1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/smp.h>
37 #include <linux/fs.h>
38 #include <linux/mm.h>
39 #include <linux/debugfs.h>
40 #include <linux/edac_mce.h>
41 
42 #include <asm/processor.h>
43 #include <asm/hw_irq.h>
44 #include <asm/apic.h>
45 #include <asm/idle.h>
46 #include <asm/ipi.h>
47 #include <asm/mce.h>
48 #include <asm/msr.h>
49 
50 #include "mce-internal.h"
51 
52 static DEFINE_MUTEX(mce_read_mutex);
53 
54 #define rcu_dereference_check_mce(p) \
55 	rcu_dereference_index_check((p), \
56 			      rcu_read_lock_sched_held() || \
57 			      lockdep_is_held(&mce_read_mutex))
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/mce.h>
61 
62 int mce_disabled __read_mostly;
63 
64 #define MISC_MCELOG_MINOR	227
65 
66 #define SPINUNIT 100	/* 100ns */
67 
68 atomic_t mce_entry;
69 
70 DEFINE_PER_CPU(unsigned, mce_exception_count);
71 
72 /*
73  * Tolerant levels:
74  *   0: always panic on uncorrected errors, log corrected errors
75  *   1: panic or SIGBUS on uncorrected errors, log corrected errors
76  *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
77  *   3: never panic or SIGBUS, log all errors (for testing only)
78  */
79 static int			tolerant		__read_mostly = 1;
80 static int			banks			__read_mostly;
81 static int			rip_msr			__read_mostly;
82 static int			mce_bootlog		__read_mostly = -1;
83 static int			monarch_timeout		__read_mostly = -1;
84 static int			mce_panic_timeout	__read_mostly;
85 static int			mce_dont_log_ce		__read_mostly;
86 int				mce_cmci_disabled	__read_mostly;
87 int				mce_ignore_ce		__read_mostly;
88 int				mce_ser			__read_mostly;
89 
90 struct mce_bank                *mce_banks		__read_mostly;
91 
92 /* User mode helper program triggered by machine check event */
93 static unsigned long		mce_need_notify;
94 static char			mce_helper[128];
95 static char			*mce_helper_argv[2] = { mce_helper, NULL };
96 
97 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static int			cpu_missing;
100 
101 /*
102  * CPU/chipset specific EDAC code can register a notifier call here to print
103  * MCE errors in a human-readable form.
104  */
105 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
106 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
107 
default_decode_mce(struct notifier_block * nb,unsigned long val,void * data)108 static int default_decode_mce(struct notifier_block *nb, unsigned long val,
109 			       void *data)
110 {
111 	pr_emerg(HW_ERR "No human readable MCE decoding support on this CPU type.\n");
112 	pr_emerg(HW_ERR "Run the message through 'mcelog --ascii' to decode.\n");
113 
114 	return NOTIFY_STOP;
115 }
116 
117 static struct notifier_block mce_dec_nb = {
118 	.notifier_call = default_decode_mce,
119 	.priority      = -1,
120 };
121 
122 /* MCA banks polled by the period polling timer for corrected events */
123 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
124 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
125 };
126 
127 static DEFINE_PER_CPU(struct work_struct, mce_work);
128 
129 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)130 void mce_setup(struct mce *m)
131 {
132 	memset(m, 0, sizeof(struct mce));
133 	m->cpu = m->extcpu = smp_processor_id();
134 	rdtscll(m->tsc);
135 	/* We hope get_seconds stays lockless */
136 	m->time = get_seconds();
137 	m->cpuvendor = boot_cpu_data.x86_vendor;
138 	m->cpuid = cpuid_eax(1);
139 #ifdef CONFIG_SMP
140 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
141 #endif
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
144 }
145 
146 DEFINE_PER_CPU(struct mce, injectm);
147 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
148 
149 /*
150  * Lockless MCE logging infrastructure.
151  * This avoids deadlocks on printk locks without having to break locks. Also
152  * separate MCEs from kernel messages to avoid bogus bug reports.
153  */
154 
155 static struct mce_log mcelog = {
156 	.signature	= MCE_LOG_SIGNATURE,
157 	.len		= MCE_LOG_LEN,
158 	.recordlen	= sizeof(struct mce),
159 };
160 
mce_log(struct mce * mce)161 void mce_log(struct mce *mce)
162 {
163 	unsigned next, entry;
164 
165 	/* Emit the trace record: */
166 	trace_mce_record(mce);
167 
168 	mce->finished = 0;
169 	wmb();
170 	for (;;) {
171 		entry = rcu_dereference_check_mce(mcelog.next);
172 		for (;;) {
173 			/*
174 			 * If edac_mce is enabled, it will check the error type
175 			 * and will process it, if it is a known error.
176 			 * Otherwise, the error will be sent through mcelog
177 			 * interface
178 			 */
179 			if (edac_mce_parse(mce))
180 				return;
181 
182 			/*
183 			 * When the buffer fills up discard new entries.
184 			 * Assume that the earlier errors are the more
185 			 * interesting ones:
186 			 */
187 			if (entry >= MCE_LOG_LEN) {
188 				set_bit(MCE_OVERFLOW,
189 					(unsigned long *)&mcelog.flags);
190 				return;
191 			}
192 			/* Old left over entry. Skip: */
193 			if (mcelog.entry[entry].finished) {
194 				entry++;
195 				continue;
196 			}
197 			break;
198 		}
199 		smp_rmb();
200 		next = entry + 1;
201 		if (cmpxchg(&mcelog.next, entry, next) == entry)
202 			break;
203 	}
204 	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
205 	wmb();
206 	mcelog.entry[entry].finished = 1;
207 	wmb();
208 
209 	mce->finished = 1;
210 	set_bit(0, &mce_need_notify);
211 }
212 
print_mce(struct mce * m)213 static void print_mce(struct mce *m)
214 {
215 	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
216 	       m->extcpu, m->mcgstatus, m->bank, m->status);
217 
218 	if (m->ip) {
219 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
220 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
221 				m->cs, m->ip);
222 
223 		if (m->cs == __KERNEL_CS)
224 			print_symbol("{%s}", m->ip);
225 		pr_cont("\n");
226 	}
227 
228 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
229 	if (m->addr)
230 		pr_cont("ADDR %llx ", m->addr);
231 	if (m->misc)
232 		pr_cont("MISC %llx ", m->misc);
233 
234 	pr_cont("\n");
235 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
236 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
237 
238 	/*
239 	 * Print out human-readable details about the MCE error,
240 	 * (if the CPU has an implementation for that)
241 	 */
242 	atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
243 }
244 
245 #define PANIC_TIMEOUT 5 /* 5 seconds */
246 
247 static atomic_t mce_paniced;
248 
249 static int fake_panic;
250 static atomic_t mce_fake_paniced;
251 
252 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)253 static void wait_for_panic(void)
254 {
255 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
256 
257 	preempt_disable();
258 	local_irq_enable();
259 	while (timeout-- > 0)
260 		udelay(1);
261 	if (panic_timeout == 0)
262 		panic_timeout = mce_panic_timeout;
263 	panic("Panicing machine check CPU died");
264 }
265 
mce_panic(char * msg,struct mce * final,char * exp)266 static void mce_panic(char *msg, struct mce *final, char *exp)
267 {
268 	int i, apei_err = 0;
269 
270 	if (!fake_panic) {
271 		/*
272 		 * Make sure only one CPU runs in machine check panic
273 		 */
274 		if (atomic_inc_return(&mce_paniced) > 1)
275 			wait_for_panic();
276 		barrier();
277 
278 		bust_spinlocks(1);
279 		console_verbose();
280 	} else {
281 		/* Don't log too much for fake panic */
282 		if (atomic_inc_return(&mce_fake_paniced) > 1)
283 			return;
284 	}
285 	/* First print corrected ones that are still unlogged */
286 	for (i = 0; i < MCE_LOG_LEN; i++) {
287 		struct mce *m = &mcelog.entry[i];
288 		if (!(m->status & MCI_STATUS_VAL))
289 			continue;
290 		if (!(m->status & MCI_STATUS_UC)) {
291 			print_mce(m);
292 			if (!apei_err)
293 				apei_err = apei_write_mce(m);
294 		}
295 	}
296 	/* Now print uncorrected but with the final one last */
297 	for (i = 0; i < MCE_LOG_LEN; i++) {
298 		struct mce *m = &mcelog.entry[i];
299 		if (!(m->status & MCI_STATUS_VAL))
300 			continue;
301 		if (!(m->status & MCI_STATUS_UC))
302 			continue;
303 		if (!final || memcmp(m, final, sizeof(struct mce))) {
304 			print_mce(m);
305 			if (!apei_err)
306 				apei_err = apei_write_mce(m);
307 		}
308 	}
309 	if (final) {
310 		print_mce(final);
311 		if (!apei_err)
312 			apei_err = apei_write_mce(final);
313 	}
314 	if (cpu_missing)
315 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
316 	if (exp)
317 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
318 	if (!fake_panic) {
319 		if (panic_timeout == 0)
320 			panic_timeout = mce_panic_timeout;
321 		panic(msg);
322 	} else
323 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
324 }
325 
326 /* Support code for software error injection */
327 
msr_to_offset(u32 msr)328 static int msr_to_offset(u32 msr)
329 {
330 	unsigned bank = __this_cpu_read(injectm.bank);
331 
332 	if (msr == rip_msr)
333 		return offsetof(struct mce, ip);
334 	if (msr == MSR_IA32_MCx_STATUS(bank))
335 		return offsetof(struct mce, status);
336 	if (msr == MSR_IA32_MCx_ADDR(bank))
337 		return offsetof(struct mce, addr);
338 	if (msr == MSR_IA32_MCx_MISC(bank))
339 		return offsetof(struct mce, misc);
340 	if (msr == MSR_IA32_MCG_STATUS)
341 		return offsetof(struct mce, mcgstatus);
342 	return -1;
343 }
344 
345 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)346 static u64 mce_rdmsrl(u32 msr)
347 {
348 	u64 v;
349 
350 	if (__this_cpu_read(injectm.finished)) {
351 		int offset = msr_to_offset(msr);
352 
353 		if (offset < 0)
354 			return 0;
355 		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
356 	}
357 
358 	if (rdmsrl_safe(msr, &v)) {
359 		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
360 		/*
361 		 * Return zero in case the access faulted. This should
362 		 * not happen normally but can happen if the CPU does
363 		 * something weird, or if the code is buggy.
364 		 */
365 		v = 0;
366 	}
367 
368 	return v;
369 }
370 
mce_wrmsrl(u32 msr,u64 v)371 static void mce_wrmsrl(u32 msr, u64 v)
372 {
373 	if (__this_cpu_read(injectm.finished)) {
374 		int offset = msr_to_offset(msr);
375 
376 		if (offset >= 0)
377 			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
378 		return;
379 	}
380 	wrmsrl(msr, v);
381 }
382 
383 /*
384  * Simple lockless ring to communicate PFNs from the exception handler with the
385  * process context work function. This is vastly simplified because there's
386  * only a single reader and a single writer.
387  */
388 #define MCE_RING_SIZE 16	/* we use one entry less */
389 
390 struct mce_ring {
391 	unsigned short start;
392 	unsigned short end;
393 	unsigned long ring[MCE_RING_SIZE];
394 };
395 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
396 
397 /* Runs with CPU affinity in workqueue */
mce_ring_empty(void)398 static int mce_ring_empty(void)
399 {
400 	struct mce_ring *r = &__get_cpu_var(mce_ring);
401 
402 	return r->start == r->end;
403 }
404 
mce_ring_get(unsigned long * pfn)405 static int mce_ring_get(unsigned long *pfn)
406 {
407 	struct mce_ring *r;
408 	int ret = 0;
409 
410 	*pfn = 0;
411 	get_cpu();
412 	r = &__get_cpu_var(mce_ring);
413 	if (r->start == r->end)
414 		goto out;
415 	*pfn = r->ring[r->start];
416 	r->start = (r->start + 1) % MCE_RING_SIZE;
417 	ret = 1;
418 out:
419 	put_cpu();
420 	return ret;
421 }
422 
423 /* Always runs in MCE context with preempt off */
mce_ring_add(unsigned long pfn)424 static int mce_ring_add(unsigned long pfn)
425 {
426 	struct mce_ring *r = &__get_cpu_var(mce_ring);
427 	unsigned next;
428 
429 	next = (r->end + 1) % MCE_RING_SIZE;
430 	if (next == r->start)
431 		return -1;
432 	r->ring[r->end] = pfn;
433 	wmb();
434 	r->end = next;
435 	return 0;
436 }
437 
mce_available(struct cpuinfo_x86 * c)438 int mce_available(struct cpuinfo_x86 *c)
439 {
440 	if (mce_disabled)
441 		return 0;
442 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
443 }
444 
mce_schedule_work(void)445 static void mce_schedule_work(void)
446 {
447 	if (!mce_ring_empty()) {
448 		struct work_struct *work = &__get_cpu_var(mce_work);
449 		if (!work_pending(work))
450 			schedule_work(work);
451 	}
452 }
453 
454 /*
455  * Get the address of the instruction at the time of the machine check
456  * error.
457  */
mce_get_rip(struct mce * m,struct pt_regs * regs)458 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
459 {
460 
461 	if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
462 		m->ip = regs->ip;
463 		m->cs = regs->cs;
464 	} else {
465 		m->ip = 0;
466 		m->cs = 0;
467 	}
468 	if (rip_msr)
469 		m->ip = mce_rdmsrl(rip_msr);
470 }
471 
472 #ifdef CONFIG_X86_LOCAL_APIC
473 /*
474  * Called after interrupts have been reenabled again
475  * when a MCE happened during an interrupts off region
476  * in the kernel.
477  */
smp_mce_self_interrupt(struct pt_regs * regs)478 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
479 {
480 	ack_APIC_irq();
481 	exit_idle();
482 	irq_enter();
483 	mce_notify_irq();
484 	mce_schedule_work();
485 	irq_exit();
486 }
487 #endif
488 
mce_report_event(struct pt_regs * regs)489 static void mce_report_event(struct pt_regs *regs)
490 {
491 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
492 		mce_notify_irq();
493 		/*
494 		 * Triggering the work queue here is just an insurance
495 		 * policy in case the syscall exit notify handler
496 		 * doesn't run soon enough or ends up running on the
497 		 * wrong CPU (can happen when audit sleeps)
498 		 */
499 		mce_schedule_work();
500 		return;
501 	}
502 
503 #ifdef CONFIG_X86_LOCAL_APIC
504 	/*
505 	 * Without APIC do not notify. The event will be picked
506 	 * up eventually.
507 	 */
508 	if (!cpu_has_apic)
509 		return;
510 
511 	/*
512 	 * When interrupts are disabled we cannot use
513 	 * kernel services safely. Trigger an self interrupt
514 	 * through the APIC to instead do the notification
515 	 * after interrupts are reenabled again.
516 	 */
517 	apic->send_IPI_self(MCE_SELF_VECTOR);
518 
519 	/*
520 	 * Wait for idle afterwards again so that we don't leave the
521 	 * APIC in a non idle state because the normal APIC writes
522 	 * cannot exclude us.
523 	 */
524 	apic_wait_icr_idle();
525 #endif
526 }
527 
528 DEFINE_PER_CPU(unsigned, mce_poll_count);
529 
530 /*
531  * Poll for corrected events or events that happened before reset.
532  * Those are just logged through /dev/mcelog.
533  *
534  * This is executed in standard interrupt context.
535  *
536  * Note: spec recommends to panic for fatal unsignalled
537  * errors here. However this would be quite problematic --
538  * we would need to reimplement the Monarch handling and
539  * it would mess up the exclusion between exception handler
540  * and poll hander -- * so we skip this for now.
541  * These cases should not happen anyways, or only when the CPU
542  * is already totally * confused. In this case it's likely it will
543  * not fully execute the machine check handler either.
544  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)545 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
546 {
547 	struct mce m;
548 	int i;
549 
550 	percpu_inc(mce_poll_count);
551 
552 	mce_setup(&m);
553 
554 	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
555 	for (i = 0; i < banks; i++) {
556 		if (!mce_banks[i].ctl || !test_bit(i, *b))
557 			continue;
558 
559 		m.misc = 0;
560 		m.addr = 0;
561 		m.bank = i;
562 		m.tsc = 0;
563 
564 		barrier();
565 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
566 		if (!(m.status & MCI_STATUS_VAL))
567 			continue;
568 
569 		/*
570 		 * Uncorrected or signalled events are handled by the exception
571 		 * handler when it is enabled, so don't process those here.
572 		 *
573 		 * TBD do the same check for MCI_STATUS_EN here?
574 		 */
575 		if (!(flags & MCP_UC) &&
576 		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
577 			continue;
578 
579 		if (m.status & MCI_STATUS_MISCV)
580 			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
581 		if (m.status & MCI_STATUS_ADDRV)
582 			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
583 
584 		if (!(flags & MCP_TIMESTAMP))
585 			m.tsc = 0;
586 		/*
587 		 * Don't get the IP here because it's unlikely to
588 		 * have anything to do with the actual error location.
589 		 */
590 		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
591 			mce_log(&m);
592 			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, &m);
593 			add_taint(TAINT_MACHINE_CHECK);
594 		}
595 
596 		/*
597 		 * Clear state for this bank.
598 		 */
599 		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
600 	}
601 
602 	/*
603 	 * Don't clear MCG_STATUS here because it's only defined for
604 	 * exceptions.
605 	 */
606 
607 	sync_core();
608 }
609 EXPORT_SYMBOL_GPL(machine_check_poll);
610 
611 /*
612  * Do a quick check if any of the events requires a panic.
613  * This decides if we keep the events around or clear them.
614  */
mce_no_way_out(struct mce * m,char ** msg)615 static int mce_no_way_out(struct mce *m, char **msg)
616 {
617 	int i;
618 
619 	for (i = 0; i < banks; i++) {
620 		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
621 		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
622 			return 1;
623 	}
624 	return 0;
625 }
626 
627 /*
628  * Variable to establish order between CPUs while scanning.
629  * Each CPU spins initially until executing is equal its number.
630  */
631 static atomic_t mce_executing;
632 
633 /*
634  * Defines order of CPUs on entry. First CPU becomes Monarch.
635  */
636 static atomic_t mce_callin;
637 
638 /*
639  * Check if a timeout waiting for other CPUs happened.
640  */
mce_timed_out(u64 * t)641 static int mce_timed_out(u64 *t)
642 {
643 	/*
644 	 * The others already did panic for some reason.
645 	 * Bail out like in a timeout.
646 	 * rmb() to tell the compiler that system_state
647 	 * might have been modified by someone else.
648 	 */
649 	rmb();
650 	if (atomic_read(&mce_paniced))
651 		wait_for_panic();
652 	if (!monarch_timeout)
653 		goto out;
654 	if ((s64)*t < SPINUNIT) {
655 		/* CHECKME: Make panic default for 1 too? */
656 		if (tolerant < 1)
657 			mce_panic("Timeout synchronizing machine check over CPUs",
658 				  NULL, NULL);
659 		cpu_missing = 1;
660 		return 1;
661 	}
662 	*t -= SPINUNIT;
663 out:
664 	touch_nmi_watchdog();
665 	return 0;
666 }
667 
668 /*
669  * The Monarch's reign.  The Monarch is the CPU who entered
670  * the machine check handler first. It waits for the others to
671  * raise the exception too and then grades them. When any
672  * error is fatal panic. Only then let the others continue.
673  *
674  * The other CPUs entering the MCE handler will be controlled by the
675  * Monarch. They are called Subjects.
676  *
677  * This way we prevent any potential data corruption in a unrecoverable case
678  * and also makes sure always all CPU's errors are examined.
679  *
680  * Also this detects the case of a machine check event coming from outer
681  * space (not detected by any CPUs) In this case some external agent wants
682  * us to shut down, so panic too.
683  *
684  * The other CPUs might still decide to panic if the handler happens
685  * in a unrecoverable place, but in this case the system is in a semi-stable
686  * state and won't corrupt anything by itself. It's ok to let the others
687  * continue for a bit first.
688  *
689  * All the spin loops have timeouts; when a timeout happens a CPU
690  * typically elects itself to be Monarch.
691  */
mce_reign(void)692 static void mce_reign(void)
693 {
694 	int cpu;
695 	struct mce *m = NULL;
696 	int global_worst = 0;
697 	char *msg = NULL;
698 	char *nmsg = NULL;
699 
700 	/*
701 	 * This CPU is the Monarch and the other CPUs have run
702 	 * through their handlers.
703 	 * Grade the severity of the errors of all the CPUs.
704 	 */
705 	for_each_possible_cpu(cpu) {
706 		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
707 					    &nmsg);
708 		if (severity > global_worst) {
709 			msg = nmsg;
710 			global_worst = severity;
711 			m = &per_cpu(mces_seen, cpu);
712 		}
713 	}
714 
715 	/*
716 	 * Cannot recover? Panic here then.
717 	 * This dumps all the mces in the log buffer and stops the
718 	 * other CPUs.
719 	 */
720 	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
721 		mce_panic("Fatal Machine check", m, msg);
722 
723 	/*
724 	 * For UC somewhere we let the CPU who detects it handle it.
725 	 * Also must let continue the others, otherwise the handling
726 	 * CPU could deadlock on a lock.
727 	 */
728 
729 	/*
730 	 * No machine check event found. Must be some external
731 	 * source or one CPU is hung. Panic.
732 	 */
733 	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
734 		mce_panic("Machine check from unknown source", NULL, NULL);
735 
736 	/*
737 	 * Now clear all the mces_seen so that they don't reappear on
738 	 * the next mce.
739 	 */
740 	for_each_possible_cpu(cpu)
741 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
742 }
743 
744 static atomic_t global_nwo;
745 
746 /*
747  * Start of Monarch synchronization. This waits until all CPUs have
748  * entered the exception handler and then determines if any of them
749  * saw a fatal event that requires panic. Then it executes them
750  * in the entry order.
751  * TBD double check parallel CPU hotunplug
752  */
mce_start(int * no_way_out)753 static int mce_start(int *no_way_out)
754 {
755 	int order;
756 	int cpus = num_online_cpus();
757 	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
758 
759 	if (!timeout)
760 		return -1;
761 
762 	atomic_add(*no_way_out, &global_nwo);
763 	/*
764 	 * global_nwo should be updated before mce_callin
765 	 */
766 	smp_wmb();
767 	order = atomic_inc_return(&mce_callin);
768 
769 	/*
770 	 * Wait for everyone.
771 	 */
772 	while (atomic_read(&mce_callin) != cpus) {
773 		if (mce_timed_out(&timeout)) {
774 			atomic_set(&global_nwo, 0);
775 			return -1;
776 		}
777 		ndelay(SPINUNIT);
778 	}
779 
780 	/*
781 	 * mce_callin should be read before global_nwo
782 	 */
783 	smp_rmb();
784 
785 	if (order == 1) {
786 		/*
787 		 * Monarch: Starts executing now, the others wait.
788 		 */
789 		atomic_set(&mce_executing, 1);
790 	} else {
791 		/*
792 		 * Subject: Now start the scanning loop one by one in
793 		 * the original callin order.
794 		 * This way when there are any shared banks it will be
795 		 * only seen by one CPU before cleared, avoiding duplicates.
796 		 */
797 		while (atomic_read(&mce_executing) < order) {
798 			if (mce_timed_out(&timeout)) {
799 				atomic_set(&global_nwo, 0);
800 				return -1;
801 			}
802 			ndelay(SPINUNIT);
803 		}
804 	}
805 
806 	/*
807 	 * Cache the global no_way_out state.
808 	 */
809 	*no_way_out = atomic_read(&global_nwo);
810 
811 	return order;
812 }
813 
814 /*
815  * Synchronize between CPUs after main scanning loop.
816  * This invokes the bulk of the Monarch processing.
817  */
mce_end(int order)818 static int mce_end(int order)
819 {
820 	int ret = -1;
821 	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
822 
823 	if (!timeout)
824 		goto reset;
825 	if (order < 0)
826 		goto reset;
827 
828 	/*
829 	 * Allow others to run.
830 	 */
831 	atomic_inc(&mce_executing);
832 
833 	if (order == 1) {
834 		/* CHECKME: Can this race with a parallel hotplug? */
835 		int cpus = num_online_cpus();
836 
837 		/*
838 		 * Monarch: Wait for everyone to go through their scanning
839 		 * loops.
840 		 */
841 		while (atomic_read(&mce_executing) <= cpus) {
842 			if (mce_timed_out(&timeout))
843 				goto reset;
844 			ndelay(SPINUNIT);
845 		}
846 
847 		mce_reign();
848 		barrier();
849 		ret = 0;
850 	} else {
851 		/*
852 		 * Subject: Wait for Monarch to finish.
853 		 */
854 		while (atomic_read(&mce_executing) != 0) {
855 			if (mce_timed_out(&timeout))
856 				goto reset;
857 			ndelay(SPINUNIT);
858 		}
859 
860 		/*
861 		 * Don't reset anything. That's done by the Monarch.
862 		 */
863 		return 0;
864 	}
865 
866 	/*
867 	 * Reset all global state.
868 	 */
869 reset:
870 	atomic_set(&global_nwo, 0);
871 	atomic_set(&mce_callin, 0);
872 	barrier();
873 
874 	/*
875 	 * Let others run again.
876 	 */
877 	atomic_set(&mce_executing, 0);
878 	return ret;
879 }
880 
881 /*
882  * Check if the address reported by the CPU is in a format we can parse.
883  * It would be possible to add code for most other cases, but all would
884  * be somewhat complicated (e.g. segment offset would require an instruction
885  * parser). So only support physical addresses up to page granuality for now.
886  */
mce_usable_address(struct mce * m)887 static int mce_usable_address(struct mce *m)
888 {
889 	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
890 		return 0;
891 	if ((m->misc & 0x3f) > PAGE_SHIFT)
892 		return 0;
893 	if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
894 		return 0;
895 	return 1;
896 }
897 
mce_clear_state(unsigned long * toclear)898 static void mce_clear_state(unsigned long *toclear)
899 {
900 	int i;
901 
902 	for (i = 0; i < banks; i++) {
903 		if (test_bit(i, toclear))
904 			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
905 	}
906 }
907 
908 /*
909  * The actual machine check handler. This only handles real
910  * exceptions when something got corrupted coming in through int 18.
911  *
912  * This is executed in NMI context not subject to normal locking rules. This
913  * implies that most kernel services cannot be safely used. Don't even
914  * think about putting a printk in there!
915  *
916  * On Intel systems this is entered on all CPUs in parallel through
917  * MCE broadcast. However some CPUs might be broken beyond repair,
918  * so be always careful when synchronizing with others.
919  */
do_machine_check(struct pt_regs * regs,long error_code)920 void do_machine_check(struct pt_regs *regs, long error_code)
921 {
922 	struct mce m, *final;
923 	int i;
924 	int worst = 0;
925 	int severity;
926 	/*
927 	 * Establish sequential order between the CPUs entering the machine
928 	 * check handler.
929 	 */
930 	int order;
931 	/*
932 	 * If no_way_out gets set, there is no safe way to recover from this
933 	 * MCE.  If tolerant is cranked up, we'll try anyway.
934 	 */
935 	int no_way_out = 0;
936 	/*
937 	 * If kill_it gets set, there might be a way to recover from this
938 	 * error.
939 	 */
940 	int kill_it = 0;
941 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
942 	char *msg = "Unknown";
943 
944 	atomic_inc(&mce_entry);
945 
946 	percpu_inc(mce_exception_count);
947 
948 	if (notify_die(DIE_NMI, "machine check", regs, error_code,
949 			   18, SIGKILL) == NOTIFY_STOP)
950 		goto out;
951 	if (!banks)
952 		goto out;
953 
954 	mce_setup(&m);
955 
956 	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
957 	final = &__get_cpu_var(mces_seen);
958 	*final = m;
959 
960 	no_way_out = mce_no_way_out(&m, &msg);
961 
962 	barrier();
963 
964 	/*
965 	 * When no restart IP must always kill or panic.
966 	 */
967 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
968 		kill_it = 1;
969 
970 	/*
971 	 * Go through all the banks in exclusion of the other CPUs.
972 	 * This way we don't report duplicated events on shared banks
973 	 * because the first one to see it will clear it.
974 	 */
975 	order = mce_start(&no_way_out);
976 	for (i = 0; i < banks; i++) {
977 		__clear_bit(i, toclear);
978 		if (!mce_banks[i].ctl)
979 			continue;
980 
981 		m.misc = 0;
982 		m.addr = 0;
983 		m.bank = i;
984 
985 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
986 		if ((m.status & MCI_STATUS_VAL) == 0)
987 			continue;
988 
989 		/*
990 		 * Non uncorrected or non signaled errors are handled by
991 		 * machine_check_poll. Leave them alone, unless this panics.
992 		 */
993 		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
994 			!no_way_out)
995 			continue;
996 
997 		/*
998 		 * Set taint even when machine check was not enabled.
999 		 */
1000 		add_taint(TAINT_MACHINE_CHECK);
1001 
1002 		severity = mce_severity(&m, tolerant, NULL);
1003 
1004 		/*
1005 		 * When machine check was for corrected handler don't touch,
1006 		 * unless we're panicing.
1007 		 */
1008 		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1009 			continue;
1010 		__set_bit(i, toclear);
1011 		if (severity == MCE_NO_SEVERITY) {
1012 			/*
1013 			 * Machine check event was not enabled. Clear, but
1014 			 * ignore.
1015 			 */
1016 			continue;
1017 		}
1018 
1019 		/*
1020 		 * Kill on action required.
1021 		 */
1022 		if (severity == MCE_AR_SEVERITY)
1023 			kill_it = 1;
1024 
1025 		if (m.status & MCI_STATUS_MISCV)
1026 			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1027 		if (m.status & MCI_STATUS_ADDRV)
1028 			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1029 
1030 		/*
1031 		 * Action optional error. Queue address for later processing.
1032 		 * When the ring overflows we just ignore the AO error.
1033 		 * RED-PEN add some logging mechanism when
1034 		 * usable_address or mce_add_ring fails.
1035 		 * RED-PEN don't ignore overflow for tolerant == 0
1036 		 */
1037 		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1038 			mce_ring_add(m.addr >> PAGE_SHIFT);
1039 
1040 		mce_get_rip(&m, regs);
1041 		mce_log(&m);
1042 
1043 		if (severity > worst) {
1044 			*final = m;
1045 			worst = severity;
1046 		}
1047 	}
1048 
1049 	if (!no_way_out)
1050 		mce_clear_state(toclear);
1051 
1052 	/*
1053 	 * Do most of the synchronization with other CPUs.
1054 	 * When there's any problem use only local no_way_out state.
1055 	 */
1056 	if (mce_end(order) < 0)
1057 		no_way_out = worst >= MCE_PANIC_SEVERITY;
1058 
1059 	/*
1060 	 * If we have decided that we just CAN'T continue, and the user
1061 	 * has not set tolerant to an insane level, give up and die.
1062 	 *
1063 	 * This is mainly used in the case when the system doesn't
1064 	 * support MCE broadcasting or it has been disabled.
1065 	 */
1066 	if (no_way_out && tolerant < 3)
1067 		mce_panic("Fatal machine check on current CPU", final, msg);
1068 
1069 	/*
1070 	 * If the error seems to be unrecoverable, something should be
1071 	 * done.  Try to kill as little as possible.  If we can kill just
1072 	 * one task, do that.  If the user has set the tolerance very
1073 	 * high, don't try to do anything at all.
1074 	 */
1075 
1076 	if (kill_it && tolerant < 3)
1077 		force_sig(SIGBUS, current);
1078 
1079 	/* notify userspace ASAP */
1080 	set_thread_flag(TIF_MCE_NOTIFY);
1081 
1082 	if (worst > 0)
1083 		mce_report_event(regs);
1084 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1085 out:
1086 	atomic_dec(&mce_entry);
1087 	sync_core();
1088 }
1089 EXPORT_SYMBOL_GPL(do_machine_check);
1090 
1091 /* dummy to break dependency. actual code is in mm/memory-failure.c */
memory_failure(unsigned long pfn,int vector)1092 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1093 {
1094 	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1095 }
1096 
1097 /*
1098  * Called after mce notification in process context. This code
1099  * is allowed to sleep. Call the high level VM handler to process
1100  * any corrupted pages.
1101  * Assume that the work queue code only calls this one at a time
1102  * per CPU.
1103  * Note we don't disable preemption, so this code might run on the wrong
1104  * CPU. In this case the event is picked up by the scheduled work queue.
1105  * This is merely a fast path to expedite processing in some common
1106  * cases.
1107  */
mce_notify_process(void)1108 void mce_notify_process(void)
1109 {
1110 	unsigned long pfn;
1111 	mce_notify_irq();
1112 	while (mce_ring_get(&pfn))
1113 		memory_failure(pfn, MCE_VECTOR);
1114 }
1115 
mce_process_work(struct work_struct * dummy)1116 static void mce_process_work(struct work_struct *dummy)
1117 {
1118 	mce_notify_process();
1119 }
1120 
1121 #ifdef CONFIG_X86_MCE_INTEL
1122 /***
1123  * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1124  * @cpu: The CPU on which the event occurred.
1125  * @status: Event status information
1126  *
1127  * This function should be called by the thermal interrupt after the
1128  * event has been processed and the decision was made to log the event
1129  * further.
1130  *
1131  * The status parameter will be saved to the 'status' field of 'struct mce'
1132  * and historically has been the register value of the
1133  * MSR_IA32_THERMAL_STATUS (Intel) msr.
1134  */
mce_log_therm_throt_event(__u64 status)1135 void mce_log_therm_throt_event(__u64 status)
1136 {
1137 	struct mce m;
1138 
1139 	mce_setup(&m);
1140 	m.bank = MCE_THERMAL_BANK;
1141 	m.status = status;
1142 	mce_log(&m);
1143 }
1144 #endif /* CONFIG_X86_MCE_INTEL */
1145 
1146 /*
1147  * Periodic polling timer for "silent" machine check errors.  If the
1148  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1149  * errors, poll 2x slower (up to check_interval seconds).
1150  */
1151 static int check_interval = 5 * 60; /* 5 minutes */
1152 
1153 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1154 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1155 
mce_start_timer(unsigned long data)1156 static void mce_start_timer(unsigned long data)
1157 {
1158 	struct timer_list *t = &per_cpu(mce_timer, data);
1159 	int *n;
1160 
1161 	WARN_ON(smp_processor_id() != data);
1162 
1163 	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1164 		machine_check_poll(MCP_TIMESTAMP,
1165 				&__get_cpu_var(mce_poll_banks));
1166 	}
1167 
1168 	/*
1169 	 * Alert userspace if needed.  If we logged an MCE, reduce the
1170 	 * polling interval, otherwise increase the polling interval.
1171 	 */
1172 	n = &__get_cpu_var(mce_next_interval);
1173 	if (mce_notify_irq())
1174 		*n = max(*n/2, HZ/100);
1175 	else
1176 		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1177 
1178 	t->expires = jiffies + *n;
1179 	add_timer_on(t, smp_processor_id());
1180 }
1181 
mce_do_trigger(struct work_struct * work)1182 static void mce_do_trigger(struct work_struct *work)
1183 {
1184 	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1185 }
1186 
1187 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1188 
1189 /*
1190  * Notify the user(s) about new machine check events.
1191  * Can be called from interrupt context, but not from machine check/NMI
1192  * context.
1193  */
mce_notify_irq(void)1194 int mce_notify_irq(void)
1195 {
1196 	/* Not more than two messages every minute */
1197 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1198 
1199 	clear_thread_flag(TIF_MCE_NOTIFY);
1200 
1201 	if (test_and_clear_bit(0, &mce_need_notify)) {
1202 		wake_up_interruptible(&mce_wait);
1203 
1204 		/*
1205 		 * There is no risk of missing notifications because
1206 		 * work_pending is always cleared before the function is
1207 		 * executed.
1208 		 */
1209 		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1210 			schedule_work(&mce_trigger_work);
1211 
1212 		if (__ratelimit(&ratelimit))
1213 			pr_info(HW_ERR "Machine check events logged\n");
1214 
1215 		return 1;
1216 	}
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(mce_notify_irq);
1220 
__mcheck_cpu_mce_banks_init(void)1221 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1222 {
1223 	int i;
1224 
1225 	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1226 	if (!mce_banks)
1227 		return -ENOMEM;
1228 	for (i = 0; i < banks; i++) {
1229 		struct mce_bank *b = &mce_banks[i];
1230 
1231 		b->ctl = -1ULL;
1232 		b->init = 1;
1233 	}
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Initialize Machine Checks for a CPU.
1239  */
__mcheck_cpu_cap_init(void)1240 static int __cpuinit __mcheck_cpu_cap_init(void)
1241 {
1242 	unsigned b;
1243 	u64 cap;
1244 
1245 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1246 
1247 	b = cap & MCG_BANKCNT_MASK;
1248 	if (!banks)
1249 		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1250 
1251 	if (b > MAX_NR_BANKS) {
1252 		printk(KERN_WARNING
1253 		       "MCE: Using only %u machine check banks out of %u\n",
1254 			MAX_NR_BANKS, b);
1255 		b = MAX_NR_BANKS;
1256 	}
1257 
1258 	/* Don't support asymmetric configurations today */
1259 	WARN_ON(banks != 0 && b != banks);
1260 	banks = b;
1261 	if (!mce_banks) {
1262 		int err = __mcheck_cpu_mce_banks_init();
1263 
1264 		if (err)
1265 			return err;
1266 	}
1267 
1268 	/* Use accurate RIP reporting if available. */
1269 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1270 		rip_msr = MSR_IA32_MCG_EIP;
1271 
1272 	if (cap & MCG_SER_P)
1273 		mce_ser = 1;
1274 
1275 	return 0;
1276 }
1277 
__mcheck_cpu_init_generic(void)1278 static void __mcheck_cpu_init_generic(void)
1279 {
1280 	mce_banks_t all_banks;
1281 	u64 cap;
1282 	int i;
1283 
1284 	/*
1285 	 * Log the machine checks left over from the previous reset.
1286 	 */
1287 	bitmap_fill(all_banks, MAX_NR_BANKS);
1288 	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1289 
1290 	set_in_cr4(X86_CR4_MCE);
1291 
1292 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1293 	if (cap & MCG_CTL_P)
1294 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1295 
1296 	for (i = 0; i < banks; i++) {
1297 		struct mce_bank *b = &mce_banks[i];
1298 
1299 		if (!b->init)
1300 			continue;
1301 		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1302 		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1303 	}
1304 }
1305 
1306 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1307 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1308 {
1309 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1310 		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1311 		return -EOPNOTSUPP;
1312 	}
1313 
1314 	/* This should be disabled by the BIOS, but isn't always */
1315 	if (c->x86_vendor == X86_VENDOR_AMD) {
1316 		if (c->x86 == 15 && banks > 4) {
1317 			/*
1318 			 * disable GART TBL walk error reporting, which
1319 			 * trips off incorrectly with the IOMMU & 3ware
1320 			 * & Cerberus:
1321 			 */
1322 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1323 		}
1324 		if (c->x86 <= 17 && mce_bootlog < 0) {
1325 			/*
1326 			 * Lots of broken BIOS around that don't clear them
1327 			 * by default and leave crap in there. Don't log:
1328 			 */
1329 			mce_bootlog = 0;
1330 		}
1331 		/*
1332 		 * Various K7s with broken bank 0 around. Always disable
1333 		 * by default.
1334 		 */
1335 		 if (c->x86 == 6 && banks > 0)
1336 			mce_banks[0].ctl = 0;
1337 	}
1338 
1339 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1340 		/*
1341 		 * SDM documents that on family 6 bank 0 should not be written
1342 		 * because it aliases to another special BIOS controlled
1343 		 * register.
1344 		 * But it's not aliased anymore on model 0x1a+
1345 		 * Don't ignore bank 0 completely because there could be a
1346 		 * valid event later, merely don't write CTL0.
1347 		 */
1348 
1349 		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1350 			mce_banks[0].init = 0;
1351 
1352 		/*
1353 		 * All newer Intel systems support MCE broadcasting. Enable
1354 		 * synchronization with a one second timeout.
1355 		 */
1356 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1357 			monarch_timeout < 0)
1358 			monarch_timeout = USEC_PER_SEC;
1359 
1360 		/*
1361 		 * There are also broken BIOSes on some Pentium M and
1362 		 * earlier systems:
1363 		 */
1364 		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1365 			mce_bootlog = 0;
1366 	}
1367 	if (monarch_timeout < 0)
1368 		monarch_timeout = 0;
1369 	if (mce_bootlog != 0)
1370 		mce_panic_timeout = 30;
1371 
1372 	return 0;
1373 }
1374 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1375 static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1376 {
1377 	if (c->x86 != 5)
1378 		return;
1379 	switch (c->x86_vendor) {
1380 	case X86_VENDOR_INTEL:
1381 		intel_p5_mcheck_init(c);
1382 		break;
1383 	case X86_VENDOR_CENTAUR:
1384 		winchip_mcheck_init(c);
1385 		break;
1386 	}
1387 }
1388 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1389 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1390 {
1391 	switch (c->x86_vendor) {
1392 	case X86_VENDOR_INTEL:
1393 		mce_intel_feature_init(c);
1394 		break;
1395 	case X86_VENDOR_AMD:
1396 		mce_amd_feature_init(c);
1397 		break;
1398 	default:
1399 		break;
1400 	}
1401 }
1402 
__mcheck_cpu_init_timer(void)1403 static void __mcheck_cpu_init_timer(void)
1404 {
1405 	struct timer_list *t = &__get_cpu_var(mce_timer);
1406 	int *n = &__get_cpu_var(mce_next_interval);
1407 
1408 	setup_timer(t, mce_start_timer, smp_processor_id());
1409 
1410 	if (mce_ignore_ce)
1411 		return;
1412 
1413 	*n = check_interval * HZ;
1414 	if (!*n)
1415 		return;
1416 	t->expires = round_jiffies(jiffies + *n);
1417 	add_timer_on(t, smp_processor_id());
1418 }
1419 
1420 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1421 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1422 {
1423 	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1424 	       smp_processor_id());
1425 }
1426 
1427 /* Call the installed machine check handler for this CPU setup. */
1428 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1429 						unexpected_machine_check;
1430 
1431 /*
1432  * Called for each booted CPU to set up machine checks.
1433  * Must be called with preempt off:
1434  */
mcheck_cpu_init(struct cpuinfo_x86 * c)1435 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1436 {
1437 	if (mce_disabled)
1438 		return;
1439 
1440 	__mcheck_cpu_ancient_init(c);
1441 
1442 	if (!mce_available(c))
1443 		return;
1444 
1445 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1446 		mce_disabled = 1;
1447 		return;
1448 	}
1449 
1450 	machine_check_vector = do_machine_check;
1451 
1452 	__mcheck_cpu_init_generic();
1453 	__mcheck_cpu_init_vendor(c);
1454 	__mcheck_cpu_init_timer();
1455 	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1456 
1457 }
1458 
1459 /*
1460  * Character device to read and clear the MCE log.
1461  */
1462 
1463 static DEFINE_SPINLOCK(mce_state_lock);
1464 static int		open_count;		/* #times opened */
1465 static int		open_exclu;		/* already open exclusive? */
1466 
mce_open(struct inode * inode,struct file * file)1467 static int mce_open(struct inode *inode, struct file *file)
1468 {
1469 	spin_lock(&mce_state_lock);
1470 
1471 	if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1472 		spin_unlock(&mce_state_lock);
1473 
1474 		return -EBUSY;
1475 	}
1476 
1477 	if (file->f_flags & O_EXCL)
1478 		open_exclu = 1;
1479 	open_count++;
1480 
1481 	spin_unlock(&mce_state_lock);
1482 
1483 	return nonseekable_open(inode, file);
1484 }
1485 
mce_release(struct inode * inode,struct file * file)1486 static int mce_release(struct inode *inode, struct file *file)
1487 {
1488 	spin_lock(&mce_state_lock);
1489 
1490 	open_count--;
1491 	open_exclu = 0;
1492 
1493 	spin_unlock(&mce_state_lock);
1494 
1495 	return 0;
1496 }
1497 
collect_tscs(void * data)1498 static void collect_tscs(void *data)
1499 {
1500 	unsigned long *cpu_tsc = (unsigned long *)data;
1501 
1502 	rdtscll(cpu_tsc[smp_processor_id()]);
1503 }
1504 
1505 static int mce_apei_read_done;
1506 
1507 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
__mce_read_apei(char __user ** ubuf,size_t usize)1508 static int __mce_read_apei(char __user **ubuf, size_t usize)
1509 {
1510 	int rc;
1511 	u64 record_id;
1512 	struct mce m;
1513 
1514 	if (usize < sizeof(struct mce))
1515 		return -EINVAL;
1516 
1517 	rc = apei_read_mce(&m, &record_id);
1518 	/* Error or no more MCE record */
1519 	if (rc <= 0) {
1520 		mce_apei_read_done = 1;
1521 		return rc;
1522 	}
1523 	rc = -EFAULT;
1524 	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1525 		return rc;
1526 	/*
1527 	 * In fact, we should have cleared the record after that has
1528 	 * been flushed to the disk or sent to network in
1529 	 * /sbin/mcelog, but we have no interface to support that now,
1530 	 * so just clear it to avoid duplication.
1531 	 */
1532 	rc = apei_clear_mce(record_id);
1533 	if (rc) {
1534 		mce_apei_read_done = 1;
1535 		return rc;
1536 	}
1537 	*ubuf += sizeof(struct mce);
1538 
1539 	return 0;
1540 }
1541 
mce_read(struct file * filp,char __user * ubuf,size_t usize,loff_t * off)1542 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1543 			loff_t *off)
1544 {
1545 	char __user *buf = ubuf;
1546 	unsigned long *cpu_tsc;
1547 	unsigned prev, next;
1548 	int i, err;
1549 
1550 	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1551 	if (!cpu_tsc)
1552 		return -ENOMEM;
1553 
1554 	mutex_lock(&mce_read_mutex);
1555 
1556 	if (!mce_apei_read_done) {
1557 		err = __mce_read_apei(&buf, usize);
1558 		if (err || buf != ubuf)
1559 			goto out;
1560 	}
1561 
1562 	next = rcu_dereference_check_mce(mcelog.next);
1563 
1564 	/* Only supports full reads right now */
1565 	err = -EINVAL;
1566 	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1567 		goto out;
1568 
1569 	err = 0;
1570 	prev = 0;
1571 	do {
1572 		for (i = prev; i < next; i++) {
1573 			unsigned long start = jiffies;
1574 
1575 			while (!mcelog.entry[i].finished) {
1576 				if (time_after_eq(jiffies, start + 2)) {
1577 					memset(mcelog.entry + i, 0,
1578 					       sizeof(struct mce));
1579 					goto timeout;
1580 				}
1581 				cpu_relax();
1582 			}
1583 			smp_rmb();
1584 			err |= copy_to_user(buf, mcelog.entry + i,
1585 					    sizeof(struct mce));
1586 			buf += sizeof(struct mce);
1587 timeout:
1588 			;
1589 		}
1590 
1591 		memset(mcelog.entry + prev, 0,
1592 		       (next - prev) * sizeof(struct mce));
1593 		prev = next;
1594 		next = cmpxchg(&mcelog.next, prev, 0);
1595 	} while (next != prev);
1596 
1597 	synchronize_sched();
1598 
1599 	/*
1600 	 * Collect entries that were still getting written before the
1601 	 * synchronize.
1602 	 */
1603 	on_each_cpu(collect_tscs, cpu_tsc, 1);
1604 
1605 	for (i = next; i < MCE_LOG_LEN; i++) {
1606 		if (mcelog.entry[i].finished &&
1607 		    mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1608 			err |= copy_to_user(buf, mcelog.entry+i,
1609 					    sizeof(struct mce));
1610 			smp_rmb();
1611 			buf += sizeof(struct mce);
1612 			memset(&mcelog.entry[i], 0, sizeof(struct mce));
1613 		}
1614 	}
1615 
1616 	if (err)
1617 		err = -EFAULT;
1618 
1619 out:
1620 	mutex_unlock(&mce_read_mutex);
1621 	kfree(cpu_tsc);
1622 
1623 	return err ? err : buf - ubuf;
1624 }
1625 
mce_poll(struct file * file,poll_table * wait)1626 static unsigned int mce_poll(struct file *file, poll_table *wait)
1627 {
1628 	poll_wait(file, &mce_wait, wait);
1629 	if (rcu_access_index(mcelog.next))
1630 		return POLLIN | POLLRDNORM;
1631 	if (!mce_apei_read_done && apei_check_mce())
1632 		return POLLIN | POLLRDNORM;
1633 	return 0;
1634 }
1635 
mce_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1636 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1637 {
1638 	int __user *p = (int __user *)arg;
1639 
1640 	if (!capable(CAP_SYS_ADMIN))
1641 		return -EPERM;
1642 
1643 	switch (cmd) {
1644 	case MCE_GET_RECORD_LEN:
1645 		return put_user(sizeof(struct mce), p);
1646 	case MCE_GET_LOG_LEN:
1647 		return put_user(MCE_LOG_LEN, p);
1648 	case MCE_GETCLEAR_FLAGS: {
1649 		unsigned flags;
1650 
1651 		do {
1652 			flags = mcelog.flags;
1653 		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1654 
1655 		return put_user(flags, p);
1656 	}
1657 	default:
1658 		return -ENOTTY;
1659 	}
1660 }
1661 
1662 /* Modified in mce-inject.c, so not static or const */
1663 struct file_operations mce_chrdev_ops = {
1664 	.open			= mce_open,
1665 	.release		= mce_release,
1666 	.read			= mce_read,
1667 	.poll			= mce_poll,
1668 	.unlocked_ioctl		= mce_ioctl,
1669 	.llseek		= no_llseek,
1670 };
1671 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1672 
1673 static struct miscdevice mce_log_device = {
1674 	MISC_MCELOG_MINOR,
1675 	"mcelog",
1676 	&mce_chrdev_ops,
1677 };
1678 
1679 /*
1680  * mce=off Disables machine check
1681  * mce=no_cmci Disables CMCI
1682  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1683  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1684  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1685  *	monarchtimeout is how long to wait for other CPUs on machine
1686  *	check, or 0 to not wait
1687  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1688  * mce=nobootlog Don't log MCEs from before booting.
1689  */
mcheck_enable(char * str)1690 static int __init mcheck_enable(char *str)
1691 {
1692 	if (*str == 0) {
1693 		enable_p5_mce();
1694 		return 1;
1695 	}
1696 	if (*str == '=')
1697 		str++;
1698 	if (!strcmp(str, "off"))
1699 		mce_disabled = 1;
1700 	else if (!strcmp(str, "no_cmci"))
1701 		mce_cmci_disabled = 1;
1702 	else if (!strcmp(str, "dont_log_ce"))
1703 		mce_dont_log_ce = 1;
1704 	else if (!strcmp(str, "ignore_ce"))
1705 		mce_ignore_ce = 1;
1706 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1707 		mce_bootlog = (str[0] == 'b');
1708 	else if (isdigit(str[0])) {
1709 		get_option(&str, &tolerant);
1710 		if (*str == ',') {
1711 			++str;
1712 			get_option(&str, &monarch_timeout);
1713 		}
1714 	} else {
1715 		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1716 		       str);
1717 		return 0;
1718 	}
1719 	return 1;
1720 }
1721 __setup("mce", mcheck_enable);
1722 
mcheck_init(void)1723 int __init mcheck_init(void)
1724 {
1725 	atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1726 
1727 	mcheck_intel_therm_init();
1728 
1729 	return 0;
1730 }
1731 
1732 /*
1733  * Sysfs support
1734  */
1735 
1736 /*
1737  * Disable machine checks on suspend and shutdown. We can't really handle
1738  * them later.
1739  */
mce_disable_error_reporting(void)1740 static int mce_disable_error_reporting(void)
1741 {
1742 	int i;
1743 
1744 	for (i = 0; i < banks; i++) {
1745 		struct mce_bank *b = &mce_banks[i];
1746 
1747 		if (b->init)
1748 			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1749 	}
1750 	return 0;
1751 }
1752 
mce_suspend(void)1753 static int mce_suspend(void)
1754 {
1755 	return mce_disable_error_reporting();
1756 }
1757 
mce_shutdown(void)1758 static void mce_shutdown(void)
1759 {
1760 	mce_disable_error_reporting();
1761 }
1762 
1763 /*
1764  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1765  * Only one CPU is active at this time, the others get re-added later using
1766  * CPU hotplug:
1767  */
mce_resume(void)1768 static void mce_resume(void)
1769 {
1770 	__mcheck_cpu_init_generic();
1771 	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1772 }
1773 
1774 static struct syscore_ops mce_syscore_ops = {
1775 	.suspend	= mce_suspend,
1776 	.shutdown	= mce_shutdown,
1777 	.resume		= mce_resume,
1778 };
1779 
mce_cpu_restart(void * data)1780 static void mce_cpu_restart(void *data)
1781 {
1782 	del_timer_sync(&__get_cpu_var(mce_timer));
1783 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1784 		return;
1785 	__mcheck_cpu_init_generic();
1786 	__mcheck_cpu_init_timer();
1787 }
1788 
1789 /* Reinit MCEs after user configuration changes */
mce_restart(void)1790 static void mce_restart(void)
1791 {
1792 	on_each_cpu(mce_cpu_restart, NULL, 1);
1793 }
1794 
1795 /* Toggle features for corrected errors */
mce_disable_ce(void * all)1796 static void mce_disable_ce(void *all)
1797 {
1798 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1799 		return;
1800 	if (all)
1801 		del_timer_sync(&__get_cpu_var(mce_timer));
1802 	cmci_clear();
1803 }
1804 
mce_enable_ce(void * all)1805 static void mce_enable_ce(void *all)
1806 {
1807 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1808 		return;
1809 	cmci_reenable();
1810 	cmci_recheck();
1811 	if (all)
1812 		__mcheck_cpu_init_timer();
1813 }
1814 
1815 static struct sysdev_class mce_sysclass = {
1816 	.name		= "machinecheck",
1817 };
1818 
1819 DEFINE_PER_CPU(struct sys_device, mce_dev);
1820 
1821 __cpuinitdata
1822 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1823 
attr_to_bank(struct sysdev_attribute * attr)1824 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1825 {
1826 	return container_of(attr, struct mce_bank, attr);
1827 }
1828 
show_bank(struct sys_device * s,struct sysdev_attribute * attr,char * buf)1829 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1830 			 char *buf)
1831 {
1832 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1833 }
1834 
set_bank(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1835 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1836 			const char *buf, size_t size)
1837 {
1838 	u64 new;
1839 
1840 	if (strict_strtoull(buf, 0, &new) < 0)
1841 		return -EINVAL;
1842 
1843 	attr_to_bank(attr)->ctl = new;
1844 	mce_restart();
1845 
1846 	return size;
1847 }
1848 
1849 static ssize_t
show_trigger(struct sys_device * s,struct sysdev_attribute * attr,char * buf)1850 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1851 {
1852 	strcpy(buf, mce_helper);
1853 	strcat(buf, "\n");
1854 	return strlen(mce_helper) + 1;
1855 }
1856 
set_trigger(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t siz)1857 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1858 				const char *buf, size_t siz)
1859 {
1860 	char *p;
1861 
1862 	strncpy(mce_helper, buf, sizeof(mce_helper));
1863 	mce_helper[sizeof(mce_helper)-1] = 0;
1864 	p = strchr(mce_helper, '\n');
1865 
1866 	if (p)
1867 		*p = 0;
1868 
1869 	return strlen(mce_helper) + !!p;
1870 }
1871 
set_ignore_ce(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1872 static ssize_t set_ignore_ce(struct sys_device *s,
1873 			     struct sysdev_attribute *attr,
1874 			     const char *buf, size_t size)
1875 {
1876 	u64 new;
1877 
1878 	if (strict_strtoull(buf, 0, &new) < 0)
1879 		return -EINVAL;
1880 
1881 	if (mce_ignore_ce ^ !!new) {
1882 		if (new) {
1883 			/* disable ce features */
1884 			on_each_cpu(mce_disable_ce, (void *)1, 1);
1885 			mce_ignore_ce = 1;
1886 		} else {
1887 			/* enable ce features */
1888 			mce_ignore_ce = 0;
1889 			on_each_cpu(mce_enable_ce, (void *)1, 1);
1890 		}
1891 	}
1892 	return size;
1893 }
1894 
set_cmci_disabled(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1895 static ssize_t set_cmci_disabled(struct sys_device *s,
1896 				 struct sysdev_attribute *attr,
1897 				 const char *buf, size_t size)
1898 {
1899 	u64 new;
1900 
1901 	if (strict_strtoull(buf, 0, &new) < 0)
1902 		return -EINVAL;
1903 
1904 	if (mce_cmci_disabled ^ !!new) {
1905 		if (new) {
1906 			/* disable cmci */
1907 			on_each_cpu(mce_disable_ce, NULL, 1);
1908 			mce_cmci_disabled = 1;
1909 		} else {
1910 			/* enable cmci */
1911 			mce_cmci_disabled = 0;
1912 			on_each_cpu(mce_enable_ce, NULL, 1);
1913 		}
1914 	}
1915 	return size;
1916 }
1917 
store_int_with_restart(struct sys_device * s,struct sysdev_attribute * attr,const char * buf,size_t size)1918 static ssize_t store_int_with_restart(struct sys_device *s,
1919 				      struct sysdev_attribute *attr,
1920 				      const char *buf, size_t size)
1921 {
1922 	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1923 	mce_restart();
1924 	return ret;
1925 }
1926 
1927 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1928 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1929 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1930 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1931 
1932 static struct sysdev_ext_attribute attr_check_interval = {
1933 	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1934 		     store_int_with_restart),
1935 	&check_interval
1936 };
1937 
1938 static struct sysdev_ext_attribute attr_ignore_ce = {
1939 	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1940 	&mce_ignore_ce
1941 };
1942 
1943 static struct sysdev_ext_attribute attr_cmci_disabled = {
1944 	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1945 	&mce_cmci_disabled
1946 };
1947 
1948 static struct sysdev_attribute *mce_attrs[] = {
1949 	&attr_tolerant.attr,
1950 	&attr_check_interval.attr,
1951 	&attr_trigger,
1952 	&attr_monarch_timeout.attr,
1953 	&attr_dont_log_ce.attr,
1954 	&attr_ignore_ce.attr,
1955 	&attr_cmci_disabled.attr,
1956 	NULL
1957 };
1958 
1959 static cpumask_var_t mce_dev_initialized;
1960 
1961 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
mce_create_device(unsigned int cpu)1962 static __cpuinit int mce_create_device(unsigned int cpu)
1963 {
1964 	int err;
1965 	int i, j;
1966 
1967 	if (!mce_available(&boot_cpu_data))
1968 		return -EIO;
1969 
1970 	memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1971 	per_cpu(mce_dev, cpu).id	= cpu;
1972 	per_cpu(mce_dev, cpu).cls	= &mce_sysclass;
1973 
1974 	err = sysdev_register(&per_cpu(mce_dev, cpu));
1975 	if (err)
1976 		return err;
1977 
1978 	for (i = 0; mce_attrs[i]; i++) {
1979 		err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1980 		if (err)
1981 			goto error;
1982 	}
1983 	for (j = 0; j < banks; j++) {
1984 		err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1985 					&mce_banks[j].attr);
1986 		if (err)
1987 			goto error2;
1988 	}
1989 	cpumask_set_cpu(cpu, mce_dev_initialized);
1990 
1991 	return 0;
1992 error2:
1993 	while (--j >= 0)
1994 		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1995 error:
1996 	while (--i >= 0)
1997 		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1998 
1999 	sysdev_unregister(&per_cpu(mce_dev, cpu));
2000 
2001 	return err;
2002 }
2003 
mce_remove_device(unsigned int cpu)2004 static __cpuinit void mce_remove_device(unsigned int cpu)
2005 {
2006 	int i;
2007 
2008 	if (!cpumask_test_cpu(cpu, mce_dev_initialized))
2009 		return;
2010 
2011 	for (i = 0; mce_attrs[i]; i++)
2012 		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2013 
2014 	for (i = 0; i < banks; i++)
2015 		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
2016 
2017 	sysdev_unregister(&per_cpu(mce_dev, cpu));
2018 	cpumask_clear_cpu(cpu, mce_dev_initialized);
2019 }
2020 
2021 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void * h)2022 static void __cpuinit mce_disable_cpu(void *h)
2023 {
2024 	unsigned long action = *(unsigned long *)h;
2025 	int i;
2026 
2027 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2028 		return;
2029 
2030 	if (!(action & CPU_TASKS_FROZEN))
2031 		cmci_clear();
2032 	for (i = 0; i < banks; i++) {
2033 		struct mce_bank *b = &mce_banks[i];
2034 
2035 		if (b->init)
2036 			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2037 	}
2038 }
2039 
mce_reenable_cpu(void * h)2040 static void __cpuinit mce_reenable_cpu(void *h)
2041 {
2042 	unsigned long action = *(unsigned long *)h;
2043 	int i;
2044 
2045 	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2046 		return;
2047 
2048 	if (!(action & CPU_TASKS_FROZEN))
2049 		cmci_reenable();
2050 	for (i = 0; i < banks; i++) {
2051 		struct mce_bank *b = &mce_banks[i];
2052 
2053 		if (b->init)
2054 			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2055 	}
2056 }
2057 
2058 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2059 static int __cpuinit
mce_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2060 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2061 {
2062 	unsigned int cpu = (unsigned long)hcpu;
2063 	struct timer_list *t = &per_cpu(mce_timer, cpu);
2064 
2065 	switch (action) {
2066 	case CPU_ONLINE:
2067 	case CPU_ONLINE_FROZEN:
2068 		mce_create_device(cpu);
2069 		if (threshold_cpu_callback)
2070 			threshold_cpu_callback(action, cpu);
2071 		break;
2072 	case CPU_DEAD:
2073 	case CPU_DEAD_FROZEN:
2074 		if (threshold_cpu_callback)
2075 			threshold_cpu_callback(action, cpu);
2076 		mce_remove_device(cpu);
2077 		break;
2078 	case CPU_DOWN_PREPARE:
2079 	case CPU_DOWN_PREPARE_FROZEN:
2080 		del_timer_sync(t);
2081 		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2082 		break;
2083 	case CPU_DOWN_FAILED:
2084 	case CPU_DOWN_FAILED_FROZEN:
2085 		if (!mce_ignore_ce && check_interval) {
2086 			t->expires = round_jiffies(jiffies +
2087 					   __get_cpu_var(mce_next_interval));
2088 			add_timer_on(t, cpu);
2089 		}
2090 		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2091 		break;
2092 	case CPU_POST_DEAD:
2093 		/* intentionally ignoring frozen here */
2094 		cmci_rediscover(cpu);
2095 		break;
2096 	}
2097 	return NOTIFY_OK;
2098 }
2099 
2100 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2101 	.notifier_call = mce_cpu_callback,
2102 };
2103 
mce_init_banks(void)2104 static __init void mce_init_banks(void)
2105 {
2106 	int i;
2107 
2108 	for (i = 0; i < banks; i++) {
2109 		struct mce_bank *b = &mce_banks[i];
2110 		struct sysdev_attribute *a = &b->attr;
2111 
2112 		sysfs_attr_init(&a->attr);
2113 		a->attr.name	= b->attrname;
2114 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2115 
2116 		a->attr.mode	= 0644;
2117 		a->show		= show_bank;
2118 		a->store	= set_bank;
2119 	}
2120 }
2121 
mcheck_init_device(void)2122 static __init int mcheck_init_device(void)
2123 {
2124 	int err;
2125 	int i = 0;
2126 
2127 	if (!mce_available(&boot_cpu_data))
2128 		return -EIO;
2129 
2130 	zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2131 
2132 	mce_init_banks();
2133 
2134 	err = sysdev_class_register(&mce_sysclass);
2135 	if (err)
2136 		return err;
2137 
2138 	for_each_online_cpu(i) {
2139 		err = mce_create_device(i);
2140 		if (err)
2141 			return err;
2142 	}
2143 
2144 	register_syscore_ops(&mce_syscore_ops);
2145 	register_hotcpu_notifier(&mce_cpu_notifier);
2146 	misc_register(&mce_log_device);
2147 
2148 	return err;
2149 }
2150 
2151 device_initcall(mcheck_init_device);
2152 
2153 /*
2154  * Old style boot options parsing. Only for compatibility.
2155  */
mcheck_disable(char * str)2156 static int __init mcheck_disable(char *str)
2157 {
2158 	mce_disabled = 1;
2159 	return 1;
2160 }
2161 __setup("nomce", mcheck_disable);
2162 
2163 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2164 struct dentry *mce_get_debugfs_dir(void)
2165 {
2166 	static struct dentry *dmce;
2167 
2168 	if (!dmce)
2169 		dmce = debugfs_create_dir("mce", NULL);
2170 
2171 	return dmce;
2172 }
2173 
mce_reset(void)2174 static void mce_reset(void)
2175 {
2176 	cpu_missing = 0;
2177 	atomic_set(&mce_fake_paniced, 0);
2178 	atomic_set(&mce_executing, 0);
2179 	atomic_set(&mce_callin, 0);
2180 	atomic_set(&global_nwo, 0);
2181 }
2182 
fake_panic_get(void * data,u64 * val)2183 static int fake_panic_get(void *data, u64 *val)
2184 {
2185 	*val = fake_panic;
2186 	return 0;
2187 }
2188 
fake_panic_set(void * data,u64 val)2189 static int fake_panic_set(void *data, u64 val)
2190 {
2191 	mce_reset();
2192 	fake_panic = val;
2193 	return 0;
2194 }
2195 
2196 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2197 			fake_panic_set, "%llu\n");
2198 
mcheck_debugfs_init(void)2199 static int __init mcheck_debugfs_init(void)
2200 {
2201 	struct dentry *dmce, *ffake_panic;
2202 
2203 	dmce = mce_get_debugfs_dir();
2204 	if (!dmce)
2205 		return -ENOMEM;
2206 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2207 					  &fake_panic_fops);
2208 	if (!ffake_panic)
2209 		return -ENOMEM;
2210 
2211 	return 0;
2212 }
2213 late_initcall(mcheck_debugfs_init);
2214 #endif
2215