1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgprot_t mask_set;
34 pgprot_t mask_clr;
35 int numpages;
36 int flags;
37 unsigned long pfn;
38 unsigned force_split : 1;
39 int curpage;
40 struct page **pages;
41 };
42
43 /*
44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46 * entries change the page attribute in parallel to some other cpu
47 * splitting a large page entry along with changing the attribute.
48 */
49 static DEFINE_SPINLOCK(cpa_lock);
50
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
54
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57
update_page_count(int level,unsigned long pages)58 void update_page_count(int level, unsigned long pages)
59 {
60 /* Protect against CPA */
61 spin_lock(&pgd_lock);
62 direct_pages_count[level] += pages;
63 spin_unlock(&pgd_lock);
64 }
65
split_page_count(int level)66 static void split_page_count(int level)
67 {
68 direct_pages_count[level]--;
69 direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71
arch_report_meminfo(struct seq_file * m)72 void arch_report_meminfo(struct seq_file *m)
73 {
74 seq_printf(m, "DirectMap4k: %8lu kB\n",
75 direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 seq_printf(m, "DirectMap2M: %8lu kB\n",
78 direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80 seq_printf(m, "DirectMap4M: %8lu kB\n",
81 direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84 if (direct_gbpages)
85 seq_printf(m, "DirectMap1G: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
split_page_count(int level)90 static inline void split_page_count(int level) { }
91 #endif
92
93 #ifdef CONFIG_X86_64
94
highmap_start_pfn(void)95 static inline unsigned long highmap_start_pfn(void)
96 {
97 return __pa(_text) >> PAGE_SHIFT;
98 }
99
highmap_end_pfn(void)100 static inline unsigned long highmap_end_pfn(void)
101 {
102 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104
105 #endif
106
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112
113 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 return addr >= start && addr < end;
117 }
118
119 /*
120 * Flushing functions
121 */
122
123 /**
124 * clflush_cache_range - flush a cache range with clflush
125 * @addr: virtual start address
126 * @size: number of bytes to flush
127 *
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
130 */
clflush_cache_range(void * vaddr,unsigned int size)131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 void *vend = vaddr + size - 1;
134
135 mb();
136
137 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 clflush(vaddr);
139 /*
140 * Flush any possible final partial cacheline:
141 */
142 clflush(vend);
143
144 mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147
__cpa_flush_all(void * arg)148 static void __cpa_flush_all(void *arg)
149 {
150 unsigned long cache = (unsigned long)arg;
151
152 /*
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
155 */
156 __flush_tlb_all();
157
158 if (cache && boot_cpu_data.x86 >= 4)
159 wbinvd();
160 }
161
cpa_flush_all(unsigned long cache)162 static void cpa_flush_all(unsigned long cache)
163 {
164 BUG_ON(irqs_disabled());
165
166 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168
__cpa_flush_range(void * arg)169 static void __cpa_flush_range(void *arg)
170 {
171 /*
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
175 */
176 __flush_tlb_all();
177 }
178
cpa_flush_range(unsigned long start,int numpages,int cache)179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181 unsigned int i, level;
182 unsigned long addr;
183
184 BUG_ON(irqs_disabled());
185 WARN_ON(PAGE_ALIGN(start) != start);
186
187 on_each_cpu(__cpa_flush_range, NULL, 1);
188
189 if (!cache)
190 return;
191
192 /*
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
196 * cachelines:
197 */
198 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 pte_t *pte = lookup_address(addr, &level);
200
201 /*
202 * Only flush present addresses:
203 */
204 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205 clflush_cache_range((void *) addr, PAGE_SIZE);
206 }
207 }
208
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 int in_flags, struct page **pages)
211 {
212 unsigned int i, level;
213 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215 BUG_ON(irqs_disabled());
216
217 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219 if (!cache || do_wbinvd)
220 return;
221
222 /*
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
227 */
228 for (i = 0; i < numpages; i++) {
229 unsigned long addr;
230 pte_t *pte;
231
232 if (in_flags & CPA_PAGES_ARRAY)
233 addr = (unsigned long)page_address(pages[i]);
234 else
235 addr = start[i];
236
237 pte = lookup_address(addr, &level);
238
239 /*
240 * Only flush present addresses:
241 */
242 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243 clflush_cache_range((void *)addr, PAGE_SIZE);
244 }
245 }
246
247 /*
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
252 */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 unsigned long pfn)
255 {
256 pgprot_t forbidden = __pgprot(0);
257
258 /*
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 */
262 #ifdef CONFIG_PCI_BIOS
263 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266
267 /*
268 * The kernel text needs to be executable for obvious reasons
269 * Does not cover __inittext since that is gone later on. On
270 * 64bit we do not enforce !NX on the low mapping
271 */
272 if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 pgprot_val(forbidden) |= _PAGE_NX;
274
275 /*
276 * The .rodata section needs to be read-only. Using the pfn
277 * catches all aliases.
278 */
279 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
281 pgprot_val(forbidden) |= _PAGE_RW;
282
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284 /*
285 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 * kernel text mappings for the large page aligned text, rodata sections
287 * will be always read-only. For the kernel identity mappings covering
288 * the holes caused by this alignment can be anything that user asks.
289 *
290 * This will preserve the large page mappings for kernel text/data
291 * at no extra cost.
292 */
293 if (kernel_set_to_readonly &&
294 within(address, (unsigned long)_text,
295 (unsigned long)__end_rodata_hpage_align)) {
296 unsigned int level;
297
298 /*
299 * Don't enforce the !RW mapping for the kernel text mapping,
300 * if the current mapping is already using small page mapping.
301 * No need to work hard to preserve large page mappings in this
302 * case.
303 *
304 * This also fixes the Linux Xen paravirt guest boot failure
305 * (because of unexpected read-only mappings for kernel identity
306 * mappings). In this paravirt guest case, the kernel text
307 * mapping and the kernel identity mapping share the same
308 * page-table pages. Thus we can't really use different
309 * protections for the kernel text and identity mappings. Also,
310 * these shared mappings are made of small page mappings.
311 * Thus this don't enforce !RW mapping for small page kernel
312 * text mapping logic will help Linux Xen parvirt guest boot
313 * as well.
314 */
315 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 pgprot_val(forbidden) |= _PAGE_RW;
317 }
318 #endif
319
320 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321
322 return prot;
323 }
324
325 /*
326 * Lookup the page table entry for a virtual address. Return a pointer
327 * to the entry and the level of the mapping.
328 *
329 * Note: We return pud and pmd either when the entry is marked large
330 * or when the present bit is not set. Otherwise we would return a
331 * pointer to a nonexisting mapping.
332 */
lookup_address(unsigned long address,unsigned int * level)333 pte_t *lookup_address(unsigned long address, unsigned int *level)
334 {
335 pgd_t *pgd = pgd_offset_k(address);
336 pud_t *pud;
337 pmd_t *pmd;
338
339 *level = PG_LEVEL_NONE;
340
341 if (pgd_none(*pgd))
342 return NULL;
343
344 pud = pud_offset(pgd, address);
345 if (pud_none(*pud))
346 return NULL;
347
348 *level = PG_LEVEL_1G;
349 if (pud_large(*pud) || !pud_present(*pud))
350 return (pte_t *)pud;
351
352 pmd = pmd_offset(pud, address);
353 if (pmd_none(*pmd))
354 return NULL;
355
356 *level = PG_LEVEL_2M;
357 if (pmd_large(*pmd) || !pmd_present(*pmd))
358 return (pte_t *)pmd;
359
360 *level = PG_LEVEL_4K;
361
362 return pte_offset_kernel(pmd, address);
363 }
364 EXPORT_SYMBOL_GPL(lookup_address);
365
366 /*
367 * Set the new pmd in all the pgds we know about:
368 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)369 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
370 {
371 /* change init_mm */
372 set_pte_atomic(kpte, pte);
373 #ifdef CONFIG_X86_32
374 if (!SHARED_KERNEL_PMD) {
375 struct page *page;
376
377 list_for_each_entry(page, &pgd_list, lru) {
378 pgd_t *pgd;
379 pud_t *pud;
380 pmd_t *pmd;
381
382 pgd = (pgd_t *)page_address(page) + pgd_index(address);
383 pud = pud_offset(pgd, address);
384 pmd = pmd_offset(pud, address);
385 set_pte_atomic((pte_t *)pmd, pte);
386 }
387 }
388 #endif
389 }
390
391 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)392 try_preserve_large_page(pte_t *kpte, unsigned long address,
393 struct cpa_data *cpa)
394 {
395 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
396 pte_t new_pte, old_pte, *tmp;
397 pgprot_t old_prot, new_prot, req_prot;
398 int i, do_split = 1;
399 unsigned int level;
400
401 if (cpa->force_split)
402 return 1;
403
404 spin_lock(&pgd_lock);
405 /*
406 * Check for races, another CPU might have split this page
407 * up already:
408 */
409 tmp = lookup_address(address, &level);
410 if (tmp != kpte)
411 goto out_unlock;
412
413 switch (level) {
414 case PG_LEVEL_2M:
415 psize = PMD_PAGE_SIZE;
416 pmask = PMD_PAGE_MASK;
417 break;
418 #ifdef CONFIG_X86_64
419 case PG_LEVEL_1G:
420 psize = PUD_PAGE_SIZE;
421 pmask = PUD_PAGE_MASK;
422 break;
423 #endif
424 default:
425 do_split = -EINVAL;
426 goto out_unlock;
427 }
428
429 /*
430 * Calculate the number of pages, which fit into this large
431 * page starting at address:
432 */
433 nextpage_addr = (address + psize) & pmask;
434 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
435 if (numpages < cpa->numpages)
436 cpa->numpages = numpages;
437
438 /*
439 * We are safe now. Check whether the new pgprot is the same:
440 */
441 old_pte = *kpte;
442 old_prot = new_prot = req_prot = pte_pgprot(old_pte);
443
444 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
445 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
446
447 /*
448 * old_pte points to the large page base address. So we need
449 * to add the offset of the virtual address:
450 */
451 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
452 cpa->pfn = pfn;
453
454 new_prot = static_protections(req_prot, address, pfn);
455
456 /*
457 * We need to check the full range, whether
458 * static_protection() requires a different pgprot for one of
459 * the pages in the range we try to preserve:
460 */
461 addr = address & pmask;
462 pfn = pte_pfn(old_pte);
463 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
464 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
465
466 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
467 goto out_unlock;
468 }
469
470 /*
471 * If there are no changes, return. maxpages has been updated
472 * above:
473 */
474 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
475 do_split = 0;
476 goto out_unlock;
477 }
478
479 /*
480 * We need to change the attributes. Check, whether we can
481 * change the large page in one go. We request a split, when
482 * the address is not aligned and the number of pages is
483 * smaller than the number of pages in the large page. Note
484 * that we limited the number of possible pages already to
485 * the number of pages in the large page.
486 */
487 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
488 /*
489 * The address is aligned and the number of pages
490 * covers the full page.
491 */
492 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
493 __set_pmd_pte(kpte, address, new_pte);
494 cpa->flags |= CPA_FLUSHTLB;
495 do_split = 0;
496 }
497
498 out_unlock:
499 spin_unlock(&pgd_lock);
500
501 return do_split;
502 }
503
split_large_page(pte_t * kpte,unsigned long address)504 static int split_large_page(pte_t *kpte, unsigned long address)
505 {
506 unsigned long pfn, pfninc = 1;
507 unsigned int i, level;
508 pte_t *pbase, *tmp;
509 pgprot_t ref_prot;
510 struct page *base;
511
512 if (!debug_pagealloc)
513 spin_unlock(&cpa_lock);
514 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
515 if (!debug_pagealloc)
516 spin_lock(&cpa_lock);
517 if (!base)
518 return -ENOMEM;
519
520 spin_lock(&pgd_lock);
521 /*
522 * Check for races, another CPU might have split this page
523 * up for us already:
524 */
525 tmp = lookup_address(address, &level);
526 if (tmp != kpte)
527 goto out_unlock;
528
529 pbase = (pte_t *)page_address(base);
530 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
531 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
532 /*
533 * If we ever want to utilize the PAT bit, we need to
534 * update this function to make sure it's converted from
535 * bit 12 to bit 7 when we cross from the 2MB level to
536 * the 4K level:
537 */
538 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
539
540 #ifdef CONFIG_X86_64
541 if (level == PG_LEVEL_1G) {
542 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
543 pgprot_val(ref_prot) |= _PAGE_PSE;
544 }
545 #endif
546
547 /*
548 * Get the target pfn from the original entry:
549 */
550 pfn = pte_pfn(*kpte);
551 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
552 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
553
554 if (address >= (unsigned long)__va(0) &&
555 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
556 split_page_count(level);
557
558 #ifdef CONFIG_X86_64
559 if (address >= (unsigned long)__va(1UL<<32) &&
560 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
561 split_page_count(level);
562 #endif
563
564 /*
565 * Install the new, split up pagetable.
566 *
567 * We use the standard kernel pagetable protections for the new
568 * pagetable protections, the actual ptes set above control the
569 * primary protection behavior:
570 */
571 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
572
573 /*
574 * Intel Atom errata AAH41 workaround.
575 *
576 * The real fix should be in hw or in a microcode update, but
577 * we also probabilistically try to reduce the window of having
578 * a large TLB mixed with 4K TLBs while instruction fetches are
579 * going on.
580 */
581 __flush_tlb_all();
582
583 base = NULL;
584
585 out_unlock:
586 /*
587 * If we dropped out via the lookup_address check under
588 * pgd_lock then stick the page back into the pool:
589 */
590 if (base)
591 __free_page(base);
592 spin_unlock(&pgd_lock);
593
594 return 0;
595 }
596
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)597 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
598 int primary)
599 {
600 /*
601 * Ignore all non primary paths.
602 */
603 if (!primary)
604 return 0;
605
606 /*
607 * Ignore the NULL PTE for kernel identity mapping, as it is expected
608 * to have holes.
609 * Also set numpages to '1' indicating that we processed cpa req for
610 * one virtual address page and its pfn. TBD: numpages can be set based
611 * on the initial value and the level returned by lookup_address().
612 */
613 if (within(vaddr, PAGE_OFFSET,
614 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
615 cpa->numpages = 1;
616 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
617 return 0;
618 } else {
619 WARN(1, KERN_WARNING "CPA: called for zero pte. "
620 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
621 *cpa->vaddr);
622
623 return -EFAULT;
624 }
625 }
626
__change_page_attr(struct cpa_data * cpa,int primary)627 static int __change_page_attr(struct cpa_data *cpa, int primary)
628 {
629 unsigned long address;
630 int do_split, err;
631 unsigned int level;
632 pte_t *kpte, old_pte;
633
634 if (cpa->flags & CPA_PAGES_ARRAY) {
635 struct page *page = cpa->pages[cpa->curpage];
636 if (unlikely(PageHighMem(page)))
637 return 0;
638 address = (unsigned long)page_address(page);
639 } else if (cpa->flags & CPA_ARRAY)
640 address = cpa->vaddr[cpa->curpage];
641 else
642 address = *cpa->vaddr;
643 repeat:
644 kpte = lookup_address(address, &level);
645 if (!kpte)
646 return __cpa_process_fault(cpa, address, primary);
647
648 old_pte = *kpte;
649 if (!pte_val(old_pte))
650 return __cpa_process_fault(cpa, address, primary);
651
652 if (level == PG_LEVEL_4K) {
653 pte_t new_pte;
654 pgprot_t new_prot = pte_pgprot(old_pte);
655 unsigned long pfn = pte_pfn(old_pte);
656
657 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
658 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
659
660 new_prot = static_protections(new_prot, address, pfn);
661
662 /*
663 * We need to keep the pfn from the existing PTE,
664 * after all we're only going to change it's attributes
665 * not the memory it points to
666 */
667 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
668 cpa->pfn = pfn;
669 /*
670 * Do we really change anything ?
671 */
672 if (pte_val(old_pte) != pte_val(new_pte)) {
673 set_pte_atomic(kpte, new_pte);
674 cpa->flags |= CPA_FLUSHTLB;
675 }
676 cpa->numpages = 1;
677 return 0;
678 }
679
680 /*
681 * Check, whether we can keep the large page intact
682 * and just change the pte:
683 */
684 do_split = try_preserve_large_page(kpte, address, cpa);
685 /*
686 * When the range fits into the existing large page,
687 * return. cp->numpages and cpa->tlbflush have been updated in
688 * try_large_page:
689 */
690 if (do_split <= 0)
691 return do_split;
692
693 /*
694 * We have to split the large page:
695 */
696 err = split_large_page(kpte, address);
697 if (!err) {
698 /*
699 * Do a global flush tlb after splitting the large page
700 * and before we do the actual change page attribute in the PTE.
701 *
702 * With out this, we violate the TLB application note, that says
703 * "The TLBs may contain both ordinary and large-page
704 * translations for a 4-KByte range of linear addresses. This
705 * may occur if software modifies the paging structures so that
706 * the page size used for the address range changes. If the two
707 * translations differ with respect to page frame or attributes
708 * (e.g., permissions), processor behavior is undefined and may
709 * be implementation-specific."
710 *
711 * We do this global tlb flush inside the cpa_lock, so that we
712 * don't allow any other cpu, with stale tlb entries change the
713 * page attribute in parallel, that also falls into the
714 * just split large page entry.
715 */
716 flush_tlb_all();
717 goto repeat;
718 }
719
720 return err;
721 }
722
723 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
724
cpa_process_alias(struct cpa_data * cpa)725 static int cpa_process_alias(struct cpa_data *cpa)
726 {
727 struct cpa_data alias_cpa;
728 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
729 unsigned long vaddr;
730 int ret;
731
732 if (cpa->pfn >= max_pfn_mapped)
733 return 0;
734
735 #ifdef CONFIG_X86_64
736 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
737 return 0;
738 #endif
739 /*
740 * No need to redo, when the primary call touched the direct
741 * mapping already:
742 */
743 if (cpa->flags & CPA_PAGES_ARRAY) {
744 struct page *page = cpa->pages[cpa->curpage];
745 if (unlikely(PageHighMem(page)))
746 return 0;
747 vaddr = (unsigned long)page_address(page);
748 } else if (cpa->flags & CPA_ARRAY)
749 vaddr = cpa->vaddr[cpa->curpage];
750 else
751 vaddr = *cpa->vaddr;
752
753 if (!(within(vaddr, PAGE_OFFSET,
754 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
755
756 alias_cpa = *cpa;
757 alias_cpa.vaddr = &laddr;
758 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
759
760 ret = __change_page_attr_set_clr(&alias_cpa, 0);
761 if (ret)
762 return ret;
763 }
764
765 #ifdef CONFIG_X86_64
766 /*
767 * If the primary call didn't touch the high mapping already
768 * and the physical address is inside the kernel map, we need
769 * to touch the high mapped kernel as well:
770 */
771 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
772 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
773 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
774 __START_KERNEL_map - phys_base;
775 alias_cpa = *cpa;
776 alias_cpa.vaddr = &temp_cpa_vaddr;
777 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
778
779 /*
780 * The high mapping range is imprecise, so ignore the
781 * return value.
782 */
783 __change_page_attr_set_clr(&alias_cpa, 0);
784 }
785 #endif
786
787 return 0;
788 }
789
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)790 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
791 {
792 int ret, numpages = cpa->numpages;
793
794 while (numpages) {
795 /*
796 * Store the remaining nr of pages for the large page
797 * preservation check.
798 */
799 cpa->numpages = numpages;
800 /* for array changes, we can't use large page */
801 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
802 cpa->numpages = 1;
803
804 if (!debug_pagealloc)
805 spin_lock(&cpa_lock);
806 ret = __change_page_attr(cpa, checkalias);
807 if (!debug_pagealloc)
808 spin_unlock(&cpa_lock);
809 if (ret)
810 return ret;
811
812 if (checkalias) {
813 ret = cpa_process_alias(cpa);
814 if (ret)
815 return ret;
816 }
817
818 /*
819 * Adjust the number of pages with the result of the
820 * CPA operation. Either a large page has been
821 * preserved or a single page update happened.
822 */
823 BUG_ON(cpa->numpages > numpages);
824 numpages -= cpa->numpages;
825 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
826 cpa->curpage++;
827 else
828 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
829
830 }
831 return 0;
832 }
833
cache_attr(pgprot_t attr)834 static inline int cache_attr(pgprot_t attr)
835 {
836 return pgprot_val(attr) &
837 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
838 }
839
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)840 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
841 pgprot_t mask_set, pgprot_t mask_clr,
842 int force_split, int in_flag,
843 struct page **pages)
844 {
845 struct cpa_data cpa;
846 int ret, cache, checkalias;
847 unsigned long baddr = 0;
848
849 /*
850 * Check, if we are requested to change a not supported
851 * feature:
852 */
853 mask_set = canon_pgprot(mask_set);
854 mask_clr = canon_pgprot(mask_clr);
855 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
856 return 0;
857
858 /* Ensure we are PAGE_SIZE aligned */
859 if (in_flag & CPA_ARRAY) {
860 int i;
861 for (i = 0; i < numpages; i++) {
862 if (addr[i] & ~PAGE_MASK) {
863 addr[i] &= PAGE_MASK;
864 WARN_ON_ONCE(1);
865 }
866 }
867 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
868 /*
869 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
870 * No need to cehck in that case
871 */
872 if (*addr & ~PAGE_MASK) {
873 *addr &= PAGE_MASK;
874 /*
875 * People should not be passing in unaligned addresses:
876 */
877 WARN_ON_ONCE(1);
878 }
879 /*
880 * Save address for cache flush. *addr is modified in the call
881 * to __change_page_attr_set_clr() below.
882 */
883 baddr = *addr;
884 }
885
886 /* Must avoid aliasing mappings in the highmem code */
887 kmap_flush_unused();
888
889 vm_unmap_aliases();
890
891 cpa.vaddr = addr;
892 cpa.pages = pages;
893 cpa.numpages = numpages;
894 cpa.mask_set = mask_set;
895 cpa.mask_clr = mask_clr;
896 cpa.flags = 0;
897 cpa.curpage = 0;
898 cpa.force_split = force_split;
899
900 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
901 cpa.flags |= in_flag;
902
903 /* No alias checking for _NX bit modifications */
904 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
905
906 ret = __change_page_attr_set_clr(&cpa, checkalias);
907
908 /*
909 * Check whether we really changed something:
910 */
911 if (!(cpa.flags & CPA_FLUSHTLB))
912 goto out;
913
914 /*
915 * No need to flush, when we did not set any of the caching
916 * attributes:
917 */
918 cache = cache_attr(mask_set);
919
920 /*
921 * On success we use clflush, when the CPU supports it to
922 * avoid the wbindv. If the CPU does not support it and in the
923 * error case we fall back to cpa_flush_all (which uses
924 * wbindv):
925 */
926 if (!ret && cpu_has_clflush) {
927 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
928 cpa_flush_array(addr, numpages, cache,
929 cpa.flags, pages);
930 } else
931 cpa_flush_range(baddr, numpages, cache);
932 } else
933 cpa_flush_all(cache);
934
935 out:
936 return ret;
937 }
938
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)939 static inline int change_page_attr_set(unsigned long *addr, int numpages,
940 pgprot_t mask, int array)
941 {
942 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
943 (array ? CPA_ARRAY : 0), NULL);
944 }
945
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)946 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
947 pgprot_t mask, int array)
948 {
949 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
950 (array ? CPA_ARRAY : 0), NULL);
951 }
952
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)953 static inline int cpa_set_pages_array(struct page **pages, int numpages,
954 pgprot_t mask)
955 {
956 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
957 CPA_PAGES_ARRAY, pages);
958 }
959
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)960 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
961 pgprot_t mask)
962 {
963 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
964 CPA_PAGES_ARRAY, pages);
965 }
966
_set_memory_uc(unsigned long addr,int numpages)967 int _set_memory_uc(unsigned long addr, int numpages)
968 {
969 /*
970 * for now UC MINUS. see comments in ioremap_nocache()
971 */
972 return change_page_attr_set(&addr, numpages,
973 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
974 }
975
set_memory_uc(unsigned long addr,int numpages)976 int set_memory_uc(unsigned long addr, int numpages)
977 {
978 int ret;
979
980 /*
981 * for now UC MINUS. see comments in ioremap_nocache()
982 */
983 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
984 _PAGE_CACHE_UC_MINUS, NULL);
985 if (ret)
986 goto out_err;
987
988 ret = _set_memory_uc(addr, numpages);
989 if (ret)
990 goto out_free;
991
992 return 0;
993
994 out_free:
995 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
996 out_err:
997 return ret;
998 }
999 EXPORT_SYMBOL(set_memory_uc);
1000
_set_memory_array(unsigned long * addr,int addrinarray,unsigned long new_type)1001 int _set_memory_array(unsigned long *addr, int addrinarray,
1002 unsigned long new_type)
1003 {
1004 int i, j;
1005 int ret;
1006
1007 /*
1008 * for now UC MINUS. see comments in ioremap_nocache()
1009 */
1010 for (i = 0; i < addrinarray; i++) {
1011 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1012 new_type, NULL);
1013 if (ret)
1014 goto out_free;
1015 }
1016
1017 ret = change_page_attr_set(addr, addrinarray,
1018 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1019
1020 if (!ret && new_type == _PAGE_CACHE_WC)
1021 ret = change_page_attr_set_clr(addr, addrinarray,
1022 __pgprot(_PAGE_CACHE_WC),
1023 __pgprot(_PAGE_CACHE_MASK),
1024 0, CPA_ARRAY, NULL);
1025 if (ret)
1026 goto out_free;
1027
1028 return 0;
1029
1030 out_free:
1031 for (j = 0; j < i; j++)
1032 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1033
1034 return ret;
1035 }
1036
set_memory_array_uc(unsigned long * addr,int addrinarray)1037 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1038 {
1039 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1040 }
1041 EXPORT_SYMBOL(set_memory_array_uc);
1042
set_memory_array_wc(unsigned long * addr,int addrinarray)1043 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1044 {
1045 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1046 }
1047 EXPORT_SYMBOL(set_memory_array_wc);
1048
_set_memory_wc(unsigned long addr,int numpages)1049 int _set_memory_wc(unsigned long addr, int numpages)
1050 {
1051 int ret;
1052 unsigned long addr_copy = addr;
1053
1054 ret = change_page_attr_set(&addr, numpages,
1055 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1056 if (!ret) {
1057 ret = change_page_attr_set_clr(&addr_copy, numpages,
1058 __pgprot(_PAGE_CACHE_WC),
1059 __pgprot(_PAGE_CACHE_MASK),
1060 0, 0, NULL);
1061 }
1062 return ret;
1063 }
1064
set_memory_wc(unsigned long addr,int numpages)1065 int set_memory_wc(unsigned long addr, int numpages)
1066 {
1067 int ret;
1068
1069 if (!pat_enabled)
1070 return set_memory_uc(addr, numpages);
1071
1072 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1073 _PAGE_CACHE_WC, NULL);
1074 if (ret)
1075 goto out_err;
1076
1077 ret = _set_memory_wc(addr, numpages);
1078 if (ret)
1079 goto out_free;
1080
1081 return 0;
1082
1083 out_free:
1084 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1085 out_err:
1086 return ret;
1087 }
1088 EXPORT_SYMBOL(set_memory_wc);
1089
_set_memory_wb(unsigned long addr,int numpages)1090 int _set_memory_wb(unsigned long addr, int numpages)
1091 {
1092 return change_page_attr_clear(&addr, numpages,
1093 __pgprot(_PAGE_CACHE_MASK), 0);
1094 }
1095
set_memory_wb(unsigned long addr,int numpages)1096 int set_memory_wb(unsigned long addr, int numpages)
1097 {
1098 int ret;
1099
1100 ret = _set_memory_wb(addr, numpages);
1101 if (ret)
1102 return ret;
1103
1104 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1105 return 0;
1106 }
1107 EXPORT_SYMBOL(set_memory_wb);
1108
set_memory_array_wb(unsigned long * addr,int addrinarray)1109 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1110 {
1111 int i;
1112 int ret;
1113
1114 ret = change_page_attr_clear(addr, addrinarray,
1115 __pgprot(_PAGE_CACHE_MASK), 1);
1116 if (ret)
1117 return ret;
1118
1119 for (i = 0; i < addrinarray; i++)
1120 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1121
1122 return 0;
1123 }
1124 EXPORT_SYMBOL(set_memory_array_wb);
1125
set_memory_x(unsigned long addr,int numpages)1126 int set_memory_x(unsigned long addr, int numpages)
1127 {
1128 if (!(__supported_pte_mask & _PAGE_NX))
1129 return 0;
1130
1131 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1132 }
1133 EXPORT_SYMBOL(set_memory_x);
1134
set_memory_nx(unsigned long addr,int numpages)1135 int set_memory_nx(unsigned long addr, int numpages)
1136 {
1137 if (!(__supported_pte_mask & _PAGE_NX))
1138 return 0;
1139
1140 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1141 }
1142 EXPORT_SYMBOL(set_memory_nx);
1143
set_memory_ro(unsigned long addr,int numpages)1144 int set_memory_ro(unsigned long addr, int numpages)
1145 {
1146 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1147 }
1148 EXPORT_SYMBOL_GPL(set_memory_ro);
1149
set_memory_rw(unsigned long addr,int numpages)1150 int set_memory_rw(unsigned long addr, int numpages)
1151 {
1152 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1153 }
1154 EXPORT_SYMBOL_GPL(set_memory_rw);
1155
set_memory_np(unsigned long addr,int numpages)1156 int set_memory_np(unsigned long addr, int numpages)
1157 {
1158 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1159 }
1160
set_memory_4k(unsigned long addr,int numpages)1161 int set_memory_4k(unsigned long addr, int numpages)
1162 {
1163 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1164 __pgprot(0), 1, 0, NULL);
1165 }
1166
set_pages_uc(struct page * page,int numpages)1167 int set_pages_uc(struct page *page, int numpages)
1168 {
1169 unsigned long addr = (unsigned long)page_address(page);
1170
1171 return set_memory_uc(addr, numpages);
1172 }
1173 EXPORT_SYMBOL(set_pages_uc);
1174
_set_pages_array(struct page ** pages,int addrinarray,unsigned long new_type)1175 static int _set_pages_array(struct page **pages, int addrinarray,
1176 unsigned long new_type)
1177 {
1178 unsigned long start;
1179 unsigned long end;
1180 int i;
1181 int free_idx;
1182 int ret;
1183
1184 for (i = 0; i < addrinarray; i++) {
1185 if (PageHighMem(pages[i]))
1186 continue;
1187 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1188 end = start + PAGE_SIZE;
1189 if (reserve_memtype(start, end, new_type, NULL))
1190 goto err_out;
1191 }
1192
1193 ret = cpa_set_pages_array(pages, addrinarray,
1194 __pgprot(_PAGE_CACHE_UC_MINUS));
1195 if (!ret && new_type == _PAGE_CACHE_WC)
1196 ret = change_page_attr_set_clr(NULL, addrinarray,
1197 __pgprot(_PAGE_CACHE_WC),
1198 __pgprot(_PAGE_CACHE_MASK),
1199 0, CPA_PAGES_ARRAY, pages);
1200 if (ret)
1201 goto err_out;
1202 return 0; /* Success */
1203 err_out:
1204 free_idx = i;
1205 for (i = 0; i < free_idx; i++) {
1206 if (PageHighMem(pages[i]))
1207 continue;
1208 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1209 end = start + PAGE_SIZE;
1210 free_memtype(start, end);
1211 }
1212 return -EINVAL;
1213 }
1214
set_pages_array_uc(struct page ** pages,int addrinarray)1215 int set_pages_array_uc(struct page **pages, int addrinarray)
1216 {
1217 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1218 }
1219 EXPORT_SYMBOL(set_pages_array_uc);
1220
set_pages_array_wc(struct page ** pages,int addrinarray)1221 int set_pages_array_wc(struct page **pages, int addrinarray)
1222 {
1223 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1224 }
1225 EXPORT_SYMBOL(set_pages_array_wc);
1226
set_pages_wb(struct page * page,int numpages)1227 int set_pages_wb(struct page *page, int numpages)
1228 {
1229 unsigned long addr = (unsigned long)page_address(page);
1230
1231 return set_memory_wb(addr, numpages);
1232 }
1233 EXPORT_SYMBOL(set_pages_wb);
1234
set_pages_array_wb(struct page ** pages,int addrinarray)1235 int set_pages_array_wb(struct page **pages, int addrinarray)
1236 {
1237 int retval;
1238 unsigned long start;
1239 unsigned long end;
1240 int i;
1241
1242 retval = cpa_clear_pages_array(pages, addrinarray,
1243 __pgprot(_PAGE_CACHE_MASK));
1244 if (retval)
1245 return retval;
1246
1247 for (i = 0; i < addrinarray; i++) {
1248 if (PageHighMem(pages[i]))
1249 continue;
1250 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1251 end = start + PAGE_SIZE;
1252 free_memtype(start, end);
1253 }
1254
1255 return 0;
1256 }
1257 EXPORT_SYMBOL(set_pages_array_wb);
1258
set_pages_x(struct page * page,int numpages)1259 int set_pages_x(struct page *page, int numpages)
1260 {
1261 unsigned long addr = (unsigned long)page_address(page);
1262
1263 return set_memory_x(addr, numpages);
1264 }
1265 EXPORT_SYMBOL(set_pages_x);
1266
set_pages_nx(struct page * page,int numpages)1267 int set_pages_nx(struct page *page, int numpages)
1268 {
1269 unsigned long addr = (unsigned long)page_address(page);
1270
1271 return set_memory_nx(addr, numpages);
1272 }
1273 EXPORT_SYMBOL(set_pages_nx);
1274
set_pages_ro(struct page * page,int numpages)1275 int set_pages_ro(struct page *page, int numpages)
1276 {
1277 unsigned long addr = (unsigned long)page_address(page);
1278
1279 return set_memory_ro(addr, numpages);
1280 }
1281
set_pages_rw(struct page * page,int numpages)1282 int set_pages_rw(struct page *page, int numpages)
1283 {
1284 unsigned long addr = (unsigned long)page_address(page);
1285
1286 return set_memory_rw(addr, numpages);
1287 }
1288
1289 #ifdef CONFIG_DEBUG_PAGEALLOC
1290
__set_pages_p(struct page * page,int numpages)1291 static int __set_pages_p(struct page *page, int numpages)
1292 {
1293 unsigned long tempaddr = (unsigned long) page_address(page);
1294 struct cpa_data cpa = { .vaddr = &tempaddr,
1295 .numpages = numpages,
1296 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1297 .mask_clr = __pgprot(0),
1298 .flags = 0};
1299
1300 /*
1301 * No alias checking needed for setting present flag. otherwise,
1302 * we may need to break large pages for 64-bit kernel text
1303 * mappings (this adds to complexity if we want to do this from
1304 * atomic context especially). Let's keep it simple!
1305 */
1306 return __change_page_attr_set_clr(&cpa, 0);
1307 }
1308
__set_pages_np(struct page * page,int numpages)1309 static int __set_pages_np(struct page *page, int numpages)
1310 {
1311 unsigned long tempaddr = (unsigned long) page_address(page);
1312 struct cpa_data cpa = { .vaddr = &tempaddr,
1313 .numpages = numpages,
1314 .mask_set = __pgprot(0),
1315 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1316 .flags = 0};
1317
1318 /*
1319 * No alias checking needed for setting not present flag. otherwise,
1320 * we may need to break large pages for 64-bit kernel text
1321 * mappings (this adds to complexity if we want to do this from
1322 * atomic context especially). Let's keep it simple!
1323 */
1324 return __change_page_attr_set_clr(&cpa, 0);
1325 }
1326
kernel_map_pages(struct page * page,int numpages,int enable)1327 void kernel_map_pages(struct page *page, int numpages, int enable)
1328 {
1329 if (PageHighMem(page))
1330 return;
1331 if (!enable) {
1332 debug_check_no_locks_freed(page_address(page),
1333 numpages * PAGE_SIZE);
1334 }
1335
1336 /*
1337 * If page allocator is not up yet then do not call c_p_a():
1338 */
1339 if (!debug_pagealloc_enabled)
1340 return;
1341
1342 /*
1343 * The return value is ignored as the calls cannot fail.
1344 * Large pages for identity mappings are not used at boot time
1345 * and hence no memory allocations during large page split.
1346 */
1347 if (enable)
1348 __set_pages_p(page, numpages);
1349 else
1350 __set_pages_np(page, numpages);
1351
1352 /*
1353 * We should perform an IPI and flush all tlbs,
1354 * but that can deadlock->flush only current cpu:
1355 */
1356 __flush_tlb_all();
1357 }
1358
1359 #ifdef CONFIG_HIBERNATION
1360
kernel_page_present(struct page * page)1361 bool kernel_page_present(struct page *page)
1362 {
1363 unsigned int level;
1364 pte_t *pte;
1365
1366 if (PageHighMem(page))
1367 return false;
1368
1369 pte = lookup_address((unsigned long)page_address(page), &level);
1370 return (pte_val(*pte) & _PAGE_PRESENT);
1371 }
1372
1373 #endif /* CONFIG_HIBERNATION */
1374
1375 #endif /* CONFIG_DEBUG_PAGEALLOC */
1376
1377 /*
1378 * The testcases use internal knowledge of the implementation that shouldn't
1379 * be exposed to the rest of the kernel. Include these directly here.
1380 */
1381 #ifdef CONFIG_CPA_DEBUG
1382 #include "pageattr-test.c"
1383 #endif
1384