1 /*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
17
18 #include <asm/pvclock.h>
19 #include <asm/xen/hypervisor.h>
20 #include <asm/xen/hypercall.h>
21
22 #include <xen/events.h>
23 #include <xen/features.h>
24 #include <xen/interface/xen.h>
25 #include <xen/interface/vcpu.h>
26
27 #include "xen-ops.h"
28
29 #define XEN_SHIFT 22
30
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP 100000
33 #define NS_PER_TICK (1000000000LL / HZ)
34
35 /* runstate info updated by Xen */
36 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
37
38 /* snapshots of runstate info */
39 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
40
41 /* unused ns of stolen and blocked time */
42 static DEFINE_PER_CPU(u64, xen_residual_stolen);
43 static DEFINE_PER_CPU(u64, xen_residual_blocked);
44
45 /* return an consistent snapshot of 64-bit time/counter value */
get64(const u64 * p)46 static u64 get64(const u64 *p)
47 {
48 u64 ret;
49
50 if (BITS_PER_LONG < 64) {
51 u32 *p32 = (u32 *)p;
52 u32 h, l;
53
54 /*
55 * Read high then low, and then make sure high is
56 * still the same; this will only loop if low wraps
57 * and carries into high.
58 * XXX some clean way to make this endian-proof?
59 */
60 do {
61 h = p32[1];
62 barrier();
63 l = p32[0];
64 barrier();
65 } while (p32[1] != h);
66
67 ret = (((u64)h) << 32) | l;
68 } else
69 ret = *p;
70
71 return ret;
72 }
73
74 /*
75 * Runstate accounting
76 */
get_runstate_snapshot(struct vcpu_runstate_info * res)77 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
78 {
79 u64 state_time;
80 struct vcpu_runstate_info *state;
81
82 BUG_ON(preemptible());
83
84 state = &__get_cpu_var(xen_runstate);
85
86 /*
87 * The runstate info is always updated by the hypervisor on
88 * the current CPU, so there's no need to use anything
89 * stronger than a compiler barrier when fetching it.
90 */
91 do {
92 state_time = get64(&state->state_entry_time);
93 barrier();
94 *res = *state;
95 barrier();
96 } while (get64(&state->state_entry_time) != state_time);
97 }
98
99 /* return true when a vcpu could run but has no real cpu to run on */
xen_vcpu_stolen(int vcpu)100 bool xen_vcpu_stolen(int vcpu)
101 {
102 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
103 }
104
xen_setup_runstate_info(int cpu)105 void xen_setup_runstate_info(int cpu)
106 {
107 struct vcpu_register_runstate_memory_area area;
108
109 area.addr.v = &per_cpu(xen_runstate, cpu);
110
111 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
112 cpu, &area))
113 BUG();
114 }
115
do_stolen_accounting(void)116 static void do_stolen_accounting(void)
117 {
118 struct vcpu_runstate_info state;
119 struct vcpu_runstate_info *snap;
120 s64 blocked, runnable, offline, stolen;
121 cputime_t ticks;
122
123 get_runstate_snapshot(&state);
124
125 WARN_ON(state.state != RUNSTATE_running);
126
127 snap = &__get_cpu_var(xen_runstate_snapshot);
128
129 /* work out how much time the VCPU has not been runn*ing* */
130 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
131 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
132 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
133
134 *snap = state;
135
136 /* Add the appropriate number of ticks of stolen time,
137 including any left-overs from last time. */
138 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
139
140 if (stolen < 0)
141 stolen = 0;
142
143 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
144 __this_cpu_write(xen_residual_stolen, stolen);
145 account_steal_ticks(ticks);
146
147 /* Add the appropriate number of ticks of blocked time,
148 including any left-overs from last time. */
149 blocked += __this_cpu_read(xen_residual_blocked);
150
151 if (blocked < 0)
152 blocked = 0;
153
154 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
155 __this_cpu_write(xen_residual_blocked, blocked);
156 account_idle_ticks(ticks);
157 }
158
159 /* Get the TSC speed from Xen */
xen_tsc_khz(void)160 static unsigned long xen_tsc_khz(void)
161 {
162 struct pvclock_vcpu_time_info *info =
163 &HYPERVISOR_shared_info->vcpu_info[0].time;
164
165 return pvclock_tsc_khz(info);
166 }
167
xen_clocksource_read(void)168 cycle_t xen_clocksource_read(void)
169 {
170 struct pvclock_vcpu_time_info *src;
171 cycle_t ret;
172
173 src = &get_cpu_var(xen_vcpu)->time;
174 ret = pvclock_clocksource_read(src);
175 put_cpu_var(xen_vcpu);
176 return ret;
177 }
178
xen_clocksource_get_cycles(struct clocksource * cs)179 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
180 {
181 return xen_clocksource_read();
182 }
183
xen_read_wallclock(struct timespec * ts)184 static void xen_read_wallclock(struct timespec *ts)
185 {
186 struct shared_info *s = HYPERVISOR_shared_info;
187 struct pvclock_wall_clock *wall_clock = &(s->wc);
188 struct pvclock_vcpu_time_info *vcpu_time;
189
190 vcpu_time = &get_cpu_var(xen_vcpu)->time;
191 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
192 put_cpu_var(xen_vcpu);
193 }
194
xen_get_wallclock(void)195 static unsigned long xen_get_wallclock(void)
196 {
197 struct timespec ts;
198
199 xen_read_wallclock(&ts);
200 return ts.tv_sec;
201 }
202
xen_set_wallclock(unsigned long now)203 static int xen_set_wallclock(unsigned long now)
204 {
205 /* do nothing for domU */
206 return -1;
207 }
208
209 static struct clocksource xen_clocksource __read_mostly = {
210 .name = "xen",
211 .rating = 400,
212 .read = xen_clocksource_get_cycles,
213 .mask = ~0,
214 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
215 .shift = XEN_SHIFT,
216 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
217 };
218
219 /*
220 Xen clockevent implementation
221
222 Xen has two clockevent implementations:
223
224 The old timer_op one works with all released versions of Xen prior
225 to version 3.0.4. This version of the hypervisor provides a
226 single-shot timer with nanosecond resolution. However, sharing the
227 same event channel is a 100Hz tick which is delivered while the
228 vcpu is running. We don't care about or use this tick, but it will
229 cause the core time code to think the timer fired too soon, and
230 will end up resetting it each time. It could be filtered, but
231 doing so has complications when the ktime clocksource is not yet
232 the xen clocksource (ie, at boot time).
233
234 The new vcpu_op-based timer interface allows the tick timer period
235 to be changed or turned off. The tick timer is not useful as a
236 periodic timer because events are only delivered to running vcpus.
237 The one-shot timer can report when a timeout is in the past, so
238 set_next_event is capable of returning -ETIME when appropriate.
239 This interface is used when available.
240 */
241
242
243 /*
244 Get a hypervisor absolute time. In theory we could maintain an
245 offset between the kernel's time and the hypervisor's time, and
246 apply that to a kernel's absolute timeout. Unfortunately the
247 hypervisor and kernel times can drift even if the kernel is using
248 the Xen clocksource, because ntp can warp the kernel's clocksource.
249 */
get_abs_timeout(unsigned long delta)250 static s64 get_abs_timeout(unsigned long delta)
251 {
252 return xen_clocksource_read() + delta;
253 }
254
xen_timerop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)255 static void xen_timerop_set_mode(enum clock_event_mode mode,
256 struct clock_event_device *evt)
257 {
258 switch (mode) {
259 case CLOCK_EVT_MODE_PERIODIC:
260 /* unsupported */
261 WARN_ON(1);
262 break;
263
264 case CLOCK_EVT_MODE_ONESHOT:
265 case CLOCK_EVT_MODE_RESUME:
266 break;
267
268 case CLOCK_EVT_MODE_UNUSED:
269 case CLOCK_EVT_MODE_SHUTDOWN:
270 HYPERVISOR_set_timer_op(0); /* cancel timeout */
271 break;
272 }
273 }
274
xen_timerop_set_next_event(unsigned long delta,struct clock_event_device * evt)275 static int xen_timerop_set_next_event(unsigned long delta,
276 struct clock_event_device *evt)
277 {
278 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
279
280 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
281 BUG();
282
283 /* We may have missed the deadline, but there's no real way of
284 knowing for sure. If the event was in the past, then we'll
285 get an immediate interrupt. */
286
287 return 0;
288 }
289
290 static const struct clock_event_device xen_timerop_clockevent = {
291 .name = "xen",
292 .features = CLOCK_EVT_FEAT_ONESHOT,
293
294 .max_delta_ns = 0xffffffff,
295 .min_delta_ns = TIMER_SLOP,
296
297 .mult = 1,
298 .shift = 0,
299 .rating = 500,
300
301 .set_mode = xen_timerop_set_mode,
302 .set_next_event = xen_timerop_set_next_event,
303 };
304
305
306
xen_vcpuop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)307 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
308 struct clock_event_device *evt)
309 {
310 int cpu = smp_processor_id();
311
312 switch (mode) {
313 case CLOCK_EVT_MODE_PERIODIC:
314 WARN_ON(1); /* unsupported */
315 break;
316
317 case CLOCK_EVT_MODE_ONESHOT:
318 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
319 BUG();
320 break;
321
322 case CLOCK_EVT_MODE_UNUSED:
323 case CLOCK_EVT_MODE_SHUTDOWN:
324 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
325 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
326 BUG();
327 break;
328 case CLOCK_EVT_MODE_RESUME:
329 break;
330 }
331 }
332
xen_vcpuop_set_next_event(unsigned long delta,struct clock_event_device * evt)333 static int xen_vcpuop_set_next_event(unsigned long delta,
334 struct clock_event_device *evt)
335 {
336 int cpu = smp_processor_id();
337 struct vcpu_set_singleshot_timer single;
338 int ret;
339
340 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
341
342 single.timeout_abs_ns = get_abs_timeout(delta);
343 single.flags = VCPU_SSHOTTMR_future;
344
345 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
346
347 BUG_ON(ret != 0 && ret != -ETIME);
348
349 return ret;
350 }
351
352 static const struct clock_event_device xen_vcpuop_clockevent = {
353 .name = "xen",
354 .features = CLOCK_EVT_FEAT_ONESHOT,
355
356 .max_delta_ns = 0xffffffff,
357 .min_delta_ns = TIMER_SLOP,
358
359 .mult = 1,
360 .shift = 0,
361 .rating = 500,
362
363 .set_mode = xen_vcpuop_set_mode,
364 .set_next_event = xen_vcpuop_set_next_event,
365 };
366
367 static const struct clock_event_device *xen_clockevent =
368 &xen_timerop_clockevent;
369 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
370
xen_timer_interrupt(int irq,void * dev_id)371 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
372 {
373 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
374 irqreturn_t ret;
375
376 ret = IRQ_NONE;
377 if (evt->event_handler) {
378 evt->event_handler(evt);
379 ret = IRQ_HANDLED;
380 }
381
382 do_stolen_accounting();
383
384 return ret;
385 }
386
xen_setup_timer(int cpu)387 void xen_setup_timer(int cpu)
388 {
389 const char *name;
390 struct clock_event_device *evt;
391 int irq;
392
393 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
394
395 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
396 if (!name)
397 name = "<timer kasprintf failed>";
398
399 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
400 IRQF_DISABLED|IRQF_PERCPU|
401 IRQF_NOBALANCING|IRQF_TIMER|
402 IRQF_FORCE_RESUME,
403 name, NULL);
404
405 evt = &per_cpu(xen_clock_events, cpu);
406 memcpy(evt, xen_clockevent, sizeof(*evt));
407
408 evt->cpumask = cpumask_of(cpu);
409 evt->irq = irq;
410 }
411
xen_teardown_timer(int cpu)412 void xen_teardown_timer(int cpu)
413 {
414 struct clock_event_device *evt;
415 BUG_ON(cpu == 0);
416 evt = &per_cpu(xen_clock_events, cpu);
417 unbind_from_irqhandler(evt->irq, NULL);
418 }
419
xen_setup_cpu_clockevents(void)420 void xen_setup_cpu_clockevents(void)
421 {
422 BUG_ON(preemptible());
423
424 clockevents_register_device(&__get_cpu_var(xen_clock_events));
425 }
426
xen_timer_resume(void)427 void xen_timer_resume(void)
428 {
429 int cpu;
430
431 pvclock_resume();
432
433 if (xen_clockevent != &xen_vcpuop_clockevent)
434 return;
435
436 for_each_online_cpu(cpu) {
437 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
438 BUG();
439 }
440 }
441
442 static const struct pv_time_ops xen_time_ops __initdata = {
443 .sched_clock = xen_clocksource_read,
444 };
445
xen_time_init(void)446 static __init void xen_time_init(void)
447 {
448 int cpu = smp_processor_id();
449 struct timespec tp;
450
451 clocksource_register(&xen_clocksource);
452
453 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
454 /* Successfully turned off 100Hz tick, so we have the
455 vcpuop-based timer interface */
456 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
457 xen_clockevent = &xen_vcpuop_clockevent;
458 }
459
460 /* Set initial system time with full resolution */
461 xen_read_wallclock(&tp);
462 do_settimeofday(&tp);
463
464 setup_force_cpu_cap(X86_FEATURE_TSC);
465
466 xen_setup_runstate_info(cpu);
467 xen_setup_timer(cpu);
468 xen_setup_cpu_clockevents();
469 }
470
xen_init_time_ops(void)471 __init void xen_init_time_ops(void)
472 {
473 pv_time_ops = xen_time_ops;
474
475 x86_init.timers.timer_init = xen_time_init;
476 x86_init.timers.setup_percpu_clockev = x86_init_noop;
477 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
478
479 x86_platform.calibrate_tsc = xen_tsc_khz;
480 x86_platform.get_wallclock = xen_get_wallclock;
481 x86_platform.set_wallclock = xen_set_wallclock;
482 }
483
484 #ifdef CONFIG_XEN_PVHVM
xen_hvm_setup_cpu_clockevents(void)485 static void xen_hvm_setup_cpu_clockevents(void)
486 {
487 int cpu = smp_processor_id();
488 xen_setup_runstate_info(cpu);
489 xen_setup_timer(cpu);
490 xen_setup_cpu_clockevents();
491 }
492
xen_hvm_init_time_ops(void)493 __init void xen_hvm_init_time_ops(void)
494 {
495 /* vector callback is needed otherwise we cannot receive interrupts
496 * on cpu > 0 and at this point we don't know how many cpus are
497 * available */
498 if (!xen_have_vector_callback)
499 return;
500 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
501 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
502 "disable pv timer\n");
503 return;
504 }
505
506 pv_time_ops = xen_time_ops;
507 x86_init.timers.setup_percpu_clockev = xen_time_init;
508 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
509
510 x86_platform.calibrate_tsc = xen_tsc_khz;
511 x86_platform.get_wallclock = xen_get_wallclock;
512 x86_platform.set_wallclock = xen_set_wallclock;
513 }
514 #endif
515