep->com.qp->rhp,
1704 			       ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1705 			       &attrs, 1);
1706 		abort_connection(ep, NULL, GFP_KERNEL);
1707 	}
1708 	return CPL_RET_BUF_DONE;
1709 }
1710 
ep_timeout(unsigned long arg)1711 static void ep_timeout(unsigned long arg)
1712 {
1713 	struct iwch_ep *ep = (struct iwch_ep *)arg;
1714 	struct iwch_qp_attributes attrs;
1715 	unsigned long flags;
1716 	int abort = 1;
1717 
1718 	spin_lock_irqsave(&ep->com.lock, flags);
1719 	PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1720 	     ep->com.state);
1721 	switch (ep->com.state) {
1722 	case MPA_REQ_SENT:
1723 		__state_set(&ep->com, ABORTING);
1724 		connect_reply_upcall(ep, -ETIMEDOUT);
1725 		break;
1726 	case MPA_REQ_WAIT:
1727 		__state_set(&ep->com, ABORTING);
1728 		break;
1729 	case CLOSING:
1730 	case MORIBUND:
1731 		if (ep->com.cm_id && ep->com.qp) {
1732 			attrs.next_state = IWCH_QP_STATE_ERROR;
1733 			iwch_modify_qp(ep->com.qp->rhp,
1734 				     ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1735 				     &attrs, 1);
1736 		}
1737 		__state_set(&ep->com, ABORTING);
1738 		break;
1739 	default:
1740 		printk(KERN_ERR "%s unexpected state ep %p state %u\n",
1741 			__func__, ep, ep->com.state);
1742 		WARN_ON(1);
1743 		abort = 0;
1744 	}
1745 	spin_unlock_irqrestore(&ep->com.lock, flags);
1746 	if (abort)
1747 		abort_connection(ep, NULL, GFP_ATOMIC);
1748 	put_ep(&ep->com);
1749 }
1750 
iwch_reject_cr(struct iw_cm_id * cm_id,const void * pdata,u8 pdata_len)1751 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1752 {
1753 	int err;
1754 	struct iwch_ep *ep = to_ep(cm_id);
1755 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1756 
1757 	if (state_read(&ep->com) == DEAD) {
1758 		put_ep(&ep->com);
1759 		return -ECONNRESET;
1760 	}
1761 	BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1762 	if (mpa_rev == 0)
1763 		abort_connection(ep, NULL, GFP_KERNEL);
1764 	else {
1765 		err = send_mpa_reject(ep, pdata, pdata_len);
1766 		err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1767 	}
1768 	put_ep(&ep->com);
1769 	return 0;
1770 }
1771 
iwch_accept_cr(struct iw_cm_id * cm_id,struct iw_cm_conn_param * conn_param)1772 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1773 {
1774 	int err;
1775 	struct iwch_qp_attributes attrs;
1776 	enum iwch_qp_attr_mask mask;
1777 	struct iwch_ep *ep = to_ep(cm_id);
1778 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1779 	struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1780 
1781 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1782 	if (state_read(&ep->com) == DEAD) {
1783 		err = -ECONNRESET;
1784 		goto err;
1785 	}
1786 
1787 	BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1788 	BUG_ON(!qp);
1789 
1790 	if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1791 	    (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1792 		abort_connection(ep, NULL, GFP_KERNEL);
1793 		err = -EINVAL;
1794 		goto err;
1795 	}
1796 
1797 	cm_id->add_ref(cm_id);
1798 	ep->com.cm_id = cm_id;
1799 	ep->com.qp = qp;
1800 
1801 	ep->ird = conn_param->ird;
1802 	ep->ord = conn_param->ord;
1803 
1804 	if (peer2peer && ep->ird == 0)
1805 		ep->ird = 1;
1806 
1807 	PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1808 
1809 	/* bind QP to EP and move to RTS */
1810 	attrs.mpa_attr = ep->mpa_attr;
1811 	attrs.max_ird = ep->ird;
1812 	attrs.max_ord = ep->ord;
1813 	attrs.llp_stream_handle = ep;
1814 	attrs.next_state = IWCH_QP_STATE_RTS;
1815 
1816 	/* bind QP and TID with INIT_WR */
1817 	mask = IWCH_QP_ATTR_NEXT_STATE |
1818 			     IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1819 			     IWCH_QP_ATTR_MPA_ATTR |
1820 			     IWCH_QP_ATTR_MAX_IRD |
1821 			     IWCH_QP_ATTR_MAX_ORD;
1822 
1823 	err = iwch_modify_qp(ep->com.qp->rhp,
1824 			     ep->com.qp, mask, &attrs, 1);
1825 	if (err)
1826 		goto err1;
1827 
1828 	/* if needed, wait for wr_ack */
1829 	if (iwch_rqes_posted(qp)) {
1830 		wait_event(ep->com.waitq, ep->com.rpl_done);
1831 		err = ep->com.rpl_err;
1832 		if (err)
1833 			goto err1;
1834 	}
1835 
1836 	err = send_mpa_reply(ep, conn_param->private_data,
1837 			     conn_param->private_data_len);
1838 	if (err)
1839 		goto err1;
1840 
1841 
1842 	state_set(&ep->com, FPDU_MODE);
1843 	established_upcall(ep);
1844 	put_ep(&ep->com);
1845 	return 0;
1846 err1:
1847 	ep->com.cm_id = NULL;
1848 	ep->com.qp = NULL;
1849 	cm_id->rem_ref(cm_id);
1850 err:
1851 	put_ep(&ep->com);
1852 	return err;
1853 }
1854 
is_loopback_dst(struct iw_cm_id * cm_id)1855 static int is_loopback_dst(struct iw_cm_id *cm_id)
1856 {
1857 	struct net_device *dev;
1858 
1859 	dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr);
1860 	if (!dev)
1861 		return 0;
1862 	dev_put(dev);
1863 	return 1;
1864 }
1865 
iwch_connect(struct iw_cm_id * cm_id,struct iw_cm_conn_param * conn_param)1866 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1867 {
1868 	int err = 0;
1869 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1870 	struct iwch_ep *ep;
1871 	struct rtable *rt;
1872 
1873 	if (is_loopback_dst(cm_id)) {
1874 		err = -ENOSYS;
1875 		goto out;
1876 	}
1877 
1878 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1879 	if (!ep) {
1880 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1881 		err = -ENOMEM;
1882 		goto out;
1883 	}
1884 	init_timer(&ep->timer);
1885 	ep->plen = conn_param->private_data_len;
1886 	if (ep->plen)
1887 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1888 		       conn_param->private_data, ep->plen);
1889 	ep->ird = conn_param->ird;
1890 	ep->ord = conn_param->ord;
1891 
1892 	if (peer2peer && ep->ord == 0)
1893 		ep->ord = 1;
1894 
1895 	ep->com.tdev = h->rdev.t3cdev_p;
1896 
1897 	cm_id->add_ref(cm_id);
1898 	ep->com.cm_id = cm_id;
1899 	ep->com.qp = get_qhp(h, conn_param->qpn);
1900 	BUG_ON(!ep->com.qp);
1901 	PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1902 	     ep->com.qp, cm_id);
1903 
1904 	/*
1905 	 * Allocate an active TID to initiate a TCP connection.
1906 	 */
1907 	ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1908 	if (ep->atid == -1) {
1909 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1910 		err = -ENOMEM;
1911 		goto fail2;
1912 	}
1913 
1914 	/* find a route */
1915 	rt = find_route(h->rdev.t3cdev_p,
1916 			cm_id->local_addr.sin_addr.s_addr,
1917 			cm_id->remote_addr.sin_addr.s_addr,
1918 			cm_id->local_addr.sin_port,
1919 			cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1920 	if (!rt) {
1921 		printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1922 		err = -EHOSTUNREACH;
1923 		goto fail3;
1924 	}
1925 	ep->dst = &rt->dst;
1926 
1927 	/* get a l2t entry */
1928 	ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
1929 			     ep->dst->neighbour->dev);
1930 	if (!ep->l2t) {
1931 		printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1932 		err = -ENOMEM;
1933 		goto fail4;
1934 	}
1935 
1936 	state_set(&ep->com, CONNECTING);
1937 	ep->tos = IPTOS_LOWDELAY;
1938 	ep->com.local_addr = cm_id->local_addr;
1939 	ep->com.remote_addr = cm_id->remote_addr;
1940 
1941 	/* send connect request to rnic */
1942 	err = send_connect(ep);
1943 	if (!err)
1944 		goto out;
1945 
1946 	l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
1947 fail4:
1948 	dst_release(ep->dst);
1949 fail3:
1950 	cxgb3_free_atid(ep->com.tdev, ep->atid);
1951 fail2:
1952 	cm_id->rem_ref(cm_id);
1953 	put_ep(&ep->com);
1954 out:
1955 	return err;
1956 }
1957 
iwch_create_listen(struct iw_cm_id * cm_id,int backlog)1958 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1959 {
1960 	int err = 0;
1961 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1962 	struct iwch_listen_ep *ep;
1963 
1964 
1965 	might_sleep();
1966 
1967 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1968 	if (!ep) {
1969 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1970 		err = -ENOMEM;
1971 		goto fail1;
1972 	}
1973 	PDBG("%s ep %p\n", __func__, ep);
1974 	ep->com.tdev = h->rdev.t3cdev_p;
1975 	cm_id->add_ref(cm_id);
1976 	ep->com.cm_id = cm_id;
1977 	ep->backlog = backlog;
1978 	ep->com.local_addr = cm_id->local_addr;
1979 
1980 	/*
1981 	 * Allocate a server TID.
1982 	 */
1983 	ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
1984 	if (ep->stid == -1) {
1985 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1986 		err = -ENOMEM;
1987 		goto fail2;
1988 	}
1989 
1990 	state_set(&ep->com, LISTEN);
1991 	err = listen_start(ep);
1992 	if (err)
1993 		goto fail3;
1994 
1995 	/* wait for pass_open_rpl */
1996 	wait_event(ep->com.waitq, ep->com.rpl_done);
1997 	err = ep->com.rpl_err;
1998 	if (!err) {
1999 		cm_id->provider_data = ep;
2000 		goto out;
2001 	}
2002 fail3:
2003 	cxgb3_free_stid(ep->com.tdev, ep->stid);
2004 fail2:
2005 	cm_id->rem_ref(cm_id);
2006 	put_ep(&ep->com);
2007 fail1:
2008 out:
2009 	return err;
2010 }
2011 
iwch_destroy_listen(struct iw_cm_id * cm_id)2012 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2013 {
2014 	int err;
2015 	struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2016 
2017 	PDBG("%s ep %p\n", __func__, ep);
2018 
2019 	might_sleep();
2020 	state_set(&ep->com, DEAD);
2021 	ep->com.rpl_done = 0;
2022 	ep->com.rpl_err = 0;
2023 	err = listen_stop(ep);
2024 	if (err)
2025 		goto done;
2026 	wait_event(ep->com.waitq, ep->com.rpl_done);
2027 	cxgb3_free_stid(ep->com.tdev, ep->stid);
2028 done:
2029 	err = ep->com.rpl_err;
2030 	cm_id->rem_ref(cm_id);
2031 	put_ep(&ep->com);
2032 	return err;
2033 }
2034 
iwch_ep_disconnect(struct iwch_ep * ep,int abrupt,gfp_t gfp)2035 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2036 {
2037 	int ret=0;
2038 	unsigned long flags;
2039 	int close = 0;
2040 	int fatal = 0;
2041 	struct t3cdev *tdev;
2042 	struct cxio_rdev *rdev;
2043 
2044 	spin_lock_irqsave(&ep->com.lock, flags);
2045 
2046 	PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2047 	     states[ep->com.state], abrupt);
2048 
2049 	tdev = (struct t3cdev *)ep->com.tdev;
2050 	rdev = (struct cxio_rdev *)tdev->ulp;
2051 	if (cxio_fatal_error(rdev)) {
2052 		fatal = 1;
2053 		close_complete_upcall(ep);
2054 		ep->com.state = DEAD;
2055 	}
2056 	switch (ep->com.state) {
2057 	case MPA_REQ_WAIT:
2058 	case MPA_REQ_SENT:
2059 	case MPA_REQ_RCVD:
2060 	case MPA_REP_SENT:
2061 	case FPDU_MODE:
2062 		close = 1;
2063 		if (abrupt)
2064 			ep->com.state = ABORTING;
2065 		else {
2066 			ep->com.state = CLOSING;
2067 			start_ep_timer(ep);
2068 		}
2069 		set_bit(CLOSE_SENT, &ep->com.flags);
2070 		break;
2071 	case CLOSING:
2072 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2073 			close = 1;
2074 			if (abrupt) {
2075 				stop_ep_timer(ep);
2076 				ep->com.state = ABORTING;
2077 			} else
2078 				ep->com.state = MORIBUND;
2079 		}
2080 		break;
2081 	case MORIBUND:
2082 	case ABORTING:
2083 	case DEAD:
2084 		PDBG("%s ignoring disconnect ep %p state %u\n",
2085 		     __func__, ep, ep->com.state);
2086 		break;
2087 	default:
2088 		BUG();
2089 		break;
2090 	}
2091 
2092 	spin_unlock_irqrestore(&ep->com.lock, flags);
2093 	if (close) {
2094 		if (abrupt)
2095 			ret = send_abort(ep, NULL, gfp);
2096 		else
2097 			ret = send_halfclose(ep, gfp);
2098 		if (ret)
2099 			fatal = 1;
2100 	}
2101 	if (fatal)
2102 		release_ep_resources(ep);
2103 	return ret;
2104 }
2105 
iwch_ep_redirect(void * ctx,struct dst_entry * old,struct dst_entry * new,struct l2t_entry * l2t)2106 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2107 		     struct l2t_entry *l2t)
2108 {
2109 	struct iwch_ep *ep = ctx;
2110 
2111 	if (ep->dst != old)
2112 		return 0;
2113 
2114 	PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2115 	     l2t);
2116 	dst_hold(new);
2117 	l2t_release(L2DATA(ep->com.tdev), ep->l2t);
2118 	ep->l2t = l2t;
2119 	dst_release(old);
2120 	ep->dst = new;
2121 	return 1;
2122 }
2123 
2124 /*
2125  * All the CM events are handled on a work queue to have a safe context.
2126  * These are the real handlers that are called from the work queue.
2127  */
2128 static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
2129 	[CPL_ACT_ESTABLISH]	= act_establish,
2130 	[CPL_ACT_OPEN_RPL]	= act_open_rpl,
2131 	[CPL_RX_DATA]		= rx_data,
2132 	[CPL_TX_DMA_ACK]	= tx_ack,
2133 	[CPL_ABORT_RPL_RSS]	= abort_rpl,
2134 	[CPL_ABORT_RPL]		= abort_rpl,
2135 	[CPL_PASS_OPEN_RPL]	= pass_open_rpl,
2136 	[CPL_CLOSE_LISTSRV_RPL]	= close_listsrv_rpl,
2137 	[CPL_PASS_ACCEPT_REQ]	= pass_accept_req,
2138 	[CPL_PASS_ESTABLISH]	= pass_establish,
2139 	[CPL_PEER_CLOSE]	= peer_close,
2140 	[CPL_ABORT_REQ_RSS]	= peer_abort,
2141 	[CPL_CLOSE_CON_RPL]	= close_con_rpl,
2142 	[CPL_RDMA_TERMINATE]	= terminate,
2143 	[CPL_RDMA_EC_STATUS]	= ec_status,
2144 };
2145 
process_work(struct work_struct * work)2146 static void process_work(struct work_struct *work)
2147 {
2148 	struct sk_buff *skb = NULL;
2149 	void *ep;
2150 	struct t3cdev *tdev;
2151 	int ret;
2152 
2153 	while ((skb = skb_dequeue(&rxq))) {
2154 		ep = *((void **) (skb->cb));
2155 		tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
2156 		ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
2157 		if (ret & CPL_RET_BUF_DONE)
2158 			kfree_skb(skb);
2159 
2160 		/*
2161 		 * ep was referenced in sched(), and is freed here.
2162 		 */
2163 		put_ep((struct iwch_ep_common *)ep);
2164 	}
2165 }
2166 
2167 static DECLARE_WORK(skb_work, process_work);
2168 
sched(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)2169 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2170 {
2171 	struct iwch_ep_common *epc = ctx;
2172 
2173 	get_ep(epc);
2174 
2175 	/*
2176 	 * Save ctx and tdev in the skb->cb area.
2177 	 */
2178 	*((void **) skb->cb) = ctx;
2179 	*((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2180 
2181 	/*
2182 	 * Queue the skb and schedule the worker thread.
2183 	 */
2184 	skb_queue_tail(&rxq, skb);
2185 	queue_work(workq, &skb_work);
2186 	return 0;
2187 }
2188 
set_tcb_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)2189 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2190 {
2191 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2192 
2193 	if (rpl->status != CPL_ERR_NONE) {
2194 		printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2195 		       "for tid %u\n", rpl->status, GET_TID(rpl));
2196 	}
2197 	return CPL_RET_BUF_DONE;
2198 }
2199 
2200 /*
2201  * All upcalls from the T3 Core go to sched() to schedule the
2202  * processing on a work queue.
2203  */
2204 cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
2205 	[CPL_ACT_ESTABLISH]	= sched,
2206 	[CPL_ACT_OPEN_RPL]	= sched,
2207 	[CPL_RX_DATA]		= sched,
2208 	[CPL_TX_DMA_ACK]	= sched,
2209 	[CPL_ABORT_RPL_RSS]	= sched,
2210 	[CPL_ABORT_RPL]		= sched,
2211 	[CPL_PASS_OPEN_RPL]	= sched,
2212 	[CPL_CLOSE_LISTSRV_RPL]	= sched,
2213 	[CPL_PASS_ACCEPT_REQ]	= sched,
2214 	[CPL_PASS_ESTABLISH]	= sched,
2215 	[CPL_PEER_CLOSE]	= sched,
2216 	[CPL_CLOSE_CON_RPL]	= sched,
2217 	[CPL_ABORT_REQ_RSS]	= sched,
2218 	[CPL_RDMA_TERMINATE]	= sched,
2219 	[CPL_RDMA_EC_STATUS]	= sched,
2220 	[CPL_SET_TCB_RPL]	= set_tcb_rpl,
2221 };
2222 
iwch_cm_init(void)2223 int __init iwch_cm_init(void)
2224 {
2225 	skb_queue_head_init(&rxq);
2226 
2227 	workq = create_singlethread_workqueue("iw_cxgb3");
2228 	if (!workq)
2229 		return -ENOMEM;
2230 
2231 	return 0;
2232 }
2233 
iwch_cm_term(void)2234 void __exit iwch_cm_term(void)
2235 {
2236 	flush_workqueue(workq);
2237 	destroy_workqueue(workq);
2238 }
2239