1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51 
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61 
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS						\
64 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS						\
68 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
70 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
71 			  | X86_CR4_OSXSAVE \
72 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73 
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75 
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78 
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89 
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
95 				    struct kvm_cpuid_entry2 __user *entries);
96 
97 struct kvm_x86_ops *kvm_x86_ops;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99 
100 int ignore_msrs = 0;
101 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102 
103 #define KVM_NR_SHARED_MSRS 16
104 
105 struct kvm_shared_msrs_global {
106 	int nr;
107 	u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109 
110 struct kvm_shared_msrs {
111 	struct user_return_notifier urn;
112 	bool registered;
113 	struct kvm_shared_msr_values {
114 		u64 host;
115 		u64 curr;
116 	} values[KVM_NR_SHARED_MSRS];
117 };
118 
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121 
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
124 	{ "pf_guest", VCPU_STAT(pf_guest) },
125 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
126 	{ "invlpg", VCPU_STAT(invlpg) },
127 	{ "exits", VCPU_STAT(exits) },
128 	{ "io_exits", VCPU_STAT(io_exits) },
129 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
130 	{ "signal_exits", VCPU_STAT(signal_exits) },
131 	{ "irq_window", VCPU_STAT(irq_window_exits) },
132 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
133 	{ "halt_exits", VCPU_STAT(halt_exits) },
134 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
135 	{ "hypercalls", VCPU_STAT(hypercalls) },
136 	{ "request_irq", VCPU_STAT(request_irq_exits) },
137 	{ "irq_exits", VCPU_STAT(irq_exits) },
138 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
139 	{ "efer_reload", VCPU_STAT(efer_reload) },
140 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
141 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
142 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143 	{ "irq_injections", VCPU_STAT(irq_injections) },
144 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
145 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
147 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
150 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
151 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
153 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154 	{ "largepages", VM_STAT(lpages) },
155 	{ NULL }
156 };
157 
158 u64 __read_mostly host_xcr0;
159 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)160 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
161 {
162 	int i;
163 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
164 		vcpu->arch.apf.gfns[i] = ~0;
165 }
166 
kvm_on_user_return(struct user_return_notifier * urn)167 static void kvm_on_user_return(struct user_return_notifier *urn)
168 {
169 	unsigned slot;
170 	struct kvm_shared_msrs *locals
171 		= container_of(urn, struct kvm_shared_msrs, urn);
172 	struct kvm_shared_msr_values *values;
173 
174 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
175 		values = &locals->values[slot];
176 		if (values->host != values->curr) {
177 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
178 			values->curr = values->host;
179 		}
180 	}
181 	locals->registered = false;
182 	user_return_notifier_unregister(urn);
183 }
184 
shared_msr_update(unsigned slot,u32 msr)185 static void shared_msr_update(unsigned slot, u32 msr)
186 {
187 	struct kvm_shared_msrs *smsr;
188 	u64 value;
189 
190 	smsr = &__get_cpu_var(shared_msrs);
191 	/* only read, and nobody should modify it at this time,
192 	 * so don't need lock */
193 	if (slot >= shared_msrs_global.nr) {
194 		printk(KERN_ERR "kvm: invalid MSR slot!");
195 		return;
196 	}
197 	rdmsrl_safe(msr, &value);
198 	smsr->values[slot].host = value;
199 	smsr->values[slot].curr = value;
200 }
201 
kvm_define_shared_msr(unsigned slot,u32 msr)202 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 {
204 	if (slot >= shared_msrs_global.nr)
205 		shared_msrs_global.nr = slot + 1;
206 	shared_msrs_global.msrs[slot] = msr;
207 	/* we need ensured the shared_msr_global have been updated */
208 	smp_wmb();
209 }
210 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211 
kvm_shared_msr_cpu_online(void)212 static void kvm_shared_msr_cpu_online(void)
213 {
214 	unsigned i;
215 
216 	for (i = 0; i < shared_msrs_global.nr; ++i)
217 		shared_msr_update(i, shared_msrs_global.msrs[i]);
218 }
219 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)220 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 {
222 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223 
224 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
225 		return;
226 	smsr->values[slot].curr = value;
227 	wrmsrl(shared_msrs_global.msrs[slot], value);
228 	if (!smsr->registered) {
229 		smsr->urn.on_user_return = kvm_on_user_return;
230 		user_return_notifier_register(&smsr->urn);
231 		smsr->registered = true;
232 	}
233 }
234 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235 
drop_user_return_notifiers(void * ignore)236 static void drop_user_return_notifiers(void *ignore)
237 {
238 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239 
240 	if (smsr->registered)
241 		kvm_on_user_return(&smsr->urn);
242 }
243 
kvm_get_apic_base(struct kvm_vcpu * vcpu)244 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 {
246 	if (irqchip_in_kernel(vcpu->kvm))
247 		return vcpu->arch.apic_base;
248 	else
249 		return vcpu->arch.apic_base;
250 }
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252 
kvm_set_apic_base(struct kvm_vcpu * vcpu,u64 data)253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 {
255 	/* TODO: reserve bits check */
256 	if (irqchip_in_kernel(vcpu->kvm))
257 		kvm_lapic_set_base(vcpu, data);
258 	else
259 		vcpu->arch.apic_base = data;
260 }
261 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262 
263 #define EXCPT_BENIGN		0
264 #define EXCPT_CONTRIBUTORY	1
265 #define EXCPT_PF		2
266 
exception_class(int vector)267 static int exception_class(int vector)
268 {
269 	switch (vector) {
270 	case PF_VECTOR:
271 		return EXCPT_PF;
272 	case DE_VECTOR:
273 	case TS_VECTOR:
274 	case NP_VECTOR:
275 	case SS_VECTOR:
276 	case GP_VECTOR:
277 		return EXCPT_CONTRIBUTORY;
278 	default:
279 		break;
280 	}
281 	return EXCPT_BENIGN;
282 }
283 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)284 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
285 		unsigned nr, bool has_error, u32 error_code,
286 		bool reinject)
287 {
288 	u32 prev_nr;
289 	int class1, class2;
290 
291 	kvm_make_request(KVM_REQ_EVENT, vcpu);
292 
293 	if (!vcpu->arch.exception.pending) {
294 	queue:
295 		vcpu->arch.exception.pending = true;
296 		vcpu->arch.exception.has_error_code = has_error;
297 		vcpu->arch.exception.nr = nr;
298 		vcpu->arch.exception.error_code = error_code;
299 		vcpu->arch.exception.reinject = reinject;
300 		return;
301 	}
302 
303 	/* to check exception */
304 	prev_nr = vcpu->arch.exception.nr;
305 	if (prev_nr == DF_VECTOR) {
306 		/* triple fault -> shutdown */
307 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
308 		return;
309 	}
310 	class1 = exception_class(prev_nr);
311 	class2 = exception_class(nr);
312 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
313 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
314 		/* generate double fault per SDM Table 5-5 */
315 		vcpu->arch.exception.pending = true;
316 		vcpu->arch.exception.has_error_code = true;
317 		vcpu->arch.exception.nr = DF_VECTOR;
318 		vcpu->arch.exception.error_code = 0;
319 	} else
320 		/* replace previous exception with a new one in a hope
321 		   that instruction re-execution will regenerate lost
322 		   exception */
323 		goto queue;
324 }
325 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)326 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 {
328 	kvm_multiple_exception(vcpu, nr, false, 0, false);
329 }
330 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)332 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 {
334 	kvm_multiple_exception(vcpu, nr, false, 0, true);
335 }
336 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)338 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
339 {
340 	if (err)
341 		kvm_inject_gp(vcpu, 0);
342 	else
343 		kvm_x86_ops->skip_emulated_instruction(vcpu);
344 }
345 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
346 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)347 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
348 {
349 	++vcpu->stat.pf_guest;
350 	vcpu->arch.cr2 = fault->address;
351 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
352 }
353 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 	else
359 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361 
kvm_inject_nmi(struct kvm_vcpu * vcpu)362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364 	kvm_make_request(KVM_REQ_NMI, vcpu);
365 	kvm_make_request(KVM_REQ_EVENT, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380 
381 /*
382  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
383  * a #GP and return false.
384  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 		return true;
389 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 	return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393 
394 /*
395  * This function will be used to read from the physical memory of the currently
396  * running guest. The difference to kvm_read_guest_page is that this function
397  * can read from guest physical or from the guest's guest physical memory.
398  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400 			    gfn_t ngfn, void *data, int offset, int len,
401 			    u32 access)
402 {
403 	gfn_t real_gfn;
404 	gpa_t ngpa;
405 
406 	ngpa     = gfn_to_gpa(ngfn);
407 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408 	if (real_gfn == UNMAPPED_GVA)
409 		return -EFAULT;
410 
411 	real_gfn = gpa_to_gfn(real_gfn);
412 
413 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418 			       void *data, int offset, int len, u32 access)
419 {
420 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421 				       data, offset, len, access);
422 }
423 
424 /*
425  * Load the pae pdptrs.  Return true is they are all valid.
426  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 	int i;
432 	int ret;
433 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434 
435 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436 				      offset * sizeof(u64), sizeof(pdpte),
437 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
438 	if (ret < 0) {
439 		ret = 0;
440 		goto out;
441 	}
442 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443 		if (is_present_gpte(pdpte[i]) &&
444 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 			ret = 0;
446 			goto out;
447 		}
448 	}
449 	ret = 1;
450 
451 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452 	__set_bit(VCPU_EXREG_PDPTR,
453 		  (unsigned long *)&vcpu->arch.regs_avail);
454 	__set_bit(VCPU_EXREG_PDPTR,
455 		  (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457 
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461 
pdptrs_changed(struct kvm_vcpu * vcpu)462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465 	bool changed = true;
466 	int offset;
467 	gfn_t gfn;
468 	int r;
469 
470 	if (is_long_mode(vcpu) || !is_pae(vcpu))
471 		return false;
472 
473 	if (!test_bit(VCPU_EXREG_PDPTR,
474 		      (unsigned long *)&vcpu->arch.regs_avail))
475 		return true;
476 
477 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
481 	if (r < 0)
482 		goto out;
483 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485 
486 	return changed;
487 }
488 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
492 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493 				    X86_CR0_CD | X86_CR0_NW;
494 
495 	cr0 |= X86_CR0_ET;
496 
497 #ifdef CONFIG_X86_64
498 	if (cr0 & 0xffffffff00000000UL)
499 		return 1;
500 #endif
501 
502 	cr0 &= ~CR0_RESERVED_BITS;
503 
504 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 		return 1;
506 
507 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 		return 1;
509 
510 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512 		if ((vcpu->arch.efer & EFER_LME)) {
513 			int cs_db, cs_l;
514 
515 			if (!is_pae(vcpu))
516 				return 1;
517 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518 			if (cs_l)
519 				return 1;
520 		} else
521 #endif
522 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523 						 kvm_read_cr3(vcpu)))
524 			return 1;
525 	}
526 
527 	kvm_x86_ops->set_cr0(vcpu, cr0);
528 
529 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530 		kvm_clear_async_pf_completion_queue(vcpu);
531 		kvm_async_pf_hash_reset(vcpu);
532 	}
533 
534 	if ((cr0 ^ old_cr0) & update_bits)
535 		kvm_mmu_reset_context(vcpu);
536 	return 0;
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr0);
539 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541 {
542 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543 }
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
545 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 {
548 	u64 xcr0;
549 
550 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
551 	if (index != XCR_XFEATURE_ENABLED_MASK)
552 		return 1;
553 	xcr0 = xcr;
554 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
555 		return 1;
556 	if (!(xcr0 & XSTATE_FP))
557 		return 1;
558 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559 		return 1;
560 	if (xcr0 & ~host_xcr0)
561 		return 1;
562 	vcpu->arch.xcr0 = xcr0;
563 	vcpu->guest_xcr0_loaded = 0;
564 	return 0;
565 }
566 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568 {
569 	if (__kvm_set_xcr(vcpu, index, xcr)) {
570 		kvm_inject_gp(vcpu, 0);
571 		return 1;
572 	}
573 	return 0;
574 }
575 EXPORT_SYMBOL_GPL(kvm_set_xcr);
576 
guest_cpuid_has_xsave(struct kvm_vcpu * vcpu)577 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
578 {
579 	struct kvm_cpuid_entry2 *best;
580 
581 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 	return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 }
584 
update_cpuid(struct kvm_vcpu * vcpu)585 static void update_cpuid(struct kvm_vcpu *vcpu)
586 {
587 	struct kvm_cpuid_entry2 *best;
588 
589 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
590 	if (!best)
591 		return;
592 
593 	/* Update OSXSAVE bit */
594 	if (cpu_has_xsave && best->function == 0x1) {
595 		best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
596 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
597 			best->ecx |= bit(X86_FEATURE_OSXSAVE);
598 	}
599 }
600 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)601 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
602 {
603 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
604 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
605 
606 	if (cr4 & CR4_RESERVED_BITS)
607 		return 1;
608 
609 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
610 		return 1;
611 
612 	if (is_long_mode(vcpu)) {
613 		if (!(cr4 & X86_CR4_PAE))
614 			return 1;
615 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
616 		   && ((cr4 ^ old_cr4) & pdptr_bits)
617 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
618 				   kvm_read_cr3(vcpu)))
619 		return 1;
620 
621 	if (cr4 & X86_CR4_VMXE)
622 		return 1;
623 
624 	kvm_x86_ops->set_cr4(vcpu, cr4);
625 
626 	if ((cr4 ^ old_cr4) & pdptr_bits)
627 		kvm_mmu_reset_context(vcpu);
628 
629 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
630 		update_cpuid(vcpu);
631 
632 	return 0;
633 }
634 EXPORT_SYMBOL_GPL(kvm_set_cr4);
635 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)636 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
637 {
638 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
639 		kvm_mmu_sync_roots(vcpu);
640 		kvm_mmu_flush_tlb(vcpu);
641 		return 0;
642 	}
643 
644 	if (is_long_mode(vcpu)) {
645 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
646 			return 1;
647 	} else {
648 		if (is_pae(vcpu)) {
649 			if (cr3 & CR3_PAE_RESERVED_BITS)
650 				return 1;
651 			if (is_paging(vcpu) &&
652 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
653 				return 1;
654 		}
655 		/*
656 		 * We don't check reserved bits in nonpae mode, because
657 		 * this isn't enforced, and VMware depends on this.
658 		 */
659 	}
660 
661 	/*
662 	 * Does the new cr3 value map to physical memory? (Note, we
663 	 * catch an invalid cr3 even in real-mode, because it would
664 	 * cause trouble later on when we turn on paging anyway.)
665 	 *
666 	 * A real CPU would silently accept an invalid cr3 and would
667 	 * attempt to use it - with largely undefined (and often hard
668 	 * to debug) behavior on the guest side.
669 	 */
670 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
671 		return 1;
672 	vcpu->arch.cr3 = cr3;
673 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
674 	vcpu->arch.mmu.new_cr3(vcpu);
675 	return 0;
676 }
677 EXPORT_SYMBOL_GPL(kvm_set_cr3);
678 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)679 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
680 {
681 	if (cr8 & CR8_RESERVED_BITS)
682 		return 1;
683 	if (irqchip_in_kernel(vcpu->kvm))
684 		kvm_lapic_set_tpr(vcpu, cr8);
685 	else
686 		vcpu->arch.cr8 = cr8;
687 	return 0;
688 }
689 EXPORT_SYMBOL_GPL(kvm_set_cr8);
690 
kvm_get_cr8(struct kvm_vcpu * vcpu)691 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
692 {
693 	if (irqchip_in_kernel(vcpu->kvm))
694 		return kvm_lapic_get_cr8(vcpu);
695 	else
696 		return vcpu->arch.cr8;
697 }
698 EXPORT_SYMBOL_GPL(kvm_get_cr8);
699 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)700 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
701 {
702 	switch (dr) {
703 	case 0 ... 3:
704 		vcpu->arch.db[dr] = val;
705 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
706 			vcpu->arch.eff_db[dr] = val;
707 		break;
708 	case 4:
709 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
710 			return 1; /* #UD */
711 		/* fall through */
712 	case 6:
713 		if (val & 0xffffffff00000000ULL)
714 			return -1; /* #GP */
715 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
716 		break;
717 	case 5:
718 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719 			return 1; /* #UD */
720 		/* fall through */
721 	default: /* 7 */
722 		if (val & 0xffffffff00000000ULL)
723 			return -1; /* #GP */
724 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
725 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
726 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
727 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
728 		}
729 		break;
730 	}
731 
732 	return 0;
733 }
734 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)735 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
736 {
737 	int res;
738 
739 	res = __kvm_set_dr(vcpu, dr, val);
740 	if (res > 0)
741 		kvm_queue_exception(vcpu, UD_VECTOR);
742 	else if (res < 0)
743 		kvm_inject_gp(vcpu, 0);
744 
745 	return res;
746 }
747 EXPORT_SYMBOL_GPL(kvm_set_dr);
748 
_kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)749 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
750 {
751 	switch (dr) {
752 	case 0 ... 3:
753 		*val = vcpu->arch.db[dr];
754 		break;
755 	case 4:
756 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757 			return 1;
758 		/* fall through */
759 	case 6:
760 		*val = vcpu->arch.dr6;
761 		break;
762 	case 5:
763 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
764 			return 1;
765 		/* fall through */
766 	default: /* 7 */
767 		*val = vcpu->arch.dr7;
768 		break;
769 	}
770 
771 	return 0;
772 }
773 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)774 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
775 {
776 	if (_kvm_get_dr(vcpu, dr, val)) {
777 		kvm_queue_exception(vcpu, UD_VECTOR);
778 		return 1;
779 	}
780 	return 0;
781 }
782 EXPORT_SYMBOL_GPL(kvm_get_dr);
783 
784 /*
785  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
786  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
787  *
788  * This list is modified at module load time to reflect the
789  * capabilities of the host cpu. This capabilities test skips MSRs that are
790  * kvm-specific. Those are put in the beginning of the list.
791  */
792 
793 #define KVM_SAVE_MSRS_BEGIN	8
794 static u32 msrs_to_save[] = {
795 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
796 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
797 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
798 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
799 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
800 	MSR_STAR,
801 #ifdef CONFIG_X86_64
802 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
803 #endif
804 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
805 };
806 
807 static unsigned num_msrs_to_save;
808 
809 static u32 emulated_msrs[] = {
810 	MSR_IA32_MISC_ENABLE,
811 	MSR_IA32_MCG_STATUS,
812 	MSR_IA32_MCG_CTL,
813 };
814 
set_efer(struct kvm_vcpu * vcpu,u64 efer)815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
816 {
817 	u64 old_efer = vcpu->arch.efer;
818 
819 	if (efer & efer_reserved_bits)
820 		return 1;
821 
822 	if (is_paging(vcpu)
823 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
824 		return 1;
825 
826 	if (efer & EFER_FFXSR) {
827 		struct kvm_cpuid_entry2 *feat;
828 
829 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
830 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
831 			return 1;
832 	}
833 
834 	if (efer & EFER_SVME) {
835 		struct kvm_cpuid_entry2 *feat;
836 
837 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
838 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
839 			return 1;
840 	}
841 
842 	efer &= ~EFER_LMA;
843 	efer |= vcpu->arch.efer & EFER_LMA;
844 
845 	kvm_x86_ops->set_efer(vcpu, efer);
846 
847 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
848 
849 	/* Update reserved bits */
850 	if ((efer ^ old_efer) & EFER_NX)
851 		kvm_mmu_reset_context(vcpu);
852 
853 	return 0;
854 }
855 
kvm_enable_efer_bits(u64 mask)856 void kvm_enable_efer_bits(u64 mask)
857 {
858        efer_reserved_bits &= ~mask;
859 }
860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
861 
862 
863 /*
864  * Writes msr value into into the appropriate "register".
865  * Returns 0 on success, non-0 otherwise.
866  * Assumes vcpu_load() was already called.
867  */
kvm_set_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
869 {
870 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
871 }
872 
873 /*
874  * Adapt set_msr() to msr_io()'s calling convention
875  */
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
877 {
878 	return kvm_set_msr(vcpu, index, *data);
879 }
880 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
882 {
883 	int version;
884 	int r;
885 	struct pvclock_wall_clock wc;
886 	struct timespec boot;
887 
888 	if (!wall_clock)
889 		return;
890 
891 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
892 	if (r)
893 		return;
894 
895 	if (version & 1)
896 		++version;  /* first time write, random junk */
897 
898 	++version;
899 
900 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
901 
902 	/*
903 	 * The guest calculates current wall clock time by adding
904 	 * system time (updated by kvm_guest_time_update below) to the
905 	 * wall clock specified here.  guest system time equals host
906 	 * system time for us, thus we must fill in host boot time here.
907 	 */
908 	getboottime(&boot);
909 
910 	wc.sec = boot.tv_sec;
911 	wc.nsec = boot.tv_nsec;
912 	wc.version = version;
913 
914 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
915 
916 	version++;
917 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
918 }
919 
div_frac(uint32_t dividend,uint32_t divisor)920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
921 {
922 	uint32_t quotient, remainder;
923 
924 	/* Don't try to replace with do_div(), this one calculates
925 	 * "(dividend << 32) / divisor" */
926 	__asm__ ( "divl %4"
927 		  : "=a" (quotient), "=d" (remainder)
928 		  : "0" (0), "1" (dividend), "r" (divisor) );
929 	return quotient;
930 }
931 
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
933 			       s8 *pshift, u32 *pmultiplier)
934 {
935 	uint64_t scaled64;
936 	int32_t  shift = 0;
937 	uint64_t tps64;
938 	uint32_t tps32;
939 
940 	tps64 = base_khz * 1000LL;
941 	scaled64 = scaled_khz * 1000LL;
942 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
943 		tps64 >>= 1;
944 		shift--;
945 	}
946 
947 	tps32 = (uint32_t)tps64;
948 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
949 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
950 			scaled64 >>= 1;
951 		else
952 			tps32 <<= 1;
953 		shift++;
954 	}
955 
956 	*pshift = shift;
957 	*pmultiplier = div_frac(scaled64, tps32);
958 
959 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
960 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
961 }
962 
get_kernel_ns(void)963 static inline u64 get_kernel_ns(void)
964 {
965 	struct timespec ts;
966 
967 	WARN_ON(preemptible());
968 	ktime_get_ts(&ts);
969 	monotonic_to_bootbased(&ts);
970 	return timespec_to_ns(&ts);
971 }
972 
973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
974 unsigned long max_tsc_khz;
975 
kvm_tsc_changes_freq(void)976 static inline int kvm_tsc_changes_freq(void)
977 {
978 	int cpu = get_cpu();
979 	int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
980 		  cpufreq_quick_get(cpu) != 0;
981 	put_cpu();
982 	return ret;
983 }
984 
nsec_to_cycles(u64 nsec)985 static inline u64 nsec_to_cycles(u64 nsec)
986 {
987 	u64 ret;
988 
989 	WARN_ON(preemptible());
990 	if (kvm_tsc_changes_freq())
991 		printk_once(KERN_WARNING
992 		 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
993 	ret = nsec * __this_cpu_read(cpu_tsc_khz);
994 	do_div(ret, USEC_PER_SEC);
995 	return ret;
996 }
997 
kvm_arch_set_tsc_khz(struct kvm * kvm,u32 this_tsc_khz)998 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
999 {
1000 	/* Compute a scale to convert nanoseconds in TSC cycles */
1001 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1002 			   &kvm->arch.virtual_tsc_shift,
1003 			   &kvm->arch.virtual_tsc_mult);
1004 	kvm->arch.virtual_tsc_khz = this_tsc_khz;
1005 }
1006 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1007 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1008 {
1009 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1010 				      vcpu->kvm->arch.virtual_tsc_mult,
1011 				      vcpu->kvm->arch.virtual_tsc_shift);
1012 	tsc += vcpu->arch.last_tsc_write;
1013 	return tsc;
1014 }
1015 
kvm_write_tsc(struct kvm_vcpu * vcpu,u64 data)1016 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1017 {
1018 	struct kvm *kvm = vcpu->kvm;
1019 	u64 offset, ns, elapsed;
1020 	unsigned long flags;
1021 	s64 sdiff;
1022 
1023 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1024 	offset = data - native_read_tsc();
1025 	ns = get_kernel_ns();
1026 	elapsed = ns - kvm->arch.last_tsc_nsec;
1027 	sdiff = data - kvm->arch.last_tsc_write;
1028 	if (sdiff < 0)
1029 		sdiff = -sdiff;
1030 
1031 	/*
1032 	 * Special case: close write to TSC within 5 seconds of
1033 	 * another CPU is interpreted as an attempt to synchronize
1034 	 * The 5 seconds is to accommodate host load / swapping as
1035 	 * well as any reset of TSC during the boot process.
1036 	 *
1037 	 * In that case, for a reliable TSC, we can match TSC offsets,
1038 	 * or make a best guest using elapsed value.
1039 	 */
1040 	if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1041 	    elapsed < 5ULL * NSEC_PER_SEC) {
1042 		if (!check_tsc_unstable()) {
1043 			offset = kvm->arch.last_tsc_offset;
1044 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1045 		} else {
1046 			u64 delta = nsec_to_cycles(elapsed);
1047 			offset += delta;
1048 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1049 		}
1050 		ns = kvm->arch.last_tsc_nsec;
1051 	}
1052 	kvm->arch.last_tsc_nsec = ns;
1053 	kvm->arch.last_tsc_write = data;
1054 	kvm->arch.last_tsc_offset = offset;
1055 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1056 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1057 
1058 	/* Reset of TSC must disable overshoot protection below */
1059 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1060 	vcpu->arch.last_tsc_write = data;
1061 	vcpu->arch.last_tsc_nsec = ns;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1064 
kvm_guest_time_update(struct kvm_vcpu * v)1065 static int kvm_guest_time_update(struct kvm_vcpu *v)
1066 {
1067 	unsigned long flags;
1068 	struct kvm_vcpu_arch *vcpu = &v->arch;
1069 	void *shared_kaddr;
1070 	unsigned long this_tsc_khz;
1071 	s64 kernel_ns, max_kernel_ns;
1072 	u64 tsc_timestamp;
1073 
1074 	/* Keep irq disabled to prevent changes to the clock */
1075 	local_irq_save(flags);
1076 	kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1077 	kernel_ns = get_kernel_ns();
1078 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1079 
1080 	if (unlikely(this_tsc_khz == 0)) {
1081 		local_irq_restore(flags);
1082 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1083 		return 1;
1084 	}
1085 
1086 	/*
1087 	 * We may have to catch up the TSC to match elapsed wall clock
1088 	 * time for two reasons, even if kvmclock is used.
1089 	 *   1) CPU could have been running below the maximum TSC rate
1090 	 *   2) Broken TSC compensation resets the base at each VCPU
1091 	 *      entry to avoid unknown leaps of TSC even when running
1092 	 *      again on the same CPU.  This may cause apparent elapsed
1093 	 *      time to disappear, and the guest to stand still or run
1094 	 *	very slowly.
1095 	 */
1096 	if (vcpu->tsc_catchup) {
1097 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1098 		if (tsc > tsc_timestamp) {
1099 			kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1100 			tsc_timestamp = tsc;
1101 		}
1102 	}
1103 
1104 	local_irq_restore(flags);
1105 
1106 	if (!vcpu->time_page)
1107 		return 0;
1108 
1109 	/*
1110 	 * Time as measured by the TSC may go backwards when resetting the base
1111 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1112 	 * higher than the resolution of the other clock scales.  Thus, many
1113 	 * possible measurments of the TSC correspond to one measurement of any
1114 	 * other clock, and so a spread of values is possible.  This is not a
1115 	 * problem for the computation of the nanosecond clock; with TSC rates
1116 	 * around 1GHZ, there can only be a few cycles which correspond to one
1117 	 * nanosecond value, and any path through this code will inevitably
1118 	 * take longer than that.  However, with the kernel_ns value itself,
1119 	 * the precision may be much lower, down to HZ granularity.  If the
1120 	 * first sampling of TSC against kernel_ns ends in the low part of the
1121 	 * range, and the second in the high end of the range, we can get:
1122 	 *
1123 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1124 	 *
1125 	 * As the sampling errors potentially range in the thousands of cycles,
1126 	 * it is possible such a time value has already been observed by the
1127 	 * guest.  To protect against this, we must compute the system time as
1128 	 * observed by the guest and ensure the new system time is greater.
1129 	 */
1130 	max_kernel_ns = 0;
1131 	if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1132 		max_kernel_ns = vcpu->last_guest_tsc -
1133 				vcpu->hv_clock.tsc_timestamp;
1134 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1135 				    vcpu->hv_clock.tsc_to_system_mul,
1136 				    vcpu->hv_clock.tsc_shift);
1137 		max_kernel_ns += vcpu->last_kernel_ns;
1138 	}
1139 
1140 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1141 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1142 				   &vcpu->hv_clock.tsc_shift,
1143 				   &vcpu->hv_clock.tsc_to_system_mul);
1144 		vcpu->hw_tsc_khz = this_tsc_khz;
1145 	}
1146 
1147 	if (max_kernel_ns > kernel_ns)
1148 		kernel_ns = max_kernel_ns;
1149 
1150 	/* With all the info we got, fill in the values */
1151 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1152 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1153 	vcpu->last_kernel_ns = kernel_ns;
1154 	vcpu->last_guest_tsc = tsc_timestamp;
1155 	vcpu->hv_clock.flags = 0;
1156 
1157 	/*
1158 	 * The interface expects us to write an even number signaling that the
1159 	 * update is finished. Since the guest won't see the intermediate
1160 	 * state, we just increase by 2 at the end.
1161 	 */
1162 	vcpu->hv_clock.version += 2;
1163 
1164 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1165 
1166 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1167 	       sizeof(vcpu->hv_clock));
1168 
1169 	kunmap_atomic(shared_kaddr, KM_USER0);
1170 
1171 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1172 	return 0;
1173 }
1174 
msr_mtrr_valid(unsigned msr)1175 static bool msr_mtrr_valid(unsigned msr)
1176 {
1177 	switch (msr) {
1178 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1179 	case MSR_MTRRfix64K_00000:
1180 	case MSR_MTRRfix16K_80000:
1181 	case MSR_MTRRfix16K_A0000:
1182 	case MSR_MTRRfix4K_C0000:
1183 	case MSR_MTRRfix4K_C8000:
1184 	case MSR_MTRRfix4K_D0000:
1185 	case MSR_MTRRfix4K_D8000:
1186 	case MSR_MTRRfix4K_E0000:
1187 	case MSR_MTRRfix4K_E8000:
1188 	case MSR_MTRRfix4K_F0000:
1189 	case MSR_MTRRfix4K_F8000:
1190 	case MSR_MTRRdefType:
1191 	case MSR_IA32_CR_PAT:
1192 		return true;
1193 	case 0x2f8:
1194 		return true;
1195 	}
1196 	return false;
1197 }
1198 
valid_pat_type(unsigned t)1199 static bool valid_pat_type(unsigned t)
1200 {
1201 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1202 }
1203 
valid_mtrr_type(unsigned t)1204 static bool valid_mtrr_type(unsigned t)
1205 {
1206 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1207 }
1208 
mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)1209 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1210 {
1211 	int i;
1212 
1213 	if (!msr_mtrr_valid(msr))
1214 		return false;
1215 
1216 	if (msr == MSR_IA32_CR_PAT) {
1217 		for (i = 0; i < 8; i++)
1218 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1219 				return false;
1220 		return true;
1221 	} else if (msr == MSR_MTRRdefType) {
1222 		if (data & ~0xcff)
1223 			return false;
1224 		return valid_mtrr_type(data & 0xff);
1225 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1226 		for (i = 0; i < 8 ; i++)
1227 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1228 				return false;
1229 		return true;
1230 	}
1231 
1232 	/* variable MTRRs */
1233 	return valid_mtrr_type(data & 0xff);
1234 }
1235 
set_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 data)1236 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1237 {
1238 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1239 
1240 	if (!mtrr_valid(vcpu, msr, data))
1241 		return 1;
1242 
1243 	if (msr == MSR_MTRRdefType) {
1244 		vcpu->arch.mtrr_state.def_type = data;
1245 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1246 	} else if (msr == MSR_MTRRfix64K_00000)
1247 		p[0] = data;
1248 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1249 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1250 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1251 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1252 	else if (msr == MSR_IA32_CR_PAT)
1253 		vcpu->arch.pat = data;
1254 	else {	/* Variable MTRRs */
1255 		int idx, is_mtrr_mask;
1256 		u64 *pt;
1257 
1258 		idx = (msr - 0x200) / 2;
1259 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1260 		if (!is_mtrr_mask)
1261 			pt =
1262 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1263 		else
1264 			pt =
1265 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1266 		*pt = data;
1267 	}
1268 
1269 	kvm_mmu_reset_context(vcpu);
1270 	return 0;
1271 }
1272 
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1273 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1274 {
1275 	u64 mcg_cap = vcpu->arch.mcg_cap;
1276 	unsigned bank_num = mcg_cap & 0xff;
1277 
1278 	switch (msr) {
1279 	case MSR_IA32_MCG_STATUS:
1280 		vcpu->arch.mcg_status = data;
1281 		break;
1282 	case MSR_IA32_MCG_CTL:
1283 		if (!(mcg_cap & MCG_CTL_P))
1284 			return 1;
1285 		if (data != 0 && data != ~(u64)0)
1286 			return -1;
1287 		vcpu->arch.mcg_ctl = data;
1288 		break;
1289 	default:
1290 		if (msr >= MSR_IA32_MC0_CTL &&
1291 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1292 			u32 offset = msr - MSR_IA32_MC0_CTL;
1293 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1294 			 * some Linux kernels though clear bit 10 in bank 4 to
1295 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1296 			 * this to avoid an uncatched #GP in the guest
1297 			 */
1298 			if ((offset & 0x3) == 0 &&
1299 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1300 				return -1;
1301 			vcpu->arch.mce_banks[offset] = data;
1302 			break;
1303 		}
1304 		return 1;
1305 	}
1306 	return 0;
1307 }
1308 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)1309 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1310 {
1311 	struct kvm *kvm = vcpu->kvm;
1312 	int lm = is_long_mode(vcpu);
1313 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1314 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1315 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1316 		: kvm->arch.xen_hvm_config.blob_size_32;
1317 	u32 page_num = data & ~PAGE_MASK;
1318 	u64 page_addr = data & PAGE_MASK;
1319 	u8 *page;
1320 	int r;
1321 
1322 	r = -E2BIG;
1323 	if (page_num >= blob_size)
1324 		goto out;
1325 	r = -ENOMEM;
1326 	page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1327 	if (!page)
1328 		goto out;
1329 	r = -EFAULT;
1330 	if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1331 		goto out_free;
1332 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1333 		goto out_free;
1334 	r = 0;
1335 out_free:
1336 	kfree(page);
1337 out:
1338 	return r;
1339 }
1340 
kvm_hv_hypercall_enabled(struct kvm * kvm)1341 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1342 {
1343 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1344 }
1345 
kvm_hv_msr_partition_wide(u32 msr)1346 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 {
1348 	bool r = false;
1349 	switch (msr) {
1350 	case HV_X64_MSR_GUEST_OS_ID:
1351 	case HV_X64_MSR_HYPERCALL:
1352 		r = true;
1353 		break;
1354 	}
1355 
1356 	return r;
1357 }
1358 
set_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data)1359 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1360 {
1361 	struct kvm *kvm = vcpu->kvm;
1362 
1363 	switch (msr) {
1364 	case HV_X64_MSR_GUEST_OS_ID:
1365 		kvm->arch.hv_guest_os_id = data;
1366 		/* setting guest os id to zero disables hypercall page */
1367 		if (!kvm->arch.hv_guest_os_id)
1368 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1369 		break;
1370 	case HV_X64_MSR_HYPERCALL: {
1371 		u64 gfn;
1372 		unsigned long addr;
1373 		u8 instructions[4];
1374 
1375 		/* if guest os id is not set hypercall should remain disabled */
1376 		if (!kvm->arch.hv_guest_os_id)
1377 			break;
1378 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1379 			kvm->arch.hv_hypercall = data;
1380 			break;
1381 		}
1382 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1383 		addr = gfn_to_hva(kvm, gfn);
1384 		if (kvm_is_error_hva(addr))
1385 			return 1;
1386 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1387 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1388 		if (copy_to_user((void __user *)addr, instructions, 4))
1389 			return 1;
1390 		kvm->arch.hv_hypercall = data;
1391 		break;
1392 	}
1393 	default:
1394 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1395 			  "data 0x%llx\n", msr, data);
1396 		return 1;
1397 	}
1398 	return 0;
1399 }
1400 
set_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 data)1401 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1402 {
1403 	switch (msr) {
1404 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1405 		unsigned long addr;
1406 
1407 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1408 			vcpu->arch.hv_vapic = data;
1409 			break;
1410 		}
1411 		addr = gfn_to_hva(vcpu->kvm, data >>
1412 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1413 		if (kvm_is_error_hva(addr))
1414 			return 1;
1415 		if (clear_user((void __user *)addr, PAGE_SIZE))
1416 			return 1;
1417 		vcpu->arch.hv_vapic = data;
1418 		break;
1419 	}
1420 	case HV_X64_MSR_EOI:
1421 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1422 	case HV_X64_MSR_ICR:
1423 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1424 	case HV_X64_MSR_TPR:
1425 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1426 	default:
1427 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1428 			  "data 0x%llx\n", msr, data);
1429 		return 1;
1430 	}
1431 
1432 	return 0;
1433 }
1434 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1436 {
1437 	gpa_t gpa = data & ~0x3f;
1438 
1439 	/* Bits 2:5 are resrved, Should be zero */
1440 	if (data & 0x3c)
1441 		return 1;
1442 
1443 	vcpu->arch.apf.msr_val = data;
1444 
1445 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1446 		kvm_clear_async_pf_completion_queue(vcpu);
1447 		kvm_async_pf_hash_reset(vcpu);
1448 		return 0;
1449 	}
1450 
1451 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1452 		return 1;
1453 
1454 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1455 	kvm_async_pf_wakeup_all(vcpu);
1456 	return 0;
1457 }
1458 
kvmclock_reset(struct kvm_vcpu * vcpu)1459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1460 {
1461 	if (vcpu->arch.time_page) {
1462 		kvm_release_page_dirty(vcpu->arch.time_page);
1463 		vcpu->arch.time_page = NULL;
1464 	}
1465 }
1466 
kvm_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data)1467 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1468 {
1469 	switch (msr) {
1470 	case MSR_EFER:
1471 		return set_efer(vcpu, data);
1472 	case MSR_K7_HWCR:
1473 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1474 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1475 		if (data != 0) {
1476 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1477 				data);
1478 			return 1;
1479 		}
1480 		break;
1481 	case MSR_FAM10H_MMIO_CONF_BASE:
1482 		if (data != 0) {
1483 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1484 				"0x%llx\n", data);
1485 			return 1;
1486 		}
1487 		break;
1488 	case MSR_AMD64_NB_CFG:
1489 		break;
1490 	case MSR_IA32_DEBUGCTLMSR:
1491 		if (!data) {
1492 			/* We support the non-activated case already */
1493 			break;
1494 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1495 			/* Values other than LBR and BTF are vendor-specific,
1496 			   thus reserved and should throw a #GP */
1497 			return 1;
1498 		}
1499 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1500 			__func__, data);
1501 		break;
1502 	case MSR_IA32_UCODE_REV:
1503 	case MSR_IA32_UCODE_WRITE:
1504 	case MSR_VM_HSAVE_PA:
1505 	case MSR_AMD64_PATCH_LOADER:
1506 		break;
1507 	case 0x200 ... 0x2ff:
1508 		return set_msr_mtrr(vcpu, msr, data);
1509 	case MSR_IA32_APICBASE:
1510 		kvm_set_apic_base(vcpu, data);
1511 		break;
1512 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1513 		return kvm_x2apic_msr_write(vcpu, msr, data);
1514 	case MSR_IA32_MISC_ENABLE:
1515 		vcpu->arch.ia32_misc_enable_msr = data;
1516 		break;
1517 	case MSR_KVM_WALL_CLOCK_NEW:
1518 	case MSR_KVM_WALL_CLOCK:
1519 		vcpu->kvm->arch.wall_clock = data;
1520 		kvm_write_wall_clock(vcpu->kvm, data);
1521 		break;
1522 	case MSR_KVM_SYSTEM_TIME_NEW:
1523 	case MSR_KVM_SYSTEM_TIME: {
1524 		kvmclock_reset(vcpu);
1525 
1526 		vcpu->arch.time = data;
1527 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1528 
1529 		/* we verify if the enable bit is set... */
1530 		if (!(data & 1))
1531 			break;
1532 
1533 		/* ...but clean it before doing the actual write */
1534 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1535 
1536 		vcpu->arch.time_page =
1537 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1538 
1539 		if (is_error_page(vcpu->arch.time_page)) {
1540 			kvm_release_page_clean(vcpu->arch.time_page);
1541 			vcpu->arch.time_page = NULL;
1542 		}
1543 		break;
1544 	}
1545 	case MSR_KVM_ASYNC_PF_EN:
1546 		if (kvm_pv_enable_async_pf(vcpu, data))
1547 			return 1;
1548 		break;
1549 	case MSR_IA32_MCG_CTL:
1550 	case MSR_IA32_MCG_STATUS:
1551 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1552 		return set_msr_mce(vcpu, msr, data);
1553 
1554 	/* Performance counters are not protected by a CPUID bit,
1555 	 * so we should check all of them in the generic path for the sake of
1556 	 * cross vendor migration.
1557 	 * Writing a zero into the event select MSRs disables them,
1558 	 * which we perfectly emulate ;-). Any other value should be at least
1559 	 * reported, some guests depend on them.
1560 	 */
1561 	case MSR_P6_EVNTSEL0:
1562 	case MSR_P6_EVNTSEL1:
1563 	case MSR_K7_EVNTSEL0:
1564 	case MSR_K7_EVNTSEL1:
1565 	case MSR_K7_EVNTSEL2:
1566 	case MSR_K7_EVNTSEL3:
1567 		if (data != 0)
1568 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1569 				"0x%x data 0x%llx\n", msr, data);
1570 		break;
1571 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1572 	 * so we ignore writes to make it happy.
1573 	 */
1574 	case MSR_P6_PERFCTR0:
1575 	case MSR_P6_PERFCTR1:
1576 	case MSR_K7_PERFCTR0:
1577 	case MSR_K7_PERFCTR1:
1578 	case MSR_K7_PERFCTR2:
1579 	case MSR_K7_PERFCTR3:
1580 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1581 			"0x%x data 0x%llx\n", msr, data);
1582 		break;
1583 	case MSR_K7_CLK_CTL:
1584 		/*
1585 		 * Ignore all writes to this no longer documented MSR.
1586 		 * Writes are only relevant for old K7 processors,
1587 		 * all pre-dating SVM, but a recommended workaround from
1588 		 * AMD for these chips. It is possible to speicify the
1589 		 * affected processor models on the command line, hence
1590 		 * the need to ignore the workaround.
1591 		 */
1592 		break;
1593 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1594 		if (kvm_hv_msr_partition_wide(msr)) {
1595 			int r;
1596 			mutex_lock(&vcpu->kvm->lock);
1597 			r = set_msr_hyperv_pw(vcpu, msr, data);
1598 			mutex_unlock(&vcpu->kvm->lock);
1599 			return r;
1600 		} else
1601 			return set_msr_hyperv(vcpu, msr, data);
1602 		break;
1603 	case MSR_IA32_BBL_CR_CTL3:
1604 		/* Drop writes to this legacy MSR -- see rdmsr
1605 		 * counterpart for further detail.
1606 		 */
1607 		pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1608 		break;
1609 	default:
1610 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1611 			return xen_hvm_config(vcpu, data);
1612 		if (!ignore_msrs) {
1613 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1614 				msr, data);
1615 			return 1;
1616 		} else {
1617 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1618 				msr, data);
1619 			break;
1620 		}
1621 	}
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1625 
1626 
1627 /*
1628  * Reads an msr value (of 'msr_index') into 'pdata'.
1629  * Returns 0 on success, non-0 otherwise.
1630  * Assumes vcpu_load() was already called.
1631  */
kvm_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)1632 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1633 {
1634 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1635 }
1636 
get_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1637 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1638 {
1639 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1640 
1641 	if (!msr_mtrr_valid(msr))
1642 		return 1;
1643 
1644 	if (msr == MSR_MTRRdefType)
1645 		*pdata = vcpu->arch.mtrr_state.def_type +
1646 			 (vcpu->arch.mtrr_state.enabled << 10);
1647 	else if (msr == MSR_MTRRfix64K_00000)
1648 		*pdata = p[0];
1649 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1650 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1651 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1652 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1653 	else if (msr == MSR_IA32_CR_PAT)
1654 		*pdata = vcpu->arch.pat;
1655 	else {	/* Variable MTRRs */
1656 		int idx, is_mtrr_mask;
1657 		u64 *pt;
1658 
1659 		idx = (msr - 0x200) / 2;
1660 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1661 		if (!is_mtrr_mask)
1662 			pt =
1663 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1664 		else
1665 			pt =
1666 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1667 		*pdata = *pt;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1673 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1674 {
1675 	u64 data;
1676 	u64 mcg_cap = vcpu->arch.mcg_cap;
1677 	unsigned bank_num = mcg_cap & 0xff;
1678 
1679 	switch (msr) {
1680 	case MSR_IA32_P5_MC_ADDR:
1681 	case MSR_IA32_P5_MC_TYPE:
1682 		data = 0;
1683 		break;
1684 	case MSR_IA32_MCG_CAP:
1685 		data = vcpu->arch.mcg_cap;
1686 		break;
1687 	case MSR_IA32_MCG_CTL:
1688 		if (!(mcg_cap & MCG_CTL_P))
1689 			return 1;
1690 		data = vcpu->arch.mcg_ctl;
1691 		break;
1692 	case MSR_IA32_MCG_STATUS:
1693 		data = vcpu->arch.mcg_status;
1694 		break;
1695 	default:
1696 		if (msr >= MSR_IA32_MC0_CTL &&
1697 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1698 			u32 offset = msr - MSR_IA32_MC0_CTL;
1699 			data = vcpu->arch.mce_banks[offset];
1700 			break;
1701 		}
1702 		return 1;
1703 	}
1704 	*pdata = data;
1705 	return 0;
1706 }
1707 
get_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1708 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1709 {
1710 	u64 data = 0;
1711 	struct kvm *kvm = vcpu->kvm;
1712 
1713 	switch (msr) {
1714 	case HV_X64_MSR_GUEST_OS_ID:
1715 		data = kvm->arch.hv_guest_os_id;
1716 		break;
1717 	case HV_X64_MSR_HYPERCALL:
1718 		data = kvm->arch.hv_hypercall;
1719 		break;
1720 	default:
1721 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1722 		return 1;
1723 	}
1724 
1725 	*pdata = data;
1726 	return 0;
1727 }
1728 
get_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1729 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1730 {
1731 	u64 data = 0;
1732 
1733 	switch (msr) {
1734 	case HV_X64_MSR_VP_INDEX: {
1735 		int r;
1736 		struct kvm_vcpu *v;
1737 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1738 			if (v == vcpu)
1739 				data = r;
1740 		break;
1741 	}
1742 	case HV_X64_MSR_EOI:
1743 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1744 	case HV_X64_MSR_ICR:
1745 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1746 	case HV_X64_MSR_TPR:
1747 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1748 	default:
1749 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1750 		return 1;
1751 	}
1752 	*pdata = data;
1753 	return 0;
1754 }
1755 
kvm_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1756 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1757 {
1758 	u64 data;
1759 
1760 	switch (msr) {
1761 	case MSR_IA32_PLATFORM_ID:
1762 	case MSR_IA32_UCODE_REV:
1763 	case MSR_IA32_EBL_CR_POWERON:
1764 	case MSR_IA32_DEBUGCTLMSR:
1765 	case MSR_IA32_LASTBRANCHFROMIP:
1766 	case MSR_IA32_LASTBRANCHTOIP:
1767 	case MSR_IA32_LASTINTFROMIP:
1768 	case MSR_IA32_LASTINTTOIP:
1769 	case MSR_K8_SYSCFG:
1770 	case MSR_K7_HWCR:
1771 	case MSR_VM_HSAVE_PA:
1772 	case MSR_P6_PERFCTR0:
1773 	case MSR_P6_PERFCTR1:
1774 	case MSR_P6_EVNTSEL0:
1775 	case MSR_P6_EVNTSEL1:
1776 	case MSR_K7_EVNTSEL0:
1777 	case MSR_K7_PERFCTR0:
1778 	case MSR_K8_INT_PENDING_MSG:
1779 	case MSR_AMD64_NB_CFG:
1780 	case MSR_FAM10H_MMIO_CONF_BASE:
1781 		data = 0;
1782 		break;
1783 	case MSR_MTRRcap:
1784 		data = 0x500 | KVM_NR_VAR_MTRR;
1785 		break;
1786 	case 0x200 ... 0x2ff:
1787 		return get_msr_mtrr(vcpu, msr, pdata);
1788 	case 0xcd: /* fsb frequency */
1789 		data = 3;
1790 		break;
1791 		/*
1792 		 * MSR_EBC_FREQUENCY_ID
1793 		 * Conservative value valid for even the basic CPU models.
1794 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1795 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1796 		 * and 266MHz for model 3, or 4. Set Core Clock
1797 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1798 		 * 31:24) even though these are only valid for CPU
1799 		 * models > 2, however guests may end up dividing or
1800 		 * multiplying by zero otherwise.
1801 		 */
1802 	case MSR_EBC_FREQUENCY_ID:
1803 		data = 1 << 24;
1804 		break;
1805 	case MSR_IA32_APICBASE:
1806 		data = kvm_get_apic_base(vcpu);
1807 		break;
1808 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1809 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1810 		break;
1811 	case MSR_IA32_MISC_ENABLE:
1812 		data = vcpu->arch.ia32_misc_enable_msr;
1813 		break;
1814 	case MSR_IA32_PERF_STATUS:
1815 		/* TSC increment by tick */
1816 		data = 1000ULL;
1817 		/* CPU multiplier */
1818 		data |= (((uint64_t)4ULL) << 40);
1819 		break;
1820 	case MSR_EFER:
1821 		data = vcpu->arch.efer;
1822 		break;
1823 	case MSR_KVM_WALL_CLOCK:
1824 	case MSR_KVM_WALL_CLOCK_NEW:
1825 		data = vcpu->kvm->arch.wall_clock;
1826 		break;
1827 	case MSR_KVM_SYSTEM_TIME:
1828 	case MSR_KVM_SYSTEM_TIME_NEW:
1829 		data = vcpu->arch.time;
1830 		break;
1831 	case MSR_KVM_ASYNC_PF_EN:
1832 		data = vcpu->arch.apf.msr_val;
1833 		break;
1834 	case MSR_IA32_P5_MC_ADDR:
1835 	case MSR_IA32_P5_MC_TYPE:
1836 	case MSR_IA32_MCG_CAP:
1837 	case MSR_IA32_MCG_CTL:
1838 	case MSR_IA32_MCG_STATUS:
1839 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1840 		return get_msr_mce(vcpu, msr, pdata);
1841 	case MSR_K7_CLK_CTL:
1842 		/*
1843 		 * Provide expected ramp-up count for K7. All other
1844 		 * are set to zero, indicating minimum divisors for
1845 		 * every field.
1846 		 *
1847 		 * This prevents guest kernels on AMD host with CPU
1848 		 * type 6, model 8 and higher from exploding due to
1849 		 * the rdmsr failing.
1850 		 */
1851 		data = 0x20000000;
1852 		break;
1853 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1854 		if (kvm_hv_msr_partition_wide(msr)) {
1855 			int r;
1856 			mutex_lock(&vcpu->kvm->lock);
1857 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
1858 			mutex_unlock(&vcpu->kvm->lock);
1859 			return r;
1860 		} else
1861 			return get_msr_hyperv(vcpu, msr, pdata);
1862 		break;
1863 	case MSR_IA32_BBL_CR_CTL3:
1864 		/* This legacy MSR exists but isn't fully documented in current
1865 		 * silicon.  It is however accessed by winxp in very narrow
1866 		 * scenarios where it sets bit #19, itself documented as
1867 		 * a "reserved" bit.  Best effort attempt to source coherent
1868 		 * read data here should the balance of the register be
1869 		 * interpreted by the guest:
1870 		 *
1871 		 * L2 cache control register 3: 64GB range, 256KB size,
1872 		 * enabled, latency 0x1, configured
1873 		 */
1874 		data = 0xbe702111;
1875 		break;
1876 	default:
1877 		if (!ignore_msrs) {
1878 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1879 			return 1;
1880 		} else {
1881 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1882 			data = 0;
1883 		}
1884 		break;
1885 	}
1886 	*pdata = data;
1887 	return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1890 
1891 /*
1892  * Read or write a bunch of msrs. All parameters are kernel addresses.
1893  *
1894  * @return number of msrs set successfully.
1895  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))1896 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1897 		    struct kvm_msr_entry *entries,
1898 		    int (*do_msr)(struct kvm_vcpu *vcpu,
1899 				  unsigned index, u64 *data))
1900 {
1901 	int i, idx;
1902 
1903 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1904 	for (i = 0; i < msrs->nmsrs; ++i)
1905 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
1906 			break;
1907 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1908 
1909 	return i;
1910 }
1911 
1912 /*
1913  * Read or write a bunch of msrs. Parameters are user addresses.
1914  *
1915  * @return number of msrs set successfully.
1916  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)1917 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1918 		  int (*do_msr)(struct kvm_vcpu *vcpu,
1919 				unsigned index, u64 *data),
1920 		  int writeback)
1921 {
1922 	struct kvm_msrs msrs;
1923 	struct kvm_msr_entry *entries;
1924 	int r, n;
1925 	unsigned size;
1926 
1927 	r = -EFAULT;
1928 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1929 		goto out;
1930 
1931 	r = -E2BIG;
1932 	if (msrs.nmsrs >= MAX_IO_MSRS)
1933 		goto out;
1934 
1935 	r = -ENOMEM;
1936 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1937 	entries = kmalloc(size, GFP_KERNEL);
1938 	if (!entries)
1939 		goto out;
1940 
1941 	r = -EFAULT;
1942 	if (copy_from_user(entries, user_msrs->entries, size))
1943 		goto out_free;
1944 
1945 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1946 	if (r < 0)
1947 		goto out_free;
1948 
1949 	r = -EFAULT;
1950 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
1951 		goto out_free;
1952 
1953 	r = n;
1954 
1955 out_free:
1956 	kfree(entries);
1957 out:
1958 	return r;
1959 }
1960 
kvm_dev_ioctl_check_extension(long ext)1961 int kvm_dev_ioctl_check_extension(long ext)
1962 {
1963 	int r;
1964 
1965 	switch (ext) {
1966 	case KVM_CAP_IRQCHIP:
1967 	case KVM_CAP_HLT:
1968 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1969 	case KVM_CAP_SET_TSS_ADDR:
1970 	case KVM_CAP_EXT_CPUID:
1971 	case KVM_CAP_CLOCKSOURCE:
1972 	case KVM_CAP_PIT:
1973 	case KVM_CAP_NOP_IO_DELAY:
1974 	case KVM_CAP_MP_STATE:
1975 	case KVM_CAP_SYNC_MMU:
1976 	case KVM_CAP_USER_NMI:
1977 	case KVM_CAP_REINJECT_CONTROL:
1978 	case KVM_CAP_IRQ_INJECT_STATUS:
1979 	case KVM_CAP_ASSIGN_DEV_IRQ:
1980 	case KVM_CAP_IRQFD:
1981 	case KVM_CAP_IOEVENTFD:
1982 	case KVM_CAP_PIT2:
1983 	case KVM_CAP_PIT_STATE2:
1984 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1985 	case KVM_CAP_XEN_HVM:
1986 	case KVM_CAP_ADJUST_CLOCK:
1987 	case KVM_CAP_VCPU_EVENTS:
1988 	case KVM_CAP_HYPERV:
1989 	case KVM_CAP_HYPERV_VAPIC:
1990 	case KVM_CAP_HYPERV_SPIN:
1991 	case KVM_CAP_PCI_SEGMENT:
1992 	case KVM_CAP_DEBUGREGS:
1993 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
1994 	case KVM_CAP_XSAVE:
1995 	case KVM_CAP_ASYNC_PF:
1996 		r = 1;
1997 		break;
1998 	case KVM_CAP_COALESCED_MMIO:
1999 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2000 		break;
2001 	case KVM_CAP_VAPIC:
2002 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2003 		break;
2004 	case KVM_CAP_NR_VCPUS:
2005 		r = KVM_MAX_VCPUS;
2006 		break;
2007 	case KVM_CAP_NR_MEMSLOTS:
2008 		r = KVM_MEMORY_SLOTS;
2009 		break;
2010 	case KVM_CAP_PV_MMU:	/* obsolete */
2011 		r = 0;
2012 		break;
2013 	case KVM_CAP_IOMMU:
2014 		r = iommu_found();
2015 		break;
2016 	case KVM_CAP_MCE:
2017 		r = KVM_MAX_MCE_BANKS;
2018 		break;
2019 	case KVM_CAP_XCRS:
2020 		r = cpu_has_xsave;
2021 		break;
2022 	default:
2023 		r = 0;
2024 		break;
2025 	}
2026 	return r;
2027 
2028 }
2029 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2030 long kvm_arch_dev_ioctl(struct file *filp,
2031 			unsigned int ioctl, unsigned long arg)
2032 {
2033 	void __user *argp = (void __user *)arg;
2034 	long r;
2035 
2036 	switch (ioctl) {
2037 	case KVM_GET_MSR_INDEX_LIST: {
2038 		struct kvm_msr_list __user *user_msr_list = argp;
2039 		struct kvm_msr_list msr_list;
2040 		unsigned n;
2041 
2042 		r = -EFAULT;
2043 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2044 			goto out;
2045 		n = msr_list.nmsrs;
2046 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2047 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2048 			goto out;
2049 		r = -E2BIG;
2050 		if (n < msr_list.nmsrs)
2051 			goto out;
2052 		r = -EFAULT;
2053 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2054 				 num_msrs_to_save * sizeof(u32)))
2055 			goto out;
2056 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2057 				 &emulated_msrs,
2058 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2059 			goto out;
2060 		r = 0;
2061 		break;
2062 	}
2063 	case KVM_GET_SUPPORTED_CPUID: {
2064 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2065 		struct kvm_cpuid2 cpuid;
2066 
2067 		r = -EFAULT;
2068 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2069 			goto out;
2070 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2071 						      cpuid_arg->entries);
2072 		if (r)
2073 			goto out;
2074 
2075 		r = -EFAULT;
2076 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2077 			goto out;
2078 		r = 0;
2079 		break;
2080 	}
2081 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2082 		u64 mce_cap;
2083 
2084 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2085 		r = -EFAULT;
2086 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2087 			goto out;
2088 		r = 0;
2089 		break;
2090 	}
2091 	default:
2092 		r = -EINVAL;
2093 	}
2094 out:
2095 	return r;
2096 }
2097 
wbinvd_ipi(void * garbage)2098 static void wbinvd_ipi(void *garbage)
2099 {
2100 	wbinvd();
2101 }
2102 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2103 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2104 {
2105 	return vcpu->kvm->arch.iommu_domain &&
2106 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2107 }
2108 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2109 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2110 {
2111 	/* Address WBINVD may be executed by guest */
2112 	if (need_emulate_wbinvd(vcpu)) {
2113 		if (kvm_x86_ops->has_wbinvd_exit())
2114 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2115 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2116 			smp_call_function_single(vcpu->cpu,
2117 					wbinvd_ipi, NULL, 1);
2118 	}
2119 
2120 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2121 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2122 		/* Make sure TSC doesn't go backwards */
2123 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2124 				native_read_tsc() - vcpu->arch.last_host_tsc;
2125 		if (tsc_delta < 0)
2126 			mark_tsc_unstable("KVM discovered backwards TSC");
2127 		if (check_tsc_unstable()) {
2128 			kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2129 			vcpu->arch.tsc_catchup = 1;
2130 		}
2131 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2132 		if (vcpu->cpu != cpu)
2133 			kvm_migrate_timers(vcpu);
2134 		vcpu->cpu = cpu;
2135 	}
2136 }
2137 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2138 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2139 {
2140 	kvm_x86_ops->vcpu_put(vcpu);
2141 	kvm_put_guest_fpu(vcpu);
2142 	vcpu->arch.last_host_tsc = native_read_tsc();
2143 }
2144 
is_efer_nx(void)2145 static int is_efer_nx(void)
2146 {
2147 	unsigned long long efer = 0;
2148 
2149 	rdmsrl_safe(MSR_EFER, &efer);
2150 	return efer & EFER_NX;
2151 }
2152 
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)2153 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2154 {
2155 	int i;
2156 	struct kvm_cpuid_entry2 *e, *entry;
2157 
2158 	entry = NULL;
2159 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2160 		e = &vcpu->arch.cpuid_entries[i];
2161 		if (e->function == 0x80000001) {
2162 			entry = e;
2163 			break;
2164 		}
2165 	}
2166 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2167 		entry->edx &= ~(1 << 20);
2168 		printk(KERN_INFO "kvm: guest NX capability removed\n");
2169 	}
2170 }
2171 
2172 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)2173 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2174 				    struct kvm_cpuid *cpuid,
2175 				    struct kvm_cpuid_entry __user *entries)
2176 {
2177 	int r, i;
2178 	struct kvm_cpuid_entry *cpuid_entries;
2179 
2180 	r = -E2BIG;
2181 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2182 		goto out;
2183 	r = -ENOMEM;
2184 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2185 	if (!cpuid_entries)
2186 		goto out;
2187 	r = -EFAULT;
2188 	if (copy_from_user(cpuid_entries, entries,
2189 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2190 		goto out_free;
2191 	for (i = 0; i < cpuid->nent; i++) {
2192 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2193 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2194 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2195 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2196 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2197 		vcpu->arch.cpuid_entries[i].index = 0;
2198 		vcpu->arch.cpuid_entries[i].flags = 0;
2199 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
2200 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
2201 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
2202 	}
2203 	vcpu->arch.cpuid_nent = cpuid->nent;
2204 	cpuid_fix_nx_cap(vcpu);
2205 	r = 0;
2206 	kvm_apic_set_version(vcpu);
2207 	kvm_x86_ops->cpuid_update(vcpu);
2208 	update_cpuid(vcpu);
2209 
2210 out_free:
2211 	vfree(cpuid_entries);
2212 out:
2213 	return r;
2214 }
2215 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2216 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2217 				     struct kvm_cpuid2 *cpuid,
2218 				     struct kvm_cpuid_entry2 __user *entries)
2219 {
2220 	int r;
2221 
2222 	r = -E2BIG;
2223 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2224 		goto out;
2225 	r = -EFAULT;
2226 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2227 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2228 		goto out;
2229 	vcpu->arch.cpuid_nent = cpuid->nent;
2230 	kvm_apic_set_version(vcpu);
2231 	kvm_x86_ops->cpuid_update(vcpu);
2232 	update_cpuid(vcpu);
2233 	return 0;
2234 
2235 out:
2236 	return r;
2237 }
2238 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2239 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2240 				     struct kvm_cpuid2 *cpuid,
2241 				     struct kvm_cpuid_entry2 __user *entries)
2242 {
2243 	int r;
2244 
2245 	r = -E2BIG;
2246 	if (cpuid->nent < vcpu->arch.cpuid_nent)
2247 		goto out;
2248 	r = -EFAULT;
2249 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2250 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2251 		goto out;
2252 	return 0;
2253 
2254 out:
2255 	cpuid->nent = vcpu->arch.cpuid_nent;
2256 	return r;
2257 }
2258 
cpuid_mask(u32 * word,int wordnum)2259 static void cpuid_mask(u32 *word, int wordnum)
2260 {
2261 	*word &= boot_cpu_data.x86_capability[wordnum];
2262 }
2263 
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)2264 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2265 			   u32 index)
2266 {
2267 	entry->function = function;
2268 	entry->index = index;
2269 	cpuid_count(entry->function, entry->index,
2270 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2271 	entry->flags = 0;
2272 }
2273 
2274 #define F(x) bit(X86_FEATURE_##x)
2275 
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)2276 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2277 			 u32 index, int *nent, int maxnent)
2278 {
2279 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2280 #ifdef CONFIG_X86_64
2281 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2282 				? F(GBPAGES) : 0;
2283 	unsigned f_lm = F(LM);
2284 #else
2285 	unsigned f_gbpages = 0;
2286 	unsigned f_lm = 0;
2287 #endif
2288 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2289 
2290 	/* cpuid 1.edx */
2291 	const u32 kvm_supported_word0_x86_features =
2292 		F(FPU) | F(VME) | F(DE) | F(PSE) |
2293 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2294 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2295 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2296 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2297 		0 /* Reserved, DS, ACPI */ | F(MMX) |
2298 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2299 		0 /* HTT, TM, Reserved, PBE */;
2300 	/* cpuid 0x80000001.edx */
2301 	const u32 kvm_supported_word1_x86_features =
2302 		F(FPU) | F(VME) | F(DE) | F(PSE) |
2303 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2304 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2305 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2306 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
2307 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2308 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2309 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2310 	/* cpuid 1.ecx */
2311 	const u32 kvm_supported_word4_x86_features =
2312 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2313 		0 /* DS-CPL, VMX, SMX, EST */ |
2314 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2315 		0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2316 		0 /* Reserved, DCA */ | F(XMM4_1) |
2317 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2318 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2319 		F(F16C);
2320 	/* cpuid 0x80000001.ecx */
2321 	const u32 kvm_supported_word6_x86_features =
2322 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2323 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2324 		F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2325 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2326 
2327 	/* all calls to cpuid_count() should be made on the same cpu */
2328 	get_cpu();
2329 	do_cpuid_1_ent(entry, function, index);
2330 	++*nent;
2331 
2332 	switch (function) {
2333 	case 0:
2334 		entry->eax = min(entry->eax, (u32)0xd);
2335 		break;
2336 	case 1:
2337 		entry->edx &= kvm_supported_word0_x86_features;
2338 		cpuid_mask(&entry->edx, 0);
2339 		entry->ecx &= kvm_supported_word4_x86_features;
2340 		cpuid_mask(&entry->ecx, 4);
2341 		/* we support x2apic emulation even if host does not support
2342 		 * it since we emulate x2apic in software */
2343 		entry->ecx |= F(X2APIC);
2344 		break;
2345 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
2346 	 * may return different values. This forces us to get_cpu() before
2347 	 * issuing the first command, and also to emulate this annoying behavior
2348 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2349 	case 2: {
2350 		int t, times = entry->eax & 0xff;
2351 
2352 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2353 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2354 		for (t = 1; t < times && *nent < maxnent; ++t) {
2355 			do_cpuid_1_ent(&entry[t], function, 0);
2356 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2357 			++*nent;
2358 		}
2359 		break;
2360 	}
2361 	/* function 4 and 0xb have additional index. */
2362 	case 4: {
2363 		int i, cache_type;
2364 
2365 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2366 		/* read more entries until cache_type is zero */
2367 		for (i = 1; *nent < maxnent; ++i) {
2368 			cache_type = entry[i - 1].eax & 0x1f;
2369 			if (!cache_type)
2370 				break;
2371 			do_cpuid_1_ent(&entry[i], function, i);
2372 			entry[i].flags |=
2373 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2374 			++*nent;
2375 		}
2376 		break;
2377 	}
2378 	case 0xb: {
2379 		int i, level_type;
2380 
2381 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2382 		/* read more entries until level_type is zero */
2383 		for (i = 1; *nent < maxnent; ++i) {
2384 			level_type = entry[i - 1].ecx & 0xff00;
2385 			if (!level_type)
2386 				break;
2387 			do_cpuid_1_ent(&entry[i], function, i);
2388 			entry[i].flags |=
2389 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2390 			++*nent;
2391 		}
2392 		break;
2393 	}
2394 	case 0xd: {
2395 		int i;
2396 
2397 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2398 		for (i = 1; *nent < maxnent && i < 64; ++i) {
2399 			if (entry[i].eax == 0)
2400 				continue;
2401 			do_cpuid_1_ent(&entry[i], function, i);
2402 			entry[i].flags |=
2403 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2404 			++*nent;
2405 		}
2406 		break;
2407 	}
2408 	case KVM_CPUID_SIGNATURE: {
2409 		char signature[12] = "KVMKVMKVM\0\0";
2410 		u32 *sigptr = (u32 *)signature;
2411 		entry->eax = 0;
2412 		entry->ebx = sigptr[0];
2413 		entry->ecx = sigptr[1];
2414 		entry->edx = sigptr[2];
2415 		break;
2416 	}
2417 	case KVM_CPUID_FEATURES:
2418 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2419 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
2420 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
2421 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2422 		entry->ebx = 0;
2423 		entry->ecx = 0;
2424 		entry->edx = 0;
2425 		break;
2426 	case 0x80000000:
2427 		entry->eax = min(entry->eax, 0x8000001a);
2428 		break;
2429 	case 0x80000001:
2430 		entry->edx &= kvm_supported_word1_x86_features;
2431 		cpuid_mask(&entry->edx, 1);
2432 		entry->ecx &= kvm_supported_word6_x86_features;
2433 		cpuid_mask(&entry->ecx, 6);
2434 		break;
2435 	}
2436 
2437 	kvm_x86_ops->set_supported_cpuid(function, entry);
2438 
2439 	put_cpu();
2440 }
2441 
2442 #undef F
2443 
kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)2444 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2445 				     struct kvm_cpuid_entry2 __user *entries)
2446 {
2447 	struct kvm_cpuid_entry2 *cpuid_entries;
2448 	int limit, nent = 0, r = -E2BIG;
2449 	u32 func;
2450 
2451 	if (cpuid->nent < 1)
2452 		goto out;
2453 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2454 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2455 	r = -ENOMEM;
2456 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2457 	if (!cpuid_entries)
2458 		goto out;
2459 
2460 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2461 	limit = cpuid_entries[0].eax;
2462 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2463 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
2464 			     &nent, cpuid->nent);
2465 	r = -E2BIG;
2466 	if (nent >= cpuid->nent)
2467 		goto out_free;
2468 
2469 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2470 	limit = cpuid_entries[nent - 1].eax;
2471 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2472 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
2473 			     &nent, cpuid->nent);
2474 
2475 
2476 
2477 	r = -E2BIG;
2478 	if (nent >= cpuid->nent)
2479 		goto out_free;
2480 
2481 	do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2482 		     cpuid->nent);
2483 
2484 	r = -E2BIG;
2485 	if (nent >= cpuid->nent)
2486 		goto out_free;
2487 
2488 	do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2489 		     cpuid->nent);
2490 
2491 	r = -E2BIG;
2492 	if (nent >= cpuid->nent)
2493 		goto out_free;
2494 
2495 	r = -EFAULT;
2496 	if (copy_to_user(entries, cpuid_entries,
2497 			 nent * sizeof(struct kvm_cpuid_entry2)))
2498 		goto out_free;
2499 	cpuid->nent = nent;
2500 	r = 0;
2501 
2502 out_free:
2503 	vfree(cpuid_entries);
2504 out:
2505 	return r;
2506 }
2507 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2508 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2509 				    struct kvm_lapic_state *s)
2510 {
2511 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2512 
2513 	return 0;
2514 }
2515 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2516 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2517 				    struct kvm_lapic_state *s)
2518 {
2519 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2520 	kvm_apic_post_state_restore(vcpu);
2521 	update_cr8_intercept(vcpu);
2522 
2523 	return 0;
2524 }
2525 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2526 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2527 				    struct kvm_interrupt *irq)
2528 {
2529 	if (irq->irq < 0 || irq->irq >= 256)
2530 		return -EINVAL;
2531 	if (irqchip_in_kernel(vcpu->kvm))
2532 		return -ENXIO;
2533 
2534 	kvm_queue_interrupt(vcpu, irq->irq, false);
2535 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2536 
2537 	return 0;
2538 }
2539 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2540 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2541 {
2542 	kvm_inject_nmi(vcpu);
2543 
2544 	return 0;
2545 }
2546 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2547 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2548 					   struct kvm_tpr_access_ctl *tac)
2549 {
2550 	if (tac->flags)
2551 		return -EINVAL;
2552 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2553 	return 0;
2554 }
2555 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2556 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2557 					u64 mcg_cap)
2558 {
2559 	int r;
2560 	unsigned bank_num = mcg_cap & 0xff, bank;
2561 
2562 	r = -EINVAL;
2563 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2564 		goto out;
2565 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2566 		goto out;
2567 	r = 0;
2568 	vcpu->arch.mcg_cap = mcg_cap;
2569 	/* Init IA32_MCG_CTL to all 1s */
2570 	if (mcg_cap & MCG_CTL_P)
2571 		vcpu->arch.mcg_ctl = ~(u64)0;
2572 	/* Init IA32_MCi_CTL to all 1s */
2573 	for (bank = 0; bank < bank_num; bank++)
2574 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2575 out:
2576 	return r;
2577 }
2578 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2579 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2580 				      struct kvm_x86_mce *mce)
2581 {
2582 	u64 mcg_cap = vcpu->arch.mcg_cap;
2583 	unsigned bank_num = mcg_cap & 0xff;
2584 	u64 *banks = vcpu->arch.mce_banks;
2585 
2586 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2587 		return -EINVAL;
2588 	/*
2589 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2590 	 * reporting is disabled
2591 	 */
2592 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2593 	    vcpu->arch.mcg_ctl != ~(u64)0)
2594 		return 0;
2595 	banks += 4 * mce->bank;
2596 	/*
2597 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2598 	 * reporting is disabled for the bank
2599 	 */
2600 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2601 		return 0;
2602 	if (mce->status & MCI_STATUS_UC) {
2603 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2604 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2605 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2606 			return 0;
2607 		}
2608 		if (banks[1] & MCI_STATUS_VAL)
2609 			mce->status |= MCI_STATUS_OVER;
2610 		banks[2] = mce->addr;
2611 		banks[3] = mce->misc;
2612 		vcpu->arch.mcg_status = mce->mcg_status;
2613 		banks[1] = mce->status;
2614 		kvm_queue_exception(vcpu, MC_VECTOR);
2615 	} else if (!(banks[1] & MCI_STATUS_VAL)
2616 		   || !(banks[1] & MCI_STATUS_UC)) {
2617 		if (banks[1] & MCI_STATUS_VAL)
2618 			mce->status |= MCI_STATUS_OVER;
2619 		banks[2] = mce->addr;
2620 		banks[3] = mce->misc;
2621 		banks[1] = mce->status;
2622 	} else
2623 		banks[1] |= MCI_STATUS_OVER;
2624 	return 0;
2625 }
2626 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2627 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2628 					       struct kvm_vcpu_events *events)
2629 {
2630 	events->exception.injected =
2631 		vcpu->arch.exception.pending &&
2632 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2633 	events->exception.nr = vcpu->arch.exception.nr;
2634 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2635 	events->exception.pad = 0;
2636 	events->exception.error_code = vcpu->arch.exception.error_code;
2637 
2638 	events->interrupt.injected =
2639 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2640 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2641 	events->interrupt.soft = 0;
2642 	events->interrupt.shadow =
2643 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2644 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2645 
2646 	events->nmi.injected = vcpu->arch.nmi_injected;
2647 	events->nmi.pending = vcpu->arch.nmi_pending;
2648 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2649 	events->nmi.pad = 0;
2650 
2651 	events->sipi_vector = vcpu->arch.sipi_vector;
2652 
2653 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2654 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2655 			 | KVM_VCPUEVENT_VALID_SHADOW);
2656 	memset(&events->reserved, 0, sizeof(events->reserved));
2657 }
2658 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2659 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2660 					      struct kvm_vcpu_events *events)
2661 {
2662 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2663 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2664 			      | KVM_VCPUEVENT_VALID_SHADOW))
2665 		return -EINVAL;
2666 
2667 	vcpu->arch.exception.pending = events->exception.injected;
2668 	vcpu->arch.exception.nr = events->exception.nr;
2669 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2670 	vcpu->arch.exception.error_code = events->exception.error_code;
2671 
2672 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2673 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2674 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2675 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2676 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2677 						  events->interrupt.shadow);
2678 
2679 	vcpu->arch.nmi_injected = events->nmi.injected;
2680 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2681 		vcpu->arch.nmi_pending = events->nmi.pending;
2682 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2683 
2684 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2685 		vcpu->arch.sipi_vector = events->sipi_vector;
2686 
2687 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2688 
2689 	return 0;
2690 }
2691 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)2692 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2693 					     struct kvm_debugregs *dbgregs)
2694 {
2695 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2696 	dbgregs->dr6 = vcpu->arch.dr6;
2697 	dbgregs->dr7 = vcpu->arch.dr7;
2698 	dbgregs->flags = 0;
2699 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2700 }
2701 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)2702 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2703 					    struct kvm_debugregs *dbgregs)
2704 {
2705 	if (dbgregs->flags)
2706 		return -EINVAL;
2707 
2708 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2709 	vcpu->arch.dr6 = dbgregs->dr6;
2710 	vcpu->arch.dr7 = dbgregs->dr7;
2711 
2712 	return 0;
2713 }
2714 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)2715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2716 					 struct kvm_xsave *guest_xsave)
2717 {
2718 	if (cpu_has_xsave)
2719 		memcpy(guest_xsave->region,
2720 			&vcpu->arch.guest_fpu.state->xsave,
2721 			xstate_size);
2722 	else {
2723 		memcpy(guest_xsave->region,
2724 			&vcpu->arch.guest_fpu.state->fxsave,
2725 			sizeof(struct i387_fxsave_struct));
2726 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2727 			XSTATE_FPSSE;
2728 	}
2729 }
2730 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)2731 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2732 					struct kvm_xsave *guest_xsave)
2733 {
2734 	u64 xstate_bv =
2735 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2736 
2737 	if (cpu_has_xsave)
2738 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2739 			guest_xsave->region, xstate_size);
2740 	else {
2741 		if (xstate_bv & ~XSTATE_FPSSE)
2742 			return -EINVAL;
2743 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2744 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2745 	}
2746 	return 0;
2747 }
2748 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)2749 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2750 					struct kvm_xcrs *guest_xcrs)
2751 {
2752 	if (!cpu_has_xsave) {
2753 		guest_xcrs->nr_xcrs = 0;
2754 		return;
2755 	}
2756 
2757 	guest_xcrs->nr_xcrs = 1;
2758 	guest_xcrs->flags = 0;
2759 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2760 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2761 }
2762 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)2763 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2764 				       struct kvm_xcrs *guest_xcrs)
2765 {
2766 	int i, r = 0;
2767 
2768 	if (!cpu_has_xsave)
2769 		return -EINVAL;
2770 
2771 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2772 		return -EINVAL;
2773 
2774 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2775 		/* Only support XCR0 currently */
2776 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2777 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2778 				guest_xcrs->xcrs[0].value);
2779 			break;
2780 		}
2781 	if (r)
2782 		r = -EINVAL;
2783 	return r;
2784 }
2785 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2786 long kvm_arch_vcpu_ioctl(struct file *filp,
2787 			 unsigned int ioctl, unsigned long arg)
2788 {
2789 	struct kvm_vcpu *vcpu = filp->private_data;
2790 	void __user *argp = (void __user *)arg;
2791 	int r;
2792 	union {
2793 		struct kvm_lapic_state *lapic;
2794 		struct kvm_xsave *xsave;
2795 		struct kvm_xcrs *xcrs;
2796 		void *buffer;
2797 	} u;
2798 
2799 	u.buffer = NULL;
2800 	switch (ioctl) {
2801 	case KVM_GET_LAPIC: {
2802 		r = -EINVAL;
2803 		if (!vcpu->arch.apic)
2804 			goto out;
2805 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2806 
2807 		r = -ENOMEM;
2808 		if (!u.lapic)
2809 			goto out;
2810 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2811 		if (r)
2812 			goto out;
2813 		r = -EFAULT;
2814 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2815 			goto out;
2816 		r = 0;
2817 		break;
2818 	}
2819 	case KVM_SET_LAPIC: {
2820 		r = -EINVAL;
2821 		if (!vcpu->arch.apic)
2822 			goto out;
2823 		u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2824 		r = -ENOMEM;
2825 		if (!u.lapic)
2826 			goto out;
2827 		r = -EFAULT;
2828 		if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2829 			goto out;
2830 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2831 		if (r)
2832 			goto out;
2833 		r = 0;
2834 		break;
2835 	}
2836 	case KVM_INTERRUPT: {
2837 		struct kvm_interrupt irq;
2838 
2839 		r = -EFAULT;
2840 		if (copy_from_user(&irq, argp, sizeof irq))
2841 			goto out;
2842 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2843 		if (r)
2844 			goto out;
2845 		r = 0;
2846 		break;
2847 	}
2848 	case KVM_NMI: {
2849 		r = kvm_vcpu_ioctl_nmi(vcpu);
2850 		if (r)
2851 			goto out;
2852 		r = 0;
2853 		break;
2854 	}
2855 	case KVM_SET_CPUID: {
2856 		struct kvm_cpuid __user *cpuid_arg = argp;
2857 		struct kvm_cpuid cpuid;
2858 
2859 		r = -EFAULT;
2860 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2861 			goto out;
2862 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2863 		if (r)
2864 			goto out;
2865 		break;
2866 	}
2867 	case KVM_SET_CPUID2: {
2868 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2869 		struct kvm_cpuid2 cpuid;
2870 
2871 		r = -EFAULT;
2872 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2873 			goto out;
2874 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2875 					      cpuid_arg->entries);
2876 		if (r)
2877 			goto out;
2878 		break;
2879 	}
2880 	case KVM_GET_CPUID2: {
2881 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2882 		struct kvm_cpuid2 cpuid;
2883 
2884 		r = -EFAULT;
2885 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2886 			goto out;
2887 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2888 					      cpuid_arg->entries);
2889 		if (r)
2890 			goto out;
2891 		r = -EFAULT;
2892 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2893 			goto out;
2894 		r = 0;
2895 		break;
2896 	}
2897 	case KVM_GET_MSRS:
2898 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2899 		break;
2900 	case KVM_SET_MSRS:
2901 		r = msr_io(vcpu, argp, do_set_msr, 0);
2902 		break;
2903 	case KVM_TPR_ACCESS_REPORTING: {
2904 		struct kvm_tpr_access_ctl tac;
2905 
2906 		r = -EFAULT;
2907 		if (copy_from_user(&tac, argp, sizeof tac))
2908 			goto out;
2909 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2910 		if (r)
2911 			goto out;
2912 		r = -EFAULT;
2913 		if (copy_to_user(argp, &tac, sizeof tac))
2914 			goto out;
2915 		r = 0;
2916 		break;
2917 	};
2918 	case KVM_SET_VAPIC_ADDR: {
2919 		struct kvm_vapic_addr va;
2920 
2921 		r = -EINVAL;
2922 		if (!irqchip_in_kernel(vcpu->kvm))
2923 			goto out;
2924 		r = -EFAULT;
2925 		if (copy_from_user(&va, argp, sizeof va))
2926 			goto out;
2927 		r = 0;
2928 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2929 		break;
2930 	}
2931 	case KVM_X86_SETUP_MCE: {
2932 		u64 mcg_cap;
2933 
2934 		r = -EFAULT;
2935 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2936 			goto out;
2937 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2938 		break;
2939 	}
2940 	case KVM_X86_SET_MCE: {
2941 		struct kvm_x86_mce mce;
2942 
2943 		r = -EFAULT;
2944 		if (copy_from_user(&mce, argp, sizeof mce))
2945 			goto out;
2946 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2947 		break;
2948 	}
2949 	case KVM_GET_VCPU_EVENTS: {
2950 		struct kvm_vcpu_events events;
2951 
2952 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2953 
2954 		r = -EFAULT;
2955 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2956 			break;
2957 		r = 0;
2958 		break;
2959 	}
2960 	case KVM_SET_VCPU_EVENTS: {
2961 		struct kvm_vcpu_events events;
2962 
2963 		r = -EFAULT;
2964 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2965 			break;
2966 
2967 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2968 		break;
2969 	}
2970 	case KVM_GET_DEBUGREGS: {
2971 		struct kvm_debugregs dbgregs;
2972 
2973 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2974 
2975 		r = -EFAULT;
2976 		if (copy_to_user(argp, &dbgregs,
2977 				 sizeof(struct kvm_debugregs)))
2978 			break;
2979 		r = 0;
2980 		break;
2981 	}
2982 	case KVM_SET_DEBUGREGS: {
2983 		struct kvm_debugregs dbgregs;
2984 
2985 		r = -EFAULT;
2986 		if (copy_from_user(&dbgregs, argp,
2987 				   sizeof(struct kvm_debugregs)))
2988 			break;
2989 
2990 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2991 		break;
2992 	}
2993 	case KVM_GET_XSAVE: {
2994 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2995 		r = -ENOMEM;
2996 		if (!u.xsave)
2997 			break;
2998 
2999 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3000 
3001 		r = -EFAULT;
3002 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3003 			break;
3004 		r = 0;
3005 		break;
3006 	}
3007 	case KVM_SET_XSAVE: {
3008 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3009 		r = -ENOMEM;
3010 		if (!u.xsave)
3011 			break;
3012 
3013 		r = -EFAULT;
3014 		if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3015 			break;
3016 
3017 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3018 		break;
3019 	}
3020 	case KVM_GET_XCRS: {
3021 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3022 		r = -ENOMEM;
3023 		if (!u.xcrs)
3024 			break;
3025 
3026 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3027 
3028 		r = -EFAULT;
3029 		if (copy_to_user(argp, u.xcrs,
3030 				 sizeof(struct kvm_xcrs)))
3031 			break;
3032 		r = 0;
3033 		break;
3034 	}
3035 	case KVM_SET_XCRS: {
3036 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3037 		r = -ENOMEM;
3038 		if (!u.xcrs)
3039 			break;
3040 
3041 		r = -EFAULT;
3042 		if (copy_from_user(u.xcrs, argp,
3043 				   sizeof(struct kvm_xcrs)))
3044 			break;
3045 
3046 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3047 		break;
3048 	}
3049 	default:
3050 		r = -EINVAL;
3051 	}
3052 out:
3053 	kfree(u.buffer);
3054 	return r;
3055 }
3056 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3057 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3058 {
3059 	int ret;
3060 
3061 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3062 		return -1;
3063 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3064 	return ret;
3065 }
3066 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3067 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3068 					      u64 ident_addr)
3069 {
3070 	kvm->arch.ept_identity_map_addr = ident_addr;
3071 	return 0;
3072 }
3073 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3074 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3075 					  u32 kvm_nr_mmu_pages)
3076 {
3077 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3078 		return -EINVAL;
3079 
3080 	mutex_lock(&kvm->slots_lock);
3081 	spin_lock(&kvm->mmu_lock);
3082 
3083 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3084 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3085 
3086 	spin_unlock(&kvm->mmu_lock);
3087 	mutex_unlock(&kvm->slots_lock);
3088 	return 0;
3089 }
3090 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3091 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3092 {
3093 	return kvm->arch.n_max_mmu_pages;
3094 }
3095 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3096 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3097 {
3098 	int r;
3099 
3100 	r = 0;
3101 	switch (chip->chip_id) {
3102 	case KVM_IRQCHIP_PIC_MASTER:
3103 		memcpy(&chip->chip.pic,
3104 			&pic_irqchip(kvm)->pics[0],
3105 			sizeof(struct kvm_pic_state));
3106 		break;
3107 	case KVM_IRQCHIP_PIC_SLAVE:
3108 		memcpy(&chip->chip.pic,
3109 			&pic_irqchip(kvm)->pics[1],
3110 			sizeof(struct kvm_pic_state));
3111 		break;
3112 	case KVM_IRQCHIP_IOAPIC:
3113 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3114 		break;
3115 	default:
3116 		r = -EINVAL;
3117 		break;
3118 	}
3119 	return r;
3120 }
3121 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3122 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3123 {
3124 	int r;
3125 
3126 	r = 0;
3127 	switch (chip->chip_id) {
3128 	case KVM_IRQCHIP_PIC_MASTER:
3129 		spin_lock(&pic_irqchip(kvm)->lock);
3130 		memcpy(&pic_irqchip(kvm)->pics[0],
3131 			&chip->chip.pic,
3132 			sizeof(struct kvm_pic_state));
3133 		spin_unlock(&pic_irqchip(kvm)->lock);
3134 		break;
3135 	case KVM_IRQCHIP_PIC_SLAVE:
3136 		spin_lock(&pic_irqchip(kvm)->lock);
3137 		memcpy(&pic_irqchip(kvm)->pics[1],
3138 			&chip->chip.pic,
3139 			sizeof(struct kvm_pic_state));
3140 		spin_unlock(&pic_irqchip(kvm)->lock);
3141 		break;
3142 	case KVM_IRQCHIP_IOAPIC:
3143 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3144 		break;
3145 	default:
3146 		r = -EINVAL;
3147 		break;
3148 	}
3149 	kvm_pic_update_irq(pic_irqchip(kvm));
3150 	return r;
3151 }
3152 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3153 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3154 {
3155 	int r = 0;
3156 
3157 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3158 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3159 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3160 	return r;
3161 }
3162 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3163 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3164 {
3165 	int r = 0;
3166 
3167 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3168 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3169 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3170 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3171 	return r;
3172 }
3173 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3174 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3175 {
3176 	int r = 0;
3177 
3178 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3179 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3180 		sizeof(ps->channels));
3181 	ps->flags = kvm->arch.vpit->pit_state.flags;
3182 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3183 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3184 	return r;
3185 }
3186 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3187 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3188 {
3189 	int r = 0, start = 0;
3190 	u32 prev_legacy, cur_legacy;
3191 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3192 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3193 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3194 	if (!prev_legacy && cur_legacy)
3195 		start = 1;
3196 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3197 	       sizeof(kvm->arch.vpit->pit_state.channels));
3198 	kvm->arch.vpit->pit_state.flags = ps->flags;
3199 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3200 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3201 	return r;
3202 }
3203 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3204 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3205 				 struct kvm_reinject_control *control)
3206 {
3207 	if (!kvm->arch.vpit)
3208 		return -ENXIO;
3209 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3210 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3211 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3212 	return 0;
3213 }
3214 
3215 /*
3216  * Get (and clear) the dirty memory log for a memory slot.
3217  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3218 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3219 				      struct kvm_dirty_log *log)
3220 {
3221 	int r, i;
3222 	struct kvm_memory_slot *memslot;
3223 	unsigned long n;
3224 	unsigned long is_dirty = 0;
3225 
3226 	mutex_lock(&kvm->slots_lock);
3227 
3228 	r = -EINVAL;
3229 	if (log->slot >= KVM_MEMORY_SLOTS)
3230 		goto out;
3231 
3232 	memslot = &kvm->memslots->memslots[log->slot];
3233 	r = -ENOENT;
3234 	if (!memslot->dirty_bitmap)
3235 		goto out;
3236 
3237 	n = kvm_dirty_bitmap_bytes(memslot);
3238 
3239 	for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3240 		is_dirty = memslot->dirty_bitmap[i];
3241 
3242 	/* If nothing is dirty, don't bother messing with page tables. */
3243 	if (is_dirty) {
3244 		struct kvm_memslots *slots, *old_slots;
3245 		unsigned long *dirty_bitmap;
3246 
3247 		dirty_bitmap = memslot->dirty_bitmap_head;
3248 		if (memslot->dirty_bitmap == dirty_bitmap)
3249 			dirty_bitmap += n / sizeof(long);
3250 		memset(dirty_bitmap, 0, n);
3251 
3252 		r = -ENOMEM;
3253 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3254 		if (!slots)
3255 			goto out;
3256 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3257 		slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3258 		slots->generation++;
3259 
3260 		old_slots = kvm->memslots;
3261 		rcu_assign_pointer(kvm->memslots, slots);
3262 		synchronize_srcu_expedited(&kvm->srcu);
3263 		dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3264 		kfree(old_slots);
3265 
3266 		spin_lock(&kvm->mmu_lock);
3267 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
3268 		spin_unlock(&kvm->mmu_lock);
3269 
3270 		r = -EFAULT;
3271 		if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3272 			goto out;
3273 	} else {
3274 		r = -EFAULT;
3275 		if (clear_user(log->dirty_bitmap, n))
3276 			goto out;
3277 	}
3278 
3279 	r = 0;
3280 out:
3281 	mutex_unlock(&kvm->slots_lock);
3282 	return r;
3283 }
3284 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3285 long kvm_arch_vm_ioctl(struct file *filp,
3286 		       unsigned int ioctl, unsigned long arg)
3287 {
3288 	struct kvm *kvm = filp->private_data;
3289 	void __user *argp = (void __user *)arg;
3290 	int r = -ENOTTY;
3291 	/*
3292 	 * This union makes it completely explicit to gcc-3.x
3293 	 * that these two variables' stack usage should be
3294 	 * combined, not added together.
3295 	 */
3296 	union {
3297 		struct kvm_pit_state ps;
3298 		struct kvm_pit_state2 ps2;
3299 		struct kvm_pit_config pit_config;
3300 	} u;
3301 
3302 	switch (ioctl) {
3303 	case KVM_SET_TSS_ADDR:
3304 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3305 		if (r < 0)
3306 			goto out;
3307 		break;
3308 	case KVM_SET_IDENTITY_MAP_ADDR: {
3309 		u64 ident_addr;
3310 
3311 		r = -EFAULT;
3312 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3313 			goto out;
3314 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3315 		if (r < 0)
3316 			goto out;
3317 		break;
3318 	}
3319 	case KVM_SET_NR_MMU_PAGES:
3320 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3321 		if (r)
3322 			goto out;
3323 		break;
3324 	case KVM_GET_NR_MMU_PAGES:
3325 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3326 		break;
3327 	case KVM_CREATE_IRQCHIP: {
3328 		struct kvm_pic *vpic;
3329 
3330 		mutex_lock(&kvm->lock);
3331 		r = -EEXIST;
3332 		if (kvm->arch.vpic)
3333 			goto create_irqchip_unlock;
3334 		r = -ENOMEM;
3335 		vpic = kvm_create_pic(kvm);
3336 		if (vpic) {
3337 			r = kvm_ioapic_init(kvm);
3338 			if (r) {
3339 				mutex_lock(&kvm->slots_lock);
3340 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3341 							  &vpic->dev);
3342 				mutex_unlock(&kvm->slots_lock);
3343 				kfree(vpic);
3344 				goto create_irqchip_unlock;
3345 			}
3346 		} else
3347 			goto create_irqchip_unlock;
3348 		smp_wmb();
3349 		kvm->arch.vpic = vpic;
3350 		smp_wmb();
3351 		r = kvm_setup_default_irq_routing(kvm);
3352 		if (r) {
3353 			mutex_lock(&kvm->slots_lock);
3354 			mutex_lock(&kvm->irq_lock);
3355 			kvm_ioapic_destroy(kvm);
3356 			kvm_destroy_pic(kvm);
3357 			mutex_unlock(&kvm->irq_lock);
3358 			mutex_unlock(&kvm->slots_lock);
3359 		}
3360 	create_irqchip_unlock:
3361 		mutex_unlock(&kvm->lock);
3362 		break;
3363 	}
3364 	case KVM_CREATE_PIT:
3365 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3366 		goto create_pit;
3367 	case KVM_CREATE_PIT2:
3368 		r = -EFAULT;
3369 		if (copy_from_user(&u.pit_config, argp,
3370 				   sizeof(struct kvm_pit_config)))
3371 			goto out;
3372 	create_pit:
3373 		mutex_lock(&kvm->slots_lock);
3374 		r = -EEXIST;
3375 		if (kvm->arch.vpit)
3376 			goto create_pit_unlock;
3377 		r = -ENOMEM;
3378 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3379 		if (kvm->arch.vpit)
3380 			r = 0;
3381 	create_pit_unlock:
3382 		mutex_unlock(&kvm->slots_lock);
3383 		break;
3384 	case KVM_IRQ_LINE_STATUS:
3385 	case KVM_IRQ_LINE: {
3386 		struct kvm_irq_level irq_event;
3387 
3388 		r = -EFAULT;
3389 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
3390 			goto out;
3391 		r = -ENXIO;
3392 		if (irqchip_in_kernel(kvm)) {
3393 			__s32 status;
3394 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3395 					irq_event.irq, irq_event.level);
3396 			if (ioctl == KVM_IRQ_LINE_STATUS) {
3397 				r = -EFAULT;
3398 				irq_event.status = status;
3399 				if (copy_to_user(argp, &irq_event,
3400 							sizeof irq_event))
3401 					goto out;
3402 			}
3403 			r = 0;
3404 		}
3405 		break;
3406 	}
3407 	case KVM_GET_IRQCHIP: {
3408 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3409 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3410 
3411 		r = -ENOMEM;
3412 		if (!chip)
3413 			goto out;
3414 		r = -EFAULT;
3415 		if (copy_from_user(chip, argp, sizeof *chip))
3416 			goto get_irqchip_out;
3417 		r = -ENXIO;
3418 		if (!irqchip_in_kernel(kvm))
3419 			goto get_irqchip_out;
3420 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3421 		if (r)
3422 			goto get_irqchip_out;
3423 		r = -EFAULT;
3424 		if (copy_to_user(argp, chip, sizeof *chip))
3425 			goto get_irqchip_out;
3426 		r = 0;
3427 	get_irqchip_out:
3428 		kfree(chip);
3429 		if (r)
3430 			goto out;
3431 		break;
3432 	}
3433 	case KVM_SET_IRQCHIP: {
3434 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3435 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3436 
3437 		r = -ENOMEM;
3438 		if (!chip)
3439 			goto out;
3440 		r = -EFAULT;
3441 		if (copy_from_user(chip, argp, sizeof *chip))
3442 			goto set_irqchip_out;
3443 		r = -ENXIO;
3444 		if (!irqchip_in_kernel(kvm))
3445 			goto set_irqchip_out;
3446 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3447 		if (r)
3448 			goto set_irqchip_out;
3449 		r = 0;
3450 	set_irqchip_out:
3451 		kfree(chip);
3452 		if (r)
3453 			goto out;
3454 		break;
3455 	}
3456 	case KVM_GET_PIT: {
3457 		r = -EFAULT;
3458 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3459 			goto out;
3460 		r = -ENXIO;
3461 		if (!kvm->arch.vpit)
3462 			goto out;
3463 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3464 		if (r)
3465 			goto out;
3466 		r = -EFAULT;
3467 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3468 			goto out;
3469 		r = 0;
3470 		break;
3471 	}
3472 	case KVM_SET_PIT: {
3473 		r = -EFAULT;
3474 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3475 			goto out;
3476 		r = -ENXIO;
3477 		if (!kvm->arch.vpit)
3478 			goto out;
3479 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3480 		if (r)
3481 			goto out;
3482 		r = 0;
3483 		break;
3484 	}
3485 	case KVM_GET_PIT2: {
3486 		r = -ENXIO;
3487 		if (!kvm->arch.vpit)
3488 			goto out;
3489 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3490 		if (r)
3491 			goto out;
3492 		r = -EFAULT;
3493 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3494 			goto out;
3495 		r = 0;
3496 		break;
3497 	}
3498 	case KVM_SET_PIT2: {
3499 		r = -EFAULT;
3500 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3501 			goto out;
3502 		r = -ENXIO;
3503 		if (!kvm->arch.vpit)
3504 			goto out;
3505 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3506 		if (r)
3507 			goto out;
3508 		r = 0;
3509 		break;
3510 	}
3511 	case KVM_REINJECT_CONTROL: {
3512 		struct kvm_reinject_control control;
3513 		r =  -EFAULT;
3514 		if (copy_from_user(&control, argp, sizeof(control)))
3515 			goto out;
3516 		r = kvm_vm_ioctl_reinject(kvm, &control);
3517 		if (r)
3518 			goto out;
3519 		r = 0;
3520 		break;
3521 	}
3522 	case KVM_XEN_HVM_CONFIG: {
3523 		r = -EFAULT;
3524 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3525 				   sizeof(struct kvm_xen_hvm_config)))
3526 			goto out;
3527 		r = -EINVAL;
3528 		if (kvm->arch.xen_hvm_config.flags)
3529 			goto out;
3530 		r = 0;
3531 		break;
3532 	}
3533 	case KVM_SET_CLOCK: {
3534 		struct kvm_clock_data user_ns;
3535 		u64 now_ns;
3536 		s64 delta;
3537 
3538 		r = -EFAULT;
3539 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3540 			goto out;
3541 
3542 		r = -EINVAL;
3543 		if (user_ns.flags)
3544 			goto out;
3545 
3546 		r = 0;
3547 		local_irq_disable();
3548 		now_ns = get_kernel_ns();
3549 		delta = user_ns.clock - now_ns;
3550 		local_irq_enable();
3551 		kvm->arch.kvmclock_offset = delta;
3552 		break;
3553 	}
3554 	case KVM_GET_CLOCK: {
3555 		struct kvm_clock_data user_ns;
3556 		u64 now_ns;
3557 
3558 		local_irq_disable();
3559 		now_ns = get_kernel_ns();
3560 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3561 		local_irq_enable();
3562 		user_ns.flags = 0;
3563 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3564 
3565 		r = -EFAULT;
3566 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3567 			goto out;
3568 		r = 0;
3569 		break;
3570 	}
3571 
3572 	default:
3573 		;
3574 	}
3575 out:
3576 	return r;
3577 }
3578 
kvm_init_msr_list(void)3579 static void kvm_init_msr_list(void)
3580 {
3581 	u32 dummy[2];
3582 	unsigned i, j;
3583 
3584 	/* skip the first msrs in the list. KVM-specific */
3585 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3586 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3587 			continue;
3588 		if (j < i)
3589 			msrs_to_save[j] = msrs_to_save[i];
3590 		j++;
3591 	}
3592 	num_msrs_to_save = j;
3593 }
3594 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)3595 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3596 			   const void *v)
3597 {
3598 	if (vcpu->arch.apic &&
3599 	    !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3600 		return 0;
3601 
3602 	return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3603 }
3604 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)3605 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3606 {
3607 	if (vcpu->arch.apic &&
3608 	    !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3609 		return 0;
3610 
3611 	return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3612 }
3613 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3614 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3615 			struct kvm_segment *var, int seg)
3616 {
3617 	kvm_x86_ops->set_segment(vcpu, var, seg);
3618 }
3619 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3620 void kvm_get_segment(struct kvm_vcpu *vcpu,
3621 		     struct kvm_segment *var, int seg)
3622 {
3623 	kvm_x86_ops->get_segment(vcpu, var, seg);
3624 }
3625 
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access)3626 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3627 {
3628 	return gpa;
3629 }
3630 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access)3631 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3632 {
3633 	gpa_t t_gpa;
3634 	struct x86_exception exception;
3635 
3636 	BUG_ON(!mmu_is_nested(vcpu));
3637 
3638 	/* NPT walks are always user-walks */
3639 	access |= PFERR_USER_MASK;
3640 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3641 
3642 	return t_gpa;
3643 }
3644 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3645 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3646 			      struct x86_exception *exception)
3647 {
3648 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3649 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3650 }
3651 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3652  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3653 				struct x86_exception *exception)
3654 {
3655 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3656 	access |= PFERR_FETCH_MASK;
3657 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3658 }
3659 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3660 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3661 			       struct x86_exception *exception)
3662 {
3663 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3664 	access |= PFERR_WRITE_MASK;
3665 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3666 }
3667 
3668 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3669 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3670 				struct x86_exception *exception)
3671 {
3672 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3673 }
3674 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)3675 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3676 				      struct kvm_vcpu *vcpu, u32 access,
3677 				      struct x86_exception *exception)
3678 {
3679 	void *data = val;
3680 	int r = X86EMUL_CONTINUE;
3681 
3682 	while (bytes) {
3683 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3684 							    exception);
3685 		unsigned offset = addr & (PAGE_SIZE-1);
3686 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3687 		int ret;
3688 
3689 		if (gpa == UNMAPPED_GVA)
3690 			return X86EMUL_PROPAGATE_FAULT;
3691 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3692 		if (ret < 0) {
3693 			r = X86EMUL_IO_NEEDED;
3694 			goto out;
3695 		}
3696 
3697 		bytes -= toread;
3698 		data += toread;
3699 		addr += toread;
3700 	}
3701 out:
3702 	return r;
3703 }
3704 
3705 /* used for instruction fetching */
kvm_fetch_guest_virt(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,struct x86_exception * exception)3706 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3707 				struct kvm_vcpu *vcpu,
3708 				struct x86_exception *exception)
3709 {
3710 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3711 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3712 					  access | PFERR_FETCH_MASK,
3713 					  exception);
3714 }
3715 
kvm_read_guest_virt(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,struct x86_exception * exception)3716 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3717 			       struct kvm_vcpu *vcpu,
3718 			       struct x86_exception *exception)
3719 {
3720 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3721 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3722 					  exception);
3723 }
3724 
kvm_read_guest_virt_system(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,struct x86_exception * exception)3725 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3726 				      struct kvm_vcpu *vcpu,
3727 				      struct x86_exception *exception)
3728 {
3729 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3730 }
3731 
kvm_write_guest_virt_system(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,struct x86_exception * exception)3732 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3733 				       unsigned int bytes,
3734 				       struct kvm_vcpu *vcpu,
3735 				       struct x86_exception *exception)
3736 {
3737 	void *data = val;
3738 	int r = X86EMUL_CONTINUE;
3739 
3740 	while (bytes) {
3741 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3742 							     PFERR_WRITE_MASK,
3743 							     exception);
3744 		unsigned offset = addr & (PAGE_SIZE-1);
3745 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3746 		int ret;
3747 
3748 		if (gpa == UNMAPPED_GVA)
3749 			return X86EMUL_PROPAGATE_FAULT;
3750 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3751 		if (ret < 0) {
3752 			r = X86EMUL_IO_NEEDED;
3753 			goto out;
3754 		}
3755 
3756 		bytes -= towrite;
3757 		data += towrite;
3758 		addr += towrite;
3759 	}
3760 out:
3761 	return r;
3762 }
3763 
emulator_read_emulated(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu)3764 static int emulator_read_emulated(unsigned long addr,
3765 				  void *val,
3766 				  unsigned int bytes,
3767 				  struct x86_exception *exception,
3768 				  struct kvm_vcpu *vcpu)
3769 {
3770 	gpa_t                 gpa;
3771 
3772 	if (vcpu->mmio_read_completed) {
3773 		memcpy(val, vcpu->mmio_data, bytes);
3774 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3775 			       vcpu->mmio_phys_addr, *(u64 *)val);
3776 		vcpu->mmio_read_completed = 0;
3777 		return X86EMUL_CONTINUE;
3778 	}
3779 
3780 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3781 
3782 	if (gpa == UNMAPPED_GVA)
3783 		return X86EMUL_PROPAGATE_FAULT;
3784 
3785 	/* For APIC access vmexit */
3786 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3787 		goto mmio;
3788 
3789 	if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3790 	    == X86EMUL_CONTINUE)
3791 		return X86EMUL_CONTINUE;
3792 
3793 mmio:
3794 	/*
3795 	 * Is this MMIO handled locally?
3796 	 */
3797 	if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3798 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3799 		return X86EMUL_CONTINUE;
3800 	}
3801 
3802 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3803 
3804 	vcpu->mmio_needed = 1;
3805 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3806 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3807 	vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3808 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3809 
3810 	return X86EMUL_IO_NEEDED;
3811 }
3812 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)3813 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3814 			const void *val, int bytes)
3815 {
3816 	int ret;
3817 
3818 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3819 	if (ret < 0)
3820 		return 0;
3821 	kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3822 	return 1;
3823 }
3824 
emulator_write_emulated_onepage(unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu)3825 static int emulator_write_emulated_onepage(unsigned long addr,
3826 					   const void *val,
3827 					   unsigned int bytes,
3828 					   struct x86_exception *exception,
3829 					   struct kvm_vcpu *vcpu)
3830 {
3831 	gpa_t                 gpa;
3832 
3833 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3834 
3835 	if (gpa == UNMAPPED_GVA)
3836 		return X86EMUL_PROPAGATE_FAULT;
3837 
3838 	/* For APIC access vmexit */
3839 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3840 		goto mmio;
3841 
3842 	if (emulator_write_phys(vcpu, gpa, val, bytes))
3843 		return X86EMUL_CONTINUE;
3844 
3845 mmio:
3846 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3847 	/*
3848 	 * Is this MMIO handled locally?
3849 	 */
3850 	if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3851 		return X86EMUL_CONTINUE;
3852 
3853 	vcpu->mmio_needed = 1;
3854 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3855 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3856 	vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3857 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3858 	memcpy(vcpu->run->mmio.data, val, bytes);
3859 
3860 	return X86EMUL_CONTINUE;
3861 }
3862 
emulator_write_emulated(unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu)3863 int emulator_write_emulated(unsigned long addr,
3864 			    const void *val,
3865 			    unsigned int bytes,
3866 			    struct x86_exception *exception,
3867 			    struct kvm_vcpu *vcpu)
3868 {
3869 	/* Crossing a page boundary? */
3870 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3871 		int rc, now;
3872 
3873 		now = -addr & ~PAGE_MASK;
3874 		rc = emulator_write_emulated_onepage(addr, val, now, exception,
3875 						     vcpu);
3876 		if (rc != X86EMUL_CONTINUE)
3877 			return rc;
3878 		addr += now;
3879 		val += now;
3880 		bytes -= now;
3881 	}
3882 	return emulator_write_emulated_onepage(addr, val, bytes, exception,
3883 					       vcpu);
3884 }
3885 
3886 #define CMPXCHG_TYPE(t, ptr, old, new) \
3887 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3888 
3889 #ifdef CONFIG_X86_64
3890 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3891 #else
3892 #  define CMPXCHG64(ptr, old, new) \
3893 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3894 #endif
3895 
emulator_cmpxchg_emulated(unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu)3896 static int emulator_cmpxchg_emulated(unsigned long addr,
3897 				     const void *old,
3898 				     const void *new,
3899 				     unsigned int bytes,
3900 				     struct x86_exception *exception,
3901 				     struct kvm_vcpu *vcpu)
3902 {
3903 	gpa_t gpa;
3904 	struct page *page;
3905 	char *kaddr;
3906 	bool exchanged;
3907 
3908 	/* guests cmpxchg8b have to be emulated atomically */
3909 	if (bytes > 8 || (bytes & (bytes - 1)))
3910 		goto emul_write;
3911 
3912 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3913 
3914 	if (gpa == UNMAPPED_GVA ||
3915 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3916 		goto emul_write;
3917 
3918 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3919 		goto emul_write;
3920 
3921 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3922 	if (is_error_page(page)) {
3923 		kvm_release_page_clean(page);
3924 		goto emul_write;
3925 	}
3926 
3927 	kaddr = kmap_atomic(page, KM_USER0);
3928 	kaddr += offset_in_page(gpa);
3929 	switch (bytes) {
3930 	case 1:
3931 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3932 		break;
3933 	case 2:
3934 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3935 		break;
3936 	case 4:
3937 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3938 		break;
3939 	case 8:
3940 		exchanged = CMPXCHG64(kaddr, old, new);
3941 		break;
3942 	default:
3943 		BUG();
3944 	}
3945 	kunmap_atomic(kaddr, KM_USER0);
3946 	kvm_release_page_dirty(page);
3947 
3948 	if (!exchanged)
3949 		return X86EMUL_CMPXCHG_FAILED;
3950 
3951 	kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3952 
3953 	return X86EMUL_CONTINUE;
3954 
3955 emul_write:
3956 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3957 
3958 	return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3959 }
3960 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)3961 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3962 {
3963 	/* TODO: String I/O for in kernel device */
3964 	int r;
3965 
3966 	if (vcpu->arch.pio.in)
3967 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3968 				    vcpu->arch.pio.size, pd);
3969 	else
3970 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3971 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
3972 				     pd);
3973 	return r;
3974 }
3975 
3976 
emulator_pio_in_emulated(int size,unsigned short port,void * val,unsigned int count,struct kvm_vcpu * vcpu)3977 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3978 			     unsigned int count, struct kvm_vcpu *vcpu)
3979 {
3980 	if (vcpu->arch.pio.count)
3981 		goto data_avail;
3982 
3983 	trace_kvm_pio(0, port, size, count);
3984 
3985 	vcpu->arch.pio.port = port;
3986 	vcpu->arch.pio.in = 1;
3987 	vcpu->arch.pio.count  = count;
3988 	vcpu->arch.pio.size = size;
3989 
3990 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3991 	data_avail:
3992 		memcpy(val, vcpu->arch.pio_data, size * count);
3993 		vcpu->arch.pio.count = 0;
3994 		return 1;
3995 	}
3996 
3997 	vcpu->run->exit_reason = KVM_EXIT_IO;
3998 	vcpu->run->io.direction = KVM_EXIT_IO_IN;
3999 	vcpu->run->io.size = size;
4000 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4001 	vcpu->run->io.count = count;
4002 	vcpu->run->io.port = port;
4003 
4004 	return 0;
4005 }
4006 
emulator_pio_out_emulated(int size,unsigned short port,const void * val,unsigned int count,struct kvm_vcpu * vcpu)4007 static int emulator_pio_out_emulated(int size, unsigned short port,
4008 			      const void *val, unsigned int count,
4009 			      struct kvm_vcpu *vcpu)
4010 {
4011 	trace_kvm_pio(1, port, size, count);
4012 
4013 	vcpu->arch.pio.port = port;
4014 	vcpu->arch.pio.in = 0;
4015 	vcpu->arch.pio.count = count;
4016 	vcpu->arch.pio.size = size;
4017 
4018 	memcpy(vcpu->arch.pio_data, val, size * count);
4019 
4020 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4021 		vcpu->arch.pio.count = 0;
4022 		return 1;
4023 	}
4024 
4025 	vcpu->run->exit_reason = KVM_EXIT_IO;
4026 	vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4027 	vcpu->run->io.size = size;
4028 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4029 	vcpu->run->io.count = count;
4030 	vcpu->run->io.port = port;
4031 
4032 	return 0;
4033 }
4034 
get_segment_base(struct kvm_vcpu * vcpu,int seg)4035 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4036 {
4037 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4038 }
4039 
emulate_invlpg(struct kvm_vcpu * vcpu,gva_t address)4040 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4041 {
4042 	kvm_mmu_invlpg(vcpu, address);
4043 	return X86EMUL_CONTINUE;
4044 }
4045 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4046 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4047 {
4048 	if (!need_emulate_wbinvd(vcpu))
4049 		return X86EMUL_CONTINUE;
4050 
4051 	if (kvm_x86_ops->has_wbinvd_exit()) {
4052 		int cpu = get_cpu();
4053 
4054 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4055 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4056 				wbinvd_ipi, NULL, 1);
4057 		put_cpu();
4058 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4059 	} else
4060 		wbinvd();
4061 	return X86EMUL_CONTINUE;
4062 }
4063 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4064 
emulate_clts(struct kvm_vcpu * vcpu)4065 int emulate_clts(struct kvm_vcpu *vcpu)
4066 {
4067 	kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4068 	kvm_x86_ops->fpu_activate(vcpu);
4069 	return X86EMUL_CONTINUE;
4070 }
4071 
emulator_get_dr(int dr,unsigned long * dest,struct kvm_vcpu * vcpu)4072 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4073 {
4074 	return _kvm_get_dr(vcpu, dr, dest);
4075 }
4076 
emulator_set_dr(int dr,unsigned long value,struct kvm_vcpu * vcpu)4077 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4078 {
4079 
4080 	return __kvm_set_dr(vcpu, dr, value);
4081 }
4082 
mk_cr_64(u64 curr_cr,u32 new_val)4083 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4084 {
4085 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4086 }
4087 
emulator_get_cr(int cr,struct kvm_vcpu * vcpu)4088 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4089 {
4090 	unsigned long value;
4091 
4092 	switch (cr) {
4093 	case 0:
4094 		value = kvm_read_cr0(vcpu);
4095 		break;
4096 	case 2:
4097 		value = vcpu->arch.cr2;
4098 		break;
4099 	case 3:
4100 		value = kvm_read_cr3(vcpu);
4101 		break;
4102 	case 4:
4103 		value = kvm_read_cr4(vcpu);
4104 		break;
4105 	case 8:
4106 		value = kvm_get_cr8(vcpu);
4107 		break;
4108 	default:
4109 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4110 		return 0;
4111 	}
4112 
4113 	return value;
4114 }
4115 
emulator_set_cr(int cr,unsigned long val,struct kvm_vcpu * vcpu)4116 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4117 {
4118 	int res = 0;
4119 
4120 	switch (cr) {
4121 	case 0:
4122 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4123 		break;
4124 	case 2:
4125 		vcpu->arch.cr2 = val;
4126 		break;
4127 	case 3:
4128 		res = kvm_set_cr3(vcpu, val);
4129 		break;
4130 	case 4:
4131 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4132 		break;
4133 	case 8:
4134 		res = kvm_set_cr8(vcpu, val);
4135 		break;
4136 	default:
4137 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4138 		res = -1;
4139 	}
4140 
4141 	return res;
4142 }
4143 
emulator_get_cpl(struct kvm_vcpu * vcpu)4144 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4145 {
4146 	return kvm_x86_ops->get_cpl(vcpu);
4147 }
4148 
emulator_get_gdt(struct desc_ptr * dt,struct kvm_vcpu * vcpu)4149 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4150 {
4151 	kvm_x86_ops->get_gdt(vcpu, dt);
4152 }
4153 
emulator_get_idt(struct desc_ptr * dt,struct kvm_vcpu * vcpu)4154 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4155 {
4156 	kvm_x86_ops->get_idt(vcpu, dt);
4157 }
4158 
emulator_get_cached_segment_base(int seg,struct kvm_vcpu * vcpu)4159 static unsigned long emulator_get_cached_segment_base(int seg,
4160 						      struct kvm_vcpu *vcpu)
4161 {
4162 	return get_segment_base(vcpu, seg);
4163 }
4164 
emulator_get_cached_descriptor(struct desc_struct * desc,u32 * base3,int seg,struct kvm_vcpu * vcpu)4165 static bool emulator_get_cached_descriptor(struct desc_struct *desc, u32 *base3,
4166 					   int seg, struct kvm_vcpu *vcpu)
4167 {
4168 	struct kvm_segment var;
4169 
4170 	kvm_get_segment(vcpu, &var, seg);
4171 
4172 	if (var.unusable)
4173 		return false;
4174 
4175 	if (var.g)
4176 		var.limit >>= 12;
4177 	set_desc_limit(desc, var.limit);
4178 	set_desc_base(desc, (unsigned long)var.base);
4179 #ifdef CONFIG_X86_64
4180 	if (base3)
4181 		*base3 = var.base >> 32;
4182 #endif
4183 	desc->type = var.type;
4184 	desc->s = var.s;
4185 	desc->dpl = var.dpl;
4186 	desc->p = var.present;
4187 	desc->avl = var.avl;
4188 	desc->l = var.l;
4189 	desc->d = var.db;
4190 	desc->g = var.g;
4191 
4192 	return true;
4193 }
4194 
emulator_set_cached_descriptor(struct desc_struct * desc,u32 base3,int seg,struct kvm_vcpu * vcpu)4195 static void emulator_set_cached_descriptor(struct desc_struct *desc, u32 base3,
4196 					   int seg, struct kvm_vcpu *vcpu)
4197 {
4198 	struct kvm_segment var;
4199 
4200 	/* needed to preserve selector */
4201 	kvm_get_segment(vcpu, &var, seg);
4202 
4203 	var.base = get_desc_base(desc);
4204 #ifdef CONFIG_X86_64
4205 	var.base |= ((u64)base3) << 32;
4206 #endif
4207 	var.limit = get_desc_limit(desc);
4208 	if (desc->g)
4209 		var.limit = (var.limit << 12) | 0xfff;
4210 	var.type = desc->type;
4211 	var.present = desc->p;
4212 	var.dpl = desc->dpl;
4213 	var.db = desc->d;
4214 	var.s = desc->s;
4215 	var.l = desc->l;
4216 	var.g = desc->g;
4217 	var.avl = desc->avl;
4218 	var.present = desc->p;
4219 	var.unusable = !var.present;
4220 	var.padding = 0;
4221 
4222 	kvm_set_segment(vcpu, &var, seg);
4223 	return;
4224 }
4225 
emulator_get_segment_selector(int seg,struct kvm_vcpu * vcpu)4226 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4227 {
4228 	struct kvm_segment kvm_seg;
4229 
4230 	kvm_get_segment(vcpu, &kvm_seg, seg);
4231 	return kvm_seg.selector;
4232 }
4233 
emulator_set_segment_selector(u16 sel,int seg,struct kvm_vcpu * vcpu)4234 static void emulator_set_segment_selector(u16 sel, int seg,
4235 					  struct kvm_vcpu *vcpu)
4236 {
4237 	struct kvm_segment kvm_seg;
4238 
4239 	kvm_get_segment(vcpu, &kvm_seg, seg);
4240 	kvm_seg.selector = sel;
4241 	kvm_set_segment(vcpu, &kvm_seg, seg);
4242 }
4243 
4244 static struct x86_emulate_ops emulate_ops = {
4245 	.read_std            = kvm_read_guest_virt_system,
4246 	.write_std           = kvm_write_guest_virt_system,
4247 	.fetch               = kvm_fetch_guest_virt,
4248 	.read_emulated       = emulator_read_emulated,
4249 	.write_emulated      = emulator_write_emulated,
4250 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4251 	.pio_in_emulated     = emulator_pio_in_emulated,
4252 	.pio_out_emulated    = emulator_pio_out_emulated,
4253 	.get_cached_descriptor = emulator_get_cached_descriptor,
4254 	.set_cached_descriptor = emulator_set_cached_descriptor,
4255 	.get_segment_selector = emulator_get_segment_selector,
4256 	.set_segment_selector = emulator_set_segment_selector,
4257 	.get_cached_segment_base = emulator_get_cached_segment_base,
4258 	.get_gdt             = emulator_get_gdt,
4259 	.get_idt	     = emulator_get_idt,
4260 	.get_cr              = emulator_get_cr,
4261 	.set_cr              = emulator_set_cr,
4262 	.cpl                 = emulator_get_cpl,
4263 	.get_dr              = emulator_get_dr,
4264 	.set_dr              = emulator_set_dr,
4265 	.set_msr             = kvm_set_msr,
4266 	.get_msr             = kvm_get_msr,
4267 };
4268 
cache_all_regs(struct kvm_vcpu * vcpu)4269 static void cache_all_regs(struct kvm_vcpu *vcpu)
4270 {
4271 	kvm_register_read(vcpu, VCPU_REGS_RAX);
4272 	kvm_register_read(vcpu, VCPU_REGS_RSP);
4273 	kvm_register_read(vcpu, VCPU_REGS_RIP);
4274 	vcpu->arch.regs_dirty = ~0;
4275 }
4276 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)4277 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4278 {
4279 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4280 	/*
4281 	 * an sti; sti; sequence only disable interrupts for the first
4282 	 * instruction. So, if the last instruction, be it emulated or
4283 	 * not, left the system with the INT_STI flag enabled, it
4284 	 * means that the last instruction is an sti. We should not
4285 	 * leave the flag on in this case. The same goes for mov ss
4286 	 */
4287 	if (!(int_shadow & mask))
4288 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4289 }
4290 
inject_emulated_exception(struct kvm_vcpu * vcpu)4291 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4292 {
4293 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4294 	if (ctxt->exception.vector == PF_VECTOR)
4295 		kvm_propagate_fault(vcpu, &ctxt->exception);
4296 	else if (ctxt->exception.error_code_valid)
4297 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4298 				      ctxt->exception.error_code);
4299 	else
4300 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4301 }
4302 
init_emulate_ctxt(struct kvm_vcpu * vcpu)4303 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4304 {
4305 	struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4306 	int cs_db, cs_l;
4307 
4308 	cache_all_regs(vcpu);
4309 
4310 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4311 
4312 	vcpu->arch.emulate_ctxt.vcpu = vcpu;
4313 	vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4314 	vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4315 	vcpu->arch.emulate_ctxt.mode =
4316 		(!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4317 		(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4318 		? X86EMUL_MODE_VM86 : cs_l
4319 		? X86EMUL_MODE_PROT64 :	cs_db
4320 		? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4321 	memset(c, 0, sizeof(struct decode_cache));
4322 	memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4323 }
4324 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq)4325 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4326 {
4327 	struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4328 	int ret;
4329 
4330 	init_emulate_ctxt(vcpu);
4331 
4332 	vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4333 	vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4334 	vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4335 	ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4336 
4337 	if (ret != X86EMUL_CONTINUE)
4338 		return EMULATE_FAIL;
4339 
4340 	vcpu->arch.emulate_ctxt.eip = c->eip;
4341 	memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4342 	kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4343 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4344 
4345 	if (irq == NMI_VECTOR)
4346 		vcpu->arch.nmi_pending = false;
4347 	else
4348 		vcpu->arch.interrupt.pending = false;
4349 
4350 	return EMULATE_DONE;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4353 
handle_emulation_failure(struct kvm_vcpu * vcpu)4354 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4355 {
4356 	int r = EMULATE_DONE;
4357 
4358 	++vcpu->stat.insn_emulation_fail;
4359 	trace_kvm_emulate_insn_failed(vcpu);
4360 	if (!is_guest_mode(vcpu)) {
4361 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4362 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4363 		vcpu->run->internal.ndata = 0;
4364 		r = EMULATE_FAIL;
4365 	}
4366 	kvm_queue_exception(vcpu, UD_VECTOR);
4367 
4368 	return r;
4369 }
4370 
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t gva)4371 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4372 {
4373 	gpa_t gpa;
4374 
4375 	if (tdp_enabled)
4376 		return false;
4377 
4378 	/*
4379 	 * if emulation was due to access to shadowed page table
4380 	 * and it failed try to unshadow page and re-entetr the
4381 	 * guest to let CPU execute the instruction.
4382 	 */
4383 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4384 		return true;
4385 
4386 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4387 
4388 	if (gpa == UNMAPPED_GVA)
4389 		return true; /* let cpu generate fault */
4390 
4391 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4392 		return true;
4393 
4394 	return false;
4395 }
4396 
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)4397 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4398 			    unsigned long cr2,
4399 			    int emulation_type,
4400 			    void *insn,
4401 			    int insn_len)
4402 {
4403 	int r;
4404 	struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4405 
4406 	kvm_clear_exception_queue(vcpu);
4407 	vcpu->arch.mmio_fault_cr2 = cr2;
4408 	/*
4409 	 * TODO: fix emulate.c to use guest_read/write_register
4410 	 * instead of direct ->regs accesses, can save hundred cycles
4411 	 * on Intel for instructions that don't read/change RSP, for
4412 	 * for example.
4413 	 */
4414 	cache_all_regs(vcpu);
4415 
4416 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4417 		init_emulate_ctxt(vcpu);
4418 		vcpu->arch.emulate_ctxt.interruptibility = 0;
4419 		vcpu->arch.emulate_ctxt.have_exception = false;
4420 		vcpu->arch.emulate_ctxt.perm_ok = false;
4421 
4422 		vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4423 			= emulation_type & EMULTYPE_TRAP_UD;
4424 
4425 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4426 
4427 		trace_kvm_emulate_insn_start(vcpu);
4428 		++vcpu->stat.insn_emulation;
4429 		if (r)  {
4430 			if (emulation_type & EMULTYPE_TRAP_UD)
4431 				return EMULATE_FAIL;
4432 			if (reexecute_instruction(vcpu, cr2))
4433 				return EMULATE_DONE;
4434 			if (emulation_type & EMULTYPE_SKIP)
4435 				return EMULATE_FAIL;
4436 			return handle_emulation_failure(vcpu);
4437 		}
4438 	}
4439 
4440 	if (emulation_type & EMULTYPE_SKIP) {
4441 		kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4442 		return EMULATE_DONE;
4443 	}
4444 
4445 	/* this is needed for vmware backdor interface to work since it
4446 	   changes registers values  during IO operation */
4447 	memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4448 
4449 restart:
4450 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4451 
4452 	if (r == EMULATION_FAILED) {
4453 		if (reexecute_instruction(vcpu, cr2))
4454 			return EMULATE_DONE;
4455 
4456 		return handle_emulation_failure(vcpu);
4457 	}
4458 
4459 	if (vcpu->arch.emulate_ctxt.have_exception) {
4460 		inject_emulated_exception(vcpu);
4461 		r = EMULATE_DONE;
4462 	} else if (vcpu->arch.pio.count) {
4463 		if (!vcpu->arch.pio.in)
4464 			vcpu->arch.pio.count = 0;
4465 		r = EMULATE_DO_MMIO;
4466 	} else if (vcpu->mmio_needed) {
4467 		if (vcpu->mmio_is_write)
4468 			vcpu->mmio_needed = 0;
4469 		r = EMULATE_DO_MMIO;
4470 	} else if (r == EMULATION_RESTART)
4471 		goto restart;
4472 	else
4473 		r = EMULATE_DONE;
4474 
4475 	toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4476 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4477 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4478 	memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4479 	kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4480 
4481 	return r;
4482 }
4483 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4484 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)4485 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4486 {
4487 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4488 	int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4489 	/* do not return to emulator after return from userspace */
4490 	vcpu->arch.pio.count = 0;
4491 	return ret;
4492 }
4493 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4494 
tsc_bad(void * info)4495 static void tsc_bad(void *info)
4496 {
4497 	__this_cpu_write(cpu_tsc_khz, 0);
4498 }
4499 
tsc_khz_changed(void * data)4500 static void tsc_khz_changed(void *data)
4501 {
4502 	struct cpufreq_freqs *freq = data;
4503 	unsigned long khz = 0;
4504 
4505 	if (data)
4506 		khz = freq->new;
4507 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4508 		khz = cpufreq_quick_get(raw_smp_processor_id());
4509 	if (!khz)
4510 		khz = tsc_khz;
4511 	__this_cpu_write(cpu_tsc_khz, khz);
4512 }
4513 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)4514 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4515 				     void *data)
4516 {
4517 	struct cpufreq_freqs *freq = data;
4518 	struct kvm *kvm;
4519 	struct kvm_vcpu *vcpu;
4520 	int i, send_ipi = 0;
4521 
4522 	/*
4523 	 * We allow guests to temporarily run on slowing clocks,
4524 	 * provided we notify them after, or to run on accelerating
4525 	 * clocks, provided we notify them before.  Thus time never
4526 	 * goes backwards.
4527 	 *
4528 	 * However, we have a problem.  We can't atomically update
4529 	 * the frequency of a given CPU from this function; it is
4530 	 * merely a notifier, which can be called from any CPU.
4531 	 * Changing the TSC frequency at arbitrary points in time
4532 	 * requires a recomputation of local variables related to
4533 	 * the TSC for each VCPU.  We must flag these local variables
4534 	 * to be updated and be sure the update takes place with the
4535 	 * new frequency before any guests proceed.
4536 	 *
4537 	 * Unfortunately, the combination of hotplug CPU and frequency
4538 	 * change creates an intractable locking scenario; the order
4539 	 * of when these callouts happen is undefined with respect to
4540 	 * CPU hotplug, and they can race with each other.  As such,
4541 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4542 	 * undefined; you can actually have a CPU frequency change take
4543 	 * place in between the computation of X and the setting of the
4544 	 * variable.  To protect against this problem, all updates of
4545 	 * the per_cpu tsc_khz variable are done in an interrupt
4546 	 * protected IPI, and all callers wishing to update the value
4547 	 * must wait for a synchronous IPI to complete (which is trivial
4548 	 * if the caller is on the CPU already).  This establishes the
4549 	 * necessary total order on variable updates.
4550 	 *
4551 	 * Note that because a guest time update may take place
4552 	 * anytime after the setting of the VCPU's request bit, the
4553 	 * correct TSC value must be set before the request.  However,
4554 	 * to ensure the update actually makes it to any guest which
4555 	 * starts running in hardware virtualization between the set
4556 	 * and the acquisition of the spinlock, we must also ping the
4557 	 * CPU after setting the request bit.
4558 	 *
4559 	 */
4560 
4561 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4562 		return 0;
4563 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4564 		return 0;
4565 
4566 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4567 
4568 	raw_spin_lock(&kvm_lock);
4569 	list_for_each_entry(kvm, &vm_list, vm_list) {
4570 		kvm_for_each_vcpu(i, vcpu, kvm) {
4571 			if (vcpu->cpu != freq->cpu)
4572 				continue;
4573 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4574 			if (vcpu->cpu != smp_processor_id())
4575 				send_ipi = 1;
4576 		}
4577 	}
4578 	raw_spin_unlock(&kvm_lock);
4579 
4580 	if (freq->old < freq->new && send_ipi) {
4581 		/*
4582 		 * We upscale the frequency.  Must make the guest
4583 		 * doesn't see old kvmclock values while running with
4584 		 * the new frequency, otherwise we risk the guest sees
4585 		 * time go backwards.
4586 		 *
4587 		 * In case we update the frequency for another cpu
4588 		 * (which might be in guest context) send an interrupt
4589 		 * to kick the cpu out of guest context.  Next time
4590 		 * guest context is entered kvmclock will be updated,
4591 		 * so the guest will not see stale values.
4592 		 */
4593 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4594 	}
4595 	return 0;
4596 }
4597 
4598 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4599 	.notifier_call  = kvmclock_cpufreq_notifier
4600 };
4601 
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)4602 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4603 					unsigned long action, void *hcpu)
4604 {
4605 	unsigned int cpu = (unsigned long)hcpu;
4606 
4607 	switch (action) {
4608 		case CPU_ONLINE:
4609 		case CPU_DOWN_FAILED:
4610 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4611 			break;
4612 		case CPU_DOWN_PREPARE:
4613 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
4614 			break;
4615 	}
4616 	return NOTIFY_OK;
4617 }
4618 
4619 static struct notifier_block kvmclock_cpu_notifier_block = {
4620 	.notifier_call  = kvmclock_cpu_notifier,
4621 	.priority = -INT_MAX
4622 };
4623 
kvm_timer_init(void)4624 static void kvm_timer_init(void)
4625 {
4626 	int cpu;
4627 
4628 	max_tsc_khz = tsc_khz;
4629 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4630 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4631 #ifdef CONFIG_CPU_FREQ
4632 		struct cpufreq_policy policy;
4633 		memset(&policy, 0, sizeof(policy));
4634 		cpu = get_cpu();
4635 		cpufreq_get_policy(&policy, cpu);
4636 		if (policy.cpuinfo.max_freq)
4637 			max_tsc_khz = policy.cpuinfo.max_freq;
4638 		put_cpu();
4639 #endif
4640 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4641 					  CPUFREQ_TRANSITION_NOTIFIER);
4642 	}
4643 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4644 	for_each_online_cpu(cpu)
4645 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4646 }
4647 
4648 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4649 
kvm_is_in_guest(void)4650 static int kvm_is_in_guest(void)
4651 {
4652 	return percpu_read(current_vcpu) != NULL;
4653 }
4654 
kvm_is_user_mode(void)4655 static int kvm_is_user_mode(void)
4656 {
4657 	int user_mode = 3;
4658 
4659 	if (percpu_read(current_vcpu))
4660 		user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4661 
4662 	return user_mode != 0;
4663 }
4664 
kvm_get_guest_ip(void)4665 static unsigned long kvm_get_guest_ip(void)
4666 {
4667 	unsigned long ip = 0;
4668 
4669 	if (percpu_read(current_vcpu))
4670 		ip = kvm_rip_read(percpu_read(current_vcpu));
4671 
4672 	return ip;
4673 }
4674 
4675 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4676 	.is_in_guest		= kvm_is_in_guest,
4677 	.is_user_mode		= kvm_is_user_mode,
4678 	.get_guest_ip		= kvm_get_guest_ip,
4679 };
4680 
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)4681 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4682 {
4683 	percpu_write(current_vcpu, vcpu);
4684 }
4685 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4686 
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)4687 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4688 {
4689 	percpu_write(current_vcpu, NULL);
4690 }
4691 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4692 
kvm_arch_init(void * opaque)4693 int kvm_arch_init(void *opaque)
4694 {
4695 	int r;
4696 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4697 
4698 	if (kvm_x86_ops) {
4699 		printk(KERN_ERR "kvm: already loaded the other module\n");
4700 		r = -EEXIST;
4701 		goto out;
4702 	}
4703 
4704 	if (!ops->cpu_has_kvm_support()) {
4705 		printk(KERN_ERR "kvm: no hardware support\n");
4706 		r = -EOPNOTSUPP;
4707 		goto out;
4708 	}
4709 	if (ops->disabled_by_bios()) {
4710 		printk(KERN_ERR "kvm: disabled by bios\n");
4711 		r = -EOPNOTSUPP;
4712 		goto out;
4713 	}
4714 
4715 	r = kvm_mmu_module_init();
4716 	if (r)
4717 		goto out;
4718 
4719 	kvm_init_msr_list();
4720 
4721 	kvm_x86_ops = ops;
4722 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4723 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4724 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4725 
4726 	kvm_timer_init();
4727 
4728 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
4729 
4730 	if (cpu_has_xsave)
4731 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4732 
4733 	return 0;
4734 
4735 out:
4736 	return r;
4737 }
4738 
kvm_arch_exit(void)4739 void kvm_arch_exit(void)
4740 {
4741 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4742 
4743 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4744 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4745 					    CPUFREQ_TRANSITION_NOTIFIER);
4746 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4747 	kvm_x86_ops = NULL;
4748 	kvm_mmu_module_exit();
4749 }
4750 
kvm_emulate_halt(struct kvm_vcpu * vcpu)4751 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4752 {
4753 	++vcpu->stat.halt_exits;
4754 	if (irqchip_in_kernel(vcpu->kvm)) {
4755 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4756 		return 1;
4757 	} else {
4758 		vcpu->run->exit_reason = KVM_EXIT_HLT;
4759 		return 0;
4760 	}
4761 }
4762 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4763 
hc_gpa(struct kvm_vcpu * vcpu,unsigned long a0,unsigned long a1)4764 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4765 			   unsigned long a1)
4766 {
4767 	if (is_long_mode(vcpu))
4768 		return a0;
4769 	else
4770 		return a0 | ((gpa_t)a1 << 32);
4771 }
4772 
kvm_hv_hypercall(struct kvm_vcpu * vcpu)4773 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4774 {
4775 	u64 param, ingpa, outgpa, ret;
4776 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4777 	bool fast, longmode;
4778 	int cs_db, cs_l;
4779 
4780 	/*
4781 	 * hypercall generates UD from non zero cpl and real mode
4782 	 * per HYPER-V spec
4783 	 */
4784 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4785 		kvm_queue_exception(vcpu, UD_VECTOR);
4786 		return 0;
4787 	}
4788 
4789 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4790 	longmode = is_long_mode(vcpu) && cs_l == 1;
4791 
4792 	if (!longmode) {
4793 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4794 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4795 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4796 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4797 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4798 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4799 	}
4800 #ifdef CONFIG_X86_64
4801 	else {
4802 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4803 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4804 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4805 	}
4806 #endif
4807 
4808 	code = param & 0xffff;
4809 	fast = (param >> 16) & 0x1;
4810 	rep_cnt = (param >> 32) & 0xfff;
4811 	rep_idx = (param >> 48) & 0xfff;
4812 
4813 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4814 
4815 	switch (code) {
4816 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4817 		kvm_vcpu_on_spin(vcpu);
4818 		break;
4819 	default:
4820 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
4821 		break;
4822 	}
4823 
4824 	ret = res | (((u64)rep_done & 0xfff) << 32);
4825 	if (longmode) {
4826 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4827 	} else {
4828 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4829 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4830 	}
4831 
4832 	return 1;
4833 }
4834 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)4835 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4836 {
4837 	unsigned long nr, a0, a1, a2, a3, ret;
4838 	int r = 1;
4839 
4840 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
4841 		return kvm_hv_hypercall(vcpu);
4842 
4843 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4844 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4845 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4846 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4847 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4848 
4849 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
4850 
4851 	if (!is_long_mode(vcpu)) {
4852 		nr &= 0xFFFFFFFF;
4853 		a0 &= 0xFFFFFFFF;
4854 		a1 &= 0xFFFFFFFF;
4855 		a2 &= 0xFFFFFFFF;
4856 		a3 &= 0xFFFFFFFF;
4857 	}
4858 
4859 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4860 		ret = -KVM_EPERM;
4861 		goto out;
4862 	}
4863 
4864 	switch (nr) {
4865 	case KVM_HC_VAPIC_POLL_IRQ:
4866 		ret = 0;
4867 		break;
4868 	case KVM_HC_MMU_OP:
4869 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4870 		break;
4871 	default:
4872 		ret = -KVM_ENOSYS;
4873 		break;
4874 	}
4875 out:
4876 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4877 	++vcpu->stat.hypercalls;
4878 	return r;
4879 }
4880 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4881 
kvm_fix_hypercall(struct kvm_vcpu * vcpu)4882 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4883 {
4884 	char instruction[3];
4885 	unsigned long rip = kvm_rip_read(vcpu);
4886 
4887 	/*
4888 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
4889 	 * to ensure that the updated hypercall appears atomically across all
4890 	 * VCPUs.
4891 	 */
4892 	kvm_mmu_zap_all(vcpu->kvm);
4893 
4894 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
4895 
4896 	return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4897 }
4898 
realmode_lgdt(struct kvm_vcpu * vcpu,u16 limit,unsigned long base)4899 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4900 {
4901 	struct desc_ptr dt = { limit, base };
4902 
4903 	kvm_x86_ops->set_gdt(vcpu, &dt);
4904 }
4905 
realmode_lidt(struct kvm_vcpu * vcpu,u16 limit,unsigned long base)4906 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4907 {
4908 	struct desc_ptr dt = { limit, base };
4909 
4910 	kvm_x86_ops->set_idt(vcpu, &dt);
4911 }
4912 
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)4913 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4914 {
4915 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4916 	int j, nent = vcpu->arch.cpuid_nent;
4917 
4918 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4919 	/* when no next entry is found, the current entry[i] is reselected */
4920 	for (j = i + 1; ; j = (j + 1) % nent) {
4921 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4922 		if (ej->function == e->function) {
4923 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4924 			return j;
4925 		}
4926 	}
4927 	return 0; /* silence gcc, even though control never reaches here */
4928 }
4929 
4930 /* find an entry with matching function, matching index (if needed), and that
4931  * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)4932 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4933 	u32 function, u32 index)
4934 {
4935 	if (e->function != function)
4936 		return 0;
4937 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4938 		return 0;
4939 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4940 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4941 		return 0;
4942 	return 1;
4943 }
4944 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)4945 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4946 					      u32 function, u32 index)
4947 {
4948 	int i;
4949 	struct kvm_cpuid_entry2 *best = NULL;
4950 
4951 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4952 		struct kvm_cpuid_entry2 *e;
4953 
4954 		e = &vcpu->arch.cpuid_entries[i];
4955 		if (is_matching_cpuid_entry(e, function, index)) {
4956 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4957 				move_to_next_stateful_cpuid_entry(vcpu, i);
4958 			best = e;
4959 			break;
4960 		}
4961 	}
4962 	return best;
4963 }
4964 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4965 
cpuid_maxphyaddr(struct kvm_vcpu * vcpu)4966 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4967 {
4968 	struct kvm_cpuid_entry2 *best;
4969 
4970 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4971 	if (!best || best->eax < 0x80000008)
4972 		goto not_found;
4973 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4974 	if (best)
4975 		return best->eax & 0xff;
4976 not_found:
4977 	return 36;
4978 }
4979 
4980 /*
4981  * If no match is found, check whether we exceed the vCPU's limit
4982  * and return the content of the highest valid _standard_ leaf instead.
4983  * This is to satisfy the CPUID specification.
4984  */
check_cpuid_limit(struct kvm_vcpu * vcpu,u32 function,u32 index)4985 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
4986                                                   u32 function, u32 index)
4987 {
4988 	struct kvm_cpuid_entry2 *maxlevel;
4989 
4990 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
4991 	if (!maxlevel || maxlevel->eax >= function)
4992 		return NULL;
4993 	if (function & 0x80000000) {
4994 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
4995 		if (!maxlevel)
4996 			return NULL;
4997 	}
4998 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
4999 }
5000 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)5001 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5002 {
5003 	u32 function, index;
5004 	struct kvm_cpuid_entry2 *best;
5005 
5006 	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5007 	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5008 	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5009 	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5010 	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5011 	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5012 	best = kvm_find_cpuid_entry(vcpu, function, index);
5013 
5014 	if (!best)
5015 		best = check_cpuid_limit(vcpu, function, index);
5016 
5017 	if (best) {
5018 		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5019 		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5020 		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5021 		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5022 	}
5023 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5024 	trace_kvm_cpuid(function,
5025 			kvm_register_read(vcpu, VCPU_REGS_RAX),
5026 			kvm_register_read(vcpu, VCPU_REGS_RBX),
5027 			kvm_register_read(vcpu, VCPU_REGS_RCX),
5028 			kvm_register_read(vcpu, VCPU_REGS_RDX));
5029 }
5030 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5031 
5032 /*
5033  * Check if userspace requested an interrupt window, and that the
5034  * interrupt window is open.
5035  *
5036  * No need to exit to userspace if we already have an interrupt queued.
5037  */
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)5038 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5039 {
5040 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5041 		vcpu->run->request_interrupt_window &&
5042 		kvm_arch_interrupt_allowed(vcpu));
5043 }
5044 
post_kvm_run_save(struct kvm_vcpu * vcpu)5045 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5046 {
5047 	struct kvm_run *kvm_run = vcpu->run;
5048 
5049 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5050 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5051 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5052 	if (irqchip_in_kernel(vcpu->kvm))
5053 		kvm_run->ready_for_interrupt_injection = 1;
5054 	else
5055 		kvm_run->ready_for_interrupt_injection =
5056 			kvm_arch_interrupt_allowed(vcpu) &&
5057 			!kvm_cpu_has_interrupt(vcpu) &&
5058 			!kvm_event_needs_reinjection(vcpu);
5059 }
5060 
vapic_enter(struct kvm_vcpu * vcpu)5061 static void vapic_enter(struct kvm_vcpu *vcpu)
5062 {
5063 	struct kvm_lapic *apic = vcpu->arch.apic;
5064 	struct page *page;
5065 
5066 	if (!apic || !apic->vapic_addr)
5067 		return;
5068 
5069 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5070 
5071 	vcpu->arch.apic->vapic_page = page;
5072 }
5073 
vapic_exit(struct kvm_vcpu * vcpu)5074 static void vapic_exit(struct kvm_vcpu *vcpu)
5075 {
5076 	struct kvm_lapic *apic = vcpu->arch.apic;
5077 	int idx;
5078 
5079 	if (!apic || !apic->vapic_addr)
5080 		return;
5081 
5082 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5083 	kvm_release_page_dirty(apic->vapic_page);
5084 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5085 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5086 }
5087 
update_cr8_intercept(struct kvm_vcpu * vcpu)5088 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5089 {
5090 	int max_irr, tpr;
5091 
5092 	if (!kvm_x86_ops->update_cr8_intercept)
5093 		return;
5094 
5095 	if (!vcpu->arch.apic)
5096 		return;
5097 
5098 	if (!vcpu->arch.apic->vapic_addr)
5099 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5100 	else
5101 		max_irr = -1;
5102 
5103 	if (max_irr != -1)
5104 		max_irr >>= 4;
5105 
5106 	tpr = kvm_lapic_get_cr8(vcpu);
5107 
5108 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5109 }
5110 
inject_pending_event(struct kvm_vcpu * vcpu)5111 static void inject_pending_event(struct kvm_vcpu *vcpu)
5112 {
5113 	/* try to reinject previous events if any */
5114 	if (vcpu->arch.exception.pending) {
5115 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5116 					vcpu->arch.exception.has_error_code,
5117 					vcpu->arch.exception.error_code);
5118 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5119 					  vcpu->arch.exception.has_error_code,
5120 					  vcpu->arch.exception.error_code,
5121 					  vcpu->arch.exception.reinject);
5122 		return;
5123 	}
5124 
5125 	if (vcpu->arch.nmi_injected) {
5126 		kvm_x86_ops->set_nmi(vcpu);
5127 		return;
5128 	}
5129 
5130 	if (vcpu->arch.interrupt.pending) {
5131 		kvm_x86_ops->set_irq(vcpu);
5132 		return;
5133 	}
5134 
5135 	/* try to inject new event if pending */
5136 	if (vcpu->arch.nmi_pending) {
5137 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5138 			vcpu->arch.nmi_pending = false;
5139 			vcpu->arch.nmi_injected = true;
5140 			kvm_x86_ops->set_nmi(vcpu);
5141 		}
5142 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5143 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5144 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5145 					    false);
5146 			kvm_x86_ops->set_irq(vcpu);
5147 		}
5148 	}
5149 }
5150 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)5151 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5152 {
5153 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5154 			!vcpu->guest_xcr0_loaded) {
5155 		/* kvm_set_xcr() also depends on this */
5156 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5157 		vcpu->guest_xcr0_loaded = 1;
5158 	}
5159 }
5160 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)5161 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5162 {
5163 	if (vcpu->guest_xcr0_loaded) {
5164 		if (vcpu->arch.xcr0 != host_xcr0)
5165 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5166 		vcpu->guest_xcr0_loaded = 0;
5167 	}
5168 }
5169 
vcpu_enter_guest(struct kvm_vcpu * vcpu)5170 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5171 {
5172 	int r;
5173 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5174 		vcpu->run->request_interrupt_window;
5175 
5176 	if (vcpu->requests) {
5177 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5178 			kvm_mmu_unload(vcpu);
5179 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5180 			__kvm_migrate_timers(vcpu);
5181 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5182 			r = kvm_guest_time_update(vcpu);
5183 			if (unlikely(r))
5184 				goto out;
5185 		}
5186 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5187 			kvm_mmu_sync_roots(vcpu);
5188 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5189 			kvm_x86_ops->tlb_flush(vcpu);
5190 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5191 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5192 			r = 0;
5193 			goto out;
5194 		}
5195 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5196 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5197 			r = 0;
5198 			goto out;
5199 		}
5200 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5201 			vcpu->fpu_active = 0;
5202 			kvm_x86_ops->fpu_deactivate(vcpu);
5203 		}
5204 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5205 			/* Page is swapped out. Do synthetic halt */
5206 			vcpu->arch.apf.halted = true;
5207 			r = 1;
5208 			goto out;
5209 		}
5210 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5211 			vcpu->arch.nmi_pending = true;
5212 	}
5213 
5214 	r = kvm_mmu_reload(vcpu);
5215 	if (unlikely(r))
5216 		goto out;
5217 
5218 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5219 		inject_pending_event(vcpu);
5220 
5221 		/* enable NMI/IRQ window open exits if needed */
5222 		if (vcpu->arch.nmi_pending)
5223 			kvm_x86_ops->enable_nmi_window(vcpu);
5224 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5225 			kvm_x86_ops->enable_irq_window(vcpu);
5226 
5227 		if (kvm_lapic_enabled(vcpu)) {
5228 			update_cr8_intercept(vcpu);
5229 			kvm_lapic_sync_to_vapic(vcpu);
5230 		}
5231 	}
5232 
5233 	preempt_disable();
5234 
5235 	kvm_x86_ops->prepare_guest_switch(vcpu);
5236 	if (vcpu->fpu_active)
5237 		kvm_load_guest_fpu(vcpu);
5238 	kvm_load_guest_xcr0(vcpu);
5239 
5240 	vcpu->mode = IN_GUEST_MODE;
5241 
5242 	/* We should set ->mode before check ->requests,
5243 	 * see the comment in make_all_cpus_request.
5244 	 */
5245 	smp_mb();
5246 
5247 	local_irq_disable();
5248 
5249 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5250 	    || need_resched() || signal_pending(current)) {
5251 		vcpu->mode = OUTSIDE_GUEST_MODE;
5252 		smp_wmb();
5253 		local_irq_enable();
5254 		preempt_enable();
5255 		kvm_x86_ops->cancel_injection(vcpu);
5256 		r = 1;
5257 		goto out;
5258 	}
5259 
5260 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5261 
5262 	kvm_guest_enter();
5263 
5264 	if (unlikely(vcpu->arch.switch_db_regs)) {
5265 		set_debugreg(0, 7);
5266 		set_debugreg(vcpu->arch.eff_db[0], 0);
5267 		set_debugreg(vcpu->arch.eff_db[1], 1);
5268 		set_debugreg(vcpu->arch.eff_db[2], 2);
5269 		set_debugreg(vcpu->arch.eff_db[3], 3);
5270 	}
5271 
5272 	trace_kvm_entry(vcpu->vcpu_id);
5273 	kvm_x86_ops->run(vcpu);
5274 
5275 	/*
5276 	 * If the guest has used debug registers, at least dr7
5277 	 * will be disabled while returning to the host.
5278 	 * If we don't have active breakpoints in the host, we don't
5279 	 * care about the messed up debug address registers. But if
5280 	 * we have some of them active, restore the old state.
5281 	 */
5282 	if (hw_breakpoint_active())
5283 		hw_breakpoint_restore();
5284 
5285 	kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5286 
5287 	vcpu->mode = OUTSIDE_GUEST_MODE;
5288 	smp_wmb();
5289 	local_irq_enable();
5290 
5291 	++vcpu->stat.exits;
5292 
5293 	/*
5294 	 * We must have an instruction between local_irq_enable() and
5295 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5296 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5297 	 * But we need to prevent reordering, hence this barrier():
5298 	 */
5299 	barrier();
5300 
5301 	kvm_guest_exit();
5302 
5303 	preempt_enable();
5304 
5305 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5306 
5307 	/*
5308 	 * Profile KVM exit RIPs:
5309 	 */
5310 	if (unlikely(prof_on == KVM_PROFILING)) {
5311 		unsigned long rip = kvm_rip_read(vcpu);
5312 		profile_hit(KVM_PROFILING, (void *)rip);
5313 	}
5314 
5315 
5316 	kvm_lapic_sync_from_vapic(vcpu);
5317 
5318 	r = kvm_x86_ops->handle_exit(vcpu);
5319 out:
5320 	return r;
5321 }
5322 
5323 
__vcpu_run(struct kvm_vcpu * vcpu)5324 static int __vcpu_run(struct kvm_vcpu *vcpu)
5325 {
5326 	int r;
5327 	struct kvm *kvm = vcpu->kvm;
5328 
5329 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5330 		pr_debug("vcpu %d received sipi with vector # %x\n",
5331 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5332 		kvm_lapic_reset(vcpu);
5333 		r = kvm_arch_vcpu_reset(vcpu);
5334 		if (r)
5335 			return r;
5336 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5337 	}
5338 
5339 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5340 	vapic_enter(vcpu);
5341 
5342 	r = 1;
5343 	while (r > 0) {
5344 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5345 		    !vcpu->arch.apf.halted)
5346 			r = vcpu_enter_guest(vcpu);
5347 		else {
5348 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5349 			kvm_vcpu_block(vcpu);
5350 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5351 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5352 			{
5353 				switch(vcpu->arch.mp_state) {
5354 				case KVM_MP_STATE_HALTED:
5355 					vcpu->arch.mp_state =
5356 						KVM_MP_STATE_RUNNABLE;
5357 				case KVM_MP_STATE_RUNNABLE:
5358 					vcpu->arch.apf.halted = false;
5359 					break;
5360 				case KVM_MP_STATE_SIPI_RECEIVED:
5361 				default:
5362 					r = -EINTR;
5363 					break;
5364 				}
5365 			}
5366 		}
5367 
5368 		if (r <= 0)
5369 			break;
5370 
5371 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5372 		if (kvm_cpu_has_pending_timer(vcpu))
5373 			kvm_inject_pending_timer_irqs(vcpu);
5374 
5375 		if (dm_request_for_irq_injection(vcpu)) {
5376 			r = -EINTR;
5377 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5378 			++vcpu->stat.request_irq_exits;
5379 		}
5380 
5381 		kvm_check_async_pf_completion(vcpu);
5382 
5383 		if (signal_pending(current)) {
5384 			r = -EINTR;
5385 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5386 			++vcpu->stat.signal_exits;
5387 		}
5388 		if (need_resched()) {
5389 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5390 			kvm_resched(vcpu);
5391 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5392 		}
5393 	}
5394 
5395 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5396 
5397 	vapic_exit(vcpu);
5398 
5399 	return r;
5400 }
5401 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)5402 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5403 {
5404 	int r;
5405 	sigset_t sigsaved;
5406 
5407 	if (!tsk_used_math(current) && init_fpu(current))
5408 		return -ENOMEM;
5409 
5410 	if (vcpu->sigset_active)
5411 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5412 
5413 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5414 		kvm_vcpu_block(vcpu);
5415 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5416 		r = -EAGAIN;
5417 		goto out;
5418 	}
5419 
5420 	/* re-sync apic's tpr */
5421 	if (!irqchip_in_kernel(vcpu->kvm)) {
5422 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5423 			r = -EINVAL;
5424 			goto out;
5425 		}
5426 	}
5427 
5428 	if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5429 		if (vcpu->mmio_needed) {
5430 			memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5431 			vcpu->mmio_read_completed = 1;
5432 			vcpu->mmio_needed = 0;
5433 		}
5434 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5435 		r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5436 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5437 		if (r != EMULATE_DONE) {
5438 			r = 0;
5439 			goto out;
5440 		}
5441 	}
5442 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5443 		kvm_register_write(vcpu, VCPU_REGS_RAX,
5444 				     kvm_run->hypercall.ret);
5445 
5446 	r = __vcpu_run(vcpu);
5447 
5448 out:
5449 	post_kvm_run_save(vcpu);
5450 	if (vcpu->sigset_active)
5451 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5452 
5453 	return r;
5454 }
5455 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)5456 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5457 {
5458 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5459 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5460 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5461 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5462 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5463 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5464 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5465 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5466 #ifdef CONFIG_X86_64
5467 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5468 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5469 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5470 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5471 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5472 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5473 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5474 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5475 #endif
5476 
5477 	regs->rip = kvm_rip_read(vcpu);
5478 	regs->rflags = kvm_get_rflags(vcpu);
5479 
5480 	return 0;
5481 }
5482 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)5483 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5484 {
5485 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5486 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5487 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5488 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5489 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5490 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5491 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5492 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5493 #ifdef CONFIG_X86_64
5494 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5495 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5496 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5497 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5498 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5499 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5500 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5501 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5502 #endif
5503 
5504 	kvm_rip_write(vcpu, regs->rip);
5505 	kvm_set_rflags(vcpu, regs->rflags);
5506 
5507 	vcpu->arch.exception.pending = false;
5508 
5509 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5510 
5511 	return 0;
5512 }
5513 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)5514 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5515 {
5516 	struct kvm_segment cs;
5517 
5518 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5519 	*db = cs.db;
5520 	*l = cs.l;
5521 }
5522 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5523 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)5524 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5525 				  struct kvm_sregs *sregs)
5526 {
5527 	struct desc_ptr dt;
5528 
5529 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5530 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5531 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5532 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5533 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5534 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5535 
5536 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5537 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5538 
5539 	kvm_x86_ops->get_idt(vcpu, &dt);
5540 	sregs->idt.limit = dt.size;
5541 	sregs->idt.base = dt.address;
5542 	kvm_x86_ops->get_gdt(vcpu, &dt);
5543 	sregs->gdt.limit = dt.size;
5544 	sregs->gdt.base = dt.address;
5545 
5546 	sregs->cr0 = kvm_read_cr0(vcpu);
5547 	sregs->cr2 = vcpu->arch.cr2;
5548 	sregs->cr3 = kvm_read_cr3(vcpu);
5549 	sregs->cr4 = kvm_read_cr4(vcpu);
5550 	sregs->cr8 = kvm_get_cr8(vcpu);
5551 	sregs->efer = vcpu->arch.efer;
5552 	sregs->apic_base = kvm_get_apic_base(vcpu);
5553 
5554 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5555 
5556 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5557 		set_bit(vcpu->arch.interrupt.nr,
5558 			(unsigned long *)sregs->interrupt_bitmap);
5559 
5560 	return 0;
5561 }
5562 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)5563 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5564 				    struct kvm_mp_state *mp_state)
5565 {
5566 	mp_state->mp_state = vcpu->arch.mp_state;
5567 	return 0;
5568 }
5569 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)5570 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5571 				    struct kvm_mp_state *mp_state)
5572 {
5573 	vcpu->arch.mp_state = mp_state->mp_state;
5574 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5575 	return 0;
5576 }
5577 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int reason,bool has_error_code,u32 error_code)5578 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5579 		    bool has_error_code, u32 error_code)
5580 {
5581 	struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5582 	int ret;
5583 
5584 	init_emulate_ctxt(vcpu);
5585 
5586 	ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5587 				   tss_selector, reason, has_error_code,
5588 				   error_code);
5589 
5590 	if (ret)
5591 		return EMULATE_FAIL;
5592 
5593 	memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5594 	kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5595 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5596 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5597 	return EMULATE_DONE;
5598 }
5599 EXPORT_SYMBOL_GPL(kvm_task_switch);
5600 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)5601 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5602 				  struct kvm_sregs *sregs)
5603 {
5604 	int mmu_reset_needed = 0;
5605 	int pending_vec, max_bits, idx;
5606 	struct desc_ptr dt;
5607 
5608 	dt.size = sregs->idt.limit;
5609 	dt.address = sregs->idt.base;
5610 	kvm_x86_ops->set_idt(vcpu, &dt);
5611 	dt.size = sregs->gdt.limit;
5612 	dt.address = sregs->gdt.base;
5613 	kvm_x86_ops->set_gdt(vcpu, &dt);
5614 
5615 	vcpu->arch.cr2 = sregs->cr2;
5616 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5617 	vcpu->arch.cr3 = sregs->cr3;
5618 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5619 
5620 	kvm_set_cr8(vcpu, sregs->cr8);
5621 
5622 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5623 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
5624 	kvm_set_apic_base(vcpu, sregs->apic_base);
5625 
5626 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5627 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5628 	vcpu->arch.cr0 = sregs->cr0;
5629 
5630 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5631 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5632 	if (sregs->cr4 & X86_CR4_OSXSAVE)
5633 		update_cpuid(vcpu);
5634 
5635 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5636 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5637 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5638 		mmu_reset_needed = 1;
5639 	}
5640 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5641 
5642 	if (mmu_reset_needed)
5643 		kvm_mmu_reset_context(vcpu);
5644 
5645 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5646 	pending_vec = find_first_bit(
5647 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5648 	if (pending_vec < max_bits) {
5649 		kvm_queue_interrupt(vcpu, pending_vec, false);
5650 		pr_debug("Set back pending irq %d\n", pending_vec);
5651 	}
5652 
5653 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5654 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5655 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5656 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5657 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5658 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5659 
5660 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5661 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5662 
5663 	update_cr8_intercept(vcpu);
5664 
5665 	/* Older userspace won't unhalt the vcpu on reset. */
5666 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5667 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5668 	    !is_protmode(vcpu))
5669 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5670 
5671 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5672 
5673 	return 0;
5674 }
5675 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)5676 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5677 					struct kvm_guest_debug *dbg)
5678 {
5679 	unsigned long rflags;
5680 	int i, r;
5681 
5682 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5683 		r = -EBUSY;
5684 		if (vcpu->arch.exception.pending)
5685 			goto out;
5686 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5687 			kvm_queue_exception(vcpu, DB_VECTOR);
5688 		else
5689 			kvm_queue_exception(vcpu, BP_VECTOR);
5690 	}
5691 
5692 	/*
5693 	 * Read rflags as long as potentially injected trace flags are still
5694 	 * filtered out.
5695 	 */
5696 	rflags = kvm_get_rflags(vcpu);
5697 
5698 	vcpu->guest_debug = dbg->control;
5699 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5700 		vcpu->guest_debug = 0;
5701 
5702 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5703 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
5704 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5705 		vcpu->arch.switch_db_regs =
5706 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5707 	} else {
5708 		for (i = 0; i < KVM_NR_DB_REGS; i++)
5709 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5710 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5711 	}
5712 
5713 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5714 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5715 			get_segment_base(vcpu, VCPU_SREG_CS);
5716 
5717 	/*
5718 	 * Trigger an rflags update that will inject or remove the trace
5719 	 * flags.
5720 	 */
5721 	kvm_set_rflags(vcpu, rflags);
5722 
5723 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5724 
5725 	r = 0;
5726 
5727 out:
5728 
5729 	return r;
5730 }
5731 
5732 /*
5733  * Translate a guest virtual address to a guest physical address.
5734  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)5735 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5736 				    struct kvm_translation *tr)
5737 {
5738 	unsigned long vaddr = tr->linear_address;
5739 	gpa_t gpa;
5740 	int idx;
5741 
5742 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5743 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5744 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5745 	tr->physical_address = gpa;
5746 	tr->valid = gpa != UNMAPPED_GVA;
5747 	tr->writeable = 1;
5748 	tr->usermode = 0;
5749 
5750 	return 0;
5751 }
5752 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)5753 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5754 {
5755 	struct i387_fxsave_struct *fxsave =
5756 			&vcpu->arch.guest_fpu.state->fxsave;
5757 
5758 	memcpy(fpu->fpr, fxsave->st_space, 128);
5759 	fpu->fcw = fxsave->cwd;
5760 	fpu->fsw = fxsave->swd;
5761 	fpu->ftwx = fxsave->twd;
5762 	fpu->last_opcode = fxsave->fop;
5763 	fpu->last_ip = fxsave->rip;
5764 	fpu->last_dp = fxsave->rdp;
5765 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5766 
5767 	return 0;
5768 }
5769 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)5770 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5771 {
5772 	struct i387_fxsave_struct *fxsave =
5773 			&vcpu->arch.guest_fpu.state->fxsave;
5774 
5775 	memcpy(fxsave->st_space, fpu->fpr, 128);
5776 	fxsave->cwd = fpu->fcw;
5777 	fxsave->swd = fpu->fsw;
5778 	fxsave->twd = fpu->ftwx;
5779 	fxsave->fop = fpu->last_opcode;
5780 	fxsave->rip = fpu->last_ip;
5781 	fxsave->rdp = fpu->last_dp;
5782 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5783 
5784 	return 0;
5785 }
5786 
fx_init(struct kvm_vcpu * vcpu)5787 int fx_init(struct kvm_vcpu *vcpu)
5788 {
5789 	int err;
5790 
5791 	err = fpu_alloc(&vcpu->arch.guest_fpu);
5792 	if (err)
5793 		return err;
5794 
5795 	fpu_finit(&vcpu->arch.guest_fpu);
5796 
5797 	/*
5798 	 * Ensure guest xcr0 is valid for loading
5799 	 */
5800 	vcpu->arch.xcr0 = XSTATE_FP;
5801 
5802 	vcpu->arch.cr0 |= X86_CR0_ET;
5803 
5804 	return 0;
5805 }
5806 EXPORT_SYMBOL_GPL(fx_init);
5807 
fx_free(struct kvm_vcpu * vcpu)5808 static void fx_free(struct kvm_vcpu *vcpu)
5809 {
5810 	fpu_free(&vcpu->arch.guest_fpu);
5811 }
5812 
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)5813 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5814 {
5815 	if (vcpu->guest_fpu_loaded)
5816 		return;
5817 
5818 	/*
5819 	 * Restore all possible states in the guest,
5820 	 * and assume host would use all available bits.
5821 	 * Guest xcr0 would be loaded later.
5822 	 */
5823 	kvm_put_guest_xcr0(vcpu);
5824 	vcpu->guest_fpu_loaded = 1;
5825 	unlazy_fpu(current);
5826 	fpu_restore_checking(&vcpu->arch.guest_fpu);
5827 	trace_kvm_fpu(1);
5828 }
5829 
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)5830 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5831 {
5832 	kvm_put_guest_xcr0(vcpu);
5833 
5834 	if (!vcpu->guest_fpu_loaded)
5835 		return;
5836 
5837 	vcpu->guest_fpu_loaded = 0;
5838 	fpu_save_init(&vcpu->arch.guest_fpu);
5839 	++vcpu->stat.fpu_reload;
5840 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5841 	trace_kvm_fpu(0);
5842 }
5843 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)5844 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5845 {
5846 	kvmclock_reset(vcpu);
5847 
5848 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5849 	fx_free(vcpu);
5850 	kvm_x86_ops->vcpu_free(vcpu);
5851 }
5852 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)5853 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5854 						unsigned int id)
5855 {
5856 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5857 		printk_once(KERN_WARNING
5858 		"kvm: SMP vm created on host with unstable TSC; "
5859 		"guest TSC will not be reliable\n");
5860 	return kvm_x86_ops->vcpu_create(kvm, id);
5861 }
5862 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)5863 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5864 {
5865 	int r;
5866 
5867 	vcpu->arch.mtrr_state.have_fixed = 1;
5868 	vcpu_load(vcpu);
5869 	r = kvm_arch_vcpu_reset(vcpu);
5870 	if (r == 0)
5871 		r = kvm_mmu_setup(vcpu);
5872 	vcpu_put(vcpu);
5873 	if (r < 0)
5874 		goto free_vcpu;
5875 
5876 	return 0;
5877 free_vcpu:
5878 	kvm_x86_ops->vcpu_free(vcpu);
5879 	return r;
5880 }
5881 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)5882 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5883 {
5884 	vcpu->arch.apf.msr_val = 0;
5885 
5886 	vcpu_load(vcpu);
5887 	kvm_mmu_unload(vcpu);
5888 	vcpu_put(vcpu);
5889 
5890 	fx_free(vcpu);
5891 	kvm_x86_ops->vcpu_free(vcpu);
5892 }
5893 
kvm_arch_vcpu_reset(struct kvm_vcpu * vcpu)5894 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5895 {
5896 	vcpu->arch.nmi_pending = false;
5897 	vcpu->arch.nmi_injected = false;
5898 
5899 	vcpu->arch.switch_db_regs = 0;
5900 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5901 	vcpu->arch.dr6 = DR6_FIXED_1;
5902 	vcpu->arch.dr7 = DR7_FIXED_1;
5903 
5904 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5905 	vcpu->arch.apf.msr_val = 0;
5906 
5907 	kvmclock_reset(vcpu);
5908 
5909 	kvm_clear_async_pf_completion_queue(vcpu);
5910 	kvm_async_pf_hash_reset(vcpu);
5911 	vcpu->arch.apf.halted = false;
5912 
5913 	return kvm_x86_ops->vcpu_reset(vcpu);
5914 }
5915 
kvm_arch_hardware_enable(void * garbage)5916 int kvm_arch_hardware_enable(void *garbage)
5917 {
5918 	struct kvm *kvm;
5919 	struct kvm_vcpu *vcpu;
5920 	int i;
5921 
5922 	kvm_shared_msr_cpu_online();
5923 	list_for_each_entry(kvm, &vm_list, vm_list)
5924 		kvm_for_each_vcpu(i, vcpu, kvm)
5925 			if (vcpu->cpu == smp_processor_id())
5926 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5927 	return kvm_x86_ops->hardware_enable(garbage);
5928 }
5929 
kvm_arch_hardware_disable(void * garbage)5930 void kvm_arch_hardware_disable(void *garbage)
5931 {
5932 	kvm_x86_ops->hardware_disable(garbage);
5933 	drop_user_return_notifiers(garbage);
5934 }
5935 
kvm_arch_hardware_setup(void)5936 int kvm_arch_hardware_setup(void)
5937 {
5938 	return kvm_x86_ops->hardware_setup();
5939 }
5940 
kvm_arch_hardware_unsetup(void)5941 void kvm_arch_hardware_unsetup(void)
5942 {
5943 	kvm_x86_ops->hardware_unsetup();
5944 }
5945 
kvm_arch_check_processor_compat(void * rtn)5946 void kvm_arch_check_processor_compat(void *rtn)
5947 {
5948 	kvm_x86_ops->check_processor_compatibility(rtn);
5949 }
5950 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)5951 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5952 {
5953 	struct page *page;
5954 	struct kvm *kvm;
5955 	int r;
5956 
5957 	BUG_ON(vcpu->kvm == NULL);
5958 	kvm = vcpu->kvm;
5959 
5960 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5961 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5962 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5963 	vcpu->arch.mmu.translate_gpa = translate_gpa;
5964 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5965 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5966 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5967 	else
5968 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5969 
5970 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5971 	if (!page) {
5972 		r = -ENOMEM;
5973 		goto fail;
5974 	}
5975 	vcpu->arch.pio_data = page_address(page);
5976 
5977 	if (!kvm->arch.virtual_tsc_khz)
5978 		kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5979 
5980 	r = kvm_mmu_create(vcpu);
5981 	if (r < 0)
5982 		goto fail_free_pio_data;
5983 
5984 	if (irqchip_in_kernel(kvm)) {
5985 		r = kvm_create_lapic(vcpu);
5986 		if (r < 0)
5987 			goto fail_mmu_destroy;
5988 	}
5989 
5990 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5991 				       GFP_KERNEL);
5992 	if (!vcpu->arch.mce_banks) {
5993 		r = -ENOMEM;
5994 		goto fail_free_lapic;
5995 	}
5996 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5997 
5998 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5999 		goto fail_free_mce_banks;
6000 
6001 	kvm_async_pf_hash_reset(vcpu);
6002 
6003 	return 0;
6004 fail_free_mce_banks:
6005 	kfree(vcpu->arch.mce_banks);
6006 fail_free_lapic:
6007 	kvm_free_lapic(vcpu);
6008 fail_mmu_destroy:
6009 	kvm_mmu_destroy(vcpu);
6010 fail_free_pio_data:
6011 	free_page((unsigned long)vcpu->arch.pio_data);
6012 fail:
6013 	return r;
6014 }
6015 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)6016 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6017 {
6018 	int idx;
6019 
6020 	kfree(vcpu->arch.mce_banks);
6021 	kvm_free_lapic(vcpu);
6022 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6023 	kvm_mmu_destroy(vcpu);
6024 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6025 	free_page((unsigned long)vcpu->arch.pio_data);
6026 }
6027 
kvm_arch_init_vm(struct kvm * kvm)6028 int kvm_arch_init_vm(struct kvm *kvm)
6029 {
6030 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6031 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6032 
6033 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6034 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6035 
6036 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6037 
6038 	return 0;
6039 }
6040 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)6041 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6042 {
6043 	vcpu_load(vcpu);
6044 	kvm_mmu_unload(vcpu);
6045 	vcpu_put(vcpu);
6046 }
6047 
kvm_free_vcpus(struct kvm * kvm)6048 static void kvm_free_vcpus(struct kvm *kvm)
6049 {
6050 	unsigned int i;
6051 	struct kvm_vcpu *vcpu;
6052 
6053 	/*
6054 	 * Unpin any mmu pages first.
6055 	 */
6056 	kvm_for_each_vcpu(i, vcpu, kvm) {
6057 		kvm_clear_async_pf_completion_queue(vcpu);
6058 		kvm_unload_vcpu_mmu(vcpu);
6059 	}
6060 	kvm_for_each_vcpu(i, vcpu, kvm)
6061 		kvm_arch_vcpu_free(vcpu);
6062 
6063 	mutex_lock(&kvm->lock);
6064 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6065 		kvm->vcpus[i] = NULL;
6066 
6067 	atomic_set(&kvm->online_vcpus, 0);
6068 	mutex_unlock(&kvm->lock);
6069 }
6070 
kvm_arch_sync_events(struct kvm * kvm)6071 void kvm_arch_sync_events(struct kvm *kvm)
6072 {
6073 	kvm_free_all_assigned_devices(kvm);
6074 	kvm_free_pit(kvm);
6075 }
6076 
kvm_arch_destroy_vm(struct kvm * kvm)6077 void kvm_arch_destroy_vm(struct kvm *kvm)
6078 {
6079 	kvm_iommu_unmap_guest(kvm);
6080 	kfree(kvm->arch.vpic);
6081 	kfree(kvm->arch.vioapic);
6082 	kvm_free_vcpus(kvm);
6083 	if (kvm->arch.apic_access_page)
6084 		put_page(kvm->arch.apic_access_page);
6085 	if (kvm->arch.ept_identity_pagetable)
6086 		put_page(kvm->arch.ept_identity_pagetable);
6087 }
6088 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_memory_slot old,struct kvm_userspace_memory_region * mem,int user_alloc)6089 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6090 				struct kvm_memory_slot *memslot,
6091 				struct kvm_memory_slot old,
6092 				struct kvm_userspace_memory_region *mem,
6093 				int user_alloc)
6094 {
6095 	int npages = memslot->npages;
6096 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6097 
6098 	/* Prevent internal slot pages from being moved by fork()/COW. */
6099 	if (memslot->id >= KVM_MEMORY_SLOTS)
6100 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6101 
6102 	/*To keep backward compatibility with older userspace,
6103 	 *x86 needs to hanlde !user_alloc case.
6104 	 */
6105 	if (!user_alloc) {
6106 		if (npages && !old.rmap) {
6107 			unsigned long userspace_addr;
6108 
6109 			down_write(&current->mm->mmap_sem);
6110 			userspace_addr = do_mmap(NULL, 0,
6111 						 npages * PAGE_SIZE,
6112 						 PROT_READ | PROT_WRITE,
6113 						 map_flags,
6114 						 0);
6115 			up_write(&current->mm->mmap_sem);
6116 
6117 			if (IS_ERR((void *)userspace_addr))
6118 				return PTR_ERR((void *)userspace_addr);
6119 
6120 			memslot->userspace_addr = userspace_addr;
6121 		}
6122 	}
6123 
6124 
6125 	return 0;
6126 }
6127 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,struct kvm_memory_slot old,int user_alloc)6128 void kvm_arch_commit_memory_region(struct kvm *kvm,
6129 				struct kvm_userspace_memory_region *mem,
6130 				struct kvm_memory_slot old,
6131 				int user_alloc)
6132 {
6133 
6134 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6135 
6136 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6137 		int ret;
6138 
6139 		down_write(&current->mm->mmap_sem);
6140 		ret = do_munmap(current->mm, old.userspace_addr,
6141 				old.npages * PAGE_SIZE);
6142 		up_write(&current->mm->mmap_sem);
6143 		if (ret < 0)
6144 			printk(KERN_WARNING
6145 			       "kvm_vm_ioctl_set_memory_region: "
6146 			       "failed to munmap memory\n");
6147 	}
6148 
6149 	if (!kvm->arch.n_requested_mmu_pages)
6150 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6151 
6152 	spin_lock(&kvm->mmu_lock);
6153 	if (nr_mmu_pages)
6154 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6155 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6156 	spin_unlock(&kvm->mmu_lock);
6157 }
6158 
kvm_arch_flush_shadow(struct kvm * kvm)6159 void kvm_arch_flush_shadow(struct kvm *kvm)
6160 {
6161 	kvm_mmu_zap_all(kvm);
6162 	kvm_reload_remote_mmus(kvm);
6163 }
6164 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)6165 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6166 {
6167 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6168 		!vcpu->arch.apf.halted)
6169 		|| !list_empty_careful(&vcpu->async_pf.done)
6170 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6171 		|| vcpu->arch.nmi_pending ||
6172 		(kvm_arch_interrupt_allowed(vcpu) &&
6173 		 kvm_cpu_has_interrupt(vcpu));
6174 }
6175 
kvm_vcpu_kick(struct kvm_vcpu * vcpu)6176 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6177 {
6178 	int me;
6179 	int cpu = vcpu->cpu;
6180 
6181 	if (waitqueue_active(&vcpu->wq)) {
6182 		wake_up_interruptible(&vcpu->wq);
6183 		++vcpu->stat.halt_wakeup;
6184 	}
6185 
6186 	me = get_cpu();
6187 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6188 		if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6189 			smp_send_reschedule(cpu);
6190 	put_cpu();
6191 }
6192 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)6193 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6194 {
6195 	return kvm_x86_ops->interrupt_allowed(vcpu);
6196 }
6197 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)6198 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6199 {
6200 	unsigned long current_rip = kvm_rip_read(vcpu) +
6201 		get_segment_base(vcpu, VCPU_SREG_CS);
6202 
6203 	return current_rip == linear_rip;
6204 }
6205 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6206 
kvm_get_rflags(struct kvm_vcpu * vcpu)6207 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6208 {
6209 	unsigned long rflags;
6210 
6211 	rflags = kvm_x86_ops->get_rflags(vcpu);
6212 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6213 		rflags &= ~X86_EFLAGS_TF;
6214 	return rflags;
6215 }
6216 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6217 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)6218 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6219 {
6220 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6221 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6222 		rflags |= X86_EFLAGS_TF;
6223 	kvm_x86_ops->set_rflags(vcpu, rflags);
6224 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6225 }
6226 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6227 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)6228 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6229 {
6230 	int r;
6231 
6232 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6233 	      is_error_page(work->page))
6234 		return;
6235 
6236 	r = kvm_mmu_reload(vcpu);
6237 	if (unlikely(r))
6238 		return;
6239 
6240 	if (!vcpu->arch.mmu.direct_map &&
6241 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6242 		return;
6243 
6244 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6245 }
6246 
kvm_async_pf_hash_fn(gfn_t gfn)6247 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6248 {
6249 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6250 }
6251 
kvm_async_pf_next_probe(u32 key)6252 static inline u32 kvm_async_pf_next_probe(u32 key)
6253 {
6254 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6255 }
6256 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)6257 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6258 {
6259 	u32 key = kvm_async_pf_hash_fn(gfn);
6260 
6261 	while (vcpu->arch.apf.gfns[key] != ~0)
6262 		key = kvm_async_pf_next_probe(key);
6263 
6264 	vcpu->arch.apf.gfns[key] = gfn;
6265 }
6266 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)6267 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6268 {
6269 	int i;
6270 	u32 key = kvm_async_pf_hash_fn(gfn);
6271 
6272 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6273 		     (vcpu->arch.apf.gfns[key] != gfn &&
6274 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6275 		key = kvm_async_pf_next_probe(key);
6276 
6277 	return key;
6278 }
6279 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)6280 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6281 {
6282 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6283 }
6284 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)6285 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6286 {
6287 	u32 i, j, k;
6288 
6289 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6290 	while (true) {
6291 		vcpu->arch.apf.gfns[i] = ~0;
6292 		do {
6293 			j = kvm_async_pf_next_probe(j);
6294 			if (vcpu->arch.apf.gfns[j] == ~0)
6295 				return;
6296 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6297 			/*
6298 			 * k lies cyclically in ]i,j]
6299 			 * |    i.k.j |
6300 			 * |....j i.k.| or  |.k..j i...|
6301 			 */
6302 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6303 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6304 		i = j;
6305 	}
6306 }
6307 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)6308 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6309 {
6310 
6311 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6312 				      sizeof(val));
6313 }
6314 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)6315 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6316 				     struct kvm_async_pf *work)
6317 {
6318 	struct x86_exception fault;
6319 
6320 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6321 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6322 
6323 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6324 	    (vcpu->arch.apf.send_user_only &&
6325 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6326 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6327 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6328 		fault.vector = PF_VECTOR;
6329 		fault.error_code_valid = true;
6330 		fault.error_code = 0;
6331 		fault.nested_page_fault = false;
6332 		fault.address = work->arch.token;
6333 		kvm_inject_page_fault(vcpu, &fault);
6334 	}
6335 }
6336 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)6337 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6338 				 struct kvm_async_pf *work)
6339 {
6340 	struct x86_exception fault;
6341 
6342 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6343 	if (is_error_page(work->page))
6344 		work->arch.token = ~0; /* broadcast wakeup */
6345 	else
6346 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6347 
6348 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6349 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6350 		fault.vector = PF_VECTOR;
6351 		fault.error_code_valid = true;
6352 		fault.error_code = 0;
6353 		fault.nested_page_fault = false;
6354 		fault.address = work->arch.token;
6355 		kvm_inject_page_fault(vcpu, &fault);
6356 	}
6357 	vcpu->arch.apf.halted = false;
6358 }
6359 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)6360 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6361 {
6362 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6363 		return true;
6364 	else
6365 		return !kvm_event_needs_reinjection(vcpu) &&
6366 			kvm_x86_ops->interrupt_allowed(vcpu);
6367 }
6368 
6369 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6381