1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/smp.h>
37 #include <linux/fs.h>
38 #include <linux/mm.h>
39 #include <linux/debugfs.h>
40 #include <linux/edac_mce.h>
41
42 #include <asm/processor.h>
43 #include <asm/hw_irq.h>
44 #include <asm/apic.h>
45 #include <asm/idle.h>
46 #include <asm/ipi.h>
47 #include <asm/mce.h>
48 #include <asm/msr.h>
49
50 #include "mce-internal.h"
51
52 static DEFINE_MUTEX(mce_read_mutex);
53
54 #define rcu_dereference_check_mce(p) \
55 rcu_dereference_index_check((p), \
56 rcu_read_lock_sched_held() || \
57 lockdep_is_held(&mce_read_mutex))
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/mce.h>
61
62 int mce_disabled __read_mostly;
63
64 #define MISC_MCELOG_MINOR 227
65
66 #define SPINUNIT 100 /* 100ns */
67
68 atomic_t mce_entry;
69
70 DEFINE_PER_CPU(unsigned, mce_exception_count);
71
72 /*
73 * Tolerant levels:
74 * 0: always panic on uncorrected errors, log corrected errors
75 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
76 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
77 * 3: never panic or SIGBUS, log all errors (for testing only)
78 */
79 static int tolerant __read_mostly = 1;
80 static int banks __read_mostly;
81 static int rip_msr __read_mostly;
82 static int mce_bootlog __read_mostly = -1;
83 static int monarch_timeout __read_mostly = -1;
84 static int mce_panic_timeout __read_mostly;
85 static int mce_dont_log_ce __read_mostly;
86 int mce_cmci_disabled __read_mostly;
87 int mce_ignore_ce __read_mostly;
88 int mce_ser __read_mostly;
89
90 struct mce_bank *mce_banks __read_mostly;
91
92 /* User mode helper program triggered by machine check event */
93 static unsigned long mce_need_notify;
94 static char mce_helper[128];
95 static char *mce_helper_argv[2] = { mce_helper, NULL };
96
97 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static int cpu_missing;
100
101 /*
102 * CPU/chipset specific EDAC code can register a notifier call here to print
103 * MCE errors in a human-readable form.
104 */
105 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
106 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
107
default_decode_mce(struct notifier_block * nb,unsigned long val,void * data)108 static int default_decode_mce(struct notifier_block *nb, unsigned long val,
109 void *data)
110 {
111 pr_emerg(HW_ERR "No human readable MCE decoding support on this CPU type.\n");
112 pr_emerg(HW_ERR "Run the message through 'mcelog --ascii' to decode.\n");
113
114 return NOTIFY_STOP;
115 }
116
117 static struct notifier_block mce_dec_nb = {
118 .notifier_call = default_decode_mce,
119 .priority = -1,
120 };
121
122 /* MCA banks polled by the period polling timer for corrected events */
123 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
124 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
125 };
126
127 static DEFINE_PER_CPU(struct work_struct, mce_work);
128
129 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)130 void mce_setup(struct mce *m)
131 {
132 memset(m, 0, sizeof(struct mce));
133 m->cpu = m->extcpu = smp_processor_id();
134 rdtscll(m->tsc);
135 /* We hope get_seconds stays lockless */
136 m->time = get_seconds();
137 m->cpuvendor = boot_cpu_data.x86_vendor;
138 m->cpuid = cpuid_eax(1);
139 #ifdef CONFIG_SMP
140 m->socketid = cpu_data(m->extcpu).phys_proc_id;
141 #endif
142 m->apicid = cpu_data(m->extcpu).initial_apicid;
143 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
144 }
145
146 DEFINE_PER_CPU(struct mce, injectm);
147 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
148
149 /*
150 * Lockless MCE logging infrastructure.
151 * This avoids deadlocks on printk locks without having to break locks. Also
152 * separate MCEs from kernel messages to avoid bogus bug reports.
153 */
154
155 static struct mce_log mcelog = {
156 .signature = MCE_LOG_SIGNATURE,
157 .len = MCE_LOG_LEN,
158 .recordlen = sizeof(struct mce),
159 };
160
mce_log(struct mce * mce)161 void mce_log(struct mce *mce)
162 {
163 unsigned next, entry;
164
165 /* Emit the trace record: */
166 trace_mce_record(mce);
167
168 mce->finished = 0;
169 wmb();
170 for (;;) {
171 entry = rcu_dereference_check_mce(mcelog.next);
172 for (;;) {
173 /*
174 * If edac_mce is enabled, it will check the error type
175 * and will process it, if it is a known error.
176 * Otherwise, the error will be sent through mcelog
177 * interface
178 */
179 if (edac_mce_parse(mce))
180 return;
181
182 /*
183 * When the buffer fills up discard new entries.
184 * Assume that the earlier errors are the more
185 * interesting ones:
186 */
187 if (entry >= MCE_LOG_LEN) {
188 set_bit(MCE_OVERFLOW,
189 (unsigned long *)&mcelog.flags);
190 return;
191 }
192 /* Old left over entry. Skip: */
193 if (mcelog.entry[entry].finished) {
194 entry++;
195 continue;
196 }
197 break;
198 }
199 smp_rmb();
200 next = entry + 1;
201 if (cmpxchg(&mcelog.next, entry, next) == entry)
202 break;
203 }
204 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
205 wmb();
206 mcelog.entry[entry].finished = 1;
207 wmb();
208
209 mce->finished = 1;
210 set_bit(0, &mce_need_notify);
211 }
212
print_mce(struct mce * m)213 static void print_mce(struct mce *m)
214 {
215 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
216 m->extcpu, m->mcgstatus, m->bank, m->status);
217
218 if (m->ip) {
219 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
220 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
221 m->cs, m->ip);
222
223 if (m->cs == __KERNEL_CS)
224 print_symbol("{%s}", m->ip);
225 pr_cont("\n");
226 }
227
228 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
229 if (m->addr)
230 pr_cont("ADDR %llx ", m->addr);
231 if (m->misc)
232 pr_cont("MISC %llx ", m->misc);
233
234 pr_cont("\n");
235 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
236 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
237
238 /*
239 * Print out human-readable details about the MCE error,
240 * (if the CPU has an implementation for that)
241 */
242 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
243 }
244
245 #define PANIC_TIMEOUT 5 /* 5 seconds */
246
247 static atomic_t mce_paniced;
248
249 static int fake_panic;
250 static atomic_t mce_fake_paniced;
251
252 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)253 static void wait_for_panic(void)
254 {
255 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
256
257 preempt_disable();
258 local_irq_enable();
259 while (timeout-- > 0)
260 udelay(1);
261 if (panic_timeout == 0)
262 panic_timeout = mce_panic_timeout;
263 panic("Panicing machine check CPU died");
264 }
265
mce_panic(char * msg,struct mce * final,char * exp)266 static void mce_panic(char *msg, struct mce *final, char *exp)
267 {
268 int i, apei_err = 0;
269
270 if (!fake_panic) {
271 /*
272 * Make sure only one CPU runs in machine check panic
273 */
274 if (atomic_inc_return(&mce_paniced) > 1)
275 wait_for_panic();
276 barrier();
277
278 bust_spinlocks(1);
279 console_verbose();
280 } else {
281 /* Don't log too much for fake panic */
282 if (atomic_inc_return(&mce_fake_paniced) > 1)
283 return;
284 }
285 /* First print corrected ones that are still unlogged */
286 for (i = 0; i < MCE_LOG_LEN; i++) {
287 struct mce *m = &mcelog.entry[i];
288 if (!(m->status & MCI_STATUS_VAL))
289 continue;
290 if (!(m->status & MCI_STATUS_UC)) {
291 print_mce(m);
292 if (!apei_err)
293 apei_err = apei_write_mce(m);
294 }
295 }
296 /* Now print uncorrected but with the final one last */
297 for (i = 0; i < MCE_LOG_LEN; i++) {
298 struct mce *m = &mcelog.entry[i];
299 if (!(m->status & MCI_STATUS_VAL))
300 continue;
301 if (!(m->status & MCI_STATUS_UC))
302 continue;
303 if (!final || memcmp(m, final, sizeof(struct mce))) {
304 print_mce(m);
305 if (!apei_err)
306 apei_err = apei_write_mce(m);
307 }
308 }
309 if (final) {
310 print_mce(final);
311 if (!apei_err)
312 apei_err = apei_write_mce(final);
313 }
314 if (cpu_missing)
315 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
316 if (exp)
317 pr_emerg(HW_ERR "Machine check: %s\n", exp);
318 if (!fake_panic) {
319 if (panic_timeout == 0)
320 panic_timeout = mce_panic_timeout;
321 panic(msg);
322 } else
323 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
324 }
325
326 /* Support code for software error injection */
327
msr_to_offset(u32 msr)328 static int msr_to_offset(u32 msr)
329 {
330 unsigned bank = __this_cpu_read(injectm.bank);
331
332 if (msr == rip_msr)
333 return offsetof(struct mce, ip);
334 if (msr == MSR_IA32_MCx_STATUS(bank))
335 return offsetof(struct mce, status);
336 if (msr == MSR_IA32_MCx_ADDR(bank))
337 return offsetof(struct mce, addr);
338 if (msr == MSR_IA32_MCx_MISC(bank))
339 return offsetof(struct mce, misc);
340 if (msr == MSR_IA32_MCG_STATUS)
341 return offsetof(struct mce, mcgstatus);
342 return -1;
343 }
344
345 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)346 static u64 mce_rdmsrl(u32 msr)
347 {
348 u64 v;
349
350 if (__this_cpu_read(injectm.finished)) {
351 int offset = msr_to_offset(msr);
352
353 if (offset < 0)
354 return 0;
355 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
356 }
357
358 if (rdmsrl_safe(msr, &v)) {
359 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
360 /*
361 * Return zero in case the access faulted. This should
362 * not happen normally but can happen if the CPU does
363 * something weird, or if the code is buggy.
364 */
365 v = 0;
366 }
367
368 return v;
369 }
370
mce_wrmsrl(u32 msr,u64 v)371 static void mce_wrmsrl(u32 msr, u64 v)
372 {
373 if (__this_cpu_read(injectm.finished)) {
374 int offset = msr_to_offset(msr);
375
376 if (offset >= 0)
377 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
378 return;
379 }
380 wrmsrl(msr, v);
381 }
382
383 /*
384 * Simple lockless ring to communicate PFNs from the exception handler with the
385 * process context work function. This is vastly simplified because there's
386 * only a single reader and a single writer.
387 */
388 #define MCE_RING_SIZE 16 /* we use one entry less */
389
390 struct mce_ring {
391 unsigned short start;
392 unsigned short end;
393 unsigned long ring[MCE_RING_SIZE];
394 };
395 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
396
397 /* Runs with CPU affinity in workqueue */
mce_ring_empty(void)398 static int mce_ring_empty(void)
399 {
400 struct mce_ring *r = &__get_cpu_var(mce_ring);
401
402 return r->start == r->end;
403 }
404
mce_ring_get(unsigned long * pfn)405 static int mce_ring_get(unsigned long *pfn)
406 {
407 struct mce_ring *r;
408 int ret = 0;
409
410 *pfn = 0;
411 get_cpu();
412 r = &__get_cpu_var(mce_ring);
413 if (r->start == r->end)
414 goto out;
415 *pfn = r->ring[r->start];
416 r->start = (r->start + 1) % MCE_RING_SIZE;
417 ret = 1;
418 out:
419 put_cpu();
420 return ret;
421 }
422
423 /* Always runs in MCE context with preempt off */
mce_ring_add(unsigned long pfn)424 static int mce_ring_add(unsigned long pfn)
425 {
426 struct mce_ring *r = &__get_cpu_var(mce_ring);
427 unsigned next;
428
429 next = (r->end + 1) % MCE_RING_SIZE;
430 if (next == r->start)
431 return -1;
432 r->ring[r->end] = pfn;
433 wmb();
434 r->end = next;
435 return 0;
436 }
437
mce_available(struct cpuinfo_x86 * c)438 int mce_available(struct cpuinfo_x86 *c)
439 {
440 if (mce_disabled)
441 return 0;
442 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
443 }
444
mce_schedule_work(void)445 static void mce_schedule_work(void)
446 {
447 if (!mce_ring_empty()) {
448 struct work_struct *work = &__get_cpu_var(mce_work);
449 if (!work_pending(work))
450 schedule_work(work);
451 }
452 }
453
454 /*
455 * Get the address of the instruction at the time of the machine check
456 * error.
457 */
mce_get_rip(struct mce * m,struct pt_regs * regs)458 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
459 {
460
461 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
462 m->ip = regs->ip;
463 m->cs = regs->cs;
464 } else {
465 m->ip = 0;
466 m->cs = 0;
467 }
468 if (rip_msr)
469 m->ip = mce_rdmsrl(rip_msr);
470 }
471
472 #ifdef CONFIG_X86_LOCAL_APIC
473 /*
474 * Called after interrupts have been reenabled again
475 * when a MCE happened during an interrupts off region
476 * in the kernel.
477 */
smp_mce_self_interrupt(struct pt_regs * regs)478 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
479 {
480 ack_APIC_irq();
481 exit_idle();
482 irq_enter();
483 mce_notify_irq();
484 mce_schedule_work();
485 irq_exit();
486 }
487 #endif
488
mce_report_event(struct pt_regs * regs)489 static void mce_report_event(struct pt_regs *regs)
490 {
491 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
492 mce_notify_irq();
493 /*
494 * Triggering the work queue here is just an insurance
495 * policy in case the syscall exit notify handler
496 * doesn't run soon enough or ends up running on the
497 * wrong CPU (can happen when audit sleeps)
498 */
499 mce_schedule_work();
500 return;
501 }
502
503 #ifdef CONFIG_X86_LOCAL_APIC
504 /*
505 * Without APIC do not notify. The event will be picked
506 * up eventually.
507 */
508 if (!cpu_has_apic)
509 return;
510
511 /*
512 * When interrupts are disabled we cannot use
513 * kernel services safely. Trigger an self interrupt
514 * through the APIC to instead do the notification
515 * after interrupts are reenabled again.
516 */
517 apic->send_IPI_self(MCE_SELF_VECTOR);
518
519 /*
520 * Wait for idle afterwards again so that we don't leave the
521 * APIC in a non idle state because the normal APIC writes
522 * cannot exclude us.
523 */
524 apic_wait_icr_idle();
525 #endif
526 }
527
528 DEFINE_PER_CPU(unsigned, mce_poll_count);
529
530 /*
531 * Poll for corrected events or events that happened before reset.
532 * Those are just logged through /dev/mcelog.
533 *
534 * This is executed in standard interrupt context.
535 *
536 * Note: spec recommends to panic for fatal unsignalled
537 * errors here. However this would be quite problematic --
538 * we would need to reimplement the Monarch handling and
539 * it would mess up the exclusion between exception handler
540 * and poll hander -- * so we skip this for now.
541 * These cases should not happen anyways, or only when the CPU
542 * is already totally * confused. In this case it's likely it will
543 * not fully execute the machine check handler either.
544 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)545 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
546 {
547 struct mce m;
548 int i;
549
550 percpu_inc(mce_poll_count);
551
552 mce_setup(&m);
553
554 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
555 for (i = 0; i < banks; i++) {
556 if (!mce_banks[i].ctl || !test_bit(i, *b))
557 continue;
558
559 m.misc = 0;
560 m.addr = 0;
561 m.bank = i;
562 m.tsc = 0;
563
564 barrier();
565 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
566 if (!(m.status & MCI_STATUS_VAL))
567 continue;
568
569 /*
570 * Uncorrected or signalled events are handled by the exception
571 * handler when it is enabled, so don't process those here.
572 *
573 * TBD do the same check for MCI_STATUS_EN here?
574 */
575 if (!(flags & MCP_UC) &&
576 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
577 continue;
578
579 if (m.status & MCI_STATUS_MISCV)
580 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
581 if (m.status & MCI_STATUS_ADDRV)
582 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
583
584 if (!(flags & MCP_TIMESTAMP))
585 m.tsc = 0;
586 /*
587 * Don't get the IP here because it's unlikely to
588 * have anything to do with the actual error location.
589 */
590 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
591 mce_log(&m);
592 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, &m);
593 add_taint(TAINT_MACHINE_CHECK);
594 }
595
596 /*
597 * Clear state for this bank.
598 */
599 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
600 }
601
602 /*
603 * Don't clear MCG_STATUS here because it's only defined for
604 * exceptions.
605 */
606
607 sync_core();
608 }
609 EXPORT_SYMBOL_GPL(machine_check_poll);
610
611 /*
612 * Do a quick check if any of the events requires a panic.
613 * This decides if we keep the events around or clear them.
614 */
mce_no_way_out(struct mce * m,char ** msg)615 static int mce_no_way_out(struct mce *m, char **msg)
616 {
617 int i;
618
619 for (i = 0; i < banks; i++) {
620 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
621 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
622 return 1;
623 }
624 return 0;
625 }
626
627 /*
628 * Variable to establish order between CPUs while scanning.
629 * Each CPU spins initially until executing is equal its number.
630 */
631 static atomic_t mce_executing;
632
633 /*
634 * Defines order of CPUs on entry. First CPU becomes Monarch.
635 */
636 static atomic_t mce_callin;
637
638 /*
639 * Check if a timeout waiting for other CPUs happened.
640 */
mce_timed_out(u64 * t)641 static int mce_timed_out(u64 *t)
642 {
643 /*
644 * The others already did panic for some reason.
645 * Bail out like in a timeout.
646 * rmb() to tell the compiler that system_state
647 * might have been modified by someone else.
648 */
649 rmb();
650 if (atomic_read(&mce_paniced))
651 wait_for_panic();
652 if (!monarch_timeout)
653 goto out;
654 if ((s64)*t < SPINUNIT) {
655 /* CHECKME: Make panic default for 1 too? */
656 if (tolerant < 1)
657 mce_panic("Timeout synchronizing machine check over CPUs",
658 NULL, NULL);
659 cpu_missing = 1;
660 return 1;
661 }
662 *t -= SPINUNIT;
663 out:
664 touch_nmi_watchdog();
665 return 0;
666 }
667
668 /*
669 * The Monarch's reign. The Monarch is the CPU who entered
670 * the machine check handler first. It waits for the others to
671 * raise the exception too and then grades them. When any
672 * error is fatal panic. Only then let the others continue.
673 *
674 * The other CPUs entering the MCE handler will be controlled by the
675 * Monarch. They are called Subjects.
676 *
677 * This way we prevent any potential data corruption in a unrecoverable case
678 * and also makes sure always all CPU's errors are examined.
679 *
680 * Also this detects the case of a machine check event coming from outer
681 * space (not detected by any CPUs) In this case some external agent wants
682 * us to shut down, so panic too.
683 *
684 * The other CPUs might still decide to panic if the handler happens
685 * in a unrecoverable place, but in this case the system is in a semi-stable
686 * state and won't corrupt anything by itself. It's ok to let the others
687 * continue for a bit first.
688 *
689 * All the spin loops have timeouts; when a timeout happens a CPU
690 * typically elects itself to be Monarch.
691 */
mce_reign(void)692 static void mce_reign(void)
693 {
694 int cpu;
695 struct mce *m = NULL;
696 int global_worst = 0;
697 char *msg = NULL;
698 char *nmsg = NULL;
699
700 /*
701 * This CPU is the Monarch and the other CPUs have run
702 * through their handlers.
703 * Grade the severity of the errors of all the CPUs.
704 */
705 for_each_possible_cpu(cpu) {
706 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
707 &nmsg);
708 if (severity > global_worst) {
709 msg = nmsg;
710 global_worst = severity;
711 m = &per_cpu(mces_seen, cpu);
712 }
713 }
714
715 /*
716 * Cannot recover? Panic here then.
717 * This dumps all the mces in the log buffer and stops the
718 * other CPUs.
719 */
720 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
721 mce_panic("Fatal Machine check", m, msg);
722
723 /*
724 * For UC somewhere we let the CPU who detects it handle it.
725 * Also must let continue the others, otherwise the handling
726 * CPU could deadlock on a lock.
727 */
728
729 /*
730 * No machine check event found. Must be some external
731 * source or one CPU is hung. Panic.
732 */
733 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
734 mce_panic("Machine check from unknown source", NULL, NULL);
735
736 /*
737 * Now clear all the mces_seen so that they don't reappear on
738 * the next mce.
739 */
740 for_each_possible_cpu(cpu)
741 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
742 }
743
744 static atomic_t global_nwo;
745
746 /*
747 * Start of Monarch synchronization. This waits until all CPUs have
748 * entered the exception handler and then determines if any of them
749 * saw a fatal event that requires panic. Then it executes them
750 * in the entry order.
751 * TBD double check parallel CPU hotunplug
752 */
mce_start(int * no_way_out)753 static int mce_start(int *no_way_out)
754 {
755 int order;
756 int cpus = num_online_cpus();
757 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
758
759 if (!timeout)
760 return -1;
761
762 atomic_add(*no_way_out, &global_nwo);
763 /*
764 * global_nwo should be updated before mce_callin
765 */
766 smp_wmb();
767 order = atomic_inc_return(&mce_callin);
768
769 /*
770 * Wait for everyone.
771 */
772 while (atomic_read(&mce_callin) != cpus) {
773 if (mce_timed_out(&timeout)) {
774 atomic_set(&global_nwo, 0);
775 return -1;
776 }
777 ndelay(SPINUNIT);
778 }
779
780 /*
781 * mce_callin should be read before global_nwo
782 */
783 smp_rmb();
784
785 if (order == 1) {
786 /*
787 * Monarch: Starts executing now, the others wait.
788 */
789 atomic_set(&mce_executing, 1);
790 } else {
791 /*
792 * Subject: Now start the scanning loop one by one in
793 * the original callin order.
794 * This way when there are any shared banks it will be
795 * only seen by one CPU before cleared, avoiding duplicates.
796 */
797 while (atomic_read(&mce_executing) < order) {
798 if (mce_timed_out(&timeout)) {
799 atomic_set(&global_nwo, 0);
800 return -1;
801 }
802 ndelay(SPINUNIT);
803 }
804 }
805
806 /*
807 * Cache the global no_way_out state.
808 */
809 *no_way_out = atomic_read(&global_nwo);
810
811 return order;
812 }
813
814 /*
815 * Synchronize between CPUs after main scanning loop.
816 * This invokes the bulk of the Monarch processing.
817 */
mce_end(int order)818 static int mce_end(int order)
819 {
820 int ret = -1;
821 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
822
823 if (!timeout)
824 goto reset;
825 if (order < 0)
826 goto reset;
827
828 /*
829 * Allow others to run.
830 */
831 atomic_inc(&mce_executing);
832
833 if (order == 1) {
834 /* CHECKME: Can this race with a parallel hotplug? */
835 int cpus = num_online_cpus();
836
837 /*
838 * Monarch: Wait for everyone to go through their scanning
839 * loops.
840 */
841 while (atomic_read(&mce_executing) <= cpus) {
842 if (mce_timed_out(&timeout))
843 goto reset;
844 ndelay(SPINUNIT);
845 }
846
847 mce_reign();
848 barrier();
849 ret = 0;
850 } else {
851 /*
852 * Subject: Wait for Monarch to finish.
853 */
854 while (atomic_read(&mce_executing) != 0) {
855 if (mce_timed_out(&timeout))
856 goto reset;
857 ndelay(SPINUNIT);
858 }
859
860 /*
861 * Don't reset anything. That's done by the Monarch.
862 */
863 return 0;
864 }
865
866 /*
867 * Reset all global state.
868 */
869 reset:
870 atomic_set(&global_nwo, 0);
871 atomic_set(&mce_callin, 0);
872 barrier();
873
874 /*
875 * Let others run again.
876 */
877 atomic_set(&mce_executing, 0);
878 return ret;
879 }
880
881 /*
882 * Check if the address reported by the CPU is in a format we can parse.
883 * It would be possible to add code for most other cases, but all would
884 * be somewhat complicated (e.g. segment offset would require an instruction
885 * parser). So only support physical addresses up to page granuality for now.
886 */
mce_usable_address(struct mce * m)887 static int mce_usable_address(struct mce *m)
888 {
889 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
890 return 0;
891 if ((m->misc & 0x3f) > PAGE_SHIFT)
892 return 0;
893 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
894 return 0;
895 return 1;
896 }
897
mce_clear_state(unsigned long * toclear)898 static void mce_clear_state(unsigned long *toclear)
899 {
900 int i;
901
902 for (i = 0; i < banks; i++) {
903 if (test_bit(i, toclear))
904 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
905 }
906 }
907
908 /*
909 * The actual machine check handler. This only handles real
910 * exceptions when something got corrupted coming in through int 18.
911 *
912 * This is executed in NMI context not subject to normal locking rules. This
913 * implies that most kernel services cannot be safely used. Don't even
914 * think about putting a printk in there!
915 *
916 * On Intel systems this is entered on all CPUs in parallel through
917 * MCE broadcast. However some CPUs might be broken beyond repair,
918 * so be always careful when synchronizing with others.
919 */
do_machine_check(struct pt_regs * regs,long error_code)920 void do_machine_check(struct pt_regs *regs, long error_code)
921 {
922 struct mce m, *final;
923 int i;
924 int worst = 0;
925 int severity;
926 /*
927 * Establish sequential order between the CPUs entering the machine
928 * check handler.
929 */
930 int order;
931 /*
932 * If no_way_out gets set, there is no safe way to recover from this
933 * MCE. If tolerant is cranked up, we'll try anyway.
934 */
935 int no_way_out = 0;
936 /*
937 * If kill_it gets set, there might be a way to recover from this
938 * error.
939 */
940 int kill_it = 0;
941 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
942 char *msg = "Unknown";
943
944 atomic_inc(&mce_entry);
945
946 percpu_inc(mce_exception_count);
947
948 if (notify_die(DIE_NMI, "machine check", regs, error_code,
949 18, SIGKILL) == NOTIFY_STOP)
950 goto out;
951 if (!banks)
952 goto out;
953
954 mce_setup(&m);
955
956 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
957 final = &__get_cpu_var(mces_seen);
958 *final = m;
959
960 no_way_out = mce_no_way_out(&m, &msg);
961
962 barrier();
963
964 /*
965 * When no restart IP must always kill or panic.
966 */
967 if (!(m.mcgstatus & MCG_STATUS_RIPV))
968 kill_it = 1;
969
970 /*
971 * Go through all the banks in exclusion of the other CPUs.
972 * This way we don't report duplicated events on shared banks
973 * because the first one to see it will clear it.
974 */
975 order = mce_start(&no_way_out);
976 for (i = 0; i < banks; i++) {
977 __clear_bit(i, toclear);
978 if (!mce_banks[i].ctl)
979 continue;
980
981 m.misc = 0;
982 m.addr = 0;
983 m.bank = i;
984
985 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
986 if ((m.status & MCI_STATUS_VAL) == 0)
987 continue;
988
989 /*
990 * Non uncorrected or non signaled errors are handled by
991 * machine_check_poll. Leave them alone, unless this panics.
992 */
993 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
994 !no_way_out)
995 continue;
996
997 /*
998 * Set taint even when machine check was not enabled.
999 */
1000 add_taint(TAINT_MACHINE_CHECK);
1001
1002 severity = mce_severity(&m, tolerant, NULL);
1003
1004 /*
1005 * When machine check was for corrected handler don't touch,
1006 * unless we're panicing.
1007 */
1008 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1009 continue;
1010 __set_bit(i, toclear);
1011 if (severity == MCE_NO_SEVERITY) {
1012 /*
1013 * Machine check event was not enabled. Clear, but
1014 * ignore.
1015 */
1016 continue;
1017 }
1018
1019 /*
1020 * Kill on action required.
1021 */
1022 if (severity == MCE_AR_SEVERITY)
1023 kill_it = 1;
1024
1025 if (m.status & MCI_STATUS_MISCV)
1026 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1027 if (m.status & MCI_STATUS_ADDRV)
1028 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1029
1030 /*
1031 * Action optional error. Queue address for later processing.
1032 * When the ring overflows we just ignore the AO error.
1033 * RED-PEN add some logging mechanism when
1034 * usable_address or mce_add_ring fails.
1035 * RED-PEN don't ignore overflow for tolerant == 0
1036 */
1037 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1038 mce_ring_add(m.addr >> PAGE_SHIFT);
1039
1040 mce_get_rip(&m, regs);
1041 mce_log(&m);
1042
1043 if (severity > worst) {
1044 *final = m;
1045 worst = severity;
1046 }
1047 }
1048
1049 if (!no_way_out)
1050 mce_clear_state(toclear);
1051
1052 /*
1053 * Do most of the synchronization with other CPUs.
1054 * When there's any problem use only local no_way_out state.
1055 */
1056 if (mce_end(order) < 0)
1057 no_way_out = worst >= MCE_PANIC_SEVERITY;
1058
1059 /*
1060 * If we have decided that we just CAN'T continue, and the user
1061 * has not set tolerant to an insane level, give up and die.
1062 *
1063 * This is mainly used in the case when the system doesn't
1064 * support MCE broadcasting or it has been disabled.
1065 */
1066 if (no_way_out && tolerant < 3)
1067 mce_panic("Fatal machine check on current CPU", final, msg);
1068
1069 /*
1070 * If the error seems to be unrecoverable, something should be
1071 * done. Try to kill as little as possible. If we can kill just
1072 * one task, do that. If the user has set the tolerance very
1073 * high, don't try to do anything at all.
1074 */
1075
1076 if (kill_it && tolerant < 3)
1077 force_sig(SIGBUS, current);
1078
1079 /* notify userspace ASAP */
1080 set_thread_flag(TIF_MCE_NOTIFY);
1081
1082 if (worst > 0)
1083 mce_report_event(regs);
1084 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1085 out:
1086 atomic_dec(&mce_entry);
1087 sync_core();
1088 }
1089 EXPORT_SYMBOL_GPL(do_machine_check);
1090
1091 /* dummy to break dependency. actual code is in mm/memory-failure.c */
memory_failure(unsigned long pfn,int vector)1092 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1093 {
1094 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1095 }
1096
1097 /*
1098 * Called after mce notification in process context. This code
1099 * is allowed to sleep. Call the high level VM handler to process
1100 * any corrupted pages.
1101 * Assume that the work queue code only calls this one at a time
1102 * per CPU.
1103 * Note we don't disable preemption, so this code might run on the wrong
1104 * CPU. In this case the event is picked up by the scheduled work queue.
1105 * This is merely a fast path to expedite processing in some common
1106 * cases.
1107 */
mce_notify_process(void)1108 void mce_notify_process(void)
1109 {
1110 unsigned long pfn;
1111 mce_notify_irq();
1112 while (mce_ring_get(&pfn))
1113 memory_failure(pfn, MCE_VECTOR);
1114 }
1115
mce_process_work(struct work_struct * dummy)1116 static void mce_process_work(struct work_struct *dummy)
1117 {
1118 mce_notify_process();
1119 }
1120
1121 #ifdef CONFIG_X86_MCE_INTEL
1122 /***
1123 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1124 * @cpu: The CPU on which the event occurred.
1125 * @status: Event status information
1126 *
1127 * This function should be called by the thermal interrupt after the
1128 * event has been processed and the decision was made to log the event
1129 * further.
1130 *
1131 * The status parameter will be saved to the 'status' field of 'struct mce'
1132 * and historically has been the register value of the
1133 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1134 */
mce_log_therm_throt_event(__u64 status)1135 void mce_log_therm_throt_event(__u64 status)
1136 {
1137 struct mce m;
1138
1139 mce_setup(&m);
1140 m.bank = MCE_THERMAL_BANK;
1141 m.status = status;
1142 mce_log(&m);
1143 }
1144 #endif /* CONFIG_X86_MCE_INTEL */
1145
1146 /*
1147 * Periodic polling timer for "silent" machine check errors. If the
1148 * poller finds an MCE, poll 2x faster. When the poller finds no more
1149 * errors, poll 2x slower (up to check_interval seconds).
1150 */
1151 static int check_interval = 5 * 60; /* 5 minutes */
1152
1153 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1154 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1155
mce_start_timer(unsigned long data)1156 static void mce_start_timer(unsigned long data)
1157 {
1158 struct timer_list *t = &per_cpu(mce_timer, data);
1159 int *n;
1160
1161 WARN_ON(smp_processor_id() != data);
1162
1163 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1164 machine_check_poll(MCP_TIMESTAMP,
1165 &__get_cpu_var(mce_poll_banks));
1166 }
1167
1168 /*
1169 * Alert userspace if needed. If we logged an MCE, reduce the
1170 * polling interval, otherwise increase the polling interval.
1171 */
1172 n = &__get_cpu_var(mce_next_interval);
1173 if (mce_notify_irq())
1174 *n = max(*n/2, HZ/100);
1175 else
1176 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1177
1178 t->expires = jiffies + *n;
1179 add_timer_on(t, smp_processor_id());
1180 }
1181
mce_do_trigger(struct work_struct * work)1182 static void mce_do_trigger(struct work_struct *work)
1183 {
1184 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1185 }
1186
1187 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1188
1189 /*
1190 * Notify the user(s) about new machine check events.
1191 * Can be called from interrupt context, but not from machine check/NMI
1192 * context.
1193 */
mce_notify_irq(void)1194 int mce_notify_irq(void)
1195 {
1196 /* Not more than two messages every minute */
1197 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1198
1199 clear_thread_flag(TIF_MCE_NOTIFY);
1200
1201 if (test_and_clear_bit(0, &mce_need_notify)) {
1202 wake_up_interruptible(&mce_wait);
1203
1204 /*
1205 * There is no risk of missing notifications because
1206 * work_pending is always cleared before the function is
1207 * executed.
1208 */
1209 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1210 schedule_work(&mce_trigger_work);
1211
1212 if (__ratelimit(&ratelimit))
1213 pr_info(HW_ERR "Machine check events logged\n");
1214
1215 return 1;
1216 }
1217 return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(mce_notify_irq);
1220
__mcheck_cpu_mce_banks_init(void)1221 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1222 {
1223 int i;
1224
1225 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1226 if (!mce_banks)
1227 return -ENOMEM;
1228 for (i = 0; i < banks; i++) {
1229 struct mce_bank *b = &mce_banks[i];
1230
1231 b->ctl = -1ULL;
1232 b->init = 1;
1233 }
1234 return 0;
1235 }
1236
1237 /*
1238 * Initialize Machine Checks for a CPU.
1239 */
__mcheck_cpu_cap_init(void)1240 static int __cpuinit __mcheck_cpu_cap_init(void)
1241 {
1242 unsigned b;
1243 u64 cap;
1244
1245 rdmsrl(MSR_IA32_MCG_CAP, cap);
1246
1247 b = cap & MCG_BANKCNT_MASK;
1248 if (!banks)
1249 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1250
1251 if (b > MAX_NR_BANKS) {
1252 printk(KERN_WARNING
1253 "MCE: Using only %u machine check banks out of %u\n",
1254 MAX_NR_BANKS, b);
1255 b = MAX_NR_BANKS;
1256 }
1257
1258 /* Don't support asymmetric configurations today */
1259 WARN_ON(banks != 0 && b != banks);
1260 banks = b;
1261 if (!mce_banks) {
1262 int err = __mcheck_cpu_mce_banks_init();
1263
1264 if (err)
1265 return err;
1266 }
1267
1268 /* Use accurate RIP reporting if available. */
1269 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1270 rip_msr = MSR_IA32_MCG_EIP;
1271
1272 if (cap & MCG_SER_P)
1273 mce_ser = 1;
1274
1275 return 0;
1276 }
1277
__mcheck_cpu_init_generic(void)1278 static void __mcheck_cpu_init_generic(void)
1279 {
1280 mce_banks_t all_banks;
1281 u64 cap;
1282 int i;
1283
1284 /*
1285 * Log the machine checks left over from the previous reset.
1286 */
1287 bitmap_fill(all_banks, MAX_NR_BANKS);
1288 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1289
1290 set_in_cr4(X86_CR4_MCE);
1291
1292 rdmsrl(MSR_IA32_MCG_CAP, cap);
1293 if (cap & MCG_CTL_P)
1294 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1295
1296 for (i = 0; i < banks; i++) {
1297 struct mce_bank *b = &mce_banks[i];
1298
1299 if (!b->init)
1300 continue;
1301 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1302 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1303 }
1304 }
1305
1306 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1307 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1308 {
1309 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1310 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1311 return -EOPNOTSUPP;
1312 }
1313
1314 /* This should be disabled by the BIOS, but isn't always */
1315 if (c->x86_vendor == X86_VENDOR_AMD) {
1316 if (c->x86 == 15 && banks > 4) {
1317 /*
1318 * disable GART TBL walk error reporting, which
1319 * trips off incorrectly with the IOMMU & 3ware
1320 * & Cerberus:
1321 */
1322 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1323 }
1324 if (c->x86 <= 17 && mce_bootlog < 0) {
1325 /*
1326 * Lots of broken BIOS around that don't clear them
1327 * by default and leave crap in there. Don't log:
1328 */
1329 mce_bootlog = 0;
1330 }
1331 /*
1332 * Various K7s with broken bank 0 around. Always disable
1333 * by default.
1334 */
1335 if (c->x86 == 6 && banks > 0)
1336 mce_banks[0].ctl = 0;
1337 }
1338
1339 if (c->x86_vendor == X86_VENDOR_INTEL) {
1340 /*
1341 * SDM documents that on family 6 bank 0 should not be written
1342 * because it aliases to another special BIOS controlled
1343 * register.
1344 * But it's not aliased anymore on model 0x1a+
1345 * Don't ignore bank 0 completely because there could be a
1346 * valid event later, merely don't write CTL0.
1347 */
1348
1349 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1350 mce_banks[0].init = 0;
1351
1352 /*
1353 * All newer Intel systems support MCE broadcasting. Enable
1354 * synchronization with a one second timeout.
1355 */
1356 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1357 monarch_timeout < 0)
1358 monarch_timeout = USEC_PER_SEC;
1359
1360 /*
1361 * There are also broken BIOSes on some Pentium M and
1362 * earlier systems:
1363 */
1364 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1365 mce_bootlog = 0;
1366 }
1367 if (monarch_timeout < 0)
1368 monarch_timeout = 0;
1369 if (mce_bootlog != 0)
1370 mce_panic_timeout = 30;
1371
1372 return 0;
1373 }
1374
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1375 static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1376 {
1377 if (c->x86 != 5)
1378 return;
1379 switch (c->x86_vendor) {
1380 case X86_VENDOR_INTEL:
1381 intel_p5_mcheck_init(c);
1382 break;
1383 case X86_VENDOR_CENTAUR:
1384 winchip_mcheck_init(c);
1385 break;
1386 }
1387 }
1388
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1389 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1390 {
1391 switch (c->x86_vendor) {
1392 case X86_VENDOR_INTEL:
1393 mce_intel_feature_init(c);
1394 break;
1395 case X86_VENDOR_AMD:
1396 mce_amd_feature_init(c);
1397 break;
1398 default:
1399 break;
1400 }
1401 }
1402
__mcheck_cpu_init_timer(void)1403 static void __mcheck_cpu_init_timer(void)
1404 {
1405 struct timer_list *t = &__get_cpu_var(mce_timer);
1406 int *n = &__get_cpu_var(mce_next_interval);
1407
1408 setup_timer(t, mce_start_timer, smp_processor_id());
1409
1410 if (mce_ignore_ce)
1411 return;
1412
1413 *n = check_interval * HZ;
1414 if (!*n)
1415 return;
1416 t->expires = round_jiffies(jiffies + *n);
1417 add_timer_on(t, smp_processor_id());
1418 }
1419
1420 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1421 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1422 {
1423 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1424 smp_processor_id());
1425 }
1426
1427 /* Call the installed machine check handler for this CPU setup. */
1428 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1429 unexpected_machine_check;
1430
1431 /*
1432 * Called for each booted CPU to set up machine checks.
1433 * Must be called with preempt off:
1434 */
mcheck_cpu_init(struct cpuinfo_x86 * c)1435 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1436 {
1437 if (mce_disabled)
1438 return;
1439
1440 __mcheck_cpu_ancient_init(c);
1441
1442 if (!mce_available(c))
1443 return;
1444
1445 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1446 mce_disabled = 1;
1447 return;
1448 }
1449
1450 machine_check_vector = do_machine_check;
1451
1452 __mcheck_cpu_init_generic();
1453 __mcheck_cpu_init_vendor(c);
1454 __mcheck_cpu_init_timer();
1455 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1456
1457 }
1458
1459 /*
1460 * Character device to read and clear the MCE log.
1461 */
1462
1463 static DEFINE_SPINLOCK(mce_state_lock);
1464 static int open_count; /* #times opened */
1465 static int open_exclu; /* already open exclusive? */
1466
mce_open(struct inode * inode,struct file * file)1467 static int mce_open(struct inode *inode, struct file *file)
1468 {
1469 spin_lock(&mce_state_lock);
1470
1471 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1472 spin_unlock(&mce_state_lock);
1473
1474 return -EBUSY;
1475 }
1476
1477 if (file->f_flags & O_EXCL)
1478 open_exclu = 1;
1479 open_count++;
1480
1481 spin_unlock(&mce_state_lock);
1482
1483 return nonseekable_open(inode, file);
1484 }
1485
mce_release(struct inode * inode,struct file * file)1486 static int mce_release(struct inode *inode, struct file *file)
1487 {
1488 spin_lock(&mce_state_lock);
1489
1490 open_count--;
1491 open_exclu = 0;
1492
1493 spin_unlock(&mce_state_lock);
1494
1495 return 0;
1496 }
1497
collect_tscs(void * data)1498 static void collect_tscs(void *data)
1499 {
1500 unsigned long *cpu_tsc = (unsigned long *)data;
1501
1502 rdtscll(cpu_tsc[smp_processor_id()]);
1503 }
1504
1505 static int mce_apei_read_done;
1506
1507 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
__mce_read_apei(char __user ** ubuf,size_t usize)1508 static int __mce_read_apei(char __user **ubuf, size_t usize)
1509 {
1510 int rc;
1511 u64 record_id;
1512 struct mce m;
1513
1514 if (usize < sizeof(struct mce))
1515 return -EINVAL;
1516
1517 rc = apei_read_mce(&m, &record_id);
1518 /* Error or no more MCE record */
1519 if (rc <= 0) {
1520 mce_apei_read_done = 1;
1521 return rc;
1522 }
1523 rc = -EFAULT;
1524 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1525 return rc;
1526 /*
1527 * In fact, we should have cleared the record after that has
1528 * been flushed to the disk or sent to network in
1529 * /sbin/mcelog, but we have no interface to support that now,
1530 * so just clear it to avoid duplication.
1531 */
1532 rc = apei_clear_mce(record_id);
1533 if (rc) {
1534 mce_apei_read_done = 1;
1535 return rc;
1536 }
1537 *ubuf += sizeof(struct mce);
1538
1539 return 0;
1540 }
1541
mce_read(struct file * filp,char __user * ubuf,size_t usize,loff_t * off)1542 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1543 loff_t *off)
1544 {
1545 char __user *buf = ubuf;
1546 unsigned long *cpu_tsc;
1547 unsigned prev, next;
1548 int i, err;
1549
1550 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1551 if (!cpu_tsc)
1552 return -ENOMEM;
1553
1554 mutex_lock(&mce_read_mutex);
1555
1556 if (!mce_apei_read_done) {
1557 err = __mce_read_apei(&buf, usize);
1558 if (err || buf != ubuf)
1559 goto out;
1560 }
1561
1562 next = rcu_dereference_check_mce(mcelog.next);
1563
1564 /* Only supports full reads right now */
1565 err = -EINVAL;
1566 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1567 goto out;
1568
1569 err = 0;
1570 prev = 0;
1571 do {
1572 for (i = prev; i < next; i++) {
1573 unsigned long start = jiffies;
1574
1575 while (!mcelog.entry[i].finished) {
1576 if (time_after_eq(jiffies, start + 2)) {
1577 memset(mcelog.entry + i, 0,
1578 sizeof(struct mce));
1579 goto timeout;
1580 }
1581 cpu_relax();
1582 }
1583 smp_rmb();
1584 err |= copy_to_user(buf, mcelog.entry + i,
1585 sizeof(struct mce));
1586 buf += sizeof(struct mce);
1587 timeout:
1588 ;
1589 }
1590
1591 memset(mcelog.entry + prev, 0,
1592 (next - prev) * sizeof(struct mce));
1593 prev = next;
1594 next = cmpxchg(&mcelog.next, prev, 0);
1595 } while (next != prev);
1596
1597 synchronize_sched();
1598
1599 /*
1600 * Collect entries that were still getting written before the
1601 * synchronize.
1602 */
1603 on_each_cpu(collect_tscs, cpu_tsc, 1);
1604
1605 for (i = next; i < MCE_LOG_LEN; i++) {
1606 if (mcelog.entry[i].finished &&
1607 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1608 err |= copy_to_user(buf, mcelog.entry+i,
1609 sizeof(struct mce));
1610 smp_rmb();
1611 buf += sizeof(struct mce);
1612 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1613 }
1614 }
1615
1616 if (err)
1617 err = -EFAULT;
1618
1619 out:
1620 mutex_unlock(&mce_read_mutex);
1621 kfree(cpu_tsc);
1622
1623 return err ? err : buf - ubuf;
1624 }
1625
mce_poll(struct file * file,poll_table * wait)1626 static unsigned int mce_poll(struct file *file, poll_table *wait)
1627 {
1628 poll_wait(file, &mce_wait, wait);
1629 if (rcu_access_index(mcelog.next))
1630 return POLLIN | POLLRDNORM;
1631 if (!mce_apei_read_done && apei_check_mce())
1632 return POLLIN | POLLRDNORM;
1633 return 0;
1634 }
1635
mce_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1636 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1637 {
1638 int __user *p = (int __user *)arg;
1639
1640 if (!capable(CAP_SYS_ADMIN))
1641 return -EPERM;
1642
1643 switch (cmd) {
1644 case MCE_GET_RECORD_LEN:
1645 return put_user(sizeof(struct mce), p);
1646 case MCE_GET_LOG_LEN:
1647 return put_user(MCE_LOG_LEN, p);
1648 case MCE_GETCLEAR_FLAGS: {
1649 unsigned flags;
1650
1651 do {
1652 flags = mcelog.flags;
1653 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1654
1655 return put_user(flags, p);
1656 }
1657 default:
1658 return -ENOTTY;
1659 }
1660 }
1661
1662 /* Modified in mce-inject.c, so not static or const */
1663 struct file_operations mce_chrdev_ops = {
1664 .open = mce_open,
1665 .release = mce_release,
1666 .read = mce_read,
1667 .poll = mce_poll,
1668 .unlocked_ioctl = mce_ioctl,
1669 .llseek = no_llseek,
1670 };
1671 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1672
1673 static struct miscdevice mce_log_device = {
1674 MISC_MCELOG_MINOR,
1675 "mcelog",
1676 &mce_chrdev_ops,
1677 };
1678
1679 /*
1680 * mce=off Disables machine check
1681 * mce=no_cmci Disables CMCI
1682 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1683 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1684 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1685 * monarchtimeout is how long to wait for other CPUs on machine
1686 * check, or 0 to not wait
1687 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1688 * mce=nobootlog Don't log MCEs from before booting.
1689 */
mcheck_enable(char * str)1690 static int __init mcheck_enable(char *str)
1691 {
1692 if (*str == 0) {
1693 enable_p5_mce();
1694 return 1;
1695 }
1696 if (*str == '=')
1697 str++;
1698 if (!strcmp(str, "off"))
1699 mce_disabled = 1;
1700 else if (!strcmp(str, "no_cmci"))
1701 mce_cmci_disabled = 1;
1702 else if (!strcmp(str, "dont_log_ce"))
1703 mce_dont_log_ce = 1;
1704 else if (!strcmp(str, "ignore_ce"))
1705 mce_ignore_ce = 1;
1706 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1707 mce_bootlog = (str[0] == 'b');
1708 else if (isdigit(str[0])) {
1709 get_option(&str, &tolerant);
1710 if (*str == ',') {
1711 ++str;
1712 get_option(&str, &monarch_timeout);
1713 }
1714 } else {
1715 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1716 str);
1717 return 0;
1718 }
1719 return 1;
1720 }
1721 __setup("mce", mcheck_enable);
1722
mcheck_init(void)1723 int __init mcheck_init(void)
1724 {
1725 atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1726
1727 mcheck_intel_therm_init();
1728
1729 return 0;
1730 }
1731
1732 /*
1733 * Sysfs support
1734 */
1735
1736 /*
1737 * Disable machine checks on suspend and shutdown. We can't really handle
1738 * them later.
1739 */
mce_disable_error_reporting(void)1740 static int mce_disable_error_reporting(void)
1741 {
1742 int i;
1743
1744 for (i = 0; i < banks; i++) {
1745 struct mce_bank *b = &mce_banks[i];
1746
1747 if (b->init)
1748 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1749 }
1750 return 0;
1751 }
1752
mce_suspend(void)1753 static int mce_suspend(void)
1754 {
1755 return mce_disable_error_reporting();
1756 }
1757
mce_shutdown(void)1758 static void mce_shutdown(void)
1759 {
1760 mce_disable_error_reporting();
1761 }
1762
1763 /*
1764 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1765 * Only one CPU is active at this time, the others get re-added later using
1766 * CPU hotplug:
1767 */
mce_resume(void)1768 static void mce_resume(void)
1769 {
1770 __mcheck_cpu_init_generic();
1771 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1772 }
1773
1774 static struct syscore_ops mce_syscore_ops = {
1775 .suspend = mce_suspend,
1776 .shutdown = mce_shutdown,
1777 .resume = mce_resume,
1778 };
1779
mce_cpu_restart(void * data)1780 static void mce_cpu_restart(void *data)
1781 {
1782 del_timer_sync(&__get_cpu_var(mce_timer));
1783 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1784 return;
1785 __mcheck_cpu_init_generic();
1786 __mcheck_cpu_init_timer();
1787 }
1788
1789 /* Reinit MCEs after user configuration changes */
mce_restart(void)1790 static void mce_restart(void)
1791 {
1792 on_each_cpu(mce_cpu_restart, NULL, 1);
1793 }
1794
1795 /* Toggle features for corrected errors */
mce_disable_ce(void * all)1796 static void mce_disable_ce(void *all)
1797 {
1798 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1799 return;
1800 if (all)
1801 del_timer_sync(&__get_cpu_var(mce_timer));
1802 cmci_clear();
1803 }
1804
mce_enable_ce(void * all)1805 static void mce_enable_ce(void *all)
1806 {
1807 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1808 return;
1809 cmci_reenable();
1810 cmci_recheck();
1811 if (all)
1812 __mcheck_cpu_init_timer();
1813 }
1814
1815 static struct sysdev_class mce_sysclass = {
1816 .name = "machinecheck",
1817 };
1818
1819 DEFINE_PER_CPU(struct sys_device, mce_dev);
1820
1821 __cpuinitdata
1822 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1823
attr_to_bank(struct sysdev_attribute * attr)1824 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1825 {
1826 return container_of(attr, struct mce_bank, attr);
1827 }
1828
show_bank(struct sys_device * s,struct sysdev_attribute * attr,char * buf)1829 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1830 char *buf)
1831 {
1832 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1833 }
1834
set_bank(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1835 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1836 const char *buf, size_t size)
1837 {
1838 u64 new;
1839
1840 if (strict_strtoull(buf, 0, &new) < 0)
1841 return -EINVAL;
1842
1843 attr_to_bank(attr)->ctl = new;
1844 mce_restart();
1845
1846 return size;
1847 }
1848
1849 static ssize_t
show_trigger(struct sys_device * s,struct sysdev_attribute * attr,char * buf)1850 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1851 {
1852 strcpy(buf, mce_helper);
1853 strcat(buf, "\n");
1854 return strlen(mce_helper) + 1;
1855 }
1856
set_trigger(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t siz)1857 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1858 const char *buf, size_t siz)
1859 {
1860 char *p;
1861
1862 strncpy(mce_helper, buf, sizeof(mce_helper));
1863 mce_helper[sizeof(mce_helper)-1] = 0;
1864 p = strchr(mce_helper, '\n');
1865
1866 if (p)
1867 *p = 0;
1868
1869 return strlen(mce_helper) + !!p;
1870 }
1871
set_ignore_ce(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1872 static ssize_t set_ignore_ce(struct sys_device *s,
1873 struct sysdev_attribute *attr,
1874 const char *buf, size_t size)
1875 {
1876 u64 new;
1877
1878 if (strict_strtoull(buf, 0, &new) < 0)
1879 return -EINVAL;
1880
1881 if (mce_ignore_ce ^ !!new) {
1882 if (new) {
1883 /* disable ce features */
1884 on_each_cpu(mce_disable_ce, (void *)1, 1);
1885 mce_ignore_ce = 1;
1886 } else {
1887 /* enable ce features */
1888 mce_ignore_ce = 0;
1889 on_each_cpu(mce_enable_ce, (void *)1, 1);
1890 }
1891 }
1892 return size;
1893 }
1894
set_cmci_disabled(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1895 static ssize_t set_cmci_disabled(struct sys_device *s,
1896 struct sysdev_attribute *attr,
1897 const char *buf, size_t size)
1898 {
1899 u64 new;
1900
1901 if (strict_strtoull(buf, 0, &new) < 0)
1902 return -EINVAL;
1903
1904 if (mce_cmci_disabled ^ !!new) {
1905 if (new) {
1906 /* disable cmci */
1907 on_each_cpu(mce_disable_ce, NULL, 1);
1908 mce_cmci_disabled = 1;
1909 } else {
1910 /* enable cmci */
1911 mce_cmci_disabled = 0;
1912 on_each_cpu(mce_enable_ce, NULL, 1);
1913 }
1914 }
1915 return size;
1916 }
1917
store_int_with_restart(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1918 static ssize_t store_int_with_restart(struct sys_device *s,
1919 struct sysdev_attribute *attr,
1920 const char *buf, size_t size)
1921 {
1922 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1923 mce_restart();
1924 return ret;
1925 }
1926
1927 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1928 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1929 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1930 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1931
1932 static struct sysdev_ext_attribute attr_check_interval = {
1933 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1934 store_int_with_restart),
1935 &check_interval
1936 };
1937
1938 static struct sysdev_ext_attribute attr_ignore_ce = {
1939 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1940 &mce_ignore_ce
1941 };
1942
1943 static struct sysdev_ext_attribute attr_cmci_disabled = {
1944 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1945 &mce_cmci_disabled
1946 };
1947
1948 static struct sysdev_attribute *mce_attrs[] = {
1949 &attr_tolerant.attr,
1950 &attr_check_interval.attr,
1951 &attr_trigger,
1952 &attr_monarch_timeout.attr,
1953 &attr_dont_log_ce.attr,
1954 &attr_ignore_ce.attr,
1955 &attr_cmci_disabled.attr,
1956 NULL
1957 };
1958
1959 static cpumask_var_t mce_dev_initialized;
1960
1961 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
mce_create_device(unsigned int cpu)1962 static __cpuinit int mce_create_device(unsigned int cpu)
1963 {
1964 int err;
1965 int i, j;
1966
1967 if (!mce_available(&boot_cpu_data))
1968 return -EIO;
1969
1970 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1971 per_cpu(mce_dev, cpu).id = cpu;
1972 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1973
1974 err = sysdev_register(&per_cpu(mce_dev, cpu));
1975 if (err)
1976 return err;
1977
1978 for (i = 0; mce_attrs[i]; i++) {
1979 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1980 if (err)
1981 goto error;
1982 }
1983 for (j = 0; j < banks; j++) {
1984 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1985 &mce_banks[j].attr);
1986 if (err)
1987 goto error2;
1988 }
1989 cpumask_set_cpu(cpu, mce_dev_initialized);
1990
1991 return 0;
1992 error2:
1993 while (--j >= 0)
1994 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1995 error:
1996 while (--i >= 0)
1997 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1998
1999 sysdev_unregister(&per_cpu(mce_dev, cpu));
2000
2001 return err;
2002 }
2003
mce_remove_device(unsigned int cpu)2004 static __cpuinit void mce_remove_device(unsigned int cpu)
2005 {
2006 int i;
2007
2008 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
2009 return;
2010
2011 for (i = 0; mce_attrs[i]; i++)
2012 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2013
2014 for (i = 0; i < banks; i++)
2015 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
2016
2017 sysdev_unregister(&per_cpu(mce_dev, cpu));
2018 cpumask_clear_cpu(cpu, mce_dev_initialized);
2019 }
2020
2021 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void * h)2022 static void __cpuinit mce_disable_cpu(void *h)
2023 {
2024 unsigned long action = *(unsigned long *)h;
2025 int i;
2026
2027 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2028 return;
2029
2030 if (!(action & CPU_TASKS_FROZEN))
2031 cmci_clear();
2032 for (i = 0; i < banks; i++) {
2033 struct mce_bank *b = &mce_banks[i];
2034
2035 if (b->init)
2036 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2037 }
2038 }
2039
mce_reenable_cpu(void * h)2040 static void __cpuinit mce_reenable_cpu(void *h)
2041 {
2042 unsigned long action = *(unsigned long *)h;
2043 int i;
2044
2045 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2046 return;
2047
2048 if (!(action & CPU_TASKS_FROZEN))
2049 cmci_reenable();
2050 for (i = 0; i < banks; i++) {
2051 struct mce_bank *b = &mce_banks[i];
2052
2053 if (b->init)
2054 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2055 }
2056 }
2057
2058 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2059 static int __cpuinit
mce_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2060 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2061 {
2062 unsigned int cpu = (unsigned long)hcpu;
2063 struct timer_list *t = &per_cpu(mce_timer, cpu);
2064
2065 switch (action) {
2066 case CPU_ONLINE:
2067 case CPU_ONLINE_FROZEN:
2068 mce_create_device(cpu);
2069 if (threshold_cpu_callback)
2070 threshold_cpu_callback(action, cpu);
2071 break;
2072 case CPU_DEAD:
2073 case CPU_DEAD_FROZEN:
2074 if (threshold_cpu_callback)
2075 threshold_cpu_callback(action, cpu);
2076 mce_remove_device(cpu);
2077 break;
2078 case CPU_DOWN_PREPARE:
2079 case CPU_DOWN_PREPARE_FROZEN:
2080 del_timer_sync(t);
2081 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2082 break;
2083 case CPU_DOWN_FAILED:
2084 case CPU_DOWN_FAILED_FROZEN:
2085 if (!mce_ignore_ce && check_interval) {
2086 t->expires = round_jiffies(jiffies +
2087 __get_cpu_var(mce_next_interval));
2088 add_timer_on(t, cpu);
2089 }
2090 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2091 break;
2092 case CPU_POST_DEAD:
2093 /* intentionally ignoring frozen here */
2094 cmci_rediscover(cpu);
2095 break;
2096 }
2097 return NOTIFY_OK;
2098 }
2099
2100 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2101 .notifier_call = mce_cpu_callback,
2102 };
2103
mce_init_banks(void)2104 static __init void mce_init_banks(void)
2105 {
2106 int i;
2107
2108 for (i = 0; i < banks; i++) {
2109 struct mce_bank *b = &mce_banks[i];
2110 struct sysdev_attribute *a = &b->attr;
2111
2112 sysfs_attr_init(&a->attr);
2113 a->attr.name = b->attrname;
2114 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2115
2116 a->attr.mode = 0644;
2117 a->show = show_bank;
2118 a->store = set_bank;
2119 }
2120 }
2121
mcheck_init_device(void)2122 static __init int mcheck_init_device(void)
2123 {
2124 int err;
2125 int i = 0;
2126
2127 if (!mce_available(&boot_cpu_data))
2128 return -EIO;
2129
2130 zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2131
2132 mce_init_banks();
2133
2134 err = sysdev_class_register(&mce_sysclass);
2135 if (err)
2136 return err;
2137
2138 for_each_online_cpu(i) {
2139 err = mce_create_device(i);
2140 if (err)
2141 return err;
2142 }
2143
2144 register_syscore_ops(&mce_syscore_ops);
2145 register_hotcpu_notifier(&mce_cpu_notifier);
2146 misc_register(&mce_log_device);
2147
2148 return err;
2149 }
2150
2151 device_initcall(mcheck_init_device);
2152
2153 /*
2154 * Old style boot options parsing. Only for compatibility.
2155 */
mcheck_disable(char * str)2156 static int __init mcheck_disable(char *str)
2157 {
2158 mce_disabled = 1;
2159 return 1;
2160 }
2161 __setup("nomce", mcheck_disable);
2162
2163 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2164 struct dentry *mce_get_debugfs_dir(void)
2165 {
2166 static struct dentry *dmce;
2167
2168 if (!dmce)
2169 dmce = debugfs_create_dir("mce", NULL);
2170
2171 return dmce;
2172 }
2173
mce_reset(void)2174 static void mce_reset(void)
2175 {
2176 cpu_missing = 0;
2177 atomic_set(&mce_fake_paniced, 0);
2178 atomic_set(&mce_executing, 0);
2179 atomic_set(&mce_callin, 0);
2180 atomic_set(&global_nwo, 0);
2181 }
2182
fake_panic_get(void * data,u64 * val)2183 static int fake_panic_get(void *data, u64 *val)
2184 {
2185 *val = fake_panic;
2186 return 0;
2187 }
2188
fake_panic_set(void * data,u64 val)2189 static int fake_panic_set(void *data, u64 val)
2190 {
2191 mce_reset();
2192 fake_panic = val;
2193 return 0;
2194 }
2195
2196 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2197 fake_panic_set, "%llu\n");
2198
mcheck_debugfs_init(void)2199 static int __init mcheck_debugfs_init(void)
2200 {
2201 struct dentry *dmce, *ffake_panic;
2202
2203 dmce = mce_get_debugfs_dir();
2204 if (!dmce)
2205 return -ENOMEM;
2206 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2207 &fake_panic_fops);
2208 if (!ffake_panic)
2209 return -ENOMEM;
2210
2211 return 0;
2212 }
2213 late_initcall(mcheck_debugfs_init);
2214 #endif
2215